
1

Practical Privacy with LARGE
Databases

Duane Merrill

November 29, 2007

Overview

Schemes for private database query

1. Motivational Scenarios

2. The “Gold Standard”

– Oblivious Transfer (OT)

– Symmetric Private Information Retrieval (SPIR)

3. My alternatives

– Security through plausible deniability

– Security through obscurity

Motivational Scenarios: Sender &
Chooser Privacy

• Pharmaceutical

– Drug designers need access to pharmaceutical databases to access properties
of chemical compounds.

– Drug designers don’t want to disclose what they’re working on

– Database owners may be unwilling to sell them their entire database.

• Patent

– Researchers with potentially new ideas often need to check for “prior art” on the
subject.

– If the patent database is aware of the queries, the researcher’s competitive
advantage is jeopardized.

• Media

– Users may wish to purchase videos or music without the vendor knowing what
they bought

– Database owners don’t want to expose content other than what’s being
purchased.

Oblivious Transfer (OT)

• Simplest form: 1-of-2 OT

– Alice has two bits b0, b1

– Bob gets to choose one

– Alice learns nothing about
which one Bob took

– Bob learns nothing about
Alice’s other bit

• Implementable with every
known public key
cryptosystem

Bob

Generate random
symmetric key k

Select i ∈ {0, 1}

Compute c = Enc(<k>, ei)

Compute r = Dec(< ri >, k)

Print r

Alice

Generate two PKS key pairs
(e0, d0) and (e1, d1)

Compute k0 = Dec(< c >, d0)

Compute k1 = Dec(< c >, d1)

Compute r0 = Enc(< b0 >, k0)

Compute r1 = Enc(< b1 >, k1)

e0 , e1

c

r0 , r1

OT Generalizations

Garden varieties:

• 1-of-N

• k-of-N

• Keyword search

• Block retrieval

• Committed

• Private information retrieval

(PIR)

Schemes measured by

• Communication complexity

– Initialization

– Online (query time)

• Computational complexity

– Initialization

– Online (query time)

Lower Bounds

• O(Computation) ≥ O(Communication)

– Have to process each bit sent, even if just to copy

– Computation is often measured in terms of
exponentiations w/r/t N

• Communication is clearly O(log N)

– Chooser needs a minimum of log N bits to index his
desired datum

• Chooser-privacy makes it O(N)

2

Order N? Oh noes!

• Chooser privacy

– For a given configuration, the response message must be the same for
all indices i=0, i=1, … , i=N-1

– Otherwise the server is aware of a difference between choices

• Proof: Assume response message has fewer than N bits

– 2N database configurations, not as many possible response messages

– Two different configurations must share the same response message

– The configurations will differ at some bi, and the chooser will not know
what to print (received the same message).

b0Bit database = b1 b2 b3 b4 b5 … bN-1

But wait….Computational PIR!

• Rely on some intractability assumptions

responses are the same
for each choice

responses are equally-
as-likely (as far as the

server can tell)

• Client encrypts “Return me the ith record”

• Server processes

encrypted-result = f (encrypted-query, database)

• Server recognizes neither the result or the query

• Response messages are now O(polylog(N))

• Must read every record in the database for each query

Server

But wait… Hardware PIR!

• Use “secure co-processor”

– TPM’s to avoid detection of
copyright infringement!

• TPM is a black box for
selection

– No one can access its

memory from the outside.

• Much less computational

overhead (PKI crypto)

bN-1

b0

bi

Client TPM

• Do you trust the TPM?

• Must read every record in the
database for each query

Enc (<get i >, TPM_pubkey)

Enc (<bi>, Client_pubkey)

But wait… Offline + Preprocessing!

• Homomorphic encryption

– An algebraic operation on the ciphertext has an algebraic effect on the
encoded plaintext

– Often can add and multiply encrypted messages

1. Server encrypts every record

2. Encrypted records shipped offline to choosers

3. Chooser selects desired record, re-encrypts it, sends doubly-encrypted
record to server

4. Server homomophically removes its encryption underneath, returns
singly-encrypted record

5. Client decrypts record to get plaintext

• No need to run through the database each time

• Client must own entire copy of database (and keep it current)

OT/SPIR Maybe Not the Best Fit
for Media Distribution…

• Too many entries

– iTunes has 6 million track available

– 3.75MB per track

– 21TB database

• Can’t iterate over per-query

• Ship to each customer? (Won’t fit on Zune)

• VERY important to monitor download popularity

– Billboard top 100

Ring Signatures

– User signs a message with their public/private keypair
and the public keys of k-1 other people

– No setup or cooperation

– Verifier cannot distinguish with probability greater
than 1/k who signed

– Signatures includes the public keys of all “suspects”
(thus grows linearly)

3

Scheme A: Plausible Deniability

• Assumptions

– Confidential bi-directional channels

• Protocol

– Client A generates <get i > message, signs with A_pubkey and Server_pubkey.

– Server authenticates client A and returns bi

• Comments

– No setup

– No knowledge of other users

– Communication and computation cost is O(log N)
• Signing requires 1 modular exponentiation, 3 multiplications

• Verification requires 4 modular multiplications

– Designated verifier scheme
• A is positively authenticated to the Server

• Server cannot prove to anyone else that A ordered a particular song

Scheme B: K-anonymity
• Assumptions

– Anonymous bi-directional channels

– Open billing (unlimited downloads)

• Protocol

– A generates < get i > message, signs with A_pubkey and the public keys of K-1
other users

– Server authenticates client A and the K-1 other users, and returns bi

• Comments

– Requires knowledge of other users

– Users can choose their K
• Other users can “50%-slander” you

– Communication and computation cost is O(log N + K)
• Signing and verification each require +2 modular multiplications per non-signer

– Can be made to work without anonymous channels (symmetric keys and K-
broadcast)

– Can’t bill/reward user activity

Blind Signatures

• Blinding Protocol

– Alice “blinds” her message

<m’> = blind(<m>)

– <m’> is indistinguishable from random

– Alice has Bob sign <m’> resulting in <s’>

– Alice removes the blinding factor at her leisure,
yielding <s> as if Bob had signed <m> directly

• Easily implementable with RSA

Scheme C: PG-Anonymity

• Assumptions

– Anonymous bi-directional channels

• Protocol

– Client A generates a random symmetric key kA

– Client A generates a blinded voucher vA = <“get i”, kA>

– Client A creates vA’ = Blind(vA)

– Client A signs <vA’> and sends both to Server

– Server authenticates client A and creates a signature sA’ of <vA’>

– Server signs <sA’> and sends both to Client A

– Client A retrieves <sA> by unblinding <sA’>

– Client A waits a while…

– Client A sends <vA, sA> to Server

– Server verifies that it signed the voucher vA and returns Enc(bi, kA)

“Pretty-Good” Anonymity

• General:

– Redemption phase is (almost) completely anonymous

– Individuals can be charged/rewarded by their
download tallies

• More details:

– Secret key k acts as a nonce to prevent double-
spending

• Server checks for (i,k) repeats during redemption

• Server checks for voucher request v’ repeats to avoid false-

negatives

Can we guess who made a
particular redemption?

• One voucher out, one redemption in…

– 100% linkability

• 10 vouchers out, redemptions coming in…

– 1/10 = 10% regardless of redemption slot

• 5 vouchers out (blue), 1 redemption in, 6 vouchers out (red)…

– First redemption (from 5 unclaimed)
• 1/5 = 20% for the blue vouchers

– Second redemption (from 10 unclaimed)

• (4/5)(1/10) = 8% for blue vouchers

• (1/10) = 10% for red vouchers

– Third redemption (from 9 unclaimed)
• (4/5)(9/10)(1/9) = 8% for blue vouchers

• (9/10)(1/9) = 10% for red vouchers

– Fourth redemption (from 8 unclaimed)

• (4/5)(9/10)(8/9)(1/8) = 8% for blue vouchers

• (9/10)(8/9)(1/8) = 10% for red vouchers

4

Pretty Hairy

• New vouchers reduce linkability for existing
vouchers

• Draining redemptions maintain linkability for
existing vouchers

• Linkability is most dicey right at redemption time

• Multiple outstanding requests increase linkability

– But by a proportional factor: same as OT/PIR

Equilibrium

• Linkability is at most 1/(backlog)

– E.g., keep the system with a backlog of ~1000 unclaimed vouchers for
~1000-anonymity

– Might bootstrap with 1000 users, where everyone orders a song before
anyone redeems. (Or a Pepsi bottle-cap giveaway.)

• Towards a steady-state equilibrium:

– Discrete time steps, redeem with probability p

• Geometric distribution

– Actual linkability is at most p, but p is unknown to the Server

• Clients can change their redemption parameter p to suit the cost-
benefit tradeoff of anonymity vs. immediate-gratification

• Can get a rough-estimate of anonymity using a 3rd party back-log
metering system and then selecting p appropriately.

Conclusions

• Oblivious Transfer and PIR are cool… but
probably not commercially-viable

• Presented three approaches that may be
suitable when e-cash isn’t

– Some authorization needed

• Still working on analysis, potentially simulation

Questions

?

iTunes

• ~6 million songs

• 200 million users

• ~3 billion downloads to-date

• Pepsi had a 100-million download giveaway

• (Feb 2006) 3+ million downloads a week

– 300+ downloads a minute

– Pipelining a backlog of 10,000 vouchers takes ~30
minutes

