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1
Computing

In their capacity as a tool, computers will be but a ripple on the surface of our
culture. In their capacity as intellectual challenge, they are without precedent in
the cultural history of mankind.

Edsger Dijkstra, 1972 Turing Award Lecture

The first million years of hominid tool development focused on developing
tools to amplify, and later mechanize, our physical abilities to enable us to
move faster, reach higher, and hit harder. We have developed tools that am-
plify physical force by the trillions and increase the speeds at which we can
travel by the thousands.

Tools that amplify intellectual abilities are much rarer. While some animals
have developed tools to amplify their physical abilities, only humans have de-
veloped tools to substantially amplify our intellectual abilities and it is those
advances that have enabled humans to dominate the planet. The first key in-
tellect amplifier was language. Language provided the ability to transmit our
thoughts to others, as well as to use our own minds more effectively. The next
key intellect amplifier was writing, which enabled the storage and transmis-
sion of thoughts over time and distance.

Computing is the ultimate mental amplifier—computers can mechanize any
intellectual activity we can imagine. Automatic computing radically changes
how humans solve problems, and even the kinds of problems we can imagine
solving. Computing has changed the world more than any other invention of
the past hundred years, and has come to pervade nearly all human endeav-
ors. Yet, we are just at the beginning of the computing revolution; today’s
computing offers just a glimpse of the potential impact of computing.

There are two reasons why everyone should study computing:

1. Nearly all of the most exciting and important technologies of today and
tomorrow are driven by computing.

2. Understanding computing illuminates deep insights and questions into
the nature of our minds, our culture, and our universe.

Anyone who has submitted a query to Google, watched Toy Story, had LASIK
eye surgery, made a cell phone call, seen a Cirque Du Soleil show, shopped
with a credit card, or microwaved a pizza should be convinced of the first
reason. None of these would be possible without the tremendous advances
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in computing over the past half century.It may be true that you have to be
able to read in order to fill out

forms at the DMV, but that’s not
why we teach children to read. We

teach them to read for the higher
purpose of allowing them access to

beautiful and meaningful ideas.
Paul Lockhart, Lockhart’s Lament

Although this book will touch on on some exciting applications of computing,
our primary focus is on the second reason, which may seem more surprising.
Computing changes how we think about problems and how we understand
the world. The goal of this book is to teach you that new way of thinking.

1.1 Processes, Procedures, and Computers

Computer science is the study of information processes. A process is a se-information processes

quence of steps. Each step changes the state of the world in some small way,
and the result of all the steps produces some goal state. For example, baking
a cake, mailing a letter, and planting a tree are all processes. Because they in-
volve physical things like sugar and dirt, however, they are not pure informa-
tion processes. Computer science focuses on processes that involve abstract
information rather than physical things.

The boundaries between the physical world and pure information processes,
however, are often fuzzy. Real computers operate in the physical world: they
obtain input through physical means (e.g., a user pressing a key on a keyboard
that produces an electrical impulse), and produce physical outputs (e.g., an
image displayed on a screen). By focusing on abstract information, instead of
the physical ways of representing and manipulating information, we simplify
computation to its essence to better enable understanding and reasoning.

A procedure is a description of a process. A simple process can be describedprocedure

just by listing the steps. The list of steps is the procedure; the act of following
them is the process. If the description can be followed without any thought,
we call it a mechanical procedure. An algorithm is a procedure that is guaran-algorithm

teed to always finish.

For example, here is a procedure for making coffee, adapted from the actual
directions that come with a major coffeemaker:A mathematician is a machine for

turning coffee into theorems.
Attributed to Paul Erdös

1. Lift and open the coffeemaker lid.
2. Place a basket-type filter into the filter basket.
3. Add the desired amount of coffee and shake to level the coffee.
4. Fill the decanter with cold, fresh water to the desired capacity.
5. Pour the water into the water reservoir.
6. Close the lid.
7. Place the empty decanter on the warming plate.
8. Press the ON button.

Describing processes by just listing steps like this has many limitations. First,
natural languages are very imprecise and ambiguous. The steps described
rely on the operator knowing lots of unstated assumptions. For example, step
three assumes the reader understands the difference between coffee grounds
and drinkable coffee, and can correctly infer that this use of “coffee” refers to
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coffee grounds. Other steps assume the coffeemaker is plugged in to a power
outlet and sitting on a flat surface.

One could, of course, add lots more details to our procedure and make the
language more precise than this. Even when a lot of effort is put into writing
precisely and clearly, however, natural languages such as English are inher-
ently ambiguous. This is why the United States tax code is 3.4 million words
long, but lawyers can still spend years arguing over what it really means. If you steal property, you must

report its fair market value in your
income in the year you steal it
unless in the same year, you return
it to its rightful owner.
Your Federal Income Tax, IRS
Publication 17, p. 90.

Another problem with this way of describing a procedure is that the size of the
description is proportional to the number of steps in the process. This is fine
for simple processes that can be executed by humans in a reasonable amount
of time, but the processes we want to execute on computers involve trillions
of steps. This means we need more efficient ways to describe them than just
listing each step one-by-one. The languages we use to program computers
provide ways to define long and complex processes with short procedures.

To program computers, we need tools that allow us to describe processes pre-
cisely and succinctly. Since the procedures are carried out by a machine, ev-
ery step needs to be described; we cannot rely on the operator having “com-
mon sense” (for example, to know how to fill the coffeemaker with water with-
out explaining that water comes from a faucet, and how to turn the faucet
on). Instead, we need mechanical procedures that can be followed without
any thinking.

A computer is a machine that can: computer

1. Accept input. Input could be entered by a human typing at a keyboard,
received over a network, or provided automatically by sensors attached
to the computer.

2. Execute a mechanical procedure, that is, a procedure where each step
can be executed without any thought.

3. Produce output. Output could be data displayed to a human, but it
could also be anything that effects the world outside the computer such
as electrical signals that control how a device operates.

Computers exist in a wide range of forms, and thousands of computers are
hidden in devices we use everyday but don’t think of as computers such as
cars, phones, TVs, microwave ovens, and access cards. Our primary focus in
this book is on universal computers, which are computers that can perform universal computers

all possible mechanical computations on discrete inputs except for practical
limits on space and time. The next section explains what it discrete inputs
means; Chapters 6 and 12 explore more precisely what it means for a com-
puter to be universal.

1.2 Measuring Computing Power

For physical machines, we can compare the power of different machines by
measuring the amount of mechanical work they can perform within a given
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amount of time. This power can be captured with units like horsepower and
watt. Physical power is not a very useful measure of computing power, though,
since the amount of computing achieved for the same amount of energy varies
greatly. Energy is consumed when a computer operates, but consuming en-
ergy is not the purpose of using a computer.

The two main properties we can measure about the power of a computing
machine are:

1. How much information it can process?
2. How fast can it process?

We will defer considering the second property until later (starting with Chap-
ter 7), but consider the first question here.

1.2.1 Information

Informally, we use information to mean knowledge. But to understand infor-information

mation quantitatively, as something we can measure, we need a more precise
way to think about information.

The way computer scientists measure information is based on how what is
known changes as a result of obtaining the information. The primary unit of
information is a bit . One bit of information halves the amount of uncertainty.bit

It is equivalent to answering a “yes” or “no” question, where either answer is
equally likely beforehand. Before learning the answer, there were two possi-
bilities; after learning the answer, there is one.

We call a question with two possible answers a binary question. Since a bitbinary question

can have two possible values, we often represent the values as 0 and 1.

For example, suppose we perform a fair coin toss but do not reveal the result.
Half of the time, the coin will land “heads”, and the other half of the time the
coin will land “tails”. Without knowing any more information, our chances of
guessing the correct answer are 1

2 . One bit of information would be enough
to convey either “heads” or “tails”; we can use 0 to represent “heads” and 1 to
represent “tails”. So, the amount of information in a coin toss is one bit.

Similarly, one bit can distinguish between the values 0 and 1:

Example 1.1: Dice. How many bits of information are there in the outcome
of tossing a fair six-sided die?
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There are six equally likely possible outcomes, so without any more informa-
tion we have a one in six chance of guessing the correct value. One bit is not
enough to identify the actual number, since one bit can only distinguish be-
tween two values. We could use five binary questions like this:

This is quite inefficient, though, since we need up to five questions to identify
the value (and on average, expect to need 3 1

3 questions.

Can we identify the value with fewer than 5 questions?

Our goal is to identify questions where the “yes” and “no” answers are equally
likely—that way, each answer provides the most information possible. This is
not the case if we start with, “Is the value 6?”, since that answer is expected to
be “yes” only one time in six. Instead, we should start with a question like, “Is
the value at least 4?”. Here, we expect the answer to be “yes” one half of the
time, and the “yes” and “no” answers are equally likely. If the answer is “yes”,
we know the result is 4, 5, or 6. With two more bits, we can distinguish be-
tween these three values (note that two bits is actually enough to distinguish
among four different values, so some information is wasted here). Similarly,
if the answer to the first question is no, we know the result is 1, 2, or 3. We
need two more bits to distinguish which of the three values it is. Thus, with
three bits, we can distinguish all six possible outcomes.

Three bits can convey more information that just six possible outcomes, how-
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ever. In the binary question tree, there are some questions where the answer
is not equally likely to be “yes” and “no” (for example, we expect the answer
to “Is the value 3?” to be “yes” only one out of three times). Hence, we are not
obtaining a full bit of information with each question.

Each bit doubles the number of possibilities we can distinguish, so with three
bits we can distinguish between 2 ∗ 2 ∗ 2 = 8 possibilities. In general, with n
bits, we can distinguish between 2n possibilities. Conversely, distinguishing
among k possible values requires log2 k bits. The logarithm is defined suchlogarithm

that if a = bc then logb a = c. Since each bit has two possibilities, we use
the logarithm base 2 to determine the number of bits needed to distinguish
among a set of distinct possibilities. For our six-sided die, log2 6 ≈ 2.58, so
we need approximately 2.58 binary questions. But, questions are discrete: we
can’t ask 0.58 of a question, so we need to use three binary questions.

Trees. Figure 1.1 depicts a structure of binary questions for distinguishing
among eight values. We call this structure a binary tree. We will see manybinary tree

useful applications of tree-like structures in this book.

Computer scientists draw trees upside down. The root is the top of the tree,
and the leaves are the numbers at the bottom (0, 1, 2, . . ., 7). There is a unique
path from the root of the tree to each leaf. Thus, we can describe each of the
eight possible values using the answers to the questions down the tree. For
example, if the answers are “No”, “No”, and “No”, we reach the leaf 0; if the
answers are “Yes”, “No”, “Yes”, we reach the leaf 5.

We can describe any non-negative integer using bits in this way, by just adding
additional levels to the tree. For example, if we wanted to distinguish between
16 possible numbers, we would add a new question, “Is is >= 8?” to the top
of the tree. If the answer is “No”, we use the tree in Figure 1.1 to distinguish
numbers between 0 and 7. If the answer is “Yes”, we use a tree similar to the
one in Figure 1.1, but add 8 to each of the numbers in the questions and the
leaves.

The depth of a tree is the length of the longest path from the root to any leaf.depth

The example tree has depth three. A binary tree of depth d can distinguish up
to 2d different values.

Figure 1.1. Using three bits to distinguish eight possible values.
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Units of Information. One byte is defined as eight bits. Hence, one byte of in-
formation corresponds to eight binary questions, and can distinguish among
28 (256) different values. For larger amounts of information, we use metric
prefixes, but instead of scaling by factors of 1000 they scale by factors of 210

(1024). Hence, one kilobyte is 1024 bytes; one megabyte is 220 (approximately
one million) bytes; one gigabyte is 230 (approximately one billion) bytes; and
one terabyte is 240 (approximately one trillion) bytes.

Exercise 1.1. Draw a binary tree for distinguishing among the sixteen num-
bers 0, 1, 2, . . . , 15 with the minimum possible depth.

Exercise 1.2. Draw a binary tree for distinguishing among the twelve months
of the year with the minimum possible depth.

Exercise 1.3. How many bits are needed:

a. To uniquely identify any currently living human?

b. To uniquely identify any human who ever lived?

c. To identify any location on Earth within one square centimeter?

d. To uniquely identify any atom in the observable universe?

Exercise 1.4. The examples all use binary questions for which there are two
possible answers. Suppose instead of basing our decisions on bits, we based
it on trits where one trit can distinguish between three equally likely values.
For each trit, we can ask a ternary question (a question with three possible
answers).

a. How many trits are needed to distinguish among eight possible values?
(A convincing answer would show a ternary tree with the questions and
answers for each node, and argue why it is not possible to distinguish all
the values with a tree of lesser depth.)

b. [★] Devise a general formula for converting between bits and trits. How
many trits does it require to describe b bits of information?

Exploration 1.1: Guessing Numbers

The guess-a-number game starts with one player (the chooser) picking a num-
ber between 1 and 100 (inclusive) and secretly writing it down. The other
player (the guesser) attempts to guess the number. After each guess, the chooser
responds with “correct” (the guesser guessed the number and the game is
over), “higher” (the actual number is higher than the guess), or “lower” (the
actual number is lower than the guess).

a. Explain why the guesser can receive slightly more than one bit of informa-
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tion for each response.

b. Assuming the chooser picks the number randomly (that is, all values be-
tween 1 and 100 are equally likely), what are the best first guesses? Explain
why these guesses are better than any other guess. (Hint: there are two
equally good first guesses.)

c. What is the maximum number of guesses the second player should need
to always find the number?

d. What is the average number of guesses needed (assuming the chooser picks
the number randomly as before)?

e. [★] Suppose instead of picking randomly, the chooser picks the number
with the goal of maximizing the number of guesses the second player will
need. What number should she pick?

f. [★★] How should the guesser adjust her strategy if she knows the chooser
is picking adversarially?

g. [★★] What are the best strategies for both players in the adversarial guess-
a-number game where chooser’s goal is to pick a starting number that
maximizes the number of guesses the guesser needs, and the guesser’s goal
is to guess the number using as few guesses as possible.

Exploration 1.2: Twenty Questions

The two-player game twenty questions starts with the first player (the an-
swerer) thinking of an object, and declaring if the object is an animal, veg-
etable, or mineral (meant to include all non-living things). After this, the

20Q Game

Image from ThinkGeek

second player (the questioner), asks binary questions to try and guess the ob-
ject the first player thought of. The first player answers each question “yes”
or “no”. The website http://www.20q.net/ offers a web-based twenty questions
game where a human acts as the answerer and the computer as the ques-
tioner. The game is also sold as a $10 stand-alone toy (shown in the picture).

a. How many different objects can be distinguished by a perfect questioner
for the standard twenty questions game?

b. What does it mean for the questioner to play perfectly?

c. Try playing the 20Q game at http://www.20q.net. Did the computer guess
your item?

d. Instead of just “yes” and “no”, the 20Q game offers four different answers:
“Yes”, “No”, “Sometimes”, and “Unknown”. (The website version of the
game also has “Probably”, “Irrelevant”, and “Doubtful”.) If all four answers
were equally likely (and meaningful), how many items could be distin-
guished in 20 questions?

e. For an Animal, the first question 20Q asks is “Does it jump?” (note that
20Q will select randomly among a few different first questions). Is this a
good first question?

f. [★] How many items do you think 20Q has data for?

g. [★★] Speculate on how 20Q could build up its database.

http://www.20q.net/
http://www.20q.net
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1.2.2 Representing Data

We can use sequences of bits to represent many kinds of data. All we need to
do is think of the right binary questions for which the bits give answers that
allow us to represent each possible value. Next, we provide examples showing
how bits can be used to represent numbers, poems, and pictures.

Numbers. In the previous section, we saw how to distinguish a set of items
using a tree where each node asks a binary question, and the branches corre-
spond to the “Yes” and “No” answers. A more compact way of writing down
our decisions following the tree is to use 0 to encode a “No” answer, and 1 to
encode a “Yes” answer.

We can describe a path to a leaf by a sequence of 0s and 1s—the “No”, “No”,
“No” path to 0 is encoded as 000, and the “Yes”, “No”, “Yes” path to 5 is en-
coded as 101. This is known as the binary number system. Whereas the deci- binary number system

mal number system uses ten as its base (there are ten decimal digits, and the
positional values increase as powers of ten), the binary system uses two as its
base (there are two binary digits, and the positional values increase as powers
of two).

For example, the binary number 10010110 represents the decimal value 150.
As in the decimal number system, the value of each binary digit depends on
its position:

Binary: 1 0 0 1 0 1 1 0
Value: 27 26 25 24 23 22 21 20

Decimal Value: 128 64 32 16 8 4 2 1

There are only 10 types of people in
the world: those who understand
binary, and those who don’t.
Infamous T-Shirt

By using more bits, we can represent larger numbers. With enough bits, we
can represent any natural number this way. The more bits we have, the larger
the set of possible numbers we can represent. As we saw with the binary de-
cision trees, n bits can be used to represent 2n different numbers.

Discrete Values. We can use a finite sequence of bits to describe any value
that is selected from a countable set of possible values. A set is countable if countable

there is a way to assign a unique natural number to each element of the set.
All finite sets are countable. Some, but not all, infinite sets are countable. For
example, there appear to be more integers than there are natural numbers
since for each natural number, n, there are two corresponding integers, n and
−n. But, the integers are in fact countable. We can enumerate the integers
as: 0, 1,−1, 2,−2, 3,−3, 4,−4, . . . and assign a unique natural number to each
integer in turn.

Other sets, such as the real numbers, are uncountable. Georg Cantor proved
this using a technique known as diagonalization. Suppose the real numbers diagonalization

are enumerable. This means we could list all the real numbers in order, so we
could assign a unique integer to each number. For example, considering just
the real numbers between 0 and 1, our enumeration might be:
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1 .00000000000000 . . .
2 .25000000000000 . . .
3 .33333333333333 . . .
4 .66666666666666 . . .
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

57236 .141592653589793 . . .
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Cantor proved by contradiction that there is no way to enumerate all the real
numbers. The trick is to produce a new real number that is not part of the
enumeration. We can do this by constructing a number whose first digit is
different from the first digit of the first number, whose second digit is differ-
ent from the second digit of the second number, etc. For the example enu-
meration above, we might choose .1468 . . ..

The kth digit of the constructed number is different from the kth digit of the
number k in the enumeration. Since the constructed number differs in at
least one digit from every enumerated number, it does not match any of the
enumerated numbers exactly. Thus, there is a real number that is not in-
cluded in the enumeration list, and it is impossible to enumerate all the real
numbers.

The property that there are more real numbers than natural numbers has im-
portant implications for what can and cannot be computed, which we return
to in Chapter 12. For now, the important point is that computers can operate
on any inputs that are discrete values. Continuous values, such as real num-
bers, can only be approximated by computers. Next, we consider how two
types of data, text and images, can be represented by computers. The first
type, text, is discrete and can be represented exactly; images are continuous,
and can only be represented approximately.

Text. The set of all possible sequences of characters is countable. One way to
see this is to observe that we could give each possible text fragment a unique
number, and then use that number to identify the item. For example we could
enumerate all texts alphabetically by length (here, we limit the characters to
lowercase letters):

a, b, c, . . ., z, aa, ab, . . ., az, ba, . . ., zz, aaa, . . .

Since we have seen that we can represent all the natural numbers with a se-
quence of bits, so once we have the mapping between each item in the set
and a unique natural number, we can represent all of the items in the set. For
the representation to be useful, though, we usually need a way to construct
the corresponding number for any item directly.

Instead of enumerating a mapping between all possible character sequences
and the natural numbers we need a process for converting any text to a unique
number that represents that text. Suppose we limit our text to characters in
the standard English alphabet. If we include lower-case letters (26), upper-
case letters (26), and punctuation (space, comma, period, newline, semi-colon),
we have 57 different symbols to represent. We can assign a unique number to
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each symbol, and encode the corresponding number with six bits (this leaves
seven values unused since six bits can distinguish 64 values). For example,
we could encode using the mapping shown in Table 1.1. The first bit answers
the question: “Is it an uppercase letter after F or a special character?”. When
the first bit is 0, the second bit answers the question: “Is it after p?”.

a 000000
b 000001
c 000010
d 000011
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
p 001111
q 010000
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
z 011001
A 011010
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
F 011111

G 100000
H 100001
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Z 110011

space 110100
, 110101
. 110110

newline 110111
; 111000

unused 111001
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

unused 111111

Table 1.1. Encoding characters using bits.
This encoding is not the one typically used by computers. One commonly used encod-
ing known as ASCII (the American Standard Code for Information Interchange) uses
seven bits so that 128 different symbols can be encoded. The extra symbols are used to
encode more special characters.

Once we have a way of mapping each individual letter to a fixed-length bit
sequence, we could write down any poem by just concatenating the bits en-
coding each letter. So, “The” would be encoded as 101101000111000100. We
could write down text of length n that is written in the 57-symbol alphabet
using this encoding using 6n bits. To convert the number back into text, we
just need to invert the mapping, replacing each group of six bits with the cor-
responding letter.

Rich Data. We can use bit sequences to represent complex data like pictures,
movies, and audio recordings too. Consider a simple black and white picture:

Since the picture is divided into discrete squares known as pixels, we could pixel

encode this as a sequence of bits by using one bit to encode the color of each
pixel (for example, using 1 to represent black, and 0 to represent white). This
image is 16x16, so has 256 pixels total. We could represent the image using a
sequence of 256 bits (starting from the top left corner):
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0000011111100000
0000100000010000
0011000000001100
0010000000000100

⋅ ⋅ ⋅

What about complex pictures that are not divided into discrete squares or a
fixed number of colors, like Van Gogh’s Starry Night?

Different wavelengths of electromagnetic radiation have different colors. For
example, light with wavelengths between 625 and 730 nanometers appears
red. But, each wavelength of light has a slightly different color; for exam-
ple, light with wavelength 650 nanometers would be a different color (albeit
imperceptible to humans) from light of wavelength 650.0000001 nanometers.
There are arguably infinitely many different colors, corresponding to different
wavelengths of visible light.1 Since the colors are continuous and not discrete,
there is no way to map each color to a unique, finite bit sequence.

On the other hand, the human eye and brain have limits. We cannot actually
perceive infinitely many different colors; at some point the wavelengths are
too close for us to distinguish. Ability to distinguish colors varies, but most
humans can perceive only a few million different colors. The set of colors that
can be distinguished by a typical human is finite; any finite set is countable,
so we can map each distinguishable color to a unique bit sequence.

A common way to represent color is to break it into its three primary com-
ponents (red, green, and blue), and record the intensity of each component.
The more bits available to represent a color, the more different colors that can
be represented.

1Whether there are actually infinitely many different colors comes down to the question of
whether the space-time of the universe is continuous or discrete. Certainly in our common per-
ception it seems to be continuous—we can imagine dividing any length into two shorter lengths.
In reality, this may not be the case at extremely tiny scales. It is not known if time can continue
to be subdivided below 10−40 of a second.
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Thus, we can represent a picture by recording the approximate color at each
point. If space in the universe is continuous, there are infinitely many points.
But, as with color, once the points get smaller than a certain size they are
imperceptible. We can approximate the picture by dividing the canvas into
small regions and sampling the average color of each region. The smaller the
sample regions, the more bits we will have and the more detail that will be
visible in the image. With enough bits to represent color, and enough sample
points, we can represent any image as a sequence of bits.

Summary. We can use sequences of bits to represent any natural number ex-
actly, and hence, represent any member of a countable set using a sequence
of bits. The more bits we use the more different values that can be repre-
sented; with n bits we can represent 2n different values.

We can also use sequences of bits to represent rich data like images, audio,
and video. Since the world we are trying to represent is continuous there
are infinitely many possible values, and we cannot represent these objects
exactly with any finite sequence of bits. However, since human perception
is limited, with enough bits we can represent any of these adequately well.
Finding ways to represent data that are both efficient and easy to manipulate
and interpret is a constant challenge in computing. Manipulating sequences
of bits is awkward, so we need ways of thinking about bit-level representa-
tions of data at higher levels of abstraction. Chapter 5 focuses on ways to
manage complex data.

1.2.3 Growth of Computing Power

The number of bits a computer can store gives an upper limit on the amount
of information it can process. Looking at the number of bits different com-
puters can store over time gives us a rough indication of how computing
power has increased. Here, we consider two machines: the Apollo Guidance
Computer and a modern laptop.

The Apollo Guidance Computer was developed in the early 1960s to control
the flight systems of the Apollo spacecraft. It might be considered the first per-
sonal computer, since it was designed to be used in real-time by a single op-
erator (an astronaut in the Apollo capsule). Most earlier computers required
a full room, and were far too expensive to be devoted to a single user; instead,
they processed jobs submitted by many users in turn. Since the Apollo Guid-
ance Computer was designed to fit in the Apollo capsule, it needed to be small
and light. Its volume was about a cubic foot and it weighed 70 pounds. The

Apollo Guidance ComputerAGC was the first computer built using integrated circuits, miniature elec-
tronic circuits that can perform simple logical operations such as performing
the logical and of two values. The AGC used about 4000 integrated circuits,
each one being able to perform a single logical operation and costing $1000.
The AGC consumed a significant fraction of all integrated circuits produced
in the mid-1960s, and the project spurred the growth of the integrated circuit
industry.

The AGC had 552 960 bits of memory (of which only 61 440 bits were modifi-
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able, the rest were fixed). The smallest USB flash memory you can buy today
(from SanDisk in December 2008) is the 1 gigabyte Cruzer for $9.99; 1 giga-
byte (GB) is 230 bytes or approximately 8.6 billion bits, about 140 000 times the
amount of memory in the AGC (and all of the Cruzer memory is modifiable).
A typical low-end laptop today has 2 gigabytes of RAM (fast memory close to
the processor that loses its state when the machine is turned off) and 250 gi-
gabytes of hard disk memory (slow memory that persists when the machine is
turned off); for under $600 today we get a computer with over 4 million times
the amount of memory the AGC had.

Improving by a factor of 4 million corresponds to doubling 22 times (222 =
4, 194, 304). The amount of computing power approximately doubled every
two years between the AGC in the early 1960s and a modern laptop today
(2009). This property of exponential improvement in computing power is
known as Moore’s Law. Gordon Moore, a co-founder of Intel, observed inMoore’s law is a violation of

Murphy’s law. Everything gets
better and better.

Gordon Moore

1965 than the number of components that can be built in integrated circuits
for the same cost was approximately doubling every year (revisions to Moore’s
observation have put the doubling rate at approximately 18 months instead
of one year). This progress has been driven by the growth of the computing
industry, increasing the resources available for designing integrated circuits.
Another driver is that today’s technology is used to design the next technology
generation. Improvement in computing power has followed this exponential
growth remarkably closely over the past 40 years, although there is no law that
this growth must continue forever.

Although our comparison between the AGC and a modern laptop shows an
impressive factor of 4 million improvement, it is much slower than Moore’s
law would suggest. Instead of 22 doublings in power since 1963, there should
have been 30 doublings (using the 18 month doubling rate). This would pro-
duce an improvement of one billion times instead of just 4 million. The rea-
son is our comparison is very unequal relative to cost: the AGC was the world’s
most expensive small computer of its time, reflecting many millions of dollars
of government funding. Computing power available for similar funding today
is well over a billion times more powerful than the AGC.

1.3 Science, Engineering, and Liberal Art

Much ink and many bits have been spent debating whether computer science
is an art, an engineering discipline, or a science. The confusion stems from
the nature of computing as a new field that does not fit well into existing si-
los. In fact, computer science fits into all three kingdoms, and it is useful to
approach computing from all three perspectives.

Science. Traditional science is about understanding nature through obser-
vation. The goal of science is to develop general and predictive theories that
allow us to understand aspects of nature deeply enough to make accurate
quantitative predications. For example, Newton’s law of universal gravitation
makes predictions about how masses will move. The more general a theory is
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the better. A key, as yet unachieved, goal of science is to find a universal law
that can describe all physical behavior at scales from the smallest subparticle
to the entire universe, and all the bosons, muons, dark matter, black holes,
and galaxies in between. Science deals with real things (like bowling balls,
planets, and electrons) and attempts to make progress toward theories that
predict increasingly precisely how these real things will behave in different
situations.

Computer science focuses on artificial things like numbers, graphs, func-
tions, and lists. Instead of dealing with physical things in the real world, com-
puter science concerns abstract things in a virtual world. The numbers we
use in computations often represent properties of physical things in the real
world, and with enough bits we can model real things with arbitrary preci-
sion. But, since our focus is on abstract, artificial things rather than physical
things, computer science is not a traditional natural science but a more ab-
stract field like mathematics. Like mathematics, computing is an essential
tool for modern science, but when we study computing on artificial things it
is not a natural science itself.

In a deeper sense, computing pervades all of nature. A long term goal of com-
puter science is to develop theories that explain how nature computes. One
example of computing in nature comes from biology. Complex life exists be-
cause nature can perform sophisticated computing. People sometimes de-
scribe DNA as a “blueprint”, but it is really much better thought of as a pro-
gram. Whereas a blueprint describes what a building should be when it is
finished, giving the dimensions of walls and how they fit together, the DNA of
an organism encodes a process for growing that organism. A human genome
is not a blueprint that describes the body plan of a human, it is a program that
turns a single cell into a complex human given the appropriate environment.
The process of evolution (which itself is an information process) produces
new programs, and hence new species, through the process of natural selec-
tion on mutated DNA sequences. Understanding how both these processes
work is one of the most interesting and important open scientific questions,
and it involves deep questions in computer science, as well as biology, chem-
istry, and physics.

The questions we consider in this book focus on the question of what can and
cannot be computed. This is both a theoretical question (what can be com-
puted by a given theoretical model of a computer, the focus of Chapter 12),
and a pragmatic one (what can be computed by physical things in our uni-
verse, the focus of Chapter 13). Scientists study the world as it is;

engineers create the world that
never has been.
Theodore von Kármán

Engineering. Engineering is about making useful things. Engineering is
often distinguished from crafts in that engineers use scientific principles to
create their designs, and focus on designing under practical constraints. As
William Wulf and George Fisher put it:2

Whereas science is analytic in that it strives to understand nature, or
what is, engineering is synthetic in that it strives to create. Our own

2William Wulf and George Fisher, A Makeover for Engineering Education, Issues in Science and
Technology, Spring 2002 (http://www.issues.org/18.3/p wulf.html).

http://www.issues.org/18.3/p_wulf.html
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favorite description of what engineers do is “design under constraint”.
Engineering is creativity constrained by nature, by cost, by concerns of
safety, environmental impact, ergonomics, reliability, manufactura-
bility, maintainability–the whole long list of such “ilities”. To be sure,
the realities of nature is one of the constraint sets we work under, but
it is far from the only one, it is seldom the hardest one, and almost
never the limiting one.

Computer scientists do not face the natural constraints faced by civil and me-
chanical engineers—computer programs are massless, odorless, and taste-
less, so the kinds of physical constraints like gravity that impose limits on
bridge designs are not relevant to most computer scientists. As we saw from
the Apollo Guidance Computer comparison, practical constraints on com-
puting power change rapidly — the one billion times improvement in com-
puting power is unlike any change in physical materials3. Although we may
need to worry about manufacturability and maintainability of storage media
(such as the disk we use to store a program), our focus as computer scientists
is on the abstract bits themselves, not how they are stored.

Computer scientists, however, do face many constraints. A primary constraint
is the capacity of the human mind—there is a limit to how much information
a human can keep in mind at one time. As computing systems get more com-
plex, there is no way for a human to understand the entire system at once. To
build complex systems, we need techniques for managing complexity. The
primary tool computer scientists use to manage complexity is abstraction.abstraction

Abstraction is a way of giving a name to something in a way that allows us
to hide unnecessary details. By using carefully designed abstractions, we can
construct complex systems with reliable properties while limiting the amount
of information a human designer needs to keep in mind at any one time.

Liberal Art. The notion of the liberal arts emerged during the middle ages to
distinguish education for the purpose of expanding the intellects of free peo-
ple from the illiberal arts such as medicine and carpentry that were pursued
for economic purposes. The liberal arts were intended for people who did
not need to learn an art to make a living, but instead had the luxury to pursue
purely intellectual activities for their own sake. The traditional seven liberalI must study politics and war that

my sons may have liberty to study
mathematics and philosophy. My
sons ought to study mathematics

and philosophy, geography,
natural history, naval architecture,

navigation, commerce, and
agriculture, in order to give their

children a right to study painting,
poetry, music, architecture,

statuary, tapestry, and porcelain.
John Adams, 1780

arts started with the Trivium (three roads), focused on language:4

• Grammar — “the art of inventing symbols and combining them to ex-
press thought”

• Rhetoric — “the art of communicating thought from one mind to an-
other, the adaptation of language to circumstance”

• Logic — “the art of thinking”

The Trivium was followed by the Quadrivium, focused on numbers:

3For example, the highest strength density material available today, carbon nanotubes, are
perhaps 300 times stronger than the best material available 50 years ago.

4 The quotes defining each liberal art are from Miriam Joseph (edited by Marguerite McGlinn),
The Trivium: The Liberal Arts of Logic, Grammar, and Rhetoric, Paul Dry Books, 2002.
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• Arithmetic — “theory of number”
• Geometry — “theory of space”
• Music — “application of the theory of number”
• Astronomy — “application of the theory of space”

All of these have strong connections to computer science, and we will touch
on each of them to some degree in this book.

Language is essential to computing since we use the tools of language to de-
scribe information processes. The next chapter discusses the structure of lan-
guage and throughout this book we consider how to efficiently use and com-
bine symbols to express meanings. Rhetoric encompasses communicating
thoughts between minds. In computing, we are not typically communicating
directly between minds, but we see many forms of communication between
entities: interfaces between components of a program, as well as protocols
used to enable multiple computing systems to communicate (for example,
the HTTP protocol defines how a web browser and web server interact), and
communication between computer programs and human users. The primary
tool for understanding what computer programs mean, and hence, for con-
structing programs with particular meanings, is logic. Hence, the traditional
trivium liberal arts of language and logic permeate computer science.

The connections between computing and the quadrivium arts are also perva-
sive. We have already seen how computers use sequences of bits to represent
numbers. Chapter 6 examines how machines can perform basic arithmetic
operations. Geometry is essential for computer graphics, and graph theory is
also important for computer networking. The harmonic structures in music
have strong connections to the recursive definitions introduced in Chapter 4
and recurring throughout this book.5 Unlike the other six liberal arts, astron-
omy is not directly connected to computing, but computing is an essential
tool for doing modern astronomy.

Although learning about computing qualifies as an illiberal art (that is, it can
have substantial economic benefits for those who learn it well), computer sci-
ence also covers at least six of the traditional seven liberal arts.

1.4 Summary and Roadmap

Computer scientists think about problems differently. When confronted with
a problem, a computer scientist does not just attempt to solve it. Instead,
computer scientists think about a problem as a mapping between its inputs
and desired outputs, develop a systematic sequence of steps for solving the
problem for any possible input, and consider how the number of steps re-
quired to solve the problem scales as the input size increases.

The rest of this book presents a whirlwind introduction to computer science.
We do not cover any topics in great depth, but rather provide a broad picture

5See Douglas Hofstadter’s Gödel, Escher, Bach for lots of interesting examples of connections
between computing and music.
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of what computer science is, how to think like a computer scientist, and how
to solve problems.

Part I: Defining Procedures. Part I focuses on how to define procedures
that perform desired computations. The nature of the computer forces so-
lutions to be expressed precisely in a language the computer can interpret.
This means a computer scientist needs to understand how languages work
and exactly what phrases in a language mean. Natural languages like English
are too complex and inexact for this, so we need to invent and use new lan-
guages that are simpler, more structured, and less ambiguously defined than
natural languages. Chapter 2 focuses on language, and during the course of
this book we will use language to precisely describe processes and languages
are interpreted.

The computer frees humans from having to actually carry out the steps needed
to solve the problem. Without complaint, boredom, or rebellion, it dutifully
executes the exact steps the program specifies. And it executes them at a
remarkable rate — billions of simple steps in each second on a typical lap-
top. This changes not just the time it takes to solve a problem, but qualita-
tively changes the kinds of problems we can solve, and the kinds of solutions
worth considering. Problems like sequencing the human genome, simulat-
ing the global climate, and making a photomosaic not only could not have
been solved without computing, but perhaps could not have even been en-
visioned. Chapter 3 introduces programming, and Chapter 4 develops some
techniques for constructing programs that solve problems. To represent more
interesting problems, we need ways to manage more complex data. Chapter 5
concludes Part I by exploring ways to represent data and define procedures
that operate on complex data.

Part II: Analyzing Procedures. Part II considers the problem of estimating
the cost required to execute a procedure. This requires understanding how
machines can compute (Chapter 6), and mathematical tools for reasoning
about how cost grows with the size of the inputs to a procedure (Chapter 7).
Chapter 8 provides some extended examples that apply these techniques.

Part III: Improving Expressiveness. The techniques from Part I and II are
sufficient for describing all computations. Our goal, however, it to be able
to define concise, elegant, and efficient procedures for performing desired
computations. Part III presents techniques that enable more expressive pro-
cedures.

Part IV: The Limits of Computing. We hope that by the end of Part III, read-
ers will feel confident that they could program a computer to do just about
anything. In Part IV, we consider the question of what can and cannot be
done by a mechanical computer. A large class of interesting problems cannot
be solved by any computer, even with unlimited time and space. Chapter 13
introduces the most important open problem in computer science. It con-
cerns the question of whether finding an answer is harder than checking if a
given answer is correct; it seems obvious that checking an answer should be
easier, but for a very interesting class of problems no one has been able to
prove that this is the case.
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Themes. Much of the book will revolve around three very powerful ideas that
are prevalent throughout computing:

Recursive definitions. A recursive definition define a thing in terms of smaller
instances of itself. A simple example is defining your ancestors as (1) your
parents, and (2) the ancestors of your ancestors. Recursive definitions can
define an infinitely large set with a small description. They also provide a
powerful technique for solving problems by breaking a problem into solving
a simple instance of the problem and showing how to solve a larger instance
of the problem by using a solution to a smaller instance. We use recursive def-
initions to define infinite languages in Chapter 2, to solve problems in Chap-
ter 4, to build complex data structures in Chapter 5. In later chapters, we see
how language interpreters themselves can be defined recursively.

Universality. Computers are distinguished from other machines in that their
behavior can be changed by a program. Procedures themselves can be de-
scribed using just bits, so we can write procedures that process procedures
as inputs and that generate procedures as outputs. Considering procedures
as data is both a powerful problem solving tool, and a useful way of thinking
about the power and fundamental limits of computing. We introduce the use
of procedures as inputs and outputs in Chapter 4, see how generated proce-
dures can be packaged with state to model objects in Chapter 10. One of the
most fundamental results in computing is that any machine that can perform
a few simple operations is powerful enough to perform any computation, and
in this deep sense, all mechanical computers are equivalent. We introduce a
model of computation in Chapter 6, and reason about the limits of computa-
tion in Chapter 12.

Abstraction. Abstraction is a way of hiding details by giving things names. We
use abstraction to manage complexity. Good abstractions hide unnecessary
details so they can be used to build complex systems without needing to un-
derstand all the details of the abstraction at once. We introduce procedural
abstraction in Chapter 4, data abstraction in Chapter 5, the digital abstrac-
tion in Chapter 6, abstraction using objects in Chapter 10, and many other
examples of abstraction throughout this book.

Throughout this book, these three themes will recur recursively, universally,
and abstractly as we explore the art and science of how to instruct computing
machines to perform useful tasks, reason about the resources needed to ex-
ecute a particular procedure, and understand the fundamental and practical
limits on what computers can do.
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Part I

Defining Procedures





2
Language

Belittle! What an expression! It may be an elegant one in Virginia, and even
perfectly intelligible; but for our part, all we can do is to guess at its meaning.
For shame, Mr. Jefferson!
European Magazine and London Review, 1787, commenting on Thomas
Jefferson’s Notes on the State of Virginia

Dictionaries are but the depositories of words already legitimated by usage. Society is
the workshop in which new ones are elaborated. When an individual uses a new

word, if ill formed, it is rejected; if well formed, adopted, and after due time, laid up
in the depository of dictionaries.

Thomas Jefferson, letter to John Adams, 1820

The most powerful tool we have for communication is language. This is true
whether we are considering communication between two humans, between
a human programmer and a computer, or between a network of computers.
In computing, we use language to describe procedures and use tools to turn
descriptions of procedures into executing processes. This chapter considers
what a language is, how language works, and introduces the techniques we
will use to define languages.

2.1 Surface Forms and Meanings

A language is a set of surface forms, s, meanings, m, and a mapping between language

the surface forms in s and their associated meanings.In the earliest human
languages, the surface forms were sounds but they can be anything that can
be perceived by the communicating parties. We focus on languages where
the surface forms are text.

A natural language is a language spoken by humans, such as English or Swahili. natural language

Natural languages are very complex since they have evolved over many thou-
sands years of individual and cultural interaction. We focus on designed lan-
guages that are created by humans for some a specific purpose such as for
expressing procedures to be executed by computers.

A simple communication system can be described using a table of surface
forms and their associated meanings. For example, this table describes a
communication system between traffic lights and drivers:
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Surface Form Meaning
Green Go
Yellow Caution

Red Stop

Communication systems involving humans are notoriously imprecise and
subjective. A driver and a police officer may disagree on the actual mean-
ing of the Yellow symbol, and may even disagree on which symbol is being
transmitted by the traffic light at a particular time. Communication systems
for computers demand precision: we want to know what our programs will
do, so it is important that every step they make is understood precisely and
unambiguously.

Rotary traffic signal
The method of defining a communication system by listing a table of

< Symbol, Meaning >

pairs can work adequately only for trivial communication systems. The num-
ber of possible meanings that can be expressed is limited by the number of
entries in the table. It is impossible to express any new meaning since all
meanings must already be listed in the table!

Languages and Infinity. A real language must be able to express infinitely
many different meanings. If the meaning of each surface form is unambigu-
ous, this means the language must contain infinitely many different surface
forms. Hence, there must be a system for generating new surface forms and a
way to infer the meaning of each generated surface form. No finite represen-
tation such as a printed table can contain all the surface forms and meanings
in an infinite language.

One way to generate infinitely large sets is to use repeating patterns. For ex-
ample, most humans would interpret the notation: “1, 2, 3, . . . ” as the set of
all natural numbers. We interpret the “. . . ” as meaning keep doing the same
thing for ever. In this case, it means keep adding one to the preceding num-
ber. Thus, with only a few numbers and symbols we can describe a set con-
taining infinitely many numbers. As discussed in Section 1.2.1, the language
of the natural numbers is enough to encode all meanings in any countable
set (including the set of all possible procedures, as we will see more clearly in
Chater 12). But, finding a sensible mapping between a procedure and a num-
ber is impossible. The surface forms do not correspond closely enough to the
ideas we want to express to be a useful language.

2.2 Language Construction

To define more expressive infinite languages, we need a richer system for con-
structing new surface forms and associated meanings. We need ways to de-
scribe languages that allow us to define an infinitely large set of surface forms
and meanings with a compact notation. The approach we use is to define a
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language by defining a set of rules that produce exactly the set of strings in
the language.

Components of Language. A language is composed of:

• primitives — the smallest units of meaning.
• means of combination — rules for building new language elements by

combining simpler ones.

The primitives are the smallest meaningful units (in natural languages these
are known as morphemes). A primitive cannot be broken into smaller parts
whose meanings can be combined to produce the meaning of the unit. The
means of combination are rules for building words from primitives, and for
building phrases and sentences from words.

Since we have rules for producing new words not all words are primitives. For
example, we can create a new word by adding anti- in front of an existing
word. The meaning of the new word can be inferred as “against the meaning
of the original word”. Rules like this one mean anyone can invent a new word,
and use it in communication in ways that will probably be understood by
listeners who have never heard the word before.

For example, the verb freeze means to pass from a liquid state to a solid state;
antifreeze is a substance designed to prevent freezing. English speakers who
know the meaning of freeze and anti- could roughly guess the meaning of
antifreeze even if they have never heard the word before.1

Primitives are the smallest units of meaning, not based on the surface forms.
Both anti and freeze are primitive; they cannot be broken into smaller parts
with meaning. We can break anti- into two syllables, or four letters, but those
sub-components do not have meanings that could be combined to produce
the meaning of the primitive.

Means of Abstraction. In addition to primitives and means of combination,
powerful languages have an additional type of component that enables eco-
nomic communication: means of abstraction.

Means of abstraction allow us to give a simple name to a complex entity. In
English, the means of abstraction are pronouns like “she”, “it”, and “they”. The
meaning of a pronoun depends on the context in which it is used. It abstracts
a complex meaning with a simple word. For example, the it in the previous
sentence abstracts “the meaning of a pronoun”, but the it in the sentence
before that one abstracts “a pronoun”.

In natural languages, means of abstraction tend to be limited (e.g., English
has she and he, but no gender-neutral pronoun for a person), and confusing
(it is often unclear what a particular it is abstracting). Languages for pro-
gramming computers need powerful and clear means of abstraction.

1Guessing that it is a verb meaning to pass from the solid to liquid state would also be reason-
able. This shows how imprecise and ambiguous natural languages are; for programming com-
puters, we need the meanings of constructs to be clearly determined.
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Exercise 2.1. Merriam-Webster’s word for the year for 2006 was truthiness,
a word invented and popularized by Stephen Colbert. Its definition is, “truth
that comes from the gut, not books”. Identify the morphemes that are used
to build truthiness, and explain, based on its composition, what truthiness
should mean.

Exercise 2.2. According to the Guinness Book of World Records, the longest
word in the English language is floccinaucinihilipilification, meaning “The
act or habit of describing or regarding something as worthless”. This word was
reputedly invented by a non-hippopotomonstrosesquipedaliophobic stu-
dent at Eton who combined four words in his Latin textbook. Prove Guinness
wrong by finding a longer English word. An English speaker (familiar with
floccinaucinihilipilification and the morphemes you use) should be able to
deduce the meaning of your word.

Exercise 2.3. Embiggening your vocabulary with anticromulent words that
ecdysiasts can grok.

a. Invent a new English word by combining common morphemes.

b. Get someone else to use the word you invented.

c. [★★] Convince Merriam-Webster to add your word to their dictionary.

Exercise 2.4. According to the Oxford English Dictionary, Thomas Jefferson
is the first person to use more than 60 words in the dictionary (see http:
//etext.virginia.edu/jefferson/oed/ for a full list). Jeffersonian words include: (a)
authentication, (b) belittle, (c) indecipherable, (d) inheritability, (e) odome-
ter, (f) sanction, and (g) vomit-grass. For each Jeffersonian word, guess its
derivation and explain whether or not its meaning could be inferred from its
components.

2.3 Recursive Transition Networks

This section describes a more powerful technique for defining languages. We
focus on languages where the surface forms can easily be written down as lin-
ear sequences of characters. A character is a symbol selected from a finite set
of symbols known as an alphabet . A typical alphabet comprises the letters,alphabet

numerals, and punctuation symbols used in English. We refer to a sequence
of zero or more characters as a string . Hence, the surface forms of a textualstring

language are defined by a set of strings. To define a language, we need to de-
fine a system that produces all strings in the language and no other strings.
The problem of associating meanings with those strings is more difficult; we
consider it in later chapters.

A recursive transition network is defined by a graph of nodes and edges. Therecursive transition network

edges are labeled with output symbols—these are the primitives in the lan-

http://etext.virginia.edu/jefferson/oed/
http://etext.virginia.edu/jefferson/oed/
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guage. The nodes and edge structure are the means of combination.

One of the nodes is designated the start node (indicated by an arrow pointing
into that node). One or more of the nodes may be designated as final nodes
(indicated by an inner circle). A string is in the language if there exists some
path from the start node to a final node in the graph where the output sym-
bols along the path edges produce the string.

For example, Figure 2.1 shows a simple recursive transition network with three
nodes and four edges that can produce four different sentences. Starting in
the node marked Noun, we have two possible edges to follow; each edge out-
puts a different symbol, and leads to the node marked Verb. From that node,
we have two possible edges, each leading to the final node marked S. Since
there are no edges out of S, this ends the string. Hence, we can produce four
strings corresponding to the four different paths from the start to final node:
“Alice jumps”, “Alice runs”, “Bob jumps”, and “Bob runs”.

Figure 2.1. Simple recursive transition network.

Recursive transition networks are more efficient than listing the strings in a
language, since the number of possible strings increases with the number of
possible paths through the graph. For example, adding one more edge from
Noun to Verb with label “Colleen” adds two new strings to the language.

The expressive power of recursive transition networks increases dramatically
once we add edges that form cycles in the graph. This is where the recursive
in the name comes from. Once a graph has a cycle, there are infinitely many
possible paths through the graph, since we can always go around the cycle
one more time.

Consider what happens when we add a single edge to the previous network
to produce the network shown in Figure 2.2.

Now, we can produce infinitely many different strings! We can follow the
“and” edge back to the Noun node to produce strings like “Alice runs and Bob
jumps and Alice jumps” with as many conjuncts as we want.

Exercise 2.5. Draw a recursive transition network that defines the language of
the whole numbers: 0, 1, 2, . . .
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Figure 2.2. RTN with a cycle.

Exercise 2.6. How many different strings can be produced by the RTN shown
in Figure 2.3?

Figure 2.3. RTN for Exercise 2.6.

Exercise 2.7. Recursive transition networks.

a. How many edges are needed for a recursive transition network that can
produce exactly 8 strings?

b. How many nodes are needed for a recursive transition network that can
produce exactly 8 strings?

c. [★] Given a whole number n, how many edges are needed for a recursive
transition network that can produce exactly n strings?

Subnetworks. In the RTNs we have seen so far, the labels on the output edges
are direct outputs known as terminals: following an edge just produces the
symbol on that edge. We can make more expressive RTNs by allowing edge
labels to also name subnetworks. A subnetwork is identified by the name
of its starting node. When an edge labeled with a subnetwork is followed,
the network traversal jumps to the subnetwork node. Then, it can follow any
path from that node to a final node. Upon reaching a final node, the network
traversal jumps back to complete the edge.

For example, consider the network shown in Figure 2.4. It describes the same
language as the RTN in Figure 2.1, but uses subnetworks for Noun and Verb.
To produce a string, we start in the Sentence node. The only edge out from
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Sentence is labeled Noun. To follow the edge, we jump to the Noun node,
which is a separate subnetwork. Now, we can follow any path from Noun to a
final node (in this cases, outputting either “Alice” or “Bob” on the path toward
EndNoun.

Figure 2.4. Recursive transition network with subnetworks.

Suppose we replace the Noun subnetwork with the more interesting version
shown in Figure 2.5.This subnetwork includes an edge from Noun to N1 la-
beled Noun. Following this edge involves following a path through the Noun
subnetwork. Starting from Noun, we can generate complex phrases like “Alice
and Bob” or “Alice and Bob and Alice” (find the two different paths through
the network that generate this phrase).

To keep track of paths through RTNs without subnetworks, a single marker
suffices. We can start with the marker on the start node, and move it along
the path through each node to the final node. Keeping track of paths on an
RTN with subnetworks is more complicated. We need to keep track of where
we are in the current network, and also where to continue to when a final
node of the current subnetwork is reached. Since we can enter subnetworks
within subnetworks, we need a way to keep track of arbitrarily many jump
points.

A stack is a useful way to keep track of the subnetworks. We can think of a stack

stack like a stack of trays in a cafeteria. At any point in time, only the top tray

Figure 2.5. Alternate Noun subnetwork.
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on the stack can be reached. We can pop the top tray off the stack, after which
the next tray is now on top. We can push a new tray on top of the stack, which
makes the old top of the stack now one below the top.

We use a stack of nodes to keep track of the subnetworks as they are entered.
The top of the stack represents the next node to process. At each step, we pop
the node off the stack and follow a transition from that node. Using a stack,
we can derive a path through an RTN using this procedure:

1. Initially, push the starting node on the stack.
2. If the stack is empty, stop. Otherwise, pop a node, N, off the stack.
3. If the popped node, N, is a final node return to step 2.2

4. Select an edge from the RTN that starts from node N. Use D to denote
the destination of that edge, and s to denote the output symbol on the
edge.

5. Push D on the stack.
6. If s is a subnetwork, push the node s on the stack. Otherwise, output s,

which is a terminal.
7. Go back to step 2.

Consider generating the string “Alice runs” using the RTN in Figure 2.4. We
start following step 1 by pushing Sentence on the stack. In step 2, we pop the
stack, so the current node, N, is Sentence. Since it is not a final node, we do
nothing for step 3. In step 4, we choose an edge starting from Sentence. There
is only one edge to choose, and it leads to the node labeled S1. In step 5, we
push S1 on the stack. The label on the edge is Noun, which is a node, so we
push Noun on the stack. The stack now contains two items: [Noun, S1]. Since
Noun is on top, this means we will first traverse the Noun subnetwork, and
then continue from S1.

As directed by step 7, we go back to step 2 and continue by popping the top
node, Noun, off the stack. It is not a final node, so we continue to step 4, and
select the edge labeled “Alice” from Noun to EndNoun. We push EndNoun
on the stack, which now contains: [EndNoun, S1]. The label on the edge is
the terminal, “Alice”, so we output “Alice” following step 6. We continue in the
same manner, following the steps in the procedure as we keep track of a path
through the network. The full processing steps are shown in Figure 2.6.

Exercise 2.8. Show the sequence of stacks used in generating the string “Alice
and Bob and Alice runs” using the network in Figure 2.4 with the alternate
Noun subnetwork from Figure 2.5.

Exercise 2.9. Identify a string that cannot be produced using the RTN from
Figure 2.4 with the alternate Noun subnetwork from Figure 2.5 without the
stack growing to contain five elements.

2For simplicity, this procedure assumes we always stop when a final node is reached. RTNs
can have edges out of final nodes (as in Figure 2.2) where it is possible to either stop or continue
from a final node.
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Figure 2.6. RTN generating “Alice runs”.

Exercise 2.10. The procedure given for traversing RTNs assumes that a sub-
network path always stops when a final node is reached. Hence, it cannot
follow all possible paths for an RTN where there are edges out of a final node.
Describe a procedure that can follow all possible paths, even for RTNs that
include edges from final nodes.

2.4 Replacement Grammars

Another way to define a language is to use a grammar. This is the most com-
mon way languages are defined by computer scientists today, and the way we
will use for the rest of this book.

A grammar is a set of rules for generating all strings in the language. We use
the Backus-Naur Form (BNF) notation to define a grammar. BNF grammars
are exactly as powerful as recursive transition networks (Exploration 2.1 ex-
plains what this means and why it is the case), but easier to write down.

BNF was invented by John Backus in the late 1950s. Backus led efforts at
IBM to define and implement Fortran, the first widely used programming
language. Fortran enabled computer programs to be written in a language

John Backusmore like familiar algebraic formulas than low-level machine instructions,
enabling programs to be written more quickly. In defining the Fortran lan-
guage, Backus and his team used ad hoc English descriptions to define the
language. These ad hoc descriptions were often misinterpreted, motivating
the need for a more precise way of defining a language.

Rules in a Backus-Naur Form grammar have the form:

nonterminal ::⇒ replacement

The left side of a rule is always a single symbol, known as a nonterminal since
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it can never appear in the final generated string. The right side of a rule con-
tains one or more symbols. These symbols may include both nonterminals,
which will be replaced using replacement rules before generating the final
string, and terminals, which are output symbols that never appear as the left
side of a rule. We use italics to represent nonterminal symbols, and bold to
represent terminal symbols. The terminals are the primitives in the language;
the grammar rules are its means of combination.I flunked out every year. I never

studied. I hated studying. I was
just goofing around. It had the

delightful consequence that every
year I went to summer school in

New Hampshire where I spent the
summer sailing and
having a nice time.

John Backus

We generate a string in the language described by a replacement grammar
by starting from a designated start symbol (e.g., sentence). At each step, we
select a nonterminal in the working string and replace it with the right side
of a replacement rule whose left side matches the nonterminal. A string is
generated once there are no nonterminals remaining.

Here is an example BNF grammar (that describes the same language as the
RTN in Figure 2.1):

1. Sentence ::⇒ Noun Verb
2. Noun ::⇒ Alice
3. Noun ::⇒ Bob
4. Verb ::⇒ jumps
5. Verb ::⇒ runs

Starting from Sentence, the grammar can generate four sentences: “Alice jumps”,
“Alice runs”, “Bob jumps”, and “Bob runs”.

A derivation shows how a grammar generates a given string. Here is the deriva-derivation

tion of “Alice runs”:

Sentence ::⇒Noun Verb using Rule 1
::⇒Alice Verb replacing Noun using Rule 2
::⇒Alice runs replacing Verb using Rule 5

We can represent a grammar derivation as a tree, where the root of the tree is
the starting nonterminal (Sentence in this case), and the leaves are the termi-
nals that form the derived sentence. Such a tree is known as a parse tree.parse tree

Here is the parse tree for the derivation of “Alice runs”:

Sentence

qqqqqqq
MMMMMMM

Noun Verb

Alice runs

From this example, we can see that BNF notation offers some compression
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over just listing all strings in the language, since a grammar can have multiple
replacement rules for each nonterminal. Adding the rule,

6. Noun ::⇒ Colleen

to the grammar adds two new strings (“Colleen runs” and “Colleen jumps”)
to the language.

Recursive Grammars. The real power of BNF as a compact notation for de-
scribing languages, though, comes once we start adding recursive rules to our
grammar. A grammar is recursive if the grammar contains a nonterminal that
can produce a production that contains itself.

Suppose we add the rule,

6. Sentence ::⇒ Sentence and Sentence

to our example grammar. Now, how many sentences can we generate?

Infinitely many! This grammar describes the same language as the RTN in
Figure 2.2. It can generate “Alice runs and Bob jumps” and “Alice runs and
Bob jumps and Alice runs” and sentences with any number of repetitions of
“Alice runs”. This is very powerful: by using recursive rules a compact gram-
mar can be used to define a language containing infinitely many strings.

Example 2.1: Whole Numbers. Here is a grammar that defines the language
of the whole numbers (0, 1, . . .):

Number ::⇒ Digit MoreDigits
MoreDigits ::⇒
MoreDigits ::⇒ Number
Digit ::⇒ 0
Digit ::⇒ 1
Digit ::⇒ 2
Digit ::⇒ 3
Digit ::⇒ 4

Digit ::⇒ 5
Digit ::⇒ 6
Digit ::⇒ 7
Digit ::⇒ 8
Digit ::⇒ 9

Figure 2.7 shows a parse tree for the derivation of 37 from Number.

Circular vs. Recursive Definitions. The second rule means we can replace
MoreDigits with nothing. This is sometimes written as ε to make it clear that
the replacement is empty:

MoreDigits ::⇒ ε

This is a very important rule in the grammar—without it no strings could be
generated; with it infinitely many strings can be generated. The key is that
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Number
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Figure 2.7. Derivation of 37 from Number.

we can only produce a string when all nonterminals in the string have been
replaced with terminals. Without the MoreDigits ::⇒ ε rule, the only rule we
would have with MoreDigits on the left side is the third rule:

MoreDigits ::⇒ Number

The only rule we have with Number on the left side is the first rule, which
replaces Number with Digit MoreDigits. Every time we follow this rule, we
replace MoreDigits with Digit MoreDigits. We can produce as many Digits as
we want, but without the MoreDigits ::⇒ ε rule we can never stop.

This is the difference between a circular definition, and a recursive defini-
tion. Without the stopping rule, MoreDigits would be defined circularly since
there would be no way to start with MoreDigits and generate a production
that does not contain MoreDigits or a nonterminal that eventually must pro-
duce MoreDigits. With the MoreDigits ::⇒ ε rule, however, we have a way to
produce something terminal from MoreDigits. This is known as a base case —base case

a rule that turns an otherwise circular definition into a meaningful, recursive
definition.

Condensed Notation. It is common to have many grammar rules with the
same left side nonterminal. For example, the whole numbers grammar has
ten rules with Digit on the left side to produce the ten terminal digits. Each
of these is an alternative rule that can be used when the production string
contains the nonterminal Digit. A compact notation for these types of rules is
to use the vertical bar (∣) to separate alternative replacements. For example,
we could write the ten Digit rules compactly as:

Digit ::⇒ 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

This means exactly the same thing as listing the ten digit rules separately as
in the original example.
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Exercise 2.11. Suppose we replaced the first rule (Number ::⇒ Digit
MoreDigits) in the whole numbers grammar with this rule:

Number ::⇒ MoreDigits Digit

a. How does this change the parse tree for the derivation of 37 from Number?
Draw the parse tree that results from the new grammar.

b. Does this change the language? Either show some string that is in the lan-
guage defined by the modified grammar but not in the original language
(or vice versa), or argue that both grammars can generate exactly the same
sets of strings.

Exercise 2.12. The grammar for whole numbers we defined allows strings
with non-standard leading zeros such as “000” and “00005”. Devise a gram-
mar that produces all whole numbers (including “0”), but no strings with un-
necessary leading zeros.

Exercise 2.13. Define a BNF grammar that describes the language of decimal
numbers (e.g., the language should contain 3.14159 and 1120 but not 1.2.3).

Exercise 2.14. The BNF grammar below (extracted from P. Mockapetris, Do-
main Names - Implementation and Specification, IETF RFC 1035) describes
the language of domain names on the Internet.

Domain ::⇒ SubDomainList
SubDomainList ::⇒ Label
SubDomainList ::⇒ SubDomainList . Label
Label ::⇒ Letter MoreLetters
MoreLetters ::⇒ LetterHyphens LetterDigit ∣ ε
LetterHyphens ::⇒ LetterDigitHyphen
LetterHyphens ::⇒ LetterDigitHyphen LetterHyphens
LetterHyphens ::⇒ ε
LetterDigit ::⇒ Letter ∣ Digit
Letter ::⇒ A ∣ B ∣ . . . ∣ Z ∣ a ∣ b ∣ . . . ∣ z
Digit ::⇒ 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

a. Show a derivation for www.virginia.edu in the grammar.

b. According to the grammar, which of the following are valid domain names:
(1) tj, (2) a.-b.c, (3) a-a.b-b.c-c, (4) a.g.r.e.a.t.d.o.m.a.i.n-.
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Exploration 2.1: Power of Language Systems

Section 2.4 claimed that recursive transition networks and BNF grammars are
equally powerful. Here, we explain more precisely what that means and prove
that the two systems are, in fact, equivalent in power. What does it mean to
say two systems are equally powerful?

A language description mechanism is used to define a set of strings compris-
ing a language. Hence, the power of a language description mechanism is
determined by the set of languages it can define.

One possible way to measure the power of a language description mecha-
nism would be to count the number of languages that it can define. Even the
simplest mechanisms can define infinitely many languages, however, so just
counting the number of languages does not distinguish well between the dif-
ferent language description mechanisms. Both RTNs and BNFs can describe
infinitely many different languages. We can always add a new edge to an RTN
to increase the number of strings in the language, or add a new replacement
rule to a BNF that replaces a nonterminal with a new terminal symbol.

Instead, we need to consider the set of languages that each mechanism can
define. A system A is more powerful that another system B if we can use A to
define every language that can be defined by B, and there is some language
L that can be defined using A that cannot be defined using B. This matches
our intuitive interpretation of more powerful — A is more powerful than B if
it can do everything B can do and more. The set diagrams in Figure 2.8 depict
three possible scenarios.

Figure 2.8. System power relationships.

In the leftmost picture, the set of languages that can be defined by B is a
proper subset of the set of languages that can be defined by A. Hence, A
is more powerful than B. In the center picture, the sets are equal. This means
every language that can be defined by A can also be defined by B, and every
language that can be defined by B can also be defined by A, and the systems
are equally powerful. In the rightmost picture, there are some elements of A
that are not elements of B, but there are also some elements of B that are not
elements of A. This means we cannot say either one is more powerful; A can
do some things B cannot do, and B can do some things A cannot do.

So, to determine the relationship between RTNs and BNFs, we need to un-
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derstand if there are languages that can be defined by a BNF that cannot be
defined by a RTN and if there are languages that can be defined by a RTN that
cannot be defined by an BNF. We will show only the first part of the proof here,
and leave the second part as an exercise.

For the first part, we prove that there are no languages that can be defined by
a BNF that cannot be defined by an RTN. Equivalently, every language that
can be defined by a BNF grammar has a corresponding RTN. Since there are
infinitely many languages that can be defined by BNF grammars, we obvi-
ously cannot prove this by enumerating each language and showing the cor-
responding RTN. Instead, we use a proof technique commonly used in com-
puter science: proof by construction. We show that given any BNF grammar it proof by construction

is possible to construct a corresponding RTN by providing an algorithm that
takes as input a BNF grammar and produces as output an RTN that defines
the same language as the input BNF grammar.

Our strategy is to construct a subnetwork corresponding to each nontermi-
nal. For each rule where the nonterminal is on the left side, the right hand
side is converted to a path through that node’s subnetwork.

Before presenting the general construction algorithm, we illustrate the ap-
proach with the example BNF grammar from Example 2.1:

Number ::⇒ Digit MoreDigits
MoreDigits ::⇒ ε
MoreDigits ::⇒ Number
Digit ::⇒ 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

The grammar has three nonterminals: Number, Digit, and MoreDigits. For
each nonterminal, we construct a subnetwork by first creating two nodes cor-
responding to the start and end of the subnetwork for the nonterminal. We
make StartNumber the start node for the RTN since Number is the starting
nonterminal for the grammar.

Next, we add edges to the RTN corresponding to the production rules in the
grammar. The first rule indicates that Number can be replaced by Digit MoreDig-
its. To make the corresponding RTN, we introduce an intermediate node
since each RTN edge can only contain one label. We need to traverse two
edges, with labels StartDigit and StartMoreDigits between the StartNumber
and EndNumber nodes. The resulting partial RTN is shown in Figure 2.9.

Figure 2.9. Converting the Number productions to an RTN.

For the MoreDigits nonterminal there are two productions. The first means
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MoreDigits can be replaced with nothing. In an RTN, we cannot have edges
with unlabeled outputs. So, the equivalent of outputting nothing is to turn
StartMoreDigits into a final node. The second production replaces MoreDig-
its with Number. We do this in the RTN by adding an edge between Start-
MoreDigits and EndMoreDigits labeled with Number.

Figure 2.10. Converting the MoreDigits productions to an RTN.

Finally, we convert the ten Digit productions. For each rule, we add an edge
between StartDigit and EndDigit labeled with the digit terminal.

Figure 2.11. Converting the Digit productions to an RTN.

This example illustrates that it is possible to convert a particular grammar to
an RTN. For a general proof, we present a general an algorithm that can be
used to do the same conversion for any BNF:

1. For each nonterminal X in the grammar, construct two nodes, StartX
and EndX, where EndX is a final node. Make the node StartS the start
node of the RTN, where S is the start nonterminal of the grammar.

2. For each rule in the grammar, add a corresponding path through the
RTN. All BNF rules have the form X ::⇒ replacement where X is a non-
terminal in the grammar and replacement is a sequence of zero or more
terminals and nonterminals: [R0, R1, . . . , Rn].

(a) If the replacement is empty, make StartX a final node.

(b) If the replacement has just one element, R0, add an edge from StartX
to EndX with edge label R0.

(c) Otherwise:

i. Add an edge from StartX to a new node labeled Xi,0 (where i
identifies the grammar rule), with edge label R0.

ii. For each remaining element Rj in the replacement add an edge
from Xi,j−1 to a new node labeled Xi,j with edge label Rj. (For
example, for element R1, a new node Xi,1 is added, and an edge
from Xi,0 to Xi,1 with edge label R1.)

iii. Add an edge from Xi,n−1 to EndX with edge label Rn.
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Following this procedure, we can convert any BNF grammar into an RTN that
defines the same language. Hence, we have proved that RTNs are at least as
powerful as BNF grammars.

To complete the proof that BNF grammars and RTNs are equally powerful
ways of defining languages, we also need to show that a BNF can define every
language that can be defined using an RTN. This part of the proof can be done
using a similar strategy in reverse: by showing a procedure that can be used
to construct a BNF equivalent to any input RTN. We leave the details as an
exercise for especially ambitious readers.

Exercise 2.15. Convert the BNF grammar from Exercise 2.14 into an equiva-
lent RTN.

Exercise 2.16. [★] Prove that BNF grammars are as powerful as RTNs by de-
vising a procedure that can construct a BNF grammar that defines the same
language as any input RTN.

2.5 Summary

Languages define a set of surface forms and associated meanings. Since use-
ful language must be able to express infinitely many things, we need tools for
defining infinite sets of surface forms using compact and precise notations.
The tool we will use for the remainder of this book is the BNF replacement
grammar which precisely defines a language using replacement rules. This
system can describe infinite languages with small representations because of
the power of recursive rules. In the next chapter, we introduce the Scheme
programming language that we will use to describe procedures.
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3
Programming

The Analytical Engine has no pretensions whatever to originate any thing. It can
do whatever we know how to order it to perform. It can follow analysis; but it
has no power of anticipating any analytical relations or truths. Its province is to
assist us in making available what we are already acquainted with.

Augusta Ada, Countess of Lovelace, in Notes on the Analytical Engine, 1843

What distinguishes a computer from other machines is its programmability.
Without a program, a computer is an overpriced door stopper. With the right
program, though, a computer can be a tool for communicating across the
continent, discovering a new molecule that can cure cancer, composing a
symphony, or managing the logistics of a retail empire.

Programming is the act of writing instructions that make the computer do
something useful. It is an intensely creative activity, involving aspects of art,
engineering, and science. Good programs are written to be executed effi-
ciently by computers, but also to be read and understood by humans. The
best programs are delightful in ways similar to the best architecture, elegant
in both form and function.

The ideal programmer would have the vision of Isaac Newton, the intellect of
Albert Einstein, the creativity of Miles Davis, the aesthetic sense of Maya Lin,
the wisdom of Benjamin Franklin, the literary talent of William Shakespeare,
the oratorical skills of Martin Luther King, the audacity of John Roebling, and
the self-confidence of Grace Hopper.

Golden Gate Bridge
Fortunately, it is not necessary to possess all of those rare qualities to be a
good programmer! Indeed, anyone who is able to master the intellectual
challenge of learning a language (which, presumably, anyone who has gotten
this far has done at least for English) can become a good programmer. Since
programming is a new way of thinking, many people find it challenging and
even frustrating at first. Because the computer does exactly what it is told, a
small mistake in a program may prevent it from working as intended. With a
bit of patience and persistence, however, the tedious parts of programming
become easier, and you will be able to focus your energies on the fun and
creative problem solving parts.

This chapter explains why natural languages are not a satisfactory way for
defining procedures and introduces a language for programming computers
and how it can be used to define procedures.
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3.1 Problems with Natural Languages

Natural languages, such as English, work adequately (most, but certainly not
all, of the time) for human-human communication, but are not well-suited
for human-computer or computer-computer communication. Why can’t we
use natural languages to program computers?

Next, we survey several of the reasons for this, focusing on specifics from En-
glish, although all natural languages suffer from all of these problems to vary-
ing degrees.

Complexity. Although English may seem simple to you now, it took many
years of intense effort (most of it subconscious) for you to learn it. Despite
using it for most of their waking hours for many years, native English speak-
ers know a small fraction of the entire language. The Oxford English Dictio-
nary contains 615,000 words, of which a typical native English speaker knows
about 40,000.

Ambiguity. Not only do natural languages have huge numbers of words, most
words have many different meanings. Understanding the intended meaning
of a particular utterance requires knowing the context, and sometimes pure
guesswork.

For example, what does it mean to be paid biweekly? According to the Amer-
ican Heritage Dictionary1, biweekly has two definitions:

1. Happening every two weeks.

2. Happening twice a week; semiweekly.

Merriam-Webster’s Dictionary2 takes the opposite approach:

1. occurring twice a week

2. occurring every two weeks : fortnightly

Depending on which definition is intended, someone who is paid biweekly
is either paid once or four times every two weeks! The behavior of a payroll
management program better not depend on how biweekly is interpreted!

Even if everyone agrees on the definition of every word, the meaning of a sen-
tence may still be ambiguous. This example is from the instructions with a
shipment of ballistic missiles from the British Admiralty:3

It is necessary for technical reasons that these warheads be stored up-
side down, that is, with the top at the bottom and the bottom at the
top. In order that there be no doubt as to which is the bottom and
which is the top, for storage purposes, it will be seen that the bottom
of each warhead has been labeled ’TOP’.

1American Heritage, Dictionary of the English Language (Fourth Edition), Houghton Mifflin
Company, 2007 (http://www.answers.com/biweekly).

2Merriam-Webster Online, Merriam-Webster, 2008 (http://www.merriam-webster.com/
dictionary/biweekly).

3Carl C. Gaither and Alma E. Cavazos-Gaither, Practically Speaking: A Dictionary of Quota-
tions on Engineering, Technology and Architecture, Taylor & Francis, 1998.

http://www.answers.com/biweekly
http://www.merriam-webster.com/dictionary/biweekly
http://www.merriam-webster.com/dictionary/biweekly
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Irregularity. Because natural languages evolve over time as different cultures
interact and speakers misspeak and listeners mishear, natural languages end
up a morass of irregularity. Nearly all grammar rules have exceptions. For
example, English has a rule that for making a word plural by appending an s.
The new word means “more than one of the original word’s meaning”.

It does not work for all words, however. The plural of goose is geese (and
gooses is not an English word), the plural of deer is deer (and deers is not an
English word), and the plural of beer is controversial (and may depend on
whether you speak American English or Canadian English).

These irregularities can be charming for a natural language, but they are a
constant source of difficulty for non-native speakers attempting to learn a
language. There is no sure way to predict when the rule can be applied, and
it is necessary to memorize each of the irregular forms.

Uneconomic. It requires a lot of space to express a complex idea in a natural I have made this letter longer than
usual, only because I have not had
the time to make it shorter.
Blaise Pascal, 1657

language. Many superfluous words are needed for grammatical correctness,
even though they do not contribute to the desired meaning. Since natural
languages evolved for everyday communication, they are not well suited to
describing the precise steps and decisions needed in a computer program.

As an example, consider a procedure for finding the maximum of two num-
bers. In English, we could describe it like this:

To find the maximum of two numbers, compare them. If the first
number is greater than the second number, the maximum is the first
number. Otherwise, the maximum is the second number.

Perhaps shorter descriptions are possible, but any much shorter description
probably assumes the reader already knows a lot. By contrast, we can express
the same steps in the Scheme programming language in very concise way:
(define (bigger a b) (if (> a b) a b)). (Don’t worry if this doesn’t make sense
yet—it should by the end of this chapter.)

Limited means of abstraction. Natural languages provide small, fixed sets
of pronouns to use as means of abstraction, and the rules for binding pro-
nouns to meanings are often unclear. Since programming often involves us-
ing simple names to refer to complex things, we need more powerful means
of abstraction than natural languages provide.

3.2 Programming Languages

For programming computers, we want simple, unambiguous, regular, and
economical languages with powerful means of abstraction. A programming
language is a language that is designed to be read and written by humans to programming language

create programs that can be executed by computers.

Programming languages come in many flavors. It is difficult to simultane-
ously satisfy all desired properties since simplicity is often at odds with econ-
omy. Every feature that is added to a language to increase its expressiveness
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incurs a cost in reducing simplicity and regularity. For the first two parts of
this book, we use the Scheme programming language which was designed
primarily for simplicity. For the later parts of the book, we use the Python
programming language, which provides more expressiveness but at the cost
of some added complexity.

Another reason there are many different programming languages is that they
are at different levels of abstraction. Some languages provide programmers
with detailed control over machine resources, such as selecting a particular
location in memory where a value is stored. Other languages hide most of
the details of the machine operation from the programmer, allowing them to
focus on higher-level actions.

Ultimately, we want a program the computer can execute. This means at the
lowest level we need languages the computer can understand directly. At this
level, the program is just a sequence of bits encoding machine instructions.
Code at this level is not easy for humans to understand or write, but it is easy
for a processor to execute quickly. The machine code encodes instructions
that direct the processor to take simple actions like moving data from one
place to another, performing simple arithmetic, and jumping around to find
the next instruction to execute.

For example, the bit sequence 1110101111111110 encodes an instruction in
the Intel x86 instruction set (used on most PCs) that instructs the processor
to jump backwards two locations. Since the instruction itself requires two
locations of space, jumping back two locations actually jumps back to the
beginning of this instruction. Hence, the processor gets stuck running forever
without making any progress.

Grace Hopper, 1952

Image courtesy Computer History Museum
The computer’s processor is designed to execute very simple instructions like
jumping, adding two small numbers, or comparing two values. This means
each instruction can be executed very quickly. A typical modern processor
can execute billions of instructions in a second.4

Until the early 1950s, all programming was done at the level of simple instruc-
tions. The problem with instructions at this level is that they are not easy for
humans to write and understand, and you need many simple instructions
before you have a useful program.

In the early 1950s, Admiral Grace Hopper developed the first compilers. A
compiler is a computer program that generates other programs. It translatescompiler

an input program written in a high-level language that is easier for humans
to create into a program in a machine-level language that is easier for a com-
puter to execute.

An alternative to a compiler is an interpreter. An interpreter is a tool thatinterpreter

translates between a higher-level language and a lower-level language, but
where a compiler translates an entire program at once and produces a ma-
chine language program that can be executed directly, an interpreter inter-

4A “2GHz processor” executes 2 billion cycles per second. This does not map directly to the
number of instructions it can execute in a second, though, since some instructions take several
cycles to execute.
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prets the program a small piece at a time while it is running. This has the Nobody believed that I had a
running compiler and nobody
would touch it. They told me
computers could only do
arithmetic.
Grace Hopper

advantage that we do not have to run a separate tool to compile a program
before running it; we can simply enter our program into the interpreter and
run it right away. This makes it easy to make small changes to a program and
try it again, and to observe the state of our program as it is running.

One disadvantage of using an interpreter instead of a compiler is that because
the translation is happening while the program is running, the program exe-
cutes slower than a compiled program. Another advantage of compilers over
interpreters is that since the compiler translates the entire program it can also
analyze the program for consistency and detect certain types of programming
mistakes automatically instead of encountering them when the program is
running (or worse, not detecting them at all and producing unintended re-
sults). This is especially important when writing critical programs such as
flight control software — we want to detect as many problems as possible in
the flight control software before the plane is flying!

Since we are more concerned with interactive exploration than with perfor-
mance and detecting errors early, we use an interpreter instead of a compiler.

3.3 Scheme

The programming system we use for the first part of this book is depicted
in Figure 3.1. The input to our programming system is a program written in
a programming language named Scheme. A Scheme interpreter interprets a
Scheme program and executes it on the machine processor.

Scheme was developed at MIT in the 1970s by Guy Steele and Gerald Suss-
man, based on the LISP programming language that was developed by John
McCarthy in the 1950s. Although Scheme is not widely used in industry, it
is a great language for learning about computing and programming. The pri-
mary advantage of using Scheme to learn about computing is its simplicity
and elegance. The language is simple enough that this chapter covers nearly
the entire language (we defer describing a few aspects until Chapter 9), and
by the end of this book you will know enough to implement your own Scheme
interpreter. By contrast, some programming languages that are widely used
in industrial programming such as C++ and Java require thousands of pages
to describe, and even the world’s experts in those languages do not agree on
exactly what all programs mean.

Although almost everything we describe works in all Scheme interpreters, for
the examples in this book we assume the DrScheme programming environ-
ment which is freely available from http://www.drscheme.org/. DrScheme in-
cludes interpreters for many different languages, so you must select the de-
sired language using the Language menu. The selected language defines the
grammar and evaluation rules that are used to interpret your program. For all
the examples in this book, we use the language named Pretty Big.

http://www.drscheme.org/
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Figure 3.1. Running a Scheme program.

3.4 Expressions

A Scheme program is composed of expressions and definitions (we cover def-
initions in Section 3.5). An expression is a syntactic element that has a value.expression

The act of determining the value associated with an expression is called eval-
uation. A Scheme interpreter, such as the one provided in DrScheme, is aevaluation

machine for evaluating Scheme expressions. When you enter an expression
into a Scheme interpreter, the interpreter evaluates the expression and dis-
plays its value.

Expressions may be primitives. Scheme also provides means of combina-
tion for producing complex expressions from simple expressions. The next
subsections describe primitive expressions and application expressions. Sec-
tion 3.6 describes expressions for making procedures and Section 3.7 describes
expressions that can be used to make decisions.

3.4.1 Primitives

An expression can be replaced with a primitive:

Expression ::⇒ PrimitiveExpression

As with natural languages, primitives are the smallest units of meaning. Hence,
the value of a primitive is its pre-defined meaning.
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Scheme provides many different primitives. Three useful types of primitives
are described next: numbers, Booleans, and primitive procedures.

Numbers. Numbers represent numerical values. Scheme provides all the
kinds of numbers you are familiar with including whole numbers, negative
numbers, decimals, and rational numbers.

Example numbers include:

150 0 −12
3.14159 3/4 999999999999999999999

A number evaluates to its value. For example, the value of the primitive ex-
pression 1120 is the number 1120.

Booleans. Booleans represent truth values. There are two primitives for
representing true and false:

PrimitiveExpression ::⇒ true ∣ false

The meaning of true is true, and the meaning of false is false.5

Primitive Procedures. Scheme provides primitive procedures corresponding
to many common functions. Mathematically, a function is a mapping from function

inputs to outputs. For each valid input to the function, there is exactly one
associated output. For example, + is a procedure that takes zero or more
inputs, each of which must be a number. Its output is the sum of the values
of the inputs. Table 3.1 describes some primitive procedures for performing
arithmetic and comparisons on numbers.

3.4.2 Application Expressions

Most of the actual work done by a Scheme program is done by application
expressions. The grammar rule for application is:

Expression ::⇒ ApplicationExpression
ApplicationExpression ::⇒ (Expression MoreExpressions)
MoreExpressions ::⇒ ε ∣ Expression MoreExpressions

This rule generates a list of one or more expressions surrounded by parenthe-
ses. The value of the first expression should be a procedure; the remaining
expressions are the inputs to the procedure.

5In the DrScheme interpreter, #t and #f are used as the primitive truth values; they mean the
same thing as true and false. So, the value true appears as #t in the interactions window.
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Symbol Description Inputs Output

+ add zero or more
numbers

sum of the input numbers (0 if
there are no inputs)

∗ multiply zero or more
numbers

product of the input numbers (1 if
there are no inputs)

− subtract two numbers the value of the first number minus
the value the second number

/ divide two numbers the value of the first number
divided by the value of the second
number

zero? is zero? one number true if the input value is 0,
otherwise false

= is equal to? two numbers true if the input values have the
same value, otherwise false

< is less than? two numbers true if the first input value has
lesser value than the second input
value, otherwise false

> is greater than? two numbers true if the first input value has
greater value than the second input
value, otherwise false

<= is less than or
equal to?

two numbers true if the first input value is not
greater than the second input
value, otherwise false

>= is greater than or
equal to?

two numbers true if the first input value is not
less than the second input value,
otherwise false

Table 3.1. Selected Scheme Primitive Procedures.
All of these primitive procedures operate on numbers. The first four are the basic arith-
metic operators; the rest are comparison procedures. Some of these procedures are
defined for more inputs than just the ones shown here (e.g., the subtract procedure also
works on one number, producing its negation).



Chapter 3. Programming 49

For example, the expression (+ 1 2) is an ApplicationExpression, consisting of
three subexpressions. Although you can probably guess that this expression
evaluates to 3, we will demonstrate in detail how it is evaluated by breaking
down into its subexpressions using the grammar rules. The same process will
allow us to understand how any expression is evaluated.

Here is a parse tree for the expression (+ 1 2):

Expression

ApplicationExpression

eeeeeeeeeeeeeeeeee

llllllllll

YYYYYYYYYYYYYYYYYY

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

( Expression MoreExpressions

llllllllll

YYYYYYYYYYYYYYYYYY )

PrimitiveExpression Expression MoreExpressions

llllllllll
RRRRRRRRRR

+ PrimitiveExpression Expression MoreExpressions

1 PrimitiveExpression ε

2

Following the grammar rules, we replace Expression with ApplicationExpres-
sion at the top of the parse tree. Then, we replace ApplicationExpression with
(Expression MoreExpressions). The Expression term is replaced by Primitive-
Expression, and finally, the primitive addition procedure +. This is the first
subexpression of the application which is the procedure to be applied. The
MoreExpressions term produces the two operand expressions: 1 and 2, both
of which are primitives that evaluate to their own values. The application ex-
pression is evaluated by applying the value of the first expression (the primi-
tive procedure +) to the values of the other expressions. Following the mean-
ing of the primitive procedure, (+ 1 2) evaluates to 3 as expected.

The Expression nonterminals in the application expression can be replaced
with anything that appears on the right side of an expression rule, including
an ApplicationExpression. Hence, we can build up complex expressions like
(+ (∗ 10 10) (+ 25 25)). Its parse tree is:
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This tree is similar to the previous tree, except instead of the subexpressions
of the first application expression being simple primitive expressions, they
are now application expressions. (Instead of showing the complete parse tree
for the nested application expressions, we use triangles.)

To evaluate the output application, we need to evaluate all the subexpres-
sions. The first subexpression, +, evaluates to the primitive procedure. The
second subexpression, (∗ 10 10), evaluates to 100, and the third expression, (+
25 25), evaluates to 50. Now, we can evaluate the original expression using the
values for its three component subexpressions: (+ 100 50) evaluates to 150.

Exercise 3.1. Draw a parse tree for the Scheme expression

(+ 100 (∗ 5 (+ 5 5)))

and show how it would be evaluated.

Exercise 3.2. Predict how each of the following Scheme expressions is evalu-
ated. After making your prediction, try evaluating the expression in DrScheme.
If the result is different from your prediction, explain why the Scheme inter-
preter evaluates the expression as it does.

a. 1120

b. (+ 1120)

c. (+ (+ 10 20) (∗ 2 0))

d. (zero? (− 15 (+ 5 5 (+ 2 3))))

e. +

f. (+ + <)
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Exercise 3.3. For each problem, construct a Scheme expression that calcu-
lates the result and try evaluating it in DrScheme.

a. How many seconds are there in a year?

b. For how many seconds have you been alive?

c. For what fraction of your life have you been in school?

Exercise 3.4. Construct a Scheme expression to calculate the distance in
inches that light travels during the time it takes the processor in your com-
puter to execute one cycle. (A meter is defined as the distance light travels in
1/299792458th of a second in a vacuum. One meter is 100 centimeters, and
one inch is defined as 2.54 centimeters. Your processor speed is probably
given in gigahertz (GHz), which are 1,000,000,000 hertz. One hertz means
once per second, so 1GHz means the processor executes 1,000,000,000 cycles
per second. On a Windows machine, you can find the speed of your proces-
sor by opening the Control Panel (select it from the Start menu) and selecting
System. Note that Scheme performs calculations exactly, so the result will be
displayed as a fraction. To see a more useful answer, use (exact->inexact Ex-
pression) to convert the value of the expression to a decimal representation.)

3.5 Definitions

Scheme provides a simple, yet powerful, mechanism for abstraction. A defi-
nition introduces a new name and gives it a value:

Definition ::⇒ (define Name Expression)

After a definition, the Name in the definition is now associated with the value
of the expression in the definition.6 A definition is not an expression since it
does not evaluate to a value.

A name can be any sequence of letters, digits, and special characters (such
as −, >, ?, and !) that starts with a letter or special character. Examples of
valid names include a, Ada, Augusta-Ada, gold49, !yuck, and yikes!∖%@∖# .
We don’t recommend using some of these names in your programs, however!
A good programmer will pick names that are easy to read, pronounce, and
remember, and that are not easily confused with other names.

6Alert readers should be worried that we need a more precise definition of the meaning of def-
initions to know what it means for a value to be associated with a name. This informal notion will
serve us well for now, but we will need a more precise explanation of the meaning of a definition
in Chapter 9.
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After a name has been bound to a value by a definition, that name may be
used in an expression:

Expression ::⇒ NameExpression
NameExpression ::⇒ Name

The value of a NameExpression is the value associated with the N ame.

For example, below we define speed-of-light to be the speed of light in meters
per second, define seconds-per-hour to be the number of seconds in an hour,
and use them to calculate the speed of light in kilometers per hour:

> (define speed-of-light 299792458)
> speed-of-light
299792458
> (define seconds-per-hour (∗ 60 60))
> (/ (∗ speed-of-light seconds-per-hour) 1000)
1079252848 4/5

3.6 Procedures

In Chapter 1 we defined a procedure as a description of a process. Scheme
provides a way to define procedures that take inputs, carry out a sequence of
actions, and produce an output. Section 3.4.1 introduced some of Scheme’s
primitive procedures. To construct complex programs, however, we need to
be able to create our own procedures.

Procedures are similar to mathematical functions in that they provide a map-
ping between inputs and outputs, but they are different from mathematical
functions in two key ways:

State. In addition to producing an output, a procedure may access and mod-
ify state. This means that even when the same procedure is applied to
the same inputs, the output produced may vary. Because mathematical
functions do not have external state, when the same function is applied
to the same inputs it always produces the same result. State makes pro-
cedures much harder to reason about. In particular, it breaks the sub-
stitution model of evaluation we introduce in the next section. We will
ignore this issue until Chapter 9, and focus until then only on procedures
that do not involve any state.

Resources. Unlike an ideal mathematical function, which provides an in-
stantaneous and free mapping between inputs and outputs, a proce-
dure requires resources to execute before the output is produced. The
most important resources are space (memory) and time. A procedure
may need space to keep track of intermediate results while it is execut-
ing. Each step of a procedure requires some time to execute. Predicting
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how long a procedure will take to execute, and finding the fastest proce-
dure possible for solving some problem, are core problems in computer
science. We will consider this throughout this book, and in particular in
Chapter 7. Even knowing if a procedure will finish is a challenging prob-
lem. In Chapter 12 we will see that it is impossible to solve in general.

For the rest of this chapter, we view procedures as idealized mathematical
functions: we consider only procedures that involve no state, and do not
worry about the resources our procedures require.

3.6.1 Making Procedures

Scheme provides a general mechanism for making a procedure:

Expression ::⇒ ProcedureExpression
ProcedureExpression ::⇒ (lambda (Parameters) Expression)
Parameters ::⇒ ε ∣ Name Parameters

Evaluating a ProcedureExpression produces a procedure that takes as inputs
the Parameters following the lambda. You can think of lambda as meaning
“make a procedure”. The body of the procedure is the Expression, which is
not evaluated until the procedure is applied.

A ProcedureExpression can replace an Expression. This means anywhere an
Expression is used we can create a new procedure. This is very powerful since
it means we can use procedures as inputs to other procedures and create pro-
cedures that return new procedures as their output!

Here are some example procedures:

(lambda (x) (∗ x x))
Procedure that takes one input, and produces the square of the input
value as its output.

(lambda (a b) (+ a b))
Procedure that takes two inputs, and produces the sum of the input val-
ues as its output.

(lambda () 0)
Procedure that takes no inputs, and produces 0 as its output.

(lambda (a) (lambda (b) (+ a b)))
Procedure that takes one input (a), and produces as its output a proce-
dure that takes one input and produces the sum of that input at a as its
output. The procedure is a procedure that makes an adding procedure.

3.6.2 Substitution Model of Evaluation

For a procedure to be useful, we need to apply it. In Section 3.4.2, we saw the
syntax and evaluation rule for an ApplicationExpression when the procedure
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to be applied is a primitive procedure. The syntax for applying a constructed
procedure is identical to the syntax for applying a primitive procedure:

Expression ::⇒ ApplicationExpression
ApplicationExpression ::⇒ (Expression MoreExpressions)
MoreExpressions ::⇒ ε ∣ Expression MoreExpressions

To understand how constructed procedures are evaluated, we need a new
evaluation rule. In this case, the first Expression evaluates to a procedure
that was created using a ProcedureExpression, so the ApplicationExpression
becomes:

ApplicationExpression ::⇒
((lambda (Parameters)Expression) MoreExpressions)

(The underlined part is the replacement for the ProcedureExpression.)

To evaluate the application, first evaluate the MoreExpressions in the appli-
cation expression. These expressions are known as the operands of the appli-
cation. The resulting values are the inputs to the procedure. There must be
exactly one expression in the MoreExpressions corresponding to each name
in the parameters list. Next, associate the names in the Parameters list with
the corresponding operand values. Finally, evaluate the expression that is
the body of the procedure. Whenever any parameter name is used inside the
body expression, the name evaluates to the value of the corresponding input
that is associated with that name.

Example 3.1: Square. Consider evaluating the following expression, which
apples the squaring procedure to 2:

((lambda (x) (∗ x x)) 2)

It is an ApplicationExpression where the first subexpression is the Procedure-
Expression, (lambda (x) (∗ x x)). To evaluate the application, we evaluate all
the subexpressions and apply the value of the first subexpression to the val-
ues of the remaining subexpressions. The first subexpression evaluates to a
procedure that takes one parameter named x and has the expression body (∗
x x). There is one operand expression, the primitive 2, that evaluates to 2.

To evaluate the application we bind the first parameter, x, to the value of the
first operand, 2, and evaluate the procedure body, (∗ x x). After substituting
the parameter values, we have (∗ 2 2). This is an application of the primitive
multiplication procedure. Evaluating the application results in the value 4.

The procedure in our example, (lambda (x) (∗ x x)), is a procedure that takes
a number as input and as output produces the square of that number. We
can use the definition mechanism (from Section 3.5) to give this procedure a
name so we can reuse it:
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(define square (lambda (x) (∗ x x)))

This defines the name square as the procedure. After this, we can apply square
to any number:

> (square 2)
4
> (square 1/4)
1/16
> (square (square 2))
16

Example 3.2: Make adder. The expression

((lambda (a) (lambda (b) (+ a b))) 3)

evaluates to a procedure that adds 3 to its input. Applying that procedure,

(((lambda (a) (lambda (b) (+ a b))) 3) 4)

evaluates to 7. By using define, we can give these procedures sensible names:

(define make-adder
(lambda (a)

(lambda (b) (+ a b))))

Then, (define add-three (make-adder 3)) defines add-three as a procedure
that takes one parameter and outputs the value of that parameter plus 3.

Abbreviated Procedure Definitions. Since we commonly define new proce-
dures, Scheme provides a condensed notation for defining a procedure7:

Definition ::⇒ (define (Name Parameters) Expression)

This incorporates the lambda invisibly into the definition, but means exactly
the same thing. For example,

(define square (lambda (x) (∗ x x)))

can be written equivalently as:

(define (square x) (∗ x x))

7The condensed notation also includes a begin expression, which is a special form. We will
not need the begin expression until we start dealing with procedures that have side effects. We
describe the begin special form in Chapter 9.
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The two definitions mean exactly the same thing.

Exercise 3.5. Define a procedure, cube, that takes one number as input and
produces as output the cube of that number.

Exercise 3.6. Define a procedure, compute-cost , that takes as input two num-
bers, the first represents that price of an item, and the second represents the
sales tax rate. The output should be the total cost, which is computed as the
price of the item plus the sales tax on the item, which is its price times the
sales tax rate. For example, (compute-cost 13 0.05) should evaluate to 13.65.

3.7 Decisions

To make more useful procedures, we need the actions taken to depend on the
input values. For example, we may want a procedure that takes two numbers
as inputs and evaluates to the greater of the two inputs. To define such a
procedure we need a way of making a decision. The IfExpression expression
provides a way of using the result of one expression to select which of two
possible expressions to evaluate:

Expression ::⇒ IfExpression
IfExpression ::⇒ (if ExpressionPredicate

ExpressionConsequent
ExpressionAlternate)

The IfExpression replacement has three Expression terms. For clarity, we
give each of them names as denoted by the Predicate, Consequent, and Al-
ternate subscripts. To evaluate an IfExpression, first evaluate the predicate
expression, ExpressionPredicate. If it evaluates to any non-false value, the value
of the IfExpression is the value of ExpressionConsequent, the consequent ex-
pression, and the alternate expression is not evaluated at all. If the predi-
cate expression evaluates to false, the value of the IfExpression is the value of
ExpressionAlternate, the alternate expression, and the consequent expression
is not evaluated at all.

The predicate expression determines which of the two following expressions
is evaluated to produce the value of the IfExpression. If the value of the pred-
icate is anything other than false, the consequent expression is used. For ex-
ample, if the predicate evaluates to true, to a number, or to a procedure the
consequent expression is evaluated.

The if expression is a special form. This means that although it looks syntacti-special form

cally identical to an application (that is, it could be an application of a proce-
dure named if), it is not evaluated as a normal application would be. Instead,
we have a special evaluation rule for if expressions. The reason a special eval-
uation rule is needed is because we do not want all the subexpressions to be
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evaluated. With the normal application rule, all the subexpressions are eval-
uated first, and then the procedure resulting from the first subexpression is
applied to the values resulting from the others. With the if special form eval-
uation rule, the predicate expression is always evaluated first and only one of
the following subexpressions is evaluated depending on the result of evaluat-
ing the predicate expression.

This means an if expression can evaluate to a value even if evaluating one of
its subexpressions would produce an error. For example,

(if (> 3 4) (∗ + +) 7)

evaluates to 7 even though evaluating the subexpression (∗ + +) would pro-
duce an error. Because of the special evaluation rule for if expressions, the
consequent expression is never evaluated.

Example 3.3: Bigger. Now that we have procedures, decisions, and defi-
nitions, we can understand the bigger procedure from the beginning of the
chapter. The definition,

(define (bigger a b) (if (> a b) a b))

is a condensed procedure definition. It is equivalent to:

(define bigger (lambda (a b) (if (> a b) a b)))

This defines the name bigger as the value of evaluating the procedure expres-
sion (lambda (a b) (if (> a b) a b)). This is a procedure that takes two inputs,
named a and b.

Its body is an if expression with predicate expression (> a b). The predicate
expression compares the value that is bound to the first parameter, a, with
the value that is bound to the second parameter, b, and evaluates to true if the
value of the first parameter is greater, and false otherwise. According to the
evaluation rule for an if expression, when the predicate evaluates to any non-
false value (in this case, true), the value of the if expression is the value of the
consequent expression, a. When the predicate evaluates to false, the value of
the if expression is the value of the alternate expression, b. Hence, our bigger
procedure takes two numbers as inputs and produces as output the greater
of the two inputs.

Exercise 3.7. Follow the evaluation and application rules to evaluate the
Scheme expression, (bigger 3 4) where bigger is the procedure defined above.
(It is very tedious to follow all of the steps (that’s why we normally rely on
computers to do it!), but worth doing once to make sure you understand the
evaluation rules.)
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Exercise 3.8. Define a procedure, xor , that implements the logical exclusive-
or operation. The xor function takes two inputs, and outputs true if exactly
one of those outputs has a true value. Otherwise, it outputs false. For example,
(xor true true) should evaluate to false and (xor (< 3 5) (= 8 8)) should evaluate
to true.

Exercise 3.9. Define a procedure, abs, that takes a number as input and pro-
duces the absolute value of that number as its output. For example, (abs 3)
should evaluate to 3, (abs −150) should evaluate to 150, and (abs 0) should
evaluate to 0.

Exercise 3.10. Define a procedure, bigger-magnitude, that takes two inputs,
and outputs the value of the input with the greater magnitude (that is, abso-
lute distance from zero). For example, (bigger-magnitude 5 −7) should eval-
uate to −7, and (bigger-magnitude 9 −3) should evaluate to 9.

Exercise 3.11. Define a procedure, biggest , that takes three inputs, and pro-
duces as output the maximum value of the three inputs. For example, (biggest
5 7 3) should evaluate to 7. Find at least two different ways to define biggest ,
one using bigger , and one without using it.

3.8 Evaluation Rules

Here we summarize the grammar rules and evaluation rules. Each grammar
rule has an associated evaluation rule. This means that any Scheme frag-
ment that can be described by the grammar also has an associated meaning
that can be produced by combining the evaluation rules corresponding to the
grammar rules.

Program ::⇒ ε ∣ ProgramElement Program
ProgramElement ::⇒ Expression ∣ Definition

A program is a sequence of expressions and definitions.

Definition ::⇒ (define Name Expression)

A definition evaluates the expression, and associates the value of
the expression with the name.

Definition ::⇒ (define (Name Parameters) Expression)

Abbreviation for
(define Name (lambda Parameters) Expression)



Chapter 3. Programming 59

Expression ::⇒ PrimitiveExpression ∣ NameExpression
∣ ApplicationExpression
∣ ProcedureExpression ∣ IfExpression

The value of the expression is the value of the replacement
expression.

PrimitiveExpression ::⇒ Number ∣ true ∣ false ∣ primitive
procedure

Evaluation Rule 1: Primitives. A primitive expression evaluates
to its pre-defined value.

NameExpression ::⇒ Name

Evaluation Rule 2: Names. A name evaluates to the value
associated with that name.

ApplicationExpression ::⇒ (Expression MoreExpressions)

Evaluation Rule 3: Application. To evaluate an application
expression:

a. Evaluate all the subexpressions;

b. Then, apply the value of the first subexpression to the values
of the remaining subexpressions.

MoreExpressions ::⇒ ε ∣ Expression MoreExpressions
ProcedureExpression ::⇒ (lambda (Parameters) Expression)
Parameters ::⇒ ε ∣ Name Parameters

Evaluation Rule 4: Lambda. Lambda expressions evaluate to a
procedure that takes the given parameters and has the expression
as its body.

IfExpression ::⇒ (if ExpressionPredicate
ExpressionConsequent
ExpressionAlternate)

Evaluation Rule 5: If. To evaluate an if expression, (a) evaluate
the predicate expression; then, (b) if the value of the predicate
expression is a false value then the value of the if expression is the
value of the alternate expression; otherwise, the value of the if
expression is the value of the consequent expression.

The evaluation rule for an application (Rule 3b) uses apply to perform the
application. Apply is defined by the two application rules:

Application Rule 1: Primitives.
If the procedure to apply is a primitive procedure, just do it.

Application Rule 2: Constructed Procedures.
If the procedure to apply is a constructed procedure, evaluate the body
of the procedure with each parameter name bound to the corresponding
input expression value.
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Application Rule 2 uses the evaluation rules to evaluate the expression. Thus,
the evaluation rules are defined using the application rules, which are defined
using the evaluation rules! This appears to be a circular definition, but as with
the grammar examples, it has a base case. Some expressions evaluate without
using the application rules (e.g., primitive expressions, name expressions),
and some applications can be performed without using the evaluation rules
(when the procedure to apply is a primitive). Hence, the process of evaluating
an expression will sometimes finish and when it does we end with the value
of the expression.8

3.9 Summary

At this point, we have covered enough of Scheme to write useful programs
(even if the programs we have seen so far seem rather dull). In fact (as we
show in Chapter 12), we have covered enough to express every possible com-
putation! We just need to combine these constructs in more complex ways to
perform more interesting computations. The next chapter (and much of the
rest of this book), focuses on ways to combine the constructs for making pro-
cedures, making decisions, and applying procedures in more powerful ways.

8This does not guarantee that evaluation always finishes, however! The next chapter includes
some examples where evaluation never finishes.
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Problems and Procedures

A great discovery solves a great problem, but there is a grain of discovery in the
solution of any problem. Your problem may be modest, but if it challenges your

curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

George Pólya, How to Solve It

Computers are tools for performing computations to solve problems. In this
chapter, we consider what it means to solve a problem and explore some
strategies for constructing procedures that solve problems.

4.1 Solving Problems

Traditionally, a problem is an obstacle to overcome or some question to an-
swer. Once the question is answered or the obstacle circumvented, the prob-
lem is solved and we can declare victory and move on to the next one.

When we talk about writing programs to solve problems, though, we have a
larger goal. We don’t just want to solve one instance of a problem, we want an
algorithm that can solve all instances of a problem. A problem is defined by problem

its inputs and the desired property of the output. Recall from Chapter 1, that
a procedure is a precise description of a process and a procedure is guaran-
teed to always finish is called an algorithm. The name algorithm is a Latiniza-
tion of the name of the Persian mathematician and scientist, Muhammad ibn
Mūsā al-Khwārizmı̄, who published a book in 825 on calculation with Hindu
numerals. Although the name algorithm was adopted after al-Khwārizmı̄’s
book, algorithms go back much further than that. The ancient Babylonians
had algorithms for finding square roots more than 3500 years ago (see Explo-
ration 4.1).

For example, we don’t just want to find the best route between New York and
Washington, we want an algorithm that takes as inputs the map, start loca-
tion, and end location, and outputs the best route.1 There are infinitely many
possible inputs that each specify different instances of the problem; a general
solution to the problem is a procedure that finds the best route for all possible
inputs.

1Actually finding a general procedure that does this is a challenging and interesting problem,
that we will return to in Chapter 13.
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To define a procedure that can solve a problem, we need to define a procedure
that takes inputs describing the problem instance and produces a different
information process depending on the actual values of its inputs. A procedure
takes zero or more inputs, and produces one output or no outputs2, as shown
in Figure 4.1.

Figure 4.1. A procedure maps inputs to an output.

Our goal in solving a problem is to devise a procedure that takes inputs that
define a problem instance, and produces as output the solution to that prob-
lem instance. The procedure should be an algorithm — this means every ap-
plication of the procedure must eventually finish evaluating and produce an
output value.

There is no magic wand for solving problems, but at its core most problem
solving involves breaking problems you do not yet know how to solve into
simpler and simpler problems until you find problems simple enough that
you already know how to solve them. The creative challenge is to find the
right subproblems so that they can be combined to solve the original prob-
lem. This approach of solving problems by breaking them into simpler parts
is known as divide-and-conquer .divide-and-conquer

The following sections describe a two key forms of divide-and-conquer prob-
lem solving: composition and recursive problem solving. We will use these
same problem-solving techniques in different forms throughout this book.

4.2 Composing Procedures

One way to divide a problem is to split it into steps where the output of the
first step is the input to the second step, and the output of the second step is
the solution to the problem. Each step can be defined by one procedure, and
the two procedures can be combined to create one procedure that solves the
problem.

Figure 4.2 shows a composition of two functions, f and g . The output of f is
used as the input to g.

We can express this composition with the Scheme expression (g (f x)) where
x is the input. The written order appears to be reversed from the picture in

2Although procedures can produce more than one output, we limit our discussion here to
procedures that produce no more than one output. In the next chapter, we introduce ways to
construct complex data, so any number of output values can be packaged into a single output.
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Figure 4.2. Composition.

Figure 4.2. This is because we apply a procedure to the values of its subex-
pressions: the values of the inner subexpressions must be computed first, and
then used as the inputs to the outer applications. So, the inner subexpression
(f x) is evaluated first since the evaluation rule for the outer application ex-
pression is to first evaluate all the subexpressions.

To define a procedure that implements the composed procedure we make x
a parameter:

(define fog (lambda (x) (g (f x))))

This defines fog as a procedure that takes one input and produces as output
the composition of f and g applied to the input parameter. This works for any
two procedures that both take a single input parameter.

For example, we could compose the square and cube procedures from Chap-
ter 3 as:

(define sixth-power (lambda (x) (cube (square x))))

Then, (sixth-power 2) evaluates to 64.

4.2.1 Procedures as Inputs and Outputs

All the procedure inputs and outputs we have seen so far have been numbers.
The subexpressions of an application can be any expression including a pro-
cedure. A higher-order procedure is a procedure that takes other procedures higher-order procedure

as inputs or that produces a procedure as its output. Higher-order proce-
dures give us the ability to write procedures that behave differently based on
the procedures that are passed in as inputs.

For example, we can create a generic composition procedure by making f and
g parameters:

(define fog (lambda (f g x) (g (f x))))

The fog procedure takes three parameters. The first two are both procedures
that take one input. The third parameter is a value that can be the input to
the first procedure.

For example,

> (fog square cube 2)
64
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> (fog (lambda (x) (+ x 1)) square 2)
9

In the second example the first parameter is the procedure produced by the
lambda expression (lambda (x) (+ x 1)). This procedure takes a number as
input and produces as output that number plus one. We use a definition to
name this procedure inc (short for increment):

(define inc (lambda (x) (+ x 1)))

A more useful composition procedure would separate the input value, x, from
the composition. The fcompose procedure takes two procedures as inputs
and produces as output a procedure that is their composition:3

(define fcompose
(lambda (f g ) (lambda (x) (g (f x)))))

The body of the fcompose procedure is a lambda expression that makes a pro-
cedure. Hence, the result of applying fcompose to two procedures is not a
simple value, but a procedure. The resulting procedure can then be applied
to a value.

Here are some examples using fcompose:

> (fcompose inc inc)
#<procedure>
> ((fcompose inc inc) 1)
3
> ((fcompose inc square) 2)
9
> ((fcompose square inc) 2)
5

Exercise 4.1. For each expression, give the value to which the expression eval-
uates. Assume fcompose and inc are defined as above.

a. (fcompose (lambda (x) (∗ x 2)) (lambda (x) (/ x 2)))

b. ((fcompose (lambda (x) (∗ x 2)) (lambda (x) (/ x 2))) 150)

c. ((fcompose (fcompose inc inc) inc) 2)

3We name our composition procedure fcompose to avoid collision with the built-in compose
procedure that behaves similarly.
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Exercise 4.2. Suppose we define self-compose as a procedure that composes
a procedure with itself:

(define (self-compose f ) (fcompose f f ))

Explain how (((fcompose self-compose self-compose) inc) 1) is evaluated.

Exercise 4.3. Define a procedure fcompose3 that takes three procedures as in-
put, and produces as output a procedure that is the composition of the three
input procedures. For example, ((fcompose3 abs inc square) −5) should eval-
uate to 36. Define fcompose3 two different ways: once without using fcom-
pose, and once using fcompose.

Exercise 4.4. The fcompose procedure only works when both input proce-
dures take one input. Define a f2compose procedure that composes two pro-
cedures where the first procedure takes two inputs, and the second procedure
takes one input. For example, ((f2compose add abs) 3 −5) should evaluate to
2.

4.3 Recursive Problem Solving

In the previous section, we used functional composition to break a problem
into two procedures that can be composed to produce the desired output. A
particularly useful variation on this is when we can break a problem into a
smaller version of the original problem.

The goal is to be able to feed the output of one application of the procedure
back into the same procedure as its input for the next application, as shown
in Figure 4.3.

Figure 4.3. Circular Composition.

Here’s a corresponding Scheme procedure:

(define f (lambda (n) (f n)))

Of course, this doesn’t work very well!4 Every application of f results in an-

4Curious readers should try entering this definition into a Scheme interpreter and evaluating
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other application of f to evaluate. This never stops — no output is ever pro-
duced and the interpreter will keep evaluating applications of f until it is
stopped or runs out of memory.

We need a way to make progress and eventually stop, instead of going around
in circles. To make progress, each subsequent application should have a smaller
input. Then, the applications stop when the input to the procedure is simple
enough that the output is already known. The stopping condition is called the
base case, similarly to the grammar rules in Section 2.4. In our grammar ex-base case

amples, the base case involved replacing the nonterminal with nothing (e.g.,
MoreDigits ::⇒ ε) or with a terminal (e.g., Noun ::⇒ Alice). In recursive pro-
cedures, the base case will provide a solution for some input for which the
problem is so simple we already know the answer. When the input is a num-
ber, this is often (but not necessarily) when the input is 0 or 1.

To define a recursive procedure, we need to use an if expression to test if the
input matches the base case input. If it does, the consequent expression is
the known answer for the base case. Otherwise, we enter the recursive case
and apply the procedure again but with a smaller input. Each time we apply
the procedure we need to make progress towards reaching the base case. This
means, the input has to change in a way that gets closer to the base case input.
If the base case is for 0, and the original input is a positive number, one way
to get closer to the base case input is to subtract 1 from the input value with
each recursive application.

This evaluation spiral is depicted in Figure 4.4. With each subsequent recur-
sive call, the input gets smaller, eventually reaching the base case. For the
base case application, a result is returned to the previous application. This is
passed back up the spiral to produce the final output. Keeping track of where
we are in a recursive evaluation is similar to keeping track of the subnetworks
in an RTN traversal. The evaluator needs to keep track of where to return af-
ter each recursive evaluation completes, similarly to how we needed to keep
track of the stack of subnetworks to know how to proceed in an RTN traversal.

Figure 4.4. Recursive Composition.

Here is the corresponding procedure:

(f 0). If you get tired of waiting for an output, in DrScheme you can click the Stop button in the
upper right corner to interrupt the evaluation.
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(define g
(lambda (n)

(if (= n 0) 1 (g (− n 1)))))

Unlike the earlier circular f procedure, if we apply g to any non-negative in-
teger it will eventually produce an output. For example, consider evaluating
(g 2). When we evaluate the first application, the value of the parameter n
is 2, so the predicate expression (= n 0) evaluates to false and the value of
the procedure body is the value of the alternate expression, (g (− n 1)). The
subexpression, (− n 1) evaluates to 1, so the result is the result of applying g to
1. As with the previous application, this leads to the application, (g (− n 1)),
but this time the value of n is 1, so (− n 1) evaluates to 0. The next application
leads to the application, (g 0). This time, the predicate expression evaluates
to true and we have reached the base case. The consequent expression is just
1, so no further applications of g are performed and this is the result of the
application (g 0). This is returned as the result of the (g 1) application in the
previous recursive call, and then as the output of the original (g 2) applica-
tion.

We can think of the recursive evaluation as winding until the base case is
reached, and then unwinding the outputs back to the original application.
For this procedure, the output is not very interesting: no matter what positive
number we apply g to, the eventual result is 1. To solve interesting problems
with recursive procedures, we need to accumulate results as the recursive ap-
plications wind or unwind. Examples 4.1 and 4.2 illustrate recursive proce-
dures that accumulate the result during the unwinding process. Example 4.3
illustrates a recursive procedure that accumulates the result during the wind-
ing process.

Example 4.1: Factorial. How many different arrangements are there of a
deck of 52 playing cards?

The top card in the deck can be any of the 52 cards, so there are 52 possible
choices for the top card. The second card can be any of the cards except for
the card that is the top card, so there are 51 possible choices for the second
card. The third card can be any of the 50 remaining cards, and so on, until the
last card for which there is only one choice remaining.

52 ∗ 51 ∗ 50 ∗ ⋅ ⋅ ⋅ ∗ 2 ∗ 1

This is known as the factorial function (denoted in mathematics using the factorial

exclamation point, e.g., 52!). It can be defined recursively:

0! = 1
n! = n ∗ (n− 1)! for all n > 0

The mathematical definition of factorial is recursive, so it is natural that we
can define a recursive procedure that computes factorials:
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(define (factorial n)
(if (= n 0)

1
(∗ n (factorial (− n 1)))))

Evaluating (factorial 52) produces the number of arrangements of a 52-card
deck: a sixty-eight digit number starting with an 8.

The factorial procedure has structure very similar to our earlier definition of
the useless recursive g procedure. The only difference is the alternative ex-
pression for the if expression: in g we used (g (− n 1)); in factorial we added
the outer application of ∗: (∗ n (factorial (− n 1))). Instead of just evaluating
to the result of the recursive application, we are now combining the output of
the recursive evaluation with the input n using a multiplication application.

Exercise 4.5. How many different ways are there of choosing an unordered
5-card hand from a 52-card deck?

This is an instance of the “n choose k” problem (also known as the binomial
coefficient): how many different ways are there to choose a set of k items from
n items. There are n ways to choose the first item, n − 1 ways to choose the
second, . . ., and n − k + 1 ways to choose the kth item. But, since the order
does not matter, some of these ways are equivalent. The number of possible
ways to order the k items is k!, so we can compute the number of ways to
choose k items from a set of n items as:

n ∗ (n− 1) ∗ ⋅ ⋅ ⋅ ∗ (n− k + 1)
k!

=
n!

(n− k)!k!

a. Define a procedure choose that takes two inputs, n (the size of the item set)
and k (the number of items to choose), and outputs the number of possible
ways to choose k items from n.

b. Compute the number of possible 5-card hands that can be dealt from a
52-card deck.

c. [★] Compute the likelihood of being dealt a flush (5 cards all of the same
suit). In a standard 52-card deck, there are 13 cards of each of the four
suits. Hint: divide the number of possible flush hands by the number of
possible hands.

Exercise 4.6. Reputedly, when Karl Gauss was in elementary school his
teacher assigned the class the task of summing the integers from 1 to 100 (e.g.,
1 + 2 + 3 + ⋅ ⋅ ⋅+ 100) to keep them busy. Being the (future) “Prince of Math-
ematics”, Gauss developed the formula for calculating this sum, that is now
known as the Gauss sum. Had he been a computer scientist, however, and
had access to a Scheme interpreter in the late 1700s, he might have instead
defined a recursive procedure to solve the problem. Define a recursive proce-
dure, gauss-sum, that takes a number n as its input parameter, and evaluates
to the sum of the integers from 1 to n as its output. For example, (gauss-sum
100) should evaluate to 5050.

Karl Gauss



Chapter 4. Problems and Procedures 69

Exercise 4.7. [★] Define a higher-order procedure, accumulate, that can be
used to make both gauss-sum (from Exercise 4.6) and factorial. The accu-
mulate procedure should take two inputs: the first is the function used for
accumulation (e.g., ∗ for factorial, + for gauss-sum); the second is the base
case value (that is, the value of the function when the input is 0). With your
accumulate procedure, ((accumulate + 0) 100) should evaluate to 5050 and
((accumulate ∗ 1) 3) should evaluate to 6.

Hint: since your procedure should produce a procedure as its output, it could
start like this:

(define (accumulate f base)
(lambda (n)

. . .

Example 4.2: Find Maximum. Consider the problem of defining a proce-
dure that takes as its input a procedure, a low value, and a high value, and
outputs the maximum value the input procedure produces when applied to
an integer value between the low value and high value input. We name the
inputs f , low, and high. To find the maximum, the find-maximum procedure
should evaluate the input procedure f at every integer value between the low
and high, and output the greatest value found.

Here are a few examples:

> (find-maximum (lambda (x) x) 1 20)
20
> (find-maximum (lambda (x) (− 10 x)) 1 20)
9
> (find-maximum (lambda (x) (∗ x (− 10 x))) 1 20)
25

To define the procedure, think about how to combine results from simpler
problems to find the result. For the base case, we need a case so simple we
already know the answer. Consider the case when low and high are equal.
Then, there is only one value to use, and we know the value of the maximum
is (f low). So, the base case is (if (= low high) (f low) . . . ).

How do we make progress towards the base case? Suppose the value of high is
equal to the value of low plus 1. Then, the maximum value is either the value
of (f low) or the value of (f (+ low 1)). We could select it using the bigger
procedure (from Example 3.3): (bigger (f low) (f (+ low 1))). We can extend
this to the case where high is equal to low plus 2:

(bigger (f low) (bigger (f (+ low 1)) (f (+ low 2))))

The second operand for the outer bigger evaluation is the maximum value of
the input procedure between the low value plus one and the high value input.
If we name the procedure we are defining find-maximum, then this second
operand is the result of (find-maximum f (+ low 1) high). This works whether
high is equal to (+ low 1), or (+ low 2), or any other value greater than high.
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Putting things together, we have our recursive definition of find-maximum:

(define (find-maximum f low high)
(if (= low high)

(f low)
(bigger (f low)

(find-maximum f (+ low 1) high)))))

Exercise 4.8. To find the maximum of a function that takes a real number as
its input, we need to evaluate at all numbers in the range, not just the inte-
gers. There are infinitely many numbers between any two numbers, however,
so this is impossible. We can approximate this, however, by evaluating the
function at many numbers in the range.

Define a procedure find-maximum-epsilon that takes as input a function f , a
low range value low, a high range value high, and an increment epsilon, and
produces as output the maximum value of f in the range between low and
high at interval epsilon. As the value of epsilon decreases, find-maximum-
epsilon should evaluate to a value that approaches the actual maximum value.

For example,

(find-maximum-epsilon (lambda (x) (∗ x (− 5.5 x))) 1 10 1)

evaluates to 7.5. And,

(find-maximum-epsilon (lambda (x) (∗ x (− 5.5 x))) 1 10 0.0001)

evaluates to 7.5625.

Exercise 4.9. The find-maximum procedure we defined evaluates to the max-
imum value of the input function in the range, but does not provide the input
value that produces that maximum output value. Define a procedure that
finds the input in the range that produces the maximum output value.

Exercise 4.10. [★] Define a find-area procedure that takes as input a function
f , a low range value low, a high range value high, and an increment inc, and
produces as output an estimate for the area under the curve produced by the
function f between low and high using the inc value to determine how many
points to evaluate.

Example 4.3: Euclid’s Algorithm. In Book 7 of the Elements, Euclid describes
an algorithm for finding the greatest common divisor of two non-zero inte-
gers. The greatest common divisor is the greatest integer that divides both of
the input numbers without leaving any remainder. For example, the great-
est common divisor of 150 and 200 is 50 since (/ 150 50) evaluates to 3 and (/
200 50) evaluates to 4, and there is no number greater than 50 that can evenly
divide both 150 and 200.
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The modulo primitive procedure takes two integers as its inputs and evalu-
ates to the remainder when the first input is divided by the second input. For
example, (modulo 6 3) evaluates to 0 and (modulo 7 3) evaluates to 1.

Euclid’s algorithm stems from two properties of integers:

1. If (modulo a b) evaluates to 0 then b is the greatest common divisor of a
and b.

2. If (modulo a b) evaluates to a non-zero integer r, the greatest common
divisor of a and b is the greatest common divisor of b and r.

We can define a recursive procedure for finding the greatest common divisor
closely following Euclid’s algorithm:

(define (gcd a b)
(if (= (modulo a b) 0)

b
(gcd b (modulo a b))))

The structure of the definition is similar to the factorial definition: the pro-
cedure body is an if expression and the predicate tests for the base case. For
the gcd procedure, the base case corresponds to the first property above. It
occurs when b divides a evenly, and the consequent expression is b. The al-
ternate expression, (gcd b (modulo a b)), is the recursive application.

The gcd procedure differs from the factorial definition in that there is no outer
application expression in the recursive call. We do not need to combine the
result of the recursive application with some other value as was done in the
factorial definition, the result of the recursive application is the final result.
Unlike the factorial and find-maximum examples, the gcd procedure pro-
duces the result in the base case, and no further computation is necessary to
produce the final result. When no further evaluation is necessary to get from
the result of the recursive application to the final result, a recursive definition
is said to be tail recursive. Tail recursive procedures have the advantage that tail recursive

they can be evaluated without needing to keep track of the stack of previous
recursive calls. Since the final call produces the final result, there is no need
for the interpreter to unwind the recursive calls to produce the answer.

Exercise 4.11. Show the structure of the gcd applications used to evaluate
(gcd 6 9).

Exercise 4.12. Provide a convincing argument why the evaluation of (gcd a b)
will always finish when the inputs are both positive integers.

Exercise 4.13. Provide an alternate definition of factorial that is tail recursive.
To be tail recursive, the expression containing the recursive application can-
not be part of another application expression. (Hint: define a factorial-helper
procedure that takes an extra parameter, and then define factorial as (define
(factorial n) (factorial-helper n 1)).)
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Exercise 4.14. [★] Provide an alternate definition of find-maximum that is tail
recursive.

Exercise 4.15. [★★] Provide a convincing argument why it is always possible
to transform a recursive procedure into an equivalent procedure that is tail
recursive.

Exploration 4.1: Square Roots

One of the earliest known algorithms is a method for computing square roots.
It is known as Heron’s method after the Greek mathematician Heron of Alexan-
dria who lived in the first century AD who described the method, although
it was also known to the Babylonians many centuries earlier. Isaac Newton
developed a more general method for estimating functions based on their
derivatives known as Netwon’s method, of which Heron’s method is a special-
ization.

Square root is a mathematical function that take a number, a, as input and
outputs a value x such that x2 = a. For many numbers (including 2), the
square root is irrational, so the best we can hope for with is a good approxi-
mation. We define a procedure find-sqrt that takes the target number as input
and outputs an approximation for its square root.

Heron’s method works by starting with an arbitrary guess, g0. Then, with each
iteration, compute a new guess (gn is the nth guess) that is a function of the
previous guess (gn−1) and the target number (a):

gn =
gn−1 +

a
gn−1

2

As n increases gn gets closer and closer to the square root of a.

The definition is recursive since we compute gn as a function of gn−1, so we
can define a recursive procedure that computes Heron’s method. First, we
define a procedure for computing the next guess from the previous guess and
the target:

Heron of Alexandria

(define (heron-next-guess a g ) (/ (+ g (/ a g )) 2))

Next, we define a recursive procedure to compute the nth guess using Heron’s
method. It takes three inputs: the target number, a, the number of guesses to
make, n, and the value of the first guess, g.

(define (heron-method a n g )
(if (= n 0)

g
(heron-method a (− n 1) (heron-next-guess a g ))))

To start, we need a value for the first guess. The choice doesn’t really matter
— the method works with any starting guess (but will reach a closer estimate
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quicker if the starting guess is good). We will use 1 as our starting guess. So,
we can define a find-sqrt procedure that takes two inputs, the target number
and the number of guesses to make, and outputs an approximation of the
square root of the target number.

(define (find-sqrt a guesses)
(heron-method a guesses 1))

Heron’s method converges to a good estimate very quickly:

> (square (find-sqrt 2 0))
1
> (square (find-sqrt 2 1))
2 1/4
> (square (find-sqrt 2 2))
2 1/144
> (square (find-sqrt 2 3))
2 1/166464
> (square (find-sqrt 2 4))
2 1/221682772224
> (square (find-sqrt 2 5))
2 1/393146012008229658338304
> (exact->inexact (find-sqrt 2 5))
1.4142135623730951

The actual square root of 2 is 1.414213562373095048 . . ., so our estimate is cor-
rect to 16 digits after only five guesses.

Users of square roots don’t really care about the method used to find the
square root (or how many guesses are used). Instead, what is important to
a square root user is how close the estimate is to the actual value. Can we
change our find-sqrt procedure so that instead of taking the number of guesses
to make as its second input it takes a minimum tolerance value?

Since we don’t know the actual square root value (otherwise, of course, we
could just return that), we need to measure tolerance as how close the square
of the approximation is to the target number. Hence, we can stop when the
square of the guess is close enough to the target value.

(define (close-enough? a tolerance g )
(<= (abs (− a (square g ))) tolerance))

The stopping condition for the recursive definition is now when the guess is
close enough. Otherwise, our definitions are the same as before.

(define (heron-method-tolerance a tolerance g )
(if (close-enough? a tolerance g )

g
(heron-method-tolerance a tolerance (heron-next-guess a g ))))
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(define (find-sqrt-approx a tolerance)
(heron-method-tolerance a tolerance 1))

Note that the value passed in as tolerance does not change with each recursive
call. We are making the problem smaller by making each successive guess
closer to the required answer.

Here are some example interactions with find-sqrt-approx:

> (exact->inexact (square (find-sqrt-approx 2 0.01)))
2.0069444444444446
> (exact->inexact (square (find-sqrt-approx 2 0.0000001)))
2.000000000004511

a. How accurate is the built-in sqrt procedure?

b. Can you produce more accurate square roots than the built-in sqrt proce-
dure?

c. Why doesn’t the built-in procedure do better?

4.4 Evaluating Recursive Applications

Evaluating an application of a recursive procedure follows the evaluation rules
just like any other expression evaluation. It may be confusing, however, to
see that this works because of the apparent circularity of the procedure defi-
nition.

Here, we show in detail the evaluation steps for evaluating (factorial 2). The
evaluation and application rules refer to the rules summary in Section 3.8.
We first show the complete evaluation following the substitution model eval-
uation rules in full gory detail, and later review a subset showing the most
revealing steps. Stepping through even a fairly simple evaluation using the
evaluation rules is quite tedious, and not something humans should do very
often (that’s why we have computers!) but instructive to do once to under-
stand exactly how an expression is evaluated.

The evaluation rule for an application expression does not specify the order
in which the subexpressions are evaluated. A Scheme interpreter is free to
evaluate them in any order. Here, we choose to evaluate the subexpressions
in the order that is most readable. The value produced by an evaluation does
not depend on the order in which the subexpressions are evaluated.5

In the evaluation steps, we use typewriter font for uninterpreted Scheme
expressions and sans-serif font to show values. So, 2 represents the Scheme
expression that evaluates to the number 2.

5This is only true for the subset of Scheme we have defined so far. Once we introduce side
effects and mutation, it is no longer the case, and expressions can produce different results de-
pending on the order in which they are evaluated.
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(factorial 2) Evaluation Rule 3(a): Application subexpressions1

(factorial 2) Evaluation Rule 2: Name2

((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2)3

Evaluation Rule 4: Lambda
((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2) Evaluation Rule 1: Primitive4

((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2)5

Evaluation Rule 3(b): Application, Application Rule 2
(if (= 2 0) 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 5(a): If predicate6

(if (= 2 0) 1 (* 2 (factorial (- 2 1))))7

Evaluation Rule 3(a): Application subexpressions
(if (= 2 0) 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 1: Primitive8

(if (= 2 0) 1 (* 2 (factorial (- 2 1))))9

Evaluation Rule 3(b): Application, Application Rule 1
(if false 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 5(b): If alternate10

(* 2 (factorial (- 2 1))) Evaluation Rule 3(a): Application subexpressions11

(* 2 (factorial (- 2 1))) Evaluation Rule 1: Primitive12

(* 2 (factorial (- 2 1))) Evaluation Rule 3(a): Application subexpressions13

(* 2 (factorial (- 2 1))) Evaluation Rule 3(a): Application subexpressions14

(* 2 (factorial (- 2 1))) Evaluation Rule 1: Primitive15

(* 2 (factorial (- 2 1))) Evaluation Rule 3(b): Application, Application Rule 116

(* 2 (factorial 1)) Continue Evaluation Rule 3(a); Evaluation Rule 2: Name17

(* 2 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 1))18

Evaluation Rule 4: Lambda

(* 2 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 1))19

Evaluation Rule 3(b): Application, Application Rule 2

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))20

Evaluation Rule 5(a): If predicate

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))21

Evaluation Rule 3(a): Application subexpressions

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))22

Evaluation Rule 1: Primitives

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))23

Evaluation Rule 3(b): Application Rule 1

(* 2 (if false 1 (* 1 (factorial (- 1 1)))))24

Evaluation Rule 5(b): If alternate
(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application25

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 1: Primitives26

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application27

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application28

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 1: Primitives29

(* 2 (* 1 (factorial (- 1 1))))30

Evaluation Rule 3(b): Application, Application Rule 1
(* 2 (* 1 (factorial 0))) Evaluation Rule 2: Name31

(* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (fact... )))) 0)))32

Evaluation Rule 4, Lambda

(* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 0)))33

Evaluation Rule 3(b), Application Rule 2

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))34

Evaluation Rule 5(a): If predicate

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))35

Evaluation Rule 3(a): Application subexpressions

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))36

Evaluation Rule 1: Primitives

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))37
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Evaluation Rule 3(b): Application, Application Rule 1

(* 2 (* 1 (if true 1 (* 0 (factorial (- 0 1))))))38

Evaluation Rule 5(b): If consequent
(* 2 (* 1 1)) Evaluation Rule 1: Primitives39

(* 2 (* 1 1)) Evaluation Rule 3(b): Application, Application Rule 140

(* 2 1) Evaluation Rule 3(b): Application, Application Rule 141

2 Evaluation finished, no unevaluated expressions remain.42

The key to evaluating recursive procedure applications is if special evaluation
rule. If the if expression were evaluated like a regular application all subex-
pressions would be evaluated, and the alternative expression containing the
recursive call would never finish evaluating! Since the evaluation rule for if
evaluates the predicate expression first and does not evaluate the alternative
expression when the predicate expression is true, the circularity in the defi-
nition ends when the predicate expression evaluates to true. This is the base
case. In the example, this is the base case where (= n 0) evaluates to true and
instead of producing another recursive call it evaluates to 1.

The Evaluation Stack. The structure of the evaluation is clearer from just the
most revealing steps:
(factorial 2)1

(* 2 (factorial 1))17

(* 2 (* 1 (factorial 0)))31

(* 2 (* 1 1))40

(* 2 1)41

242

Step 1 starts evaluating (factorial 2). The result is found in Step 42. To evalu-
ate (factorial 2), we follow the evaluation rules, eventually reaching the body
expression of the if expression in the factorial definition in Step 17. Evaluat-
ing this expression requires evaluating the (factorial 1) subexpression. At Step
17, the first evaluation is in progress, but to complete it we need the value re-
sulting from the second recursive application.

Evaluating the second application results in the body expression, (∗ 1 (fac-
torial 0)), shown for Step 31. At this point, the evaluation of (factorial 2) is
stuck in Evaluation Rule 3, waiting for the value of (factorial 1) subexpres-
sion. The evaluation of the (factorial 1) application leads to the (factorial 0)
subexpression, which must be evaluated before the (factorial 1) evaluation
can complete.

In Step 40, the (factorial 0) subexpression evaluation has completed and pro-
duced the value 1. Now, the (factorial 1) evaluation can complete, producing
1 as shown in Step 41. Once the (factorial 1) evaluation completes, all the
subexpressions needed to evaluate the expression in Step 17 are now evalu-
ated, and the evaluation completes in Step 42.

Each recursive application can be tracked using a stack, similarly to how we
processed RTN subnetworks in Section 2.3. A stack has the property that the
first item pushed on the stack will be the last item removed—all the items
pushed on top of this one must be removed before this item can be removed.
For application evaluations, the elements on the stack are expressions to eval-
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uate. To finish evaluating the first expression, all of its component subexpres-
sions must be evaluated. Hence, the first application evaluation started is the
last one to finish.

Exercise 4.16. These exercises test your understanding of the (factorial 2)
evaluation.

a. In step 5, the second part of the application evaluation rule, Rule 3(b), is
used. In which step does this evaluation rule complete?

b. In step 11, the first part of the application evaluation rule, Rule 3(a), is
used. In which step is the following use of Rule 3(b) started?

c. In step 25, the first part of the application evaluation rule, Rule 3(a), is
used. In which step is the following use of Rule 3(b) started?

d. To evaluate (factorial 3), how many times would Evaluation Rule 2 be used
to evaluate the name factorial?

e. [★] To evaluate (factorial n) for any positive integer n, how many times
would Evaluation Rule 2 be used to evaluate the name factorial?

Exercise 4.17. For which input values n will an evaluation of (factorial n)
eventually reach a value? For values where the evaluation is guaranteed to
finish, make a convincing argument why it must finish. For values where the
evaluation would not finish, explain why.

4.5 Developing Complex Programs

To develop and use more complex procedures it will be useful to learn some
helpful techniques for understanding what is going on when procedures are
evaluated. It is very rare for a first version of a program to be completely cor-
rect, even for an expert programmer. Wise programmers build programs in-
crementally, by writing and testing small components one at a time.

The process of fixing broken programs is known as debugging . The key to debugging

debugging effectively is to be systematic and thoughtful. It is a good idea to
take notes to keep track of what you have learned and what you have tried.
Thoughtless debugging can be very frustrating, and is unlikely to lead to a
correct program.

A good strategy for debugging is to:

1. Ensure you understand the intended behavior of your procedure. Think
of a few representative inputs, and what the expected output should be.

2. Do experiments to observe the actual behavior of your procedure. Try
your program on simple inputs first. What is the relationship between
the actual outputs and the desired outputs? Does it work correctly for
some inputs but not others?
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3. Make changes to your procedure and retest it. If you are not sure what
to do, make changes in small steps and carefully observe the impact of
each change.

For more complex programs, follow this strategy at the level of sub-compo-
nents. For example, you can try debugging at the level of one expression be-
fore trying the whole procedure. Break your program into several procedures
so you can test and debug each procedure independently. The smaller the
unit you test at one time, the easier it is to understand and fix problems.

DrScheme provides many useful and powerful features to aid debugging, but
the most important tool for debugging is using your brain to think carefully
about what your program should be doing and how its observed behavior dif-
fers from the desired behavior. Next, we describe two simple ways to observe
program behavior.

First actual bug

From Grace Hopper’s notebook, 1947

4.5.1 Printing

One useful procedure built-in to DrScheme is the display procedure. It takes
one input, and produces no output. Instead of producing an output, it prints
out the value of the input (it will appear in purple in the Interactions window).
We can use display to observe what a procedure is doing as it is evaluated.

For example, if we add a (display n) expression at the beginning of our fac-
torial procedure we can see all the intermediate calls. To make each printed
value appear on a separate line, we use the newline procedure. The newline
procedure prints a new line; it takes no inputs and produces no output.

(define (factorial n)
(display "Enter factorial: ") (display n) (newline)
(if (= n 0) 1 (∗ n (factorial (− n 1)))))

Evaluating (factorial 2) produces:

Enter factorial: 2
Enter factorial: 1
Enter factorial: 0
2

The built-in printf procedure makes it easier to print out many values at
once. It takes one or more inputs. The first input is a string (a sequence
of characters enclosed in double quotes). The string can include special ˜a
markers that print out values of objects inside the string. Each ˜a marker is
matched with a corresponding input, and the value of that input is printed in
place of the ˜a in the string. Another special marker, ˜n, prints out a new line
inside the string.

Using printf , we can define our factorial procedure with printing as:
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(define (factorial n)
(printf "Enter factorial: ˜a˜n" n)
(if (= n 0) 1 (∗ n (factorial (− n 1)))))

The display, printf , and newline procedures do not produce output values.
Instead, they are applied to produce side effects. A side effect is something side effects

that changes the state of a computation. In this case, the side effect is printing
in the Interactions window. Side effects make reasoning about what programs
do much more complicated since the order in which events happen now mat-
ters. We will mostly avoid using procedures with side effects until Chapter 9,
but printing procedures are so useful that we introduce them here.

4.5.2 Tracing

DrScheme provides a more automated way to observe applications of pro-
cedures. We can use tracing to observe the start of a procedure evaluation
(including the procedure inputs) and the completion of the evaluation (in-
cluding the output). To use tracing, it is necessary to first load the tracing
library by evaluating this expression:

(require (lib "trace.ss"))

This defines the trace procedure that takes one input, a constructed proce-
dure (trace does not work for primitive procedures). After evaluating (trace
proc), the interpreter will print out the procedure name and its inputs at the
beginning of every application of proc and the value of the output at the end
of the application evaluation. If there are other applications before the first
application finishes evaluating, these will be printed indented so it is possi-
ble to match up the beginning and end of each application evaluation. For
example (the trace outputs are shown in typewriter font),

> (trace factorial)
> (factorial 2)
(factorial 2)

|(factorial 1)

| (factorial 0)

| 1

|1

2

2

The trace shows that (factorial 2) is evaluated first; within its evaluation, (fac-
torial 1) and then (factorial 0) are evaluated. The outputs of each of these
applications is lined up vertically below the application entry trace.
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Exploration 4.2: Recipes for π

The value π is the defined as the ratio between the circumference of a cir-
cle and its diameter. One way to calculate the approximate value of π is the
Gregory-Leibniz series (which was actually discovered by the Indian mathe-
matician Mādhava in the 14th century):

π =
4
1
− 4

3
+

4
5
− 4

7
+

4
9
− ⋅ ⋅ ⋅

This summation converges to π. The more terms that are included, the closer
the computed value will be to the actual value of π.

a. [★] Define a procedure compute-pi that takes as input n, the number of
terms to include and outputs an approximation of π computed using the
first n terms of the Gregory-Leibniz series. (compute-pi 1) should evalu-
ate to 4 and (compute-pi 2) should evaluate to 2 2/3. For higher terms, use
the built-in procedure exact->inexact to see the decimal value. For exam-
ple, (exact->inexact (compute-pi 10000)) evaluates (after a long wait!) to
3.1414926535900434.

The Gregory-Leibniz series is fairly simple, but it takes an awful long time to
converge to a good approximation for π — only one digit is correct after 10
terms, and after summing 10000 terms only the first four digits are correct.

Mādhava discovered another series for computing the value of π that con-
verges much more quickly:

π =
√

12 ∗ (1− 1
3 ∗ 3

+
1

5 ∗ 32 −
1

7 ∗ 33 +
1

9 ∗ 34 − . . .)

Mādhava computed the first 21 terms of this series, finding an approximation
of π that is correct for the first 12 digits: 3.14159265359.

b. [★★] Define a procedure cherry-pi that takes as input n, the number of
terms to include and outputs an approximation of π computed using the
first n terms of the Mādhava series. (Continue reading for hints.)

To define faster-pi, first define two helper functions: faster-pi-helper , that
takes one input, n, and computes the sum of the first n terms in the series
without the

√
12 factor, and faster-pi-term that takes one input n and com-

putes the value of the nth term in the series (without alternating the adding
and subtracting). (faster-pi-term 1) should evaluate to 1 and (faster-pi-term
2) should evaluate to 1/9. Then, define faster-pi as:

(define (faster-pi terms) (∗ (sqrt 12) (faster-pi-helper terms)))

This uses the built-in sqrt procedure that takes one input and produces as
output an approximation of its square root. The accuracy of the sqrt proce-
dure6 limits the number of digits of π that can be correctly computed using

6To test its accuracy, try evaluating (square (sqrt 12)).
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this method (see Exploration 4.1 for ways to compute a more accurate ap-
proximation for the square root of 12). You should be able to get a few more
correct digits than Mādhava was able to get without a computer 600 years ago,
but to get more digits would need a more accurate sqrt procedure or another
method for computing π.

The built-in expt procedure takes two inputs, a and b, and produces ab as
its output. You could also define your own procedure to compute ab for any
integer inputs a and b.

c. [★ ★ ★] Find a procedure for computing enough digits of π to find the Feyn-
man point where there are six consecutive 9 digits. This point is named
for Richard Feynman, who quipped that he wanted to memorize π to that
point so he could recite it as “. . . nine, nine, nine, nine, nine, nine, and so
on”.

Exploration 4.3: Recursive Definitions and Games

Many games can be analyzed by thinking recursively. For this exploration, we
consider how to develop a winning strategy for some two-player games. In
all the games, we assume player 1 moves first, and the two players take turns
until the game ends. The game ends when the player who’s turn it is cannot
move; the other player wins. A strategy is a winning strategy if it provides a
way to always select a move that wins the game, regardless of what the other
player does.

One approach for developing a winning strategy is to work backwards from
the winning position. This position corresponds to the base case in a re-
cursive definition. If the game reaches a winning position for player 1, then
player 1 wins. Moving back one move, if the game reaches a position where
it is player 2’s move, but all possible moves lead to a winning position for
player 1, then player 1 is guaranteed to win. Continuing backwards, if the
game reaches a position where it is player 1’s move, and there is a move that
leads to a position where all possible moves for player 2 lead to a winning
position for player 1, then player 1 is guaranteed to win.

The first game we will consider is called Nim. Variants on Nim have been
played widely over many centuries, but no one is quite sure where the name
comes from. We’ll start with a simple variation on the game that was called
Thai 21 when it was used as an Immunity Challenge on Survivor.

In this version of Nim, the game starts with a pile of 21 stones. One each turn,
a player removes one, two, or three stones. The player who removes the last
stone wins, since the other player cannot make a valid move on the following
turn.

a. What should the player who moves first do to ensure she can always win
the game? (Hint: start with the base case, and work backwards. Think
about a game starting with 5 stones first, before trying 21.)

b. Suppose instead of being able to take 1 to 3 stones with each turn, you can
take 1 to n stones where n is some number greater than or equal to 1. For
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what values of n should the first player always win (when the game starts
with 21 stones)?

A standard Nim game starts with three heaps. At each turn, a player removes
any number of stones from any one heap (but may not remove stones from
more than one heap). We can describe the state of a 3-heap game of Nim
using three numbers, representing the number of stones in each heap. For
example, the Thai 21 game starts with the state (21 0 0) (one heap with 21
stones, and two empty heaps).7

c. What should the first player do to win if the starting state is (2 1 0)?

d. Which player should win if the starting state is (2 2 2)?

e. [★] Which player should win if the starting state is (5 6 7)?

f. [★★] Describe a strategy for always winning a winnable game of Nim start-
ing from any position.8

The final game we consider is the “Corner the Queen” game invented by Ru-
fus Isaacs.9 The game is played using a single Queen on a arbitrarily large
chessboard as shown in Figure 4.5.

Figure 4.5. Cornering the Queen.

On each turn, a player moves the Queen one or more squares in either the
left, down, or diagonally down-left direction (unlike a standard chess Queen,
in this game the queen may not move right, up or up-right). As with the other
games, the last player to make a legal move wins. For this game, once the

7With the standard Nim rules, this would not be an interesting game since the first player can
simply win by removing all 21 stones from the first heap.

8If you get stuck, you’ll find many resources about Nim on the Internet; but, you’ll get a lot
more out of this if you solve it yourself.

9Described in Martin Gardner, Penrose Tiles to Trapdoor Ciphers. . .And the Return of Dr Ma-
trix, The Mathematical Association of America, 1997.
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Queen reaches the bottom left square marked with the ★, there are no moves
possible. Hence, the player who moves the Queen onto the ★ wins the game.
We name the squares using the numbers on the sides of the chessboard with
the column number first. So, the Queen in the picture is on square (4 7).

g. Identify all the starting squares for which the first played to move can win
right away. (Your answer should generalize to any size square chessboard.)

h. Suppose the Queen is on square (2 1) and it is your move. Explain why
there is no way you can avoid losing the game.

i. Given the shown starting position (with the Queen at (4 7), would you
rather be the first or second player?

j. [★] Describe a strategy for winning the game (when possible). Explain
from which starting positions it is not possible to win (assuming the other
player always makes the right move).

k. [★] Define a variant of Nim that is essentially the same as the “Corner the
Queen” game. (This game is known as “Wythoff’s Nim”.)

Developing winning strategies for these types of games is similar to defining
a recursive procedure that solves a problem. We need to identify a base case
from which it is obvious how to win, and a way to make progress fro m a large
input towards that base case.

4.6 Summary

By breaking problems down into simpler problems we can develop solutions
to complex problems. Many problems can be solved by combining instances
of the same problem on simpler inputs. When we define a procedure to solve
a problem this way, it needs to have a predicate expression to determine when
the base case has been reached, a consequent expression that provides the
value for the base case, and an alternate expression that defines the solution
to the given input as an expression using a solution to a smaller input.

Our general recursive problem solving strategy is:

1. Be optimistic! Assume you can solve it.

2. Think of the simplest version of the problem, something you can al-
ready solve. This is the base case.

3. Consider how you would solve a big version of the problem by using the
result for a slightly smaller version of the problem. This is the recursive
case.

4. Combine the base case and the recursive case to solve the problem.

I’d rather be an optimist and a fool
than a pessimist and right.
Albert Einstein

For problems involving numbers, the base case is often when the input value
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is zero. The problem size is usually reduced is by subtracting 1 from one of
the inputs.

In the next chapter, we introduce more complex data structures. For prob-
lems involving complex data, the same strategy will work but with different
base cases and ways to shrink the problem size.



5
Data

From a bit to a few hundred megabytes, from a microsecond to half an hour of computing
confronts us with the completely baffling ratio of 109! .... By evoking the need for deep

conceptual hierarchies, the automatic computer confronts us with a radically new
intellectual challenge that has no precedent in our history.

Edsger Dijkstra

For all the programs so far, we have been limited to simple data such as num-
bers and Booleans. We call this scalar data since it has no structure. As we scalar

saw in Chapter 1, we can represent all discrete data using just (enormously
large) whole numbers. For example, we could represent the text of a book us-
ing only one (very large!) number, and manipulate the characters in the book
by changing the value of that number. But, it would be very difficult to design
and understand computations that use numbers to represent complex data.

We need more complex data structures to better model structured data. We
want to represent data in ways that allow us to think about the problem we
are trying to solve, rather than the low-level details of how data is represented
and manipulated.

This chapter covers techniques for building data structures and for defining
procedures that manipulate structured data, and introduces data abstraction
as a tool for managing program complexity.

5.1 Types

All data in a program has an associated type. Internally, all data is stored
just as a sequence of bits, so the type of the data is important to understand
what it means. We have seen several different types of data already: Numbers,
Booleans, and Procedures (we use initial capital letters to signify a datatype).

A datatype defines a set (often infinite) of possible values. The Boolean datatypedatatype

contains the two Boolean values, true and false. The Number type includes
the infinite set of all whole numbers (it also includes negative numbers and
rational numbers). We think of the set of possible Numbers as infinite, even
though on any particular computer there is some limit to the amount of mem-
ory available, and hence, some largest number that can be represented. On
any real computer, the number of possible values of any data type is always
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finite. But, we can imagine a computer large enough to represent any given
number.

The type of a value determines what can be done with it. For example, a Num-
ber can be used as one of the inputs to the primitive procedures +, ∗, and =.
A Boolean can be used as the first subexpression of an if expression and as
the input to the not procedure (—not— can also take a Number as its input,
but for all Number value inputs the output is false), but cannot be used as the
input to +, ∗, or =.1

A Procedure can be the first subexpression in an application expression. There
are infinitely many different types of Procedures, since the type of a Procedure
depends on its input and output types. For example, recall bigger procedure
from Chapter 3:

(define (bigger a b) (if (> a b) a b))

It takes two Numbers as input and produces a Number as output. We denote
this type as:

Number× Number→ Number

The inputs to the procedure are shown on the left side of the arrow. The type
of each input is shown in order, separated by the× symbol.2 The output type
is given on the right side of the arrow.

From its definition, it is clear that the bigger procedure takes two inputs from
its parameter list. How do we know the inputs must be Numbers and the
output is a Number?

The body of the bigger procedure is an if expression with the predicate expres-
sion (> a b). This applies the > primitive procedure to the two inputs. The
type of the > procedure is Number × Number→ Boolean. So, for the predi-
cate expression to be valid, its inputs must both be Numbers. This means the
input values to bigger must both be Numbers. We know the output of the big-
ger procedure will be a Number by analyzing the consequent and alternate
subexpressions: each evaluates to one of the input values, which must be a
Number.

Starting with the primitive Boolean, Number, and Procedure types, we can
build arbitrarily complex datatypes. This chapter introduces mechanisms for
building complex datatypes by combining the primitive datatypes.

1The primitive procedure equal? is a more general comparison procedure that can take as
inputs any two values, so could be used to compare Boolean values. For example, (equal? false
false) evaluates to true and (equal? true 3) is a valid expression that evaluates to false.

2The notation using × to separate input types makes sense if you think about the number
of different inputs to a procedure. For example, consider a procedure that takes two Boolean
values as inputs, so its type is Boolean × Boolean→ Value. Each Boolean input can be one of
two possible values. If we combined both inputs into one input, there would be 2× 2 different
values needed to represent all possible inputs.
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Exercise 5.1. Describe the type of each of these expressions.

a. 17

b. (lambda (a) (> a 0))

c. ((lambda (a) (> a 0)) 3)

d. (lambda (a) (lambda (b) (> a b)))

e. (lambda (a) a)

Exercise 5.2. Define or identify a procedure that has the given type.

a. Number× Number→ Boolean

b. Number→ Number

c. (Number→ Number)× (Number→ Number)
→ (Number→ Number)

d. Number→ (Number→ (Number→ Number))

5.2 Pairs

The simplest structured data construct is a Pair . A Pair packages two values Pair

together. We draw a Pair as two boxes, each containing a value. We call each
box of a Pair a cell. Here is a Pair where the first cell has the value 37 and the
second cell has the value 42:

Scheme provides built-in procedures for constructing a Pair, and for extract-
ing each cell from a Pair:

cons: Value× Value→ Pair
Evaluates to a Pair whose first cell is the first input and second cell is the
second input. The inputs can be of any type.

car : Pair→ Value
Evaluates to the first cell of the input, which must be a Pair.

cdr : Pair→ Value
Evaluates to the second cell of input, which must be a Pair.

These rather unfortunate names come from the original LISP implementa-
tion on the IBM 704. The name cons is short for “construct”. The name
car is short for “Contents of the Address part of the Register” and the name
cdr (pronounced “could-er”) is short for “Contents of the Decrement part
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of the Register”. The designers of the original LISP implementation picked
the names because of how pairs could be implemented on the IBM 704 us-
ing a single register to store both parts of a pair, but it is a mistake to name
things after details of their implementation (see Section 5.6). Unfortunately,
the names stuck and continue to be used in many LISP-derived languages,
including Scheme.

We can construct the Pair shown in the previous diagram by evaluating (cons
37 42). DrScheme will display a Pair by printing the value of each cell sepa-
rated by a dot: (37 . 42). The interactions below show example uses of cons,
car , and cdr .

> (define mypair (cons 37 42))
> (car mypair)
37
> (cdr mypair)
42

The values in the cells of a Pair can be any type, including other Pairs. This
definition defines a Pair where each cell of the Pair is itself a Pair:

(define doublepair (cons (cons 1 2) (cons 3 4)))

We can use the car and cdr procedures to access components of the double-
pair structure: (car doublepair) evaluates to the Pair (1 . 2), and (cdr double-
pair) evaluates to the Pair (3 . 4).

We can compose multiple car and cdr applications to extract components
from nested pairs:

> (cdr (car doublepair))
2
> (car (cdr doublepair))
3
> ((fcompose cdr cdr) doublepair) fcompose from Section 4.2.1

4
> (car (car (car doublepair)))

car: expects argument of type <pair>; given 1

The last expression produces an error when it is evaluated since car is applied
to the scalar value 1. The car and cdr procedures can only be applied to an
input that is a Pair. Hence, an error results when we attempt to apply car to
a scalar value. This is an important property of data: the type of data (e.g.,
a Pair) defines how it can be used (e.g., passed as the input to car and cdr).
Every procedure expects a certain type of inputs, and typically produces an
error when it is applied to values of the wrong type.



Chapter 5. Data 89

We can draw the value of doublepair by nesting Pairs within cells:

Drawing Pairs within Pairs within Pairs can get quite difficult, however. For
instance, try drawing (cons 1 (cons 2 (cons 3 (cons 4 5)))) this way.

Instead, we us arrows to point to the contents of cells that are not simple val-
ues. This is the structure of doublepair shown using arrows:

Using arrows to point to cell contents allows us to draw arbitrarily compli-
cated data structures such as (cons 1 (cons 2 (cons 3 (cons 4 5)))), keeping the
cells reasonable sizes:

Exercise 5.3. Suppose the following definition has been executed:

(define tpair (cons (cons (cons 1 2) (cons 3 4)) 5))

Draw the structure defined by tpair , and give the value of each of the follow-
ing expressions.

a. (cdr tpair)

b. (car (car (car tpair)))

c. (cdr (cdr (car tpair)))

d. (car (cdr (cdr tpair)))
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Exercise 5.4. Write expressions that extract each of the four elements from
fstruct defined as:

(define fstruct (cons 1 (cons 2 (cons 3 4))))

Exercise 5.5. What expression produces the structure shown below:

5.2.1 Making Pairs

Although Scheme provides the built-in procedures cons, car , and cdr for cre-
ating Pairs and accessing their cells, there is nothing magical about these pro-
cedures. We can define procedures with the same behavior ourselves using
the subset of Scheme introduced in Chapter 3.

Here is one way to define the pair procedures (we prepend an s to the names
to avoid confusion with the built-in procedures):

(define (scons a b) (lambda (w) (if w a b)))
(define (scar pair) (pair true))
(define (scdr pair) (pair false))

The scons procedure takes the two parts of the Pair as inputs, and produces
as output a procedure. The output procedure takes one input, a selector that
determines which of the two cells of the Pair to output. If the selector is true,
the value of the if expression is the value of the first cell; if the selector is false,
it is the value of the second cell. The scar and scdr procedures apply a proce-
dure constructed by scons to either true (to select the first cell in scar) or false
(to select the second cell in scdr).

Exercise 5.6. Convince yourself the definitions of scons, scar , and scdr above
work as expected by following the evaluation rules to evaluate

(scar (scons 1 2))
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Exercise 5.7. Show the corresponding definitions of tcar and tcdr needed to
provide the correct pair selection behavior for a pair created using tcons as
defined below:

(define (tcons a b) (lambda (w) (if w b a)))

5.2.2 Triples to Octuples

Pairs are useful for representing data that is composed of two parts such as a
calendar date (composed of a number and month), or a playing card (com-
posed of a rank and suit). But, what if we want to represent data composed
of more than two parts such as a date (composed of a number, month, and
year) or a poker hand consisting of five playing cards? For more complex data
structures, we need data structures that have more than two components.

A triple has three components. Here is one way to define a triple datatype:

(define (make-triple a b c)
(lambda (w) (if (= w 0) a (if (= w 1) b c))))

(define (triple-first t) (t 0))
(define (triple-second t) (t 1))
(define (triple-third t) (t 2))

Since a triple has three components we need three different selector values.
We use 0, 1, and 2.

Another way to make a triple would be to combine two Pairs. We do this by
making a Pair whose second cell is itself a Pair:

(define (make-triple a b c) (cons a (cons b c)))
(define (triple-first t) (car t))
(define (triple-second t) (car (cdr t)))
(define (triple-third t) (cdr (cdr t)))

Similarly, we can define a quadruple as a Pair whose second cell is a triple:

(define (make-quad a b c d) (cons a (make-triple b c d)))
(define (quad-first q) (car q))
(define (quad-second q) (triple-first (cdr q))
(define (quad-third q) (triple-second (cdr q))
(define (quad-fourth q) (triple-third (cdr q))

We could continue in this manner defining increasingly large tuples.

A triple is a Pair whose second cell is a Pair.
A quadruple is a Pair whose second cell is a triple.
A quintuple is a Pair whose second cell is a quadruple.
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A sextuple is a Pair whose second cell is a quintuple.
A septuple is a Pair whose second cell is a sextuple.
⋅ ⋅ ⋅
An n + 1-uple is a Pair whose second cell is an n-uple.

Building from the simple Pair, we can construct tuples containing any num-
ber of components.

Exercise 5.8. Define a procedure that constructs a quintuple and procedures
for selecting the five elements of a quintuple.

Exercise 5.9. Another way of thinking of a triple is as a Pair where the first
cell is a Pair and the second cell is a scalar. Provide definitions of make-triple,
triple-first , triple-second, and triple-third for this construct.

5.3 Lists

In the previous section, we saw how to construct arbitrarily large tuples from
Pairs. This way of managing data is not very satisfying since it requires defin-
ing different procedures for constructing and accessing elements of every
length tuple. For many applications, we want to be able to manage data of
any length such as all the items in a web store, or all the bids on a given item.
Since the number of components in these objects can change, it would be
very painful to need to define a new tuple type every time an item is added.
We need a data type that can hold any number of items.

This definition almost provides what we need:

An any-uple is a Pair whose second cell is an any-uple.

This seems to allow an any-uple to contain any number of elements. The
problem is we have no stopping point. With only the definition above, there
is no way to construct an any-uple without already having one.

The situation is similar to defining MoreDigits as zero or more digits in Chap-
ter 2, defining MoreExpressions in the Scheme grammar in Chapter 3 as zero
or more Expressions, and recursive composition in Chapter 4.

Recall the grammar rules for MoreExpressions:

MoreExpressions ::⇒ Expression MoreExpressions
MoreExpressions ::⇒ ε

The rule for constructing an any-uple is analogous to the first MoreExpres-
sion replacement rule. To allow an any-uple to be constructed, we also need
a construction rule similar to the second rule, where MoreExpression can be
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replaced with nothing. Since it is hard to type and read nothing in a program,
Scheme has a name for this value: null. null

DrScheme will print out the value of null as (). It is also known as the empty
list, since it represents the List containing no elements. The built-in proce-
dure null? takes one input parameter and evaluates to true if and only if the
value of that parameter is null.

Using null, we can now define a List : List

A List is either (1) null or (2) a Pair whose second cell is a List.

Symbolically, we define a List as:

List ::⇒ null
List ::⇒ (cons Value List)

These two rules define a List as a data structure that can contain any number
of elements. Starting from null, we can create Lists of any length:

• null evaluates to a List containing no elements.
• (cons 1 null) evaluates to a List containing one element.
• (cons 1 (cons 2 null)) evaluates to a 2-element List containing two ele-

ments.
• (cons 1 (cons 2 (cons 3 null))) evaluates to a 3-element List.
• . . .

Scheme provides a convenient procedure, list , for constructing a List. The list
procedure takes zero or more inputs, and evaluates to a List containing those
inputs in order. The following expressions are equivalent to the correspond-
ing expressions above: (list), (list 1), (list 1 2), and (list 1 2 3).

Lists are just a collection of Pairs, so we can draw a List using the same box
and arrow notation we used to draw structures created with Pairs. Here is the
structure resulting from (list 1 2 3):

There are three Pairs in the List, the second cell of each Pair is a List. For the
third Pair, the second cell is the List null, which we draw as a slash through
the final cell in the diagram.

Table 5.1 summarizes some of the built-in procedures for manipulating Pairs
and Lists.
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Type Output

cons Value× Value→ Pair a Pair consisting of the two inputs

car Pair→ Value the first cell of the input Pair

cdr Pair→ Value the second cell of the input Pair

list zero or more Values→ List a List containing the inputs

null? Value→ Boolean true if the input is null, otherwise false

pair? Value→ Boolean true if the input is a Pair, otherwise false

list? Value→ Boolean true if the input is a List, otherwise false

Table 5.1. Selected Built-In Scheme Procedures for Lists and Pairs.

Exercise 5.10. For each of the following expressions, explain whether or not
the expression evaluates to a List. Check your answers with a Scheme inter-
preter by using the list? procedure.

a. null

b. (cons 1 2)

c. (cons null null)

d. (cons (cons (cons 1 2) 3) null)

e. (cdr (cons 1 (cons 2 (cons null null))))

f. (cons (list 1 2 3) 4)

5.4 List Procedures

Since the List data structure is defined recursively, it is natural to define re-
cursive procedures to examine and manipulate lists. Whereas most recursive
procedures on inputs that are Numbers usually used 0 as the base case, for
lists the most common base case is null. With numbers, we make progress by
subtracting 1; with lists, we make progress by using cdr to reduce the length
of the input List by one element for each recursive application. This means
we often break problems involving Lists into figuring out what to do with the
first element of the List and the result of applying the recursive procedure to
the rest of the List.

We can specialize our general problem solving strategy from Chapter 3 for
procedures involving lists:

1. Be very optimistic! Since lists themselves are recursive data structures,
most problems involving lists can be solved with recursive procedures.
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2. Think of the simplest version of the problem, something you can al-
ready solve. This is the base case. For lists, this is usually the empty
list.

3. Consider how you would solve a big version of the problem by using the
result for a slightly smaller version of the problem. This is the recursive
case. For lists, the smaller version of the problem is the rest (cdr) of the
List.

4. Combine the base case and the recursive case to solve the problem.

Next we consider procedures that examine lists by walking through their el-
ements and producing a scalar value. Section 5.4.2 generalizes these proce-
dures. In Section 5.4.3, we explore procedures that output lists.

5.4.1 Procedures that Examine Lists

All of the example procedures in this section take a single List as input and
produce a scalar value that depends on the elements of the List as output.
These procedures have base cases where the List is empty, and recursive cases
that apply the recursive procedure to the cdr of the input List.

Example 5.1: Length. How many elements are in a given List?3

Our standard recursive problem solving technique is to “Think of the simplest
version of the problem, something you can already solve.” For this procedure,
the simplest version of the problem is when the input is the empty list, null.
We know the length of the empty list is 0. So, the base case test is (null? p) and
the output for the base case is 0.

For the recursive case, we need to consider the structure of all lists other than
null. Recall four our definition that a List is either null or (cons Value List).
The base case handles the null list; the recursive case must handle a List that
is a Pair of an element and a List. The length of this List is one more than the
length of the List that is the cdr of the Pair.

(define (list-length p)
(if (null? p)

0
(+ 1 (list-length (cdr p)))))

3Scheme provides a built-in procedure length that takes a List as its input and outputs the
number of elements in the List. Here, we will define our own list-length procedure that does this
(without using the built-in length procedure). As with many other examples and exercises in this
chapter, it is instructive to define our own versions of some of the built-in list procedures.
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Here are a few example applications of our list-length procedure:

> (list-length null)
0
> (list-length (cons 0 null))
1
> (list-length (list 1 2 3 4))
4
> (list-length (cons 1 2)) Error since input is not a List.

cdr: expects argument of type <pair>; given 2

Example 5.2: List Sums and Products. First, we define a procedure that
takes a List of numbers as input and produces as output the sum of the num-
bers in the input List. As usual, the base case is when the input is null: the
sum of an empty list is 0. For the recursive case, we need to add the value of
the first number in the List, to the sum of the rest of the numbers in the List.

(define (list-sum p)
(if (null? p)

0
(+ (car p) (list-sum (cdr p)))))

We can define list-product similarly, using ∗ in place of +. The base case
result cannot be 0, though, since then the final result would always be 0 since
any number multiplied by 0 is 0. We follow the mathematical convention that
the product of the empty list is 1.

(define (list-product p)
(if (null? p)

1
(∗ (car p) (list-product (cdr p)))))

Exercise 5.11. Define a procedure is-list? that takes one input and outputs
true if the input is a List, and false otherwise. Your procedure should behave
identically to the built-in list? procedure, but you should not use list? in your
definition.

Exercise 5.12. Define a procedure list-max that takes a List of non-negative
numbers as its input and produces as its result the value of the greatest ele-
ment in the List (or 0 if there are no elements in the input List). For example,
(list-max (list 1 1 2 0)) should evaluate to 2.

5.4.2 Generic Accumulators

The list-length, list-sum, and list-product procedures all have very similar
structures. The base case is when the input is the empty list, and the recur-
sive case involves doing something with the first element of the List and re-
cursively calling the procedure with the rest of the List:
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(define (Recursive-Procedure p)
(if (null? p)

Base-Case-Result
(Accumulator-Function (car p) (Recursive-Procedure (cdr p)))))

We can define a generic accumulator procedure for lists by making the base
case result and accumulator function inputs:

(define (list-accumulate f base p)
(if (null? p)

base
(f (car p) (list-accumulate f base (cdr p)))))

We can use list-accumulate to define list-sum and list-product :

(define (list-sum p) (list-accumulate + 0 p))
(define (list-product p) (list-accumulate ∗ 1 p))

Defining the list-length procedure is a bit more complicated.

In our previous definition, the recursive case in the list-length procedure is
(+ 1 (list-length (cdr p))). Unlike the list-sum example, the recursive case for
list-length does not use the value of the first element of the List. The way list-
accumulate is defined, we need a procedure that takes two inputs—the first
input is the first element of the List; the second input is the result of applying
list-accumulate to the rest of the List.

We should follow our usual strategy: be optimistic! Being optimistic as in
recursive definitions, the value of the second input should be the length of
the rest of the List. Hence, we need to pass in a procedure that takes two
inputs, ignores the first input, and outputs one more than the value of the
second input:

(define (list-length p)
(list-accumulate (lambda (el length-rest) (+ 1 length-rest)) 0 p))

Exercise 5.13. Use list-accumulate to define the list-max procedure (from Ex-
ercise 5.12).

Exercise 5.14. [★] Use list-accumulate to define the is-list? procedure (from
Exercise 5.11).

Example 5.3: Accessing List Elements. The built-in car procedure pro-
vides a way to get the first element of a list, but what if we want to get the
third element? We can do this by taking the cdr twice to eliminate the first
two elements, and then using car to get the third: (car (cdr (cdr p))).

We want a more general procedure that can access any selected list element.
It takes two inputs: a List, and an index Number that identifies the element.



98 5.4. List Procedures

If we start counting from 1 (it is often more natural to start from 0), then the
base case is when the index is 1 and the output should be the first element of
the List: (if (= n 1) (car p) . . .).

For the recursive case, we make progress by eliminating the first element of
the list. We also need to adjust the index: since we have removed the first el-
ement of the list, the index should be reduced by one. For example, instead
of wanting the third element of the original list, we now want the second ele-
ment of the cdr of the original list.

(define (list-get-element p n)
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1))))

What happens if we apply list-get-element to an index that is larger than the
size of the input List (for example, (list-get-element (list 1 2) 3))?

The first recursive call is (list-get-element (list 2) 2). The second recursive call
is (list-get-element (list) 1). At this point, n is 1, so the base case is reached
and (car p) is evaluated. But, p is the empty list (which is not a Pair), so an
error results.

A better version of list-get-element would provide a meaningful error mes-
sage when the requested element is out of range. We do this by adding an if
expression that tests if the input List is null:

(define (list-get-element p n)
(if (null? p)

(error "Index out of range")
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1)))))

The built-in procedure error takes a String as input. The String datatype is a
sequence of characters; we can create a String by surrounding characters with
double quotes, as in the example. The error procedure terminates program
execution with a message that displays the input value.

Checking explicitly for invalid inputs is known as defensive programming .defensive programming

Programming defensively helps avoid tricky to debug errors and makes it eas-
ier to understand what went wrong if there is an error.

Exercise 5.15. Define a procedure list-last-element that takes as input a List
and outputs the last element of the input List. If the input List is empty, list-
last-element should produce an error.
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Exercise 5.16. Define a procedure list-ordered? that takes two inputs, a test
procedure and a List. It outputs true if all the elements of the List are ordered
according to the test procedure. For example, (list-ordered? < (list 1 2 3))
evaluates to true, and (list-ordered? < (list 1 2 3 2)) evaluates to false. Hint:
think about what the output should be for the empty list.

5.4.3 Procedures that Construct Lists

The procedures in this section take values (including Lists) as input, and pro-
duce a new List as output. As before, the empty list is typically the base case.
Since we are producing a List as output, the result for the base case is also
usually null. The recursive case will use cons to construct a List combining the
first element with the result of the recursive application on the rest of the List.

Example 5.4: Mapping. One common task for manipulating a List is to pro-
duce a new List that is the result of applying some procedure to every element
in the input List.

For the base case, applying any procedure to every element of the empty list
produces the empty list. For the recursive case, we use cons to construct a
List. The first element is the result of applying the mapping procedure to
the first element of the input List. The rest of the output List is the result of
recursively mapping the rest of the input List.

Here is a procedure that constructs a List that contains the square of every
element of the input List:

(define (list-square p)
(if (null? p)

null
(cons (square (car p))

(list-square (cdr p)))))

We generalize this by making the procedure which is applied to each element
an input. The procedure list-map takes a procedure as its first input and a
List as its second input. It outputs a List whose elements are the results of
applying the input procedure to each element of the input List.4

(define (list-map f p)
(if (null? p)

null
(cons (f (car p))

(list-map f (cdr p)))))

We can use list-map to define square-all:

(define (square-all p) (list-map square p))
4Scheme provides a built-in map procedure. It behaves like this one when passed a procedure

and a single List as inputs, but can also work on more than one List input at a time.
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Exercise 5.17. Define a procedure list-increment that takes as input a List of
numbers, and produces as output a List containing each element in the input
List incremented by one. For example, (list-increment 1 2) evaluates to (2 3).

Exercise 5.18. Use list-map and list-sum to define list-length:

(define (list-length p) (list-sum (list-map p)))

Example 5.5: Filtering. Consider defining a procedure that takes as input
a List of numbers, and evaluates to a List of all the non-negative numbers in
the input. For example, (list-filter-negative (list 1 −3 −4 5 −2 0)) evaluates to
(1 5 0).

First, consider the base case when the input is the empty list. If we filter the
negative numbers from the empty list, the result is an empty list. So, for the
base case, the result should be null.

In the recursive case, we need to determine whether or not the first element
should be included in the output. If it should be included, we construct a
new List consisting of the first element followed by the result of filtering the
remaining elements in the List. If it should not be included, we skip the first
element and the result is the result of filtering the remaining elements in the
List.

(define (list-filter-negative p)
(if (null? p)

null
(if (>= (car p) 0)

(cons (car p) (list-filter-negative (cdr p)))
(list-filter-negative (cdr p)))))

Similarly to list-map, we can generalize our filter by making the test proce-
dure as an input, so we can use any predicate to determine which elements
to include in the output List.5

(define (list-filter test p)
(if (null? p)

null
(if (test (car p))

(cons (car p) (list-filter test (cdr p)))
(list-filter test (cdr p)))))

Using the list-filter procedure, we can define list-filter-negative as:

(define (list-filter-negative p) (list-filter (lambda (x) (>= x 0)) p))

We could also define the list-filter procedure using the list-accumulate pro-
cedure from Section 5.4.1:

5Scheme provides a built-in function filter that behaves like our list-filter procedure.
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(define (list-filter test p)
(list-accumulate

(lambda (el rest) (if (test el) (cons el rest) rest))
null
p))

Exercise 5.19. Define a procedure list-filter-even that takes as input a List of
numbers and produces as output a List consisting of all the even elements of
the input List.

Exercise 5.20. Define a procedure list-remove that takes two inputs: a test
procedure and a List. As output, it produces a List that is a copy of the input
List with all of the elements for which the test procedure evaluates to true
removed. For example, (list-remove (lambda (x) (= x 0)) (list 0 1 2 3)) should
evaluates to the List (1 2 3).

Exercise 5.21. [★★] Define a procedure list-unique-elements that takes as in-
put a List and produces as output a List containing the unique elements of
the input List. The output List should contain the elements in the same order
as the input List, but should only contain the first appearance of each value
in the input List.

Example 5.6: Append. The list-append procedure takes as input two lists
and produces as output a List consisting of the elements of the first List fol-
lowed by the elements of the second List.6 For the base case, when the first
List is empty, the result of appending the lists should just be the second List.
When the first List is non-empty, we can produce the result by cons-ing the
first element of the first List with the result of appending the rest of the first
List and the second List.

(define (list-append p q)
(if (null? p)

q
(cons (car p) (list-append (cdr p) q))))

Example 5.7: Reverse. The list-reverse procedure takes a List as input and
produces as output a List containing the elements of the input List in reverse
order.7 For example, (list-reverse (list 1 2 3)) evaluates to the List (3 2 1). As
usual, we consider the base case where the input List is null first. The reverse
of the empty list is the empty list. To reverse a non-empty List, we should put
the first element of the List at the end of the result of reversing the rest of the
List.

The tricky part is putting the first element at the end, since cons only puts
elements at the beginning of a List. We can use the list-append procedure

6There is a built-in procedure append that does this. The built-in append takes any number
of Lists as inputs, and appends them all into one List.

7The built-in procedure reverse does this.
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defined in the previous example to put a List at the end of another List. To
make this work, we need to turn the element at the front of the List into a List
containing just that element. We do this using (list (car p)).

(define (list-reverse p)
(if (null? p)

null
(list-append (list-reverse (cdr p)) (list (car p)))))

Exercise 5.22. Define the list-reverse procedure using list-accumulate.

Example 5.8: Intsto. For our final example, we define the intsto procedure
that constructs a List containing the whole numbers between 1 and the input
parameter value. For example, (intsto 5) evaluates to the List (1 2 3 4 5).

This example combines ideas from the previous chapter on creating recursive
definitions for problems involving numbers, and from this chapter on lists.
Since the input parameter is not a List, the base case is not the usual list base
case when the input is null. Instead, we use the input value 0 as the base
case. The result for input 0 is the empty list. For higher values, the output is
the result of putting the input value at the end of the List of numbers up to
the input value minus one.

A first attempt that doesn’t quite work is:

(define (revintsto n)
(if (= n 0)

null
(cons n (revintsto (− n 1)))))

The problem with this solution is that it is cons-ing the higher number to the
front of the result, instead of at the end. Hence, it produces the List of num-
bers in descending order: (revintsto 5) evaluates to (5 4 3 2 1).

One solution is to reverse the result by composing list-reverse with revintsto:

(define (intsto n) (list-reverse (revintsto n)))

Equivalently, we can use the fcompose procedure from Section 4.2:

(define intsto (fcompose list-reverse revintsto))

Alternatively, we could use list-append to put the high number directly at the
end of the List. Since the second operand to list-append must be a List, we use
(list n) to make a singleton List containing the value as we did for list-reverse.

(define (intsto n)
(if (= n 0)

null
(list-append (intsto (− n 1)) (list n))))
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Although all of these procedures are functionally equivalent (for all valid in-
puts, each function produces exactly the same output), the amount of com-
puting work (and hence the time they take to execute) varies across the im-
plementations. We consider the problem of estimating the running-times of
different procedures in Part II.

Exercise 5.23. Define factorial (from Example 4.1) using intsto.

5.5 Lists of Lists

The elements of a List can be any datatype, including, of course, other Lists.
In defining procedures that operate on Lists of Lists, we often use more than
one recursive call when we need to go inside the inner Lists.

Example 5.9: Summing Nested Lists. Consider the problem of summing
all the numbers in a List of Lists. For example, (nested-list-sum (list (list 1
2 3) (list 4 5 6))) should evaluate to 21. We can define nested-list-sum using
list-sum on each List.

(define (nested-list-sum p)
(if (null? p)

0
(+ (list-sum (car p))

(nested-list-sum (cdr p)))))

This works when we know the input is a List of Lists. But, what if the input
can contain arbitrarily deeply nested Lists?

To handle this, we need to recursively sum the inner Lists. Each element in
our deep List is either a List or a Number. If it is a List, we should add the
value of the sum of all elements in the List to the result for the rest of the List.
If it is a Number, we should just add the value of the Number to the result for
the rest of the List. So, our procedure involves two recursive calls: one for the
first element in the List when it is a List, and the other for the rest of the List.

(define (deep-list-sum p)
(if (null? p)

0
(+ (if (list? (car p))

(deep-list-sum (car p))
(car p))

(deep-list-sum (cdr p)))))

Example 5.10: Flattening Lists. Another way to compute the deep list sum
would be to first flatten the List, and then use the list-sum procedure.

Flattening a nested list takes a List of Lists and evaluates to a List containing
the elements of the inner Lists. We can define list-flatten by using list-append
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to append all the inner Lists together.

(define (list-flatten p)
(if (null? p) null

(list-append (car p) (list-flatten (cdr p)))))

This flattens a List of Lists into a single List. To completely flatten a deeply
nested List, we use multiple recursive calls as we did with deep-list-sum:

(define (deep-list-flatten p)
(if (null? p) null

(list-append (if (list? (car p))
(deep-list-flatten (car p))
(list (car p)))

(deep-list-flatten (cdr p)))))

Now we can define deep-list-sum as:

(define deep-list-sum (fcompose deep-list-flatten list-sum))

Exercise 5.24. [★] Define a procedure deep-list-map that behaves similarly to
list-map but on deeply nested lists. It should take two parameters, a mapping
procedure, and a List (that may contain deeply nested Lists as elements), and
output a List with the same structure as the input List with each value mapped
using the mapping procedure.

Exercise 5.25. [★] Define a procedure deep-list-filter that behaves similarly to
list-filter but on deeply nested lists.

Exploration 5.1: Pascal’s Triangle

This triangle is known as Pascal’s Triangle (named for Blaise Pascal, although
known to many others before him):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
⋅ ⋅ ⋅

Pascal’s Triangle
Each number in the triangle is the sum of the two numbers immediately above
and to the left and right of it. The numbers in Pascal’s Triangle are the co-
efficients in a binomial expansion. The numbers of the nth row (where the
rows are numbered starting from 0) are the coefficients of the binomial ex-
pansion of (x + y)n. For example, (x + y)2 = x2 + 2xy + y2, so the coeffi-
cients are 1 2 1, matching the third row in the triangle; from the fifth row,
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4. The values in the triangle also match
the number of ways to choose k elements from a set of size n (see Exercise 4.5)
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— the kth number on the nth row of the triangle gives the number of ways to
choose k elements from a set of size n. For example, the third number on the
fifth (n = 4) row is 6, so there are 6 ways to choose 3 items from a set of size 4.

The goal of this exploration is to define a procedure, pascals-triangle to pro-
duce Pascal’s Triangle. The input to your procedure should be the number of
rows; the output should be a list, where each element of the list is a list of the
numbers on that row of Pascal’s Triangle. For example, (pascals-triangle 0)
should produce ((1)) (a list containing one element which is a list containing
the number 1), and (pascals-triangle 4) should produce ((1) (1 1) (1 2 1) (1 3 3
1) (1 4 6 4 1)).

Ambitious readers should attempt to define pascals-triangle themselves; the
sub-parts below provide some hints for one way to define it.

a. First, define a procedure expand-row that expands one row in the trian-
gle. It takes a List of numbers as input, and as output produces a List with
one more element than the input list. The first number in the output List
should be the first number in the input List; the last number in the output
List should be the last number in the input List. Every other number in the
output List is the sum of two numbers in the input List. The nth number in
the output List is the sum of the n− 1th and nth numbers in the input List.
For example, (expand-row (list 1)) evaluates to (1 1); (expand-row (list 1 1))
evaluates to (1 2 1); and (expand-row (list 1 4 6 4 1)) evaluates to (1 5 10 10
5 1). This is trickier than the recursive list procedures we have seen so far
since the base case is not the empty list. It also needs to deal with the first
element specially. To define expand-row, it will be helpful to divide it into
two procedures, one that deals with the first element of the list, and one
that produces the rest of the list:

(define (expand-row p) (cons (car p) (expand-row-rest p)))

b. Define a procedure pascals-triangle-row that takes one input, n, and out-
puts the nth row of Pascal’s Triangle. For example, (pascals-triangle-row 0)
evaluates to (1) and (pascals-triangle-row 3) produces (1 3 3 1).

c. Finally, define pascals-triangle with the behavior described above.

5.6 Data Abstraction

The mechanisms we have for constructing and manipulating complex data
structures are valuable because they enable us to think about programs closer
to the level of the problem we are solving than the low level of how data is
stored and manipulated in the computer. Our goal is to hide unnecessary de-
tails about how data is represented so we can focus on the important aspects
of what the data means and what we need to do with it to solve our problem.
The technique of hiding how data is represented from how it is used is known
as data abstraction. data abstraction
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The datatypes we have seen so far are not very abstract. We have datatypes
for representing Pairs, triples, and Lists, but we want datatypes for represent-
ing objects closer to the level of the problem we want to solve. A good data
abstraction is abstract enough to be used without worrying about details like
which cell of the Pair contains which datum and how to access the different
elements of a List. Instead, we want to define procedures with meaningful
names that manipulate the relevant parts of our data.

The rest of this section is an extended example that illustrates how to solve
problems by first identifying the objects we need to model the problem, and
then implementing data abstractions that represent those objects. Once the
appropriate data abstractions are designed and implemented, the solution
to the problem often follows readily. This example also uses many of the list
procedures defined earlier in this chapter.

Exploration 5.2: Pegboard Puzzle

For this exploration, we develop a program to solve the infamous pegboard
puzzle, often found tormenting unsuspecting diners at pancake restaurants.
The standard puzzle is a one-player game played on a triangular board with
fifteen holes with pegs in all of the holes except one.

The goal is to remove all but one of the pegs by jumping pegs over one an-
other. A peg may jump over an adjacent peg only when there is a free hole on
the other side of the peg. The jumped peg is removed. The game ends when
there are no possible moves. If there is only one peg remaining, the player
wins (according to the Cracker Barrel version of the game, “Leave only one—
you’re genius”). If more than one peg remains, the player loses (“Leave four
or more’n you’re just plain ‘eg-no-ra-moose’.”).

Pegboard Puzzle

Figure 5.1. Pegboard Puzzle.
The blue peg can jump the red peg as shown, removing the red peg. The resulting posi-
tion is a winning position.

Our goal is to develop a program that finds a winning solution to the pegboard
game from any winnable starting position. We use a brute force approach: trybrute force

all possible moves until we find one that works. Brute force solutions only
work on small-size problems. Because they have to try all possibilities they
are often too slow for solving large problems, even on the most powerful com-
puters imaginable.8

8As we will see in Chapter 13, the generalized pegboard puzzle is an example of a class of prob-
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The first thing to think about to solve a complex problem is what datatypes
we need. We want datatypes that represent the things we need to model in
our problem solution. For the pegboard game, we need to model the board
with its pegs. We also need to model actions in the game like a move (jump-
ing over a peg). The important thing about a datatype is what you can do with
it. To design our board datatype we need to think about what we want to do
with a board. In the physical pegboard game, the board holds the pegs. The
important property we need to observe about the board is which holes on the
board contain pegs. For this, we need a way of identifying board positions.
We define a datatype for representing positions first, then a datatype for rep-
resenting moves, and a datatype for representing the board. Finally, we use
these datatypes to define a procedure that finds a winning solution.

Position. We identify the board positions using row and column numbers:

(1 1)
(2 1) (2 2)

(3 1) (3 2) (3 3)
(4 1) (4 2) (4 3) (4 4)

(5 1) (5 2) (5 3) (5 4) (5 5)

A position has a row and a column, so we could just use a Pair to represent a
position. This would work, but we prefer to have a more abstract datatype so
we can think about a position’s row and column, rather than thinking that a
position is a Pair and using the car and cdr procedures to extract the row and
column from the position.

Our Position datatype should provide at least these operations:

make-position: Number× Number→ Position
Creates a Position representing the row and column given by the in-
put numbers.

position-get-row: Position→ Number
Outputs the row number of the input Position.

position-get-column: Position→ Number
Outputs the column number of the input Position.

Since the Position needs to keep track of two numbers, a natural way to imple-
ment the Position datatype is to use a Pair. A more defensive implementation
of the Position datatype uses a tagged list . With a tagged list, the first element tagged list

of the list is a tag denoting the datatype it represents. All operations check the
tag is correct before proceeding. We can use any type to encode the list tag,
but it is most convenient to use the built-in Symbol type. Symbols are a quote
(’) followed by a sequence of characters. The important operation we can do
with a Symbol, is test whether it is an exact match for another symbol using
the eq? procedure.

We define the tagged list datatype, tlist , using the list-get-element procedure
from Example 5.3:

lems known as NP-Complete. This means it is not known whether or not any solution exists that
is substantially better than the brute force solution, but it would be extraordinarily surprising
(and of momentous significance!) to find one.
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(define (make-tlist tag p) (cons tag p))
(define (tlist-get-tag p) (car p))

(define (tlist-get-element tag p n)
(if (eq? (tlist-get-tag p) tag )

(list-get-element (cdr p) n)
(error (format "Bad tag: ˜a (expected ˜a)"

(tlist-get-tag p) tag ))))

The format procedure is a built-in procedure similar to the printf procedure
described in Section 4.5.1. Instead of printing as a side effect, format pro-
duces a String. For example, (format "list: ˜a number: ˜a." (list 1 2 3) 123) evalu-
ates to the String "list: (1 2 3) number: 123.".

This is an example of defensive programming. Using our tagged lists, if we
accidentally attempt to use a value that is not a Position as a position, we
will get a clear error message instead of a hard-to-debug error (or worse, an
unnoticed incorrect result).

Using the tagged list, we define the Position datatype as:

(define (make-position row col) (make-tlist ’Position (list row col)))
(define (position-get-row posn) (tlist-get-element ’Position posn 1))
(define (position-get-column posn) (tlist-get-element ’Position posn 2))

Here are some example interactions with our Position datatype:

> (define pos (make-position 2 1))
> pos
(Position 2 1)
> (get-position-row pos)
2
> (get-position-row (list 1 2))

Bad tag: 1 (expected Position) Error since input is not a Position.

Move. A move involves three positions: where the jumping peg starts, the
position of the peg that is jumped and removed, and the landing position.
One possibility would be to represent a move as a list of the three positions. A
better option is to observe that once any two of the positions are known, the
third position is determined. For example, if we know the starting position
and the landing position, we know the jumped peg is at the position between
them. Hence, we could represent a jump using just the starting and landing
positions.

Another possibility is to represent a jump by storing the starting Position and
the direction. This is also enough to determine the jumped and landing posi-
tions. This approach avoids the difficulty of calculating jumped positions. To
do it, we first design a Direction datatype for representing the possible move
directions. Directions have two components: the change in the column (we
use 1 for right and −1 for left), and the change in the row (1 for down and −1
for up).
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We implement the Direction datatype using a tagged list similarly to how we
defined Position:

(define (make-direction right down)
(make-tlist ’Direction (list right down)))

(define (direction-get-horizontal dir) (tlist-get-element ’Direction dir 1))
(define (direction-get-vertical dir) (tlist-get-element ’Direction dir 2))

The Move datatype is defined using the starting position and the jump direc-
tion:

(define (make-move start direction)
(make-tlist ’Move (list start direction)))

(define (move-get-start move) (tlist-get-element ’Move move 1))
(define (move-get-direction move) (tlist-get-element ’Move move 2))

We also define procedures for getting the jumped and landing positions of
a move. The jumped position is the result of moving one step in the move
direction from the starting position. So, it will be useful to define a procedure
that takes a Position and a Direction as input, and outputs a Position that is
one step in the input Direction from the input Position.

(define (direction-step pos dir)
(make-position

(+ (position-get-row pos) (direction-get-vertical dir))
(+ (position-get-column pos) (direction-get-horizontal dir))))

Using direction-step we can implement procedure to get the middle and land-
ing positions.

(define (move-get-jumped move)
(direction-step (move-get-start move) (move-get-direction move)))

(define (move-get-landing move)
(direction-step (move-get-jumped move) (move-get-direction move)))

Board. The board datatype represents the current state of the board. It keeps
track of which holes in the board contain pegs, and provides operations that
model adding and removing pegs from the board:

make-board: Number→ Board
Outputs a board full of pegs with the input number of rows. (The
standard physical board has 5 rows, but our datatype supports any
number of rows.)

board-rows: Board→ Number
Outputs the number of rows in the input board.

board-valid-position?: Board× Position → Boolean
Outputs true if input Position corresponds to a position on the Board;
otherwise, false.

board-is-winning?: Board→ Boolean
Outputs true if the Board represents a winning position (exactly one
peg); otherwise, false.
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board-contains-peg?: Position→ Boolean
Outputs true if the hole at the input Position contains a peg; other-
wise, false.

board-add-peg : Board× Position→ Board
Output a Board containing all the pegs of the input Board and one
additional peg at the input Position. If the input Board already has a
peg at the input Position, produces an error.

board-remove-peg : Board× Position→ Board
Outputs a Board containing all the pegs of the input Board except for
the peg at the input Position. If the input Board does not have a peg
at the input Position, produces an error.

The procedures for adding and removing pegs change the state of the board
to reflect moves in the game, but nothing we have seen so far, however, pro-
vides a means for changing the state of an existing object.9 So, instead of
defining these operations to change the state of the board, they actually cre-
ate a new board that is different from the input board by the one new peg.
These procedures take a Board and Position as inputs, and produce as output
a Board.

There are lots of different ways we could represent the Board. One possibility
is to keep a List of the Positions of the pegs on the board. Another possi-
bility is to keep a List of the Positions of the empty holes on the board. Yet
another possibility is to keep a List of Lists, where each List corresponds to
one row on the board. The elements in each of the Lists are Booleans repre-
senting whether or not there is a peg at that position. The good thing about
data abstraction is we could pick any of these representations and change
it to a different representation later (for example, if we needed a more effi-
cient board implementation). As long as the procedures for implementing
the Board are updated the work with the new representation, all the code
that uses the board abstraction should continue to work correctly without
any changes.

We choose the third option and represent a Board using a List of Lists where
each element of the inner lists is a Boolean indicating whether or not the cor-
responding position contains a peg. So, make-board evaluates to a List of
Lists, where each element of the List contains the row number of elements
and all the inner elements are true (the initial board is completely full of pegs).
First, we define a procedure make-list-of-constants that takes two inputs, a
Number, n, and a Value, val. The output is a List of length n where each ele-
ment has the value val.

(define (make-list-of-constants n val)
(if (= n 0) null (cons val (make-list-of-constants (− n 1) val))))

To make the initial board, we use make-list-of-constants to make each row
of the board. As usual, a recursive problem solving strategy works well: the
simplest board is a board with zero rows (represented as the empty list); for
each larger board, we add a row with the right number of elements.

9We will introduce mechanisms for changing state in Chapter 9. Allowing state to change
breaks the substitution model of evaluation.
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The tricky part is putting the rows in order. This is similar to the problem we
faced with intsto, and a similar solution using append-list works here:

(define (make-board rows)
(if (= rows 0) null

(list-append (make-board (− rows 1))
(list (make-list-of-constants rows true)))))

Evaluating (make-board 3) produces ((true) (true true) (true true true)).

The board-rows procedure takes a Board as input and outputs the number of
rows on the board.

(define (board-rows board) (length board))

The board-valid-position? indicates if a Position is on the board. A position
is valid if its row number is between 1 and the number of rows on the board,
and its column numbers is between 1 and the row number.

(define (board-valid-position? board pos)
(and (>= (position-get-row pos) 1) (>= (position-get-column pos) 1)

(<= (position-get-row pos) (board-rows board))
(<= (position-get-column pos) (position-get-row pos))))

We need a way to check if a Board represents a winning solution (that is, con-
tains only one peg). We implement a more general procedure to count the
number of pegs on a board first. Our board representation used true to rep-
resent a peg. To count the pegs, we first map the Boolean values used to rep-
resent pegs to 1 if there is a peg and 0 if there is no peg. Then, we use sum-list
to count the number of pegs. Since the Board is a List of Lists, we first use
list-flatten to put all the pegs in a single List.

(define (board-number-of-pegs board)
(list-sum
(list-map (lambda (peg ) (if peg 1 0)) (list-flatten board))))

A board is a winning board if it contains exactly one peg:

(define (board-is-winning? board)
(= (board-number-of-pegs board) 1))

The board-contains-peg? procedure takes a Board and a Position as input,
and outputs a Boolean indicating whether or not that Position contains a peg.
To implement board-contains-peg? we need to find the appropriate row in
our board representation, and then find the element in its list corresponding
to the position’s column. The list-get-element procedure (from Example 5.3)
does exactly what we need. Since our board is represented as a List of Lists,
we need to use it twice: first to get the row, and then to select the column
within that row:
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(define (board-contains-peg? board pos)
(list-get-element (list-get-element board (position-get-row pos))

(position-get-column pos)))

Defining procedures for adding and removing pegs from the board is more
complicated. Both of these procedures need to make a board with every row
identical to the input board, except the row where the peg is added or re-
moved. For that row, we need to replace the corresponding value. Hence,
instead of defining separate procedures for adding and removing we first im-
plement a more general board-replace-peg procedure that takes an extra pa-
rameter indicating whether a peg should be added or removed at the selected
position.

First we consider the subproblem of replacing a peg in a row. The procedure
row-replace-peg takes as input a List representing a row on the board and a
Number indicating the column where the peg should be replaced. We can
define row-replace-peg recursively: the base case is when the modified peg is
at the beginning of the row (the column number is 1); in the recursive case,
we copy the first element in the List, and replace the peg in the rest of the list.
The third parameter indicates if we are adding or removing a peg. Since true
values represent holes with pegs, a true value indicates that we are adding a
peg and false means we are removing a peg.

(define (row-replace-peg pegs col val)
(if (= col 1)

(cons val (cdr pegs))
(cons (car pegs) (row-replace-peg (cdr pegs) (− col 1) val))))

To replace the peg on the board, we use row-replace-peg to replace the peg on
the appropriate row, and keep all the other rows the same.

(define (board-replace-peg board row col val)
(if (= row 1)

(cons (row-replace-peg (car board) col val) (cdr board))
(cons (car board) (board-replace-peg (cdr board) (− row 1) col val))))

Both board-add-peg and board-remove-peg can be defined simply using board-
remove-peg . They first check if the operation is valid (adding is valid only if
the selected position does not contain a peg, removing is valid only if the se-
lected position contains a peg), and then use board-replace-peg to produce
the modified board:

(define (board-add-peg board pos)
(if (board-contains-peg? board pos)

(error (format "Board already contains peg at position: ˜a" pos))
(board-replace-peg board (position-get-row pos)

(position-get-column pos) true)))
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(define (board-remove-peg board pos)
(if (not (board-contains-peg? board pos))

(error (format "Board does not contain peg at position: ˜a" pos))
(board-replace-peg board (position-get-row pos)

(position-get-column pos) false)))

We can now define a procedure that models making a move on a board. Mak-
ing a move involves removing the jumped peg and moving the peg from the
starting position to the landing position. Moving the peg is equivalent to re-
moving the peg from the starting position and adding a peg to the landing
position, so the procedures we defined for adding and removing pegs can be
composed to model making a move. We add a peg landing position to the
board that results from removing the pegs in the starting and jumped posi-
tions:

(define (board-execute-move board move)
(board-add-peg
(board-remove-peg
(board-remove-peg board (move-get-start move))
(move-get-jumped move))

(move-get-landing move)))

Finding Valid Moves. Now that we can model the board and simulate making
jumps, we are ready to develop the solution. At each step, we try all valid
moves on the board to see if any move leads to a winning position (that is, a
position with only one peg remaining). So, we need a procedure that takes a
Board as its input and outputs a List of all valid moves on the board. We break
this down into the problem of producing a list of all conceivable moves (all
moves in all directions from all starting positions on the board), filtering that
list for moves that stay on the board, and then filtering the resulting list for
moves that are legal (start at a position containing a peg, jump over a position
containing a peg, and land in a position that is an empty hole).

First, we generate all conceivable moves by creating moves starting from each
position on the board and moving in all possible move directions. We break
this down further: the first problem is to produce a List of all positions on the
board. We can generate a list of all row numbers using the intsto procedure
(from Example 5.8). To get a list of all the positions, we need to produce a
list of the positions for each row. We can do this by mapping each row to the
corresponding list:

(define (all-positions-helper board)
(list-map

(lambda (row) (list-map (lambda (col) (make-position row col))
(intsto row)))

(intsto (board-rows board)))

This almost does what we need, except instead of producing one List contain-
ing all the positions, it produces a List of Lists for the positions in each row.
The list-flatten procedure (from Example 5.10) produces a flat list containing
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all the positions.

(define (all-positions board)
(list-flatten (all-positions-helper board)))

For each Position, we find all possible moves starting from that position. We
can move in six possible directions on the board: left, right, up-left, up-right,
down-left, and down-right.

(define all-directions
(list
(make-direction −1 0) (make-direction 1 0) ; left, right
(make-direction −1 −1) (make-direction 0 −1) ; up-left, up-right
(make-direction 0 1) (make-direction 1 1))) ; down-left, down-right

For each position on the board, we create a list of possible moves starting at
that position and moving in each possible move directions. This produces a
List of Lists, so we use list-flatten to flatten the output of the list-map appli-
cation into a single List of Moves.

(define (all-conceivable-moves board)
(list-flatten

(list-map
(lambda (pos) (list-map (lambda (dir) (make-move pos dir))

all-directions))
(all-positions board))))

The output produced by all-conceivable-moves includes moves that fly off the
board. We use the list-filter procedure to remove those moves, to get the list
of moves that stay on the board:

(define (all-board-moves board)
(list-filter
(lambda (move) (board-valid-position? board (move-get-landing move)))
(all-conceivable-moves board)))

Finally, we need to filter out the moves that are not legal moves. A legal move
must start at a position that contains a peg, jump over a position that contains
a peg, and land in an empty hole. We use list-filter similarly to how we kept
only the moves that stay on the board:

(define (all-legal-moves board)
(list-filter

(lambda (move)
(and
(board-contains-peg? board (move-get-start move))
(board-contains-peg? board (move-get-jumped move))
(not (board-contains-peg? board (move-get-landing move)))))

(all-board-moves board)))
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Winning the Game. Our goal is to find a sequence of moves that leads to a
winning position, starting from the current board. If there is a winning se-
quence of moves, we can find it by trying all possible moves on the current
board. Each of these moves leads to a new board. If the original board has
a winning sequence of moves, at least one of the new boards has a winning
sequence of moves. Hence, we can solve the puzzle by recursively trying all
moves until finding a winning position.

(define (solve-pegboard board)
(if (board-is-winning? board)

null ; no moves needed to reach winning position
(try-moves board (all-legal-moves board))))

If there is a sequence of moves that wins the game starting from the input
Board, solve-pegboard outputs a List of Moves representing a winning se-
quence. This could be null, in the case where the input board is already a
winning board. If there is no sequence of moves to win from the input board,
solve-pegboard outputs false.

It remains to define the try-moves procedure. It takes a Board and a List of
Moves as inputs. If there is a sequence of moves that starts with one of the
input moves and leads to a winning position it outputs a List of Moves that
wins; otherwise, it outputs false.

The base case is when there are no moves to try. When the input list is null
it means there are no moves to try. We output false to mean this attempt did
not lead to a winning board. Otherwise, we try the first move. If it leads to a
winning position, try-moves should output the List of Moves that starts with
the first move and is followed by the rest of the moves needed to solve the
board resulting from taking the first move (that is, the result of solve-pegboard
applied to the Board resulting from taking the first move). If the first move
doesn’t lead to a winning board, it tries the rest of the moves by calling try-
moves recursively.

(define (try-moves board moves)
(if (null? moves)

false ; didn’t find a winner
(if (solve-pegboard (board-execute-move board (car moves)))

(cons (car moves)
(solve-pegboard (board-execute-move board (car moves))))

(try-moves board (cdr moves)))))

Evaluating (solve-pegboard (make-board 5)) produces false since there is no
way to win starting from a completely full board. Evaluating (solve-pegboard
(board-remove-peg (make-board 5) (make-position 1 1))) takes about three
minutes to produce this sequence of moves for winning the game starting
from a 5-row board with the top peg removed:
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((Move (Position 3 1) (Direction 0 −1))
(Move (Position 3 3) (Direction −1 0))
(Move (Position 1 1) (Direction 1 1))
(Move (Position 4 1) (Direction 0 −1))
(Move (Position 4 4) (Direction −1 −1))
(Move (Position 5 2) (Direction 0 −1))
(Move (Position 5 3) (Direction 0 −1))
(Move (Position 2 1) (Direction 1 1))
(Move (Position 2 2) (Direction 1 1))
(Move (Position 5 5) (Direction −1 −1))
(Move (Position 3 3) (Direction 0 1))
(Move (Position 5 4) (Direction −1 0))
(Move (Position 5 1) (Direction 1 1)))

a. [★] Change the implementation to use a different Board representation,
such as keeping a list of the Positions of each hole on the board. Only the
procedures with names starting with board- should need to change when
the Board representation is changed. Compare your implementation to
this one.

b. [★] The standard pegboard puzzle uses a triangular board, but there is no
reason the board has to be a triangle. Define a more general pegboard
puzzle solver that works for a board of any shape.

c. [★★] The described implementation is very inefficient. It does lots of re-
dundant computation. For example, all-possible-moves evaluates to the
same value every time it is applied to a board with the same number of
rows. It is wasteful to recompute this over and over again to solve a given
board. See how much faster you can make the pegboard solver. Can you
make it fast enough to solve the 5-row board in less than half the original
time? Can you make it fast enough to solve a 7-row board?

5.7 Summary of Part I

To conclude Part I, we revisit the three main themes introduced in Section 1.4.

Recursive definitions. We have seen many types of recursive definitions and
used them to solve problems, including the pegboard puzzle. Recursive gram-
mars provide a compact way to define a language; recursive procedure defini-
tions enable us to solve problems by optimistically assuming a smaller prob-
lem instance can be solved and using that solution to solve the problem; re-
cursive data structures such as the list type allow us to define and manipulate
complex data built from simple components. All recursive definitions involve
a base case. For grammars, the base case provides a way to stop the recursive
replacements by produce a terminal (or empty output) directly; for proce-
dures, the base case provides a direct solution to a small problem instance;
for data structures, the base case provides a small instance of the data type



Chapter 5. Data 117

(e.g., null). We will see many more examples of recursive definitions in the
rest of this book.

Universality. All of the programs we have can be created from the simple sub-
set of Scheme introduced in Chapter 3. This subset is a universal program-
ming language: it is powerful enough to describe all possible computations. universal programming language

We can generate all the programs using the simple Scheme grammar, and
interpret their meaning by systematically following the evaluation rules. We
have also seen the universality of code and data. Procedures can take proce-
dures as inputs, and produce procedures as outputs.

Abstraction. Abstraction hides details by giving things names. Procedural ab-
straction defines a procedure; by using inputs, a short procedure definition
can abstract infinitely many different information processes. Data abstrac-
tion hides the details of how data is represented by providing procedures that
abstractly create and manipulate that data. As we develop programs to solve
more complex problems, it is increasingly important to use abstraction well
to manage complexity. We need to break problems down into smaller parts
that can be solved separately. Solutions to complex problems can be devel-
oped by thinking about what objects need to be modeled, and designing data
abstractions the implement those models. Most of the work in solving the
problem is defining the right datatypes; once we have the datatypes we need
to model the problem well, we are usually well along the path to a solution.

With the tools from Part I, you can define a procedure to do any possible com-
putation. In Part II, we examine the costs of executing procedures.
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Part II

Analyzing Procedures





6
Machines

It is unworthy of excellent people to lose hours like slaves in the labor of calculation which
could safely be relegated to anyone else if machines were used.

Gottfried Wilhelm von Leibniz, 1685

The first five chapters focused on ways to use language to describe proce-
dures. Although finding ways to describe procedures succinctly and precisely
would be worthwhile even if we did not have machines to carry out those pro-
cedures, the tremendous practical value we gain from being able to describe
procedures comes from the ability of computers to carry out those proce-
dures astoundingly quickly, reliably, and inexpensively. As a very rough ap-
proximation, a typical laptop gives an individual computing power compara-
ble to having every living human on the planet working for you without ever
making a mistake or needing a break.

This chapter introduces computing machines. Computers are different from
other machines in two key ways:

1. Whereas other machines amplify or extend our physical abilities, com-
puters amplify and extend our mental abilities.

2. Whereas other machines are designed for a small set of tasks, comput-
ers can be programmed to perform many tasks. The simple computer
model we present in this chapter is sufficient to perform all possible
computations.

The next section gives a brief history of computing machines, from prehis-
toric calculating aids to the design of the first universal computers. Section 6.2
explains how machines can implement logic. Section 6.3 introduces a simple
abstract model of a computing machine that is powerful enough to carry out
any algorithm.

We provide only a very shallow introduction to how machines can implement
computations. Our primary goal is not to convey the details of how to design
and build an efficient computing machine (although that is certainly a worthy
goal that is often pursued in later computing courses), but to gain sufficient
understanding of the properties nearly all conceivable computing machines
share to be able to predict properties about the costs involved in carrying out
a particular procedure. The following chapters use this to reason about the
costs of various procedures. In later chapters, we use it to reason about the
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range of problems that can and cannot be solved by an mechanical comput-
ing machine (Chapter 12), and the set of problems that can be solved by con-
ceivable computing machines in a reasonable amount of time (Chapter 13).

6.1 History of Computing Machines

The goal of early machines was to carry out some physical process with less
effort than would be required by a human. These machines took physical
things as inputs, performed physical actions on those things, and produced
some physical output. For instance, a cotton gin takes as input raw cotton,
mechanically separates the cotton seed and lint, and produces the separated
products as output.

The first big leap toward computing machines was the development of ma-
chines whose purpose is abstract rather than physical. Instead of producing
physical things, these machines used physical things to represent informa-
tion. The output of the machine is valuable because it can be interpreted as
information, not for its direct physical effect.

Our first example is not a machine, but using fingers to count. The base ten
number system used by most human cultures reflects using our ten fingers
for counting.1 Successful shepherds needed to find ways to count higher than
ten. Shepherds used stones to represent numbers, making the cognitive leap
of using a physical stone to represent some quantity of sheep. A shepherd
would count sheep by holding stones in his hand that represent the number
of sheep.

More complex societies required more counting and more advanced calcu-
lating. The Inca civilization in Peru used knots in collections of strings known
as khipu to keep track of thousands of items for a hierarchical system of tax-
ation. Many cultures developed forms of abaci, including the ancient Meso-
potamians and Romans. An abacus performs calculations by moving beads
on rods. The Chinese suan pan (“calculating plate”) is an abacus with a beam

Suan Pan subdividing the rods, typically with two beads above the bar (each represent-
ing 5), and five beads below the beam (each representing 1). An operator can
perform addition, subtraction, multiplication, and division by following me-
chanical processes using an abacus.

All of these machines require humans to move parts to perform calculations.
As machine technology improved, automatic calculating machines were built
where the operator only needed to set up the inputs and then turn a crank or
use some external power source to perform the calculation. The first au-
tomatic calculating machine to be widely demonstrated was the Pascaline,
built by then nineteen-year old French mathematician Blaise Pascal (also re-

Pascaline

David Monniaux

sponsible for Pascal’s triangle from Exploration 5.1) to replace the tedious cal-
culations he had to do to manage his father’s accounts. The Pascaline had five

1Not all human cultures use base ten number systems. For example, many cultures including
the Maya and Basque adopted base twenty systems counting both fingers and toes. This was
natural in warm areas, where typical footwear left the toes uncovered.
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wheels, each representing one digit of a number, linked by gears to perform
addition with carries. Gottfried Wilhelm von Leibniz built the first machine
capable of performing all four basic arithmetic operations (addition, subtrac-
tion, multiplication, and division) fully mechanically in 1694.

Over the following centuries, more sophisticated mechanical calculating ma-
chines were developed but these machines could still only perform one op-
eration at a time. Performing a series of calculations was a tedious and error-
prone process in which a human operator had to set up the machine for each
arithmetic operation, record the result, and reset the machine for the next
calculation.

The big breakthrough was the conceptual leap of programmability. A ma-
chine is programmable if its inputs not only control the values it operates on,
but the operations it performs. Babbage was born in London in 1791 and

Charles Babbage

Life Magazine

studied mathematics at Cambridge. In the 1800s, calculations were done by
looking up values in large books of mathematical and astronomical tables.
These tables were computed by hand, and often contained errors. The cal-
culations were especially important for astronomical navigation, and when
the values were incorrect a ship would miscalculate its position at sea (some-
times with tragic consequences). We got nothing for our £17,000 but

Mr. Babbage’s grumblings. We
should at least have had a clever
toy for our money.
Richard Sheepshanks,
Letter to the Board of Visitors
of the Greenwich Royal
Observatory, 1854

Babbage sought to develop a machine to mechanize the calculations to com-
pute these tables. Starting in 1822, he designed a steam-powered machine
known as the Difference Engine to compute polynomials needed for astro-
nomical calculations using Newton’s method of successive differences (a gen-
eralization of Heron’s method from Exploration 4.1). The Difference Engine
was never fully completed. but led Babbage to envision a more general cal-
culating machine.

This new machine, the Analytical Engine, designed between 1833 and 1844,
was the first general-purpose computer envisioned. It was designed to be
programmed to perform any calculation. One breakthrough in Babbage’s de-
sign was to feed the machine’s outputs back into its inputs. This meant the
engine could perform calculations with an arbitrary number of steps by cy-
cling outputs back through the machine.

The Analytical Engine was programmed using punch cards, based on the cards
that were used by Jacquard looms. Each card could describe an instruction
such as loading a number into a variable in the store, moving values, perform-
ing arithmetic operations on the values in the store, and, most interestingly,
jumping forward and backwards in the instruction cards. The Analytical En-

Analytical Engine Mill

Science Museum, London

gine supported conditional jumps where the jump would be taken depending
on the state of a lever in the machine (this is essentially a simple form of the
if expression).

In 1842, Babbage visited Italy and described the Analytical Engine to Luigi
Menabrea, an Italian engineer, military officer, and mathematician who would
later become Prime Minister of Italy. Menabrea published a description of
Babbage’s lectures on the Analytical Engine in French. Ada Augusta Byron
King (also known as Ada, Countess of Lovelace) translated the article into En-
glish.
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In addition to the translation, Ada added a series of notes to the article. The
notes included a program to compute Bernoulli numbers, the first detailed
program for the Analytical Engine. Ada was the first to realize the impor-
tance and interest in creating the programs themselves, and envisioned how
programs could be used to do much more than just calculate mathematical
functions. This was the first computer program ever described, and Ada is
recognized as the first computer programmer.

Despite Babbage’s design, and Ada’s vision, the Analytical Engine was never
completed. It is unclear whether the main reason for the failure to build a
working Analytical Engine was due to limitations of the mechanical compo-
nents available at the time, or due to Babbage’s inability to work with his en-
gineer collaborator or to secure continued funding.

The first working programmable computers would not appear for nearly a
hundred years. Advances in electronics enabled more reliable and faster com-
ponents than the mechanical components used by Babbage, and the desper-
ation brought on by World War II spurred the funding and efforts that led to
working general-purpose computing machines.

Ada Augusta Byron King
The remaining conceptual leap is to treat the program itself as data. In Bab-
bage’s Analytical Engine, the program is a stack of cards and the data are num-
bers stored in the machine. There was no way for the machine to alter its
program.

The idea of treating the program as just another kind of data the machine can
process was developed in theory by Alan Turing in the 1930s (Section 6.3 of
this chapter describes his model of computing), and first implemented by the
Manchester Small-Scale Experimental Machine (built by a team at Victoria
University in Manchester) in 1948.On two occasions I have been

asked by members of Parliament,
“Pray, Mr. Babbage, if you put into

the machine wrong figures, will the
right answers come out?” I am not
able rightly to apprehend the kind

of confusion of ideas that could
provoke such a question.

Charles Babbage

This computer (and all general-purpose computers in use today) stores the
program itself in the machine’s memory. Thus, the computer can create new
programs by writing into its own memory. This power to change its own pro-
gram is what makes stored-program computers so versatile.

6.2 Mechanizing Logic

This section explains how machines can compute, starting with simple logical
operations. We use Boolean logic, in which there are two possible values: trueBoolean logic

(often denoted as 1), and false (often denoted as 0). The Boolean datatype in
Scheme is based on Boolean logic. Boolean logic is named for George Boole,
a self-taught British mathematician who published An investigation into the
Laws of Thought, on Which are founded the Mathematical Theories of Logic
and Probabilities in 1854. Before Boole’s work, logic focused on natural lan-
guage discourse. Boole made logic a formal language to which the tools of
mathematics could be applied.

We illustrate how logical functions can be implemented mechanically by de-
scribing some logical machines. Modern computers use electrons to com-
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pute because they are small (more than a billion billion billion (1031) electrons
fit within the volume of a grain of sand), fast (approaching the speed of light),
and cheap (more than a billion billion (1022) electrons come out of a power
outlet for less than a cent). They are also invisible and behave in somewhat
mysterious ways, however, so we will instead consider how to compute with
wine (or your favorite colored liquid). The basic notions of mechanical com-
putation don’t depend on the medium we use to compute, only on our ability
to use it to represent values and to perform simple logical operations.

6.2.1 Implementing Logic

To implement logic using a machine, we need physical ways of representing
the two possible values. We use a full bottle of wine to represent true and an
empty bottle of wine to represent false. If the value of an input is true, we pour
a bottle of wine in the input nozzle; for false inputs we do nothing. Similarly,
electronic computers typically use presence of voltage to represent true, and
absence of voltage to represent false.

And. A logical and function takes two inputs and produces one output. The
output is true if both of the inputs are true; otherwise the output is false. We
define a logical-and procedure using an if expression:2

(define (logical-and a b) (if a b false))

To design a mechanical implementation of the logical and function, we want
a simpler definition that does not involve implementing something as com-
plex as an if expression.

A different way to define a function is by using a table to show the correspond-
ing output value for each possible pair of input values. This approach is lim-
ited to functions with a small number of possible inputs; we could not define
addition on integers this way, since there are infinitely many possible differ-
ent numbers that could be used as inputs. For functions in Boolean logic,
there are only two possible values for each input (true and false) so it is feasi-
ble to list the outputs for all possible inputs.

We call a table defining a Boolean function a truth table. If there is one input, truth table

the table needs two entries, showing the output value for each possible input.
When there are two inputs, the table needs four entries, showing the output
value for all possible combinations of the input values. The truth table for the
logical and function is:

2Scheme provides a special form and that performs the same function as the logical and func-
tion. It is a special form, though, since the second input expression is not evaluated unless the
first input expression evaluates to true.
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A B (and A B)
false false false
true false false
false true false
true true true

We design a machine that implements the function described by the truth
table: if both inputs are true (represented by full bottles of wine in our ma-
chine), the output should be true; if either input is false, the output should
be false (an empty bottle). One way to do this is shown in Figure 6.1. Both
inputs pour into a basin. The output nozzle is placed at a height correspond-
ing to one bottle of wine in the collection basin, so the output bottle will fill
(representing true), only if both inputs are true.

Figure 6.1. Computing and with wine.

The design in Figure 6.1 would probably not work very well in practice. Some
of the wine is likely to spill, so even when both inputs are true the output
might not be a full bottle of wine. What should a 3

4 full bottle of wine repre-
sent? What about a bottle that is half full?

The solution is the digital abstraction. Although there are many differentdigital abstraction

quantities of wine that could be in a bottle, regardless of the actual quantity
the value is interpreted as only one of two possible values: true or false. If the
bottle has more than a given threshold, say half full, it represents true; other-
wise, it represents false. This means an infinitely large set of possible values
are abstracted as meaning true, so it doesn’t matter which of the values above
half full it is.

The digital abstraction provides a transition between the continuous world of
physical things and the logical world of discrete values. It is much easier to
design computing systems around discrete values than around continuous
values; by mapping a range of possible continuous values to just two discrete
values, we give up a lot of information but gain in simplicity and reliability.
Nearly all computing machines today operate on discrete values using the
digital abstraction.
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Or. The logical or function takes two inputs, and outputs true if any of the
inputs are true:3

A B (or A B)
false false false
true false true
false true true
true true true

Try to invent your own design for a machine that computes the or function
before looking at one solution in Figure 6.2(a).

Implementing not. The output of the not function is the opposite of the
value of its input:

A (not A)
false true
true false

It is not possible to produce a logical not without some other source of wine;
it needs to create wine (to represent true) when there is none input (repre-
senting false). To implement the not function, we need the notion of a source
current and a clock. The source current injects a bottle of wine on each clock
tick. The clock ticks periodically, on each operation. The inputs need to be set
up before the clock tick. When the clock ticks, a bottle of wine is sent through
the source current, and the output is produced. Figure 6.2(b) shows one way
to implement the not function.

6.2.2 Composing Operations

We can implement and, or and not using wine, but is that enough to perform
interesting computations? In this subsection, we consider how simple logi-
cal functions can be combined to implement any logical function; in the fol-
lowing subsection, we see how basic arithmetic operations can be built from
logical functions.

We start by making a three-input conjunction function. The and3 of three
inputs is true if and only if all three inputs are true. One way to make the
three-input and3 is to follow the same idea as the two-input and where all
three inputs pour into the same basin, but make the basin with the output
nozzle above the two bottle level.

Another way to implement a three-input and3 is to compose two of the two-
input and functions, similarly to how we composed procedures in Section 4.2.
Building and3 by composing two two-input and functions allows us to con-
struct a three-input and3 without needing to design any new structures, as

3Scheme provides a special form or that implements the logical or function, similarly to the
and special form. If the first input evaluates to true, the second input is not evaluated and the
value of the or expression is true.
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(a) Computing or with wine. (b) Computing not with wine.

Figure 6.2. Computing logical or and not with wine
(a) The or machine is similar to the and machine in design, except we move the output nozzle
to the bottom of the basin, so if either input is true, the output is true; when both inputs are
true, some wine is spilled but the logical result is still true.

(b) The not machine uses a clock. Before the clock tick, the input is set. If the input is true, the
float is lifted, blocking the source opening; if the input i false, the float rests on the bottom of
the basin. When the clock ticks, the source wine is injected. If the float is up (because of the true
input), the opening is blocked, and the output is empty (false). If the float is down (because of
the false input), the opening is open, the source wine will pour across the float, filling the output
(representing true). (This design assumes wine coming from the source does not leak under the
float, which might be hard to build in a real system.)

shown in Figure 6.3. The output of the first and function is fed into the second
and function as its first input; the third input is fed directly into the second
and function as its second input. We could write this as (and (and A B) C).

Composing logical functions also allows us to build new logical functions.
Consider the xor (exclusive or) function that takes two inputs, and has out-
put true when exactly one of the inputs is true:

A B (xor A B)
false false false
true false true
false true true
true true false

Can we build xor by composing the functions we already have?

The xor is similar to or, except for the result when both inputs are true. So,
we could compute (xor A B) as (and (or A B) (not (and A B))). Thus, we can
build an xor machine by composing the designs we already have for and, or,
and not.

We can compose any pair of functions where the outputs for the first func-
tion are consistent with the input for the second function. One particularly
important function known as nand results from not and and:
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Figure 6.3. Computing and3 by composing two and functions.

A B (nand A B)
false false true
true false true
false true true
true true false

All Boolean logic functions can be implemented using just the nand function.
One way to prove this is to show how to build all logic functions using just
nand. For example, we can implement not using nand where the one input
to the not function is used for both inputs to the nand function:

(not A)≡ (nand A A)

Now that we have shown how to implement not using nand, it is easy to see
how to implement and using nand:

(and A B)≡ (not (nand A B))

Implementing or is a bit trickier. Recall that A or B is true if any one of the
inputs is true. But, A nand B is true if both inputs are false, and false if both
inputs are true. To compute or using only nand functions, we need to invert
both inputs:

(or A B)≡ (nand (not A) (not B))

To complete the proof, we would need to show how to implement all the other
Boolean logic functions. We omit the details here, but leave some of the other
functions as exercises. The universality of the nand function makes it very
useful for implementing computing devices. Trillions of nand gates are pro-
duced in silicon every day.
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Exercise 6.1. Define a Scheme procedure, logical-or , that takes two inputs
and outputs the logical or of those inputs.

Exercise 6.2. What is the meaning of composing not with itself? For example,
(not (not A)).

Exercise 6.3. Show how to implement the xor function using only nand func-
tions.

Exercise 6.4. [★] Our definition of (not A) as (nand A A) assumes there is a
way to produce two copies of a given input. Design a component for our wine
machine that can do this. It should take one input, and produce two outputs,
both with the same value as the input. (Hint: when the input is true, we need
to produce two full bottles as outputs, so there must be a source similarly to
the not component.)

Exercise 6.5. [★] The digital abstraction works fine as long as actual values
stay close to the value they represent. But, if we continue to compute with
the outputs of functions, the actual values will get increasingly fuzzy. For ex-
ample, if the inputs to the and3 function in Figure 6.3 are initially all 3

4 full
bottles (which should be interpreted as true), the basin for the first and func-
tion will fill to 1 1

2 , so only 1
2 bottle will be output from the first and. When

combined with the third input, the second basin will contain 1 1
4 bottles, so

only 1
4 will spill into the output bottle. Thus, the output will represent false,

even though all three inputs represent true. The solution to this problem is to
use an amplifier to restore values to their full representations. Design a wine
machine amplifier that takes one input and produces a strong representation
of that input as its output. If that input represents true (any value that is half
full or more), the amplifier should output true, but with a strong, full bottle
representation. If that input represents false (any value that is less than half
full), the amplifier should output a strong false value (completely empty).

6.2.3 Arithmetic

Not only is the nand function complete for Boolean logical functions, it is
also enough to implement all discrete arithmetic functions. First, consider
the problem of adding two one-bit numbers.

There are four possible pairs of inputs:

A B r1 r0
0 + 0 = 0 0
0 + 1 = 0 1
1 + 0 = 0 1
1 + 1 = 1 0

Each of the two output bits is a logical function of the two input bits. The right
output bit is 1 if both input bits are 0 or both input bits are 1:
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r0 = (or (and (not A) (not B)) (and A B))

More simply, we can observe that r0 is 1 only when exactly one of A and B is
1. This is what the xor function computes, so:

r0 = (xor A B)

The left output bit is 0 for all inputs except when both inputs are 1:

r1 = (and A B)

Since we have already seen how to implement and, or, xor, and not using
only nand functions, this means we can implement a one-bit adder using
only nand functions.

Adding larger numbers requires more logical functions. Consider adding two
n-bit numbers:

an−1 an−2 ⋅ ⋅ ⋅ a1 a0
+ bn−1 bn−2 ⋅ ⋅ ⋅ b1 b0

= rn rn−1 rn−2 ⋅ ⋅ ⋅ r1 r0

The elementary school algorithm for adding decimal numbers is to sum up
the digits from right to left. If the result in one place is more than one digit,
the additional tens are carried to the next digit. We use ck to represent the
carry digit in the kth column.

cn cn−1 cn−2 ⋅ ⋅ ⋅ c1
an−1 an−2 ⋅ ⋅ ⋅ a1 a0

+ bn−1 bn−2 ⋅ ⋅ ⋅ b1 b0

= rn rn−1 rn−2 ⋅ ⋅ ⋅ r1 r0

The algorithm for addition is:

• Initially, c0 = 0.
• Repeat for each digit k from 0 to n:

1. v1v0 = ak + bk + ck (if there is no digit ak or bk use 0).
2. rk = v0.
3. ck+1 = v1.

This is perhaps the first interesting algorithm most people learn: if followed
correctly, it is guaranteed to produce the correct result, and to always finish,
for any two input numbers.

Step 1 seems to require already knowing how to perform addition, since it
uses +. But, the numbers added are one-digit numbers (and ck is 0 or 1).
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Hence, there are a finite number of possible inputs for the addition in step 1:
10 decimal digits for ak × 10 decimal digits for bk × 2 possible values of ck. We
can memorize the 100 possibilities for adding two digits (or write them down
in a table), and easily add one as necessary for the carry. Hence, computing
this addition does not require a general addition algorithm, just a specialized
method for adding one-digit numbers.

We can use the same algorithm to sum binary numbers, except it is simpler
since there are only two binary digits. Without the carry bit, the result bit, rk,
is 1 if (xor ak bk). If the carry bit is 1, the result bit should flip. So,

rk = (xor (xor ak bk) ck)

This is the same as adding ak + bk + ck base two and keeping only the right
digit.

The carry bit is 1 if the sum of the input bits and previous carry bit is greater
than 1. This happens when any two of the bits are 1:

ck+1 = (or (and ak bk) (and ak ck) (and bk ck))

As with elementary school decimal addition, we start with c0 = 0, and pro-
ceed through all the bits from right to left.

We can propagate the equations through the steps to find a logical equation
for each result bit in terms of just the input bits. First, we simplify the func-
tions for the first result and carry bits based on knowing c0 = 0:

r0 = (xor (xor a0 b0) c0) = (xor a0 b0)
c1 = (or (and a0 b0) (and a0 c0) (and b0 c0)) = (and a0 b0)

Then, we can derive the functions for r1 and c2:

r1 = (xor (xor a1 b1) c1) = (xor (xor a1 b1) (and a0 b0))
c2 = (or (and a1 b1) (and a1 c1) (and b1 c1))

= (or (and a1 b1) (and a1 (and a0 b0)) (and b1 (and a0 b0)))

As we move left through the digits, the terms get increasingly complex. But,
for any number of digits, we can always find functions for computing the re-
sult bits using only logical functions on the input bits. Hence, we can imple-
ment addition for any length binary numbers using only nand functions.

Using a similar strategy, we can also implement multiplication, subtraction,
and division using only nand functions. We omit the details here, but the
essential approach of breaking down our elementary school arithmetic al-
gorithms into functions for computing each output bit works for all of the
arithmetic operations.
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Exercise 6.6. Adding logically.

a. What is the logical formula for r3?

b. Without simplification, how many functions will be composed to compute
the addition result bit r4?

c. [★] Is it possible to compute r4 with fewer logical functions?

Exercise 6.7. Show how to compute the result bits for binary multiplication of
two 2-bit inputs using only logical functions.

Exercise 6.8. [★] Show how to compute the result bits for binary multiplica-
tion of two inputs of any length using only logical functions.

6.3 Modeling Computing

By composing the logic functions, we could build a wine computer to perform
any Boolean function. And, we can perform any discrete arithmetic function
using only Boolean functions. For a useful computer, though, we need pro-
grammability. We would like to be able to make the inputs to the machine
describe the logical functions that it should perform, rather than having to
build a new machine for each desired function. We could, in theory, construct
such a machine using wine, but it would be awfully complicated. Instead, we
consider programmable computing machines abstractly.

Recall in Chapter 1, we defined a computer as a machine that can:

1. Accept input.
2. Execute a mechanical procedure.
3. Produce output.

So, our model of a computer needs to model these three things.

Modeling input. In real computers, input comes in many forms: typing on
a keyboard, moving a mouse, packets coming in from the network, an ac-
celerometer in the device, etc. The virtual shopping spree was a

first for the President who has a
reputation for being
“technologically challenged.” But
White House sources insist that the
First Shopper used his own laptop
and even “knew how to use the
mouse.”
BusinessWeek, 22 December 1999

For our model, we want to keep things as simple as possible, though. From a
computational standpoint, it doesn’t really matter how the input is collected.
We can represent any discrete input with a sequence of bits. Input devices
like keyboards are clearly discrete: there are a finite number of keys, and each
key could be assigned a unique number. Input from a pointing device like
a mouse could be continuous, but we can always identify some minimum
detected movement distance, and record the mouse movements as discrete
numbers of move units and directions. Richer input devices like a camera or
microphone can also produce discrete output by discretizing the input us-
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Figure 6.4. Sample input devices.
Keyboard, mouse, camera, touchscreen, and microphone.

ing a process similar to the image storage in Chapter 1. So, the information
produced by any input device can be represented by a sequence of bits.

For real input devices, the time an event occurs is often crucial. When playing
a video game, it does not just matter that the mouse button was clicked, it
matters a great deal when the click occurs. How can we model inputs where
time matters using just our simple sequence of bits?

One way would be to divide time into discrete quanta and encode the in-
put as zero or one events in each quanta. A more efficient way would be to
add a timestamp to each input. The timestamps are just numbers (e.g., the
number of milliseconds since the start time), so can be written down just as a
sequence of bits.

Thus, we can model a wide range of complex input devices with just a finite
sequence of bits. The input must be finite, since our model computer needs
all the input before it starts processing. This means our model is not a good
model for computations where the input is infinite, such as a web server in-
tended to keep running and processing new inputs (e.g., requests for a web
page) forever. In practice, though, this isn’t usually a big problem since we can
make the input finite by limiting the time the server is running in the model.

A finite sequence of bits can be modeled using a long, narrow, tape that is
divided into squares, where each square contains one bit of the input.

Modeling output. Output from computers effects the physical world in
lots of very complex ways: displaying images on a screen, printing text on
a printer, sending an encoded web page over a network, sending an electrical
signal to an anti-lock brake to increase the braking pressure, etc.

Figure 6.5. Sample output devices.
Monitor, multi-screen display, printer, and speakers.

We don’t attempt to model the physical impact of computer outputs; that
would be far too complicated, but it is also one step beyond modeling the
computation itself. Instead, we consider just the information content of the
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output. The information in a picture is the same whether it is presented as
a sequence of bits or an image projected on a screen, its just less pleasant to
look at as a sequence of bits. So, we can model the output just like we mod-
eled the input: a sequence of bits written on a tape divided into squares.

Modeling processing. Our processing model should be able to model every
possible mechanical procedure since we want to model a universal computer,
but should be as simple as possible.

One thing our model computer needs is a way to keep track of what it is doing.
We can think of this like scratch paper: a human would not be able to do a
long computation without keeping track of intermediate values on scratch
paper, and a computer has the same need. In Babbage’s Analytical Engine,
this was called the store, and divided into a thousand variables, each of which
could store a fifty decimal digit number. In the Apollo Guidance Computer,
the working memory was divided into banks, each bank holding 1024 words.
Each word was 15 bits (plus one bit for error correction). In current 32-bit
processors, such as the x86, memory is divided into pages, each containing
1024 32-bit words.

For our model machine, we don’t want to have arbitrary limits on the amount
of working storage. So, we model the working storage with an infinitely long
tape. Like the input and output tapes, it is divided into squares, and each
square can contain one symbol. For our model computer, it is useful to think
about having an infinitely long tape, but of course, no real computer has in-
finite amounts of working storage. We can, however, imagine continuing to
add more memory to a real computer as needed until we have enough to solve
a given problem, and adding more if we need to solve a larger problem.

Our model now involves three tapes: one for the input, one for the output,
and one for the working tape. We can simplify the model by using a single
tape for all three. At the beginning of the execution, the tape contains the
input (which must be finite). As processing is done, the input is read and the
tape is used as the working tape. Whatever is on the tape and the end of the
execution is the output.

We also need a way for our model machine to interface with the tape. We
imagine a tape head that contacts a single square on the tape. On each pro-
cessing step, the tape head can read the symbol in the current square, write a
symbol in the current square, and move one square either left or right.

The final thing we need is a way to model actually doing the processing. In
our model, this means controlling what the tape head does: at each step, it
needs to decide what to write on the tape, and whether to move left or right,
or to finish the execution.

In early computing machines, processing meant performing one of the ba-
sic arithmetic operations (addition, subtraction, multiplication, or division).
We don’t want to have to model anything as complex as multiplication in
our model machine, however. The previous section showed how addition
and other arithmetic operations can be built from simpler logical operations.
To carry out a complex operation as a composition of simple operations, we
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Figure 6.6. Turing Machine model.

need a way to keep track of enough state to know what to do next. The ma-
chine state is just a number that keeps track of what the machine is doing.
Unlike the tape, it is limited to a finite number. There are two reasons why
the machine state number must be finite: first, we need to be able to write
down the program for the machine by explaining what it should do in each
state, which would be difficult if there were infinitely many states.

We also need rules to control what the tape head does. We can think of each
rule as a mapping from the current observed state of the machine to what
to do next. The input for a rule is the symbol in the current tape square and
the current state of the machine; the output of each rule is three things: the
symbol to write on the current tape square, the direction for the tape head
to move (left, right, or halt), and the new machine state. We can describe the
program for the machine by listing the rules. For each machine state, we need
a rule for each possible symbol on the tape.

6.3.1 Turing Machines

This abstract model of a computer was invented by Alan Turing in the 1930s
and is known as a Turing Machine. Turing’s model is depicted in Figure 6.6.
An infinite tape divided into squares is used as the input, working storage,
and output. The tape head can read the current square on the tape, write
a symbol into the current tape square, and move left or right one position.
The tape head keeps track of its internal state, and follows rules matching the
current state and current tape square to determine what to do next.

Turing’s model is by far the most widely used model for computers today.
Turing developed this model in 1936, before anything resembling a modern
computer existed. Turing did not develop his model as a model of an auto-
matic computer, but instead as a model for what could be done by a human
following mechanical rules. He devised the infinite tape to model the two-
dimensional graph paper students use to perform arithmetic. He argued that
the number of machine states must be limited by arguing that a human could
only keep a limited amount of information in mind at one time.

Turing’s model is equivalent to the model we described earlier, but instead
of using only bits as the symbols on the tape, Turing’s model uses members
of any finite set of symbols, known as the alphabet of the tape. Allowing the
tape alphabet to contain any set of symbols instead of just the two binary
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digits makes it easier to describe a Turing Machine that computes a particular
function, but does not change the power of the model. That means, every
computation that could be done with a Turing Machine using any alphabet
set, could also be done by some Turing Machine using only the binary digits.

We could show this by describing an algorithm that takes in a description of
a Turing Machine using an arbitrarily large alphabet, and produces a Turing
Machine that uses only two symbols to simulate the input Turing Machine.
As we saw in Chapter 1, we can map each of the alphabet symbols to a finite
sequence of binary digits.

Mapping the rules is more complex: since each original input symbol is now
spread over several squares, we need extra states and rules to read the equiva-
lent of one original input. For example, suppose our original machine uses 16
alphabet symbols, and we map each symbol to a 4-bit sequence. If the orig-
inal machine used a symbol X, which we map to the sequence of bits 1011,
we would need four states for every state in the original machine that has a
rule using X as input. These four states would read the 1, 0, 1, 1 from the tape.
The last state now corresponds to the state in the original machine when an
X is read from the tape. To follow the rule, we also need to use four states
to write the bit sequence corresponding to the original write symbol on the
tape. Then, simulating moving one square left or right on the original Tur-
ing Machine, now requires moving four squares, so requires four more states.
Hence, we may need 12 states for each transition rule of the original machine,
but can simulate everything it does using only two symbols.

The Turing Machine model is a universal computing machine. This means ev- universal computing machine

ery algorithm can be implemented by some Turing Machine. Chapter 12 ex-
plores more deeply what it means to simulate every possible Turing Machine
and explores the set of problems that can be solved by a Turing Machine.

Of course, any real machine is limited by the amount of space it has; the
amount of information a machine can process is limited by its memory. If the
machine does not have enough space to store 1000 bits, say, there is no way it
can do a computation whose input requires 1000 bits to describe. Any physi-
cal machine has some limit on the number of bits it can store. Nevertheless,
it is useful to think about computing on Turing Machines. The simplicity of
the model, and its robustness, make it a useful way to think about computing
even if it is not possible to really build a truly universal computing machine.

Turing’s model has proven to be remarkably robust. Despite being invented
before anything resembling a modern computer existed, nearly every com-
puting machine ever imagined or built can be modeled well using Turing’s
simple model. The important thing about the model is that we can simu-
late any computer using a Turing Machine. Any step on any computer that
operates using standard physics and be simulated with a finite number of
steps on a Turing Machine. This means if we know how many steps it takes
to solve some problem on a Turing Machine, the number of steps it takes on
any other machine is at most some multiple of that number. Hence, if we can
reason about the number of steps required for a Turing Machine to solve a
given problem, then we can make strong and general claims about the num-
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ber of steps it would take any standard computer to solve the problem. We
will show this more convincingly in Chapter 12, but for now we assert it, and
use it to reason about the cost of executing various procedures in the follow-
ing chapter.

Example 6.1: Balancing Parentheses. We define a Turing Machine that
solves the problem of checking parentheses are well-balanced. For example,
in a Scheme expression, every opening left parenthesis must have a corre-
sponding closing right parenthesis. For example, (()(()))() is well-balanced,
but (()))(() is not. Our goal is to design a Turing Machine that takes as in-
put a string of parentheses (with a # at the beginning and end to mark the
endpoints) and produces as output a 1 on the tape if the input string is well-
balanced, and a 0 otherwise. For this problem, the output is what is written
in the square under the tape head; it doesn’t matter what is left on the rest of
the tape.

Our strategy is to find matching pairs of parentheses and cross them out by
writing an X on the tape in place of the parenthesis. If all the parentheses are
crossed out at the end, the input was well-balanced, so the machine writes
a 1 as its output and halts. If not, the input was not well-balanced, and the
machine writes a 0 as its output and halts. The trick to the matching is that
a closing parenthesis always matches the first open parenthesis found mov-
ing to the left from the closing parenthesis. The plan for the machine is to
move the tape head to the right (without changing the input) until a closing
parenthesis is found. Cross out that closing parenthesis by replacing it with
an X, and move to the left until an open parenthesis is found. This matches
the closing parenthesis, so it is replaced with an X. Then, continue to the right
searching for the next closing parenthesis. If the end of the tape (marked with
a #) is found, check the tape has no remaining open parenthesis.

We need three internal states: LookForClosing, in which the head moves right
until it finds a closing parenthesis (this is the start state); LookForOpen, in
which the head moves left until it finds the balancing open parenthesis; and
CheckTape, which checks there are no unbalanced open parentheses on the
tape starting from the right end of the tape and moving towards the left end.
The full rules are shown in Figure 6.7.

Another way to depict a Turing Machine is to show the states and rules graph-
ically. Each state is a node in the graph. For each rule, we draw an edge on the
graph between the starting state and the next state, and label the edge with
the read and write tape symbols (separated by a /), and move direction.

Figure 6.8 shows the same Turing Machine as a state graph. When a read
symbol in a given state indicates an error (such as when a ) is encountered in
the LookForOpen state), it is not necessary to draw an edge on the graph. If
there is no outgoing edge for the current read symbol for the current state in
the state graph, execution terminates with an error.
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State Read Next State Write Move
LookForClosing ) LookForOpen X ← Found closing.
LookForClosing ( LookForClosing ( → Keep looking.
LookForClosing X LookForClosing X → Keep looking.
LookForClosing # CheckTape # ← End of tape.

LookForOpen ) - X Error Shouldn’t happen.
LookForOpen ( LookForClosing X → Found open.
LookForOpen X LookForOpen X ← Keep looking.
LookForOpen # - 0 Halt Reached beginning.

CheckTape ) - 0 Error Shouldn’t happen.
CheckTape ( - 0 Halt Unbalanced open.
CheckTape X CheckTape X ← Keep checking.
CheckTape # - 1 Halt Finished checking.

Figure 6.7. Rules for checking balanced parentheses Turing Machine.

Figure 6.8. Checking parentheses Turing Machine.

Exercise 6.9. Follow the rules to simulate the checking parentheses Tur-
ing Machine on each input (assume the beginning and end of the input are
marked with a #):

a. )

b. ()

c. empty input

d. (()(()))()

e. (()))(()

Exercise 6.10. [★] Design a Turing Machine for adding two arbitrary-length
binary numbers. The input is of the form an−1 . . . a1a0 + bm−1 . . . b1b0 (with #

markers at both ends) where each ak and bk is either 0 or 1. The output tape
should contain bits that represent the sum of the two inputs.
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Profile: Alan Turing

Alan Turing was born in London in 1912, and developed his computing model
while at Cambridge in the 1930s. He developed the model to solve a famous
problem posed by David Hilbert in 1928. The problem, known as the Entschei-
dungsproblem (German for “decision problem”) asked for an algorithm that
could determine the truth or falsehood of a mathematical statement. To solve
the problem, Turing first needed a formal model of an algorithm. For this,
he invented the Turing Machine model described above, and defined an al-
gorithm as any Turing Machine that is guaranteed to eventually halt on any
input. With the model, Turing was able to show that there are some problems
that cannot be solved by any algorithm. We return to this in Chapter 12 and
explain Turing’s proof and examples of problems that cannot be solved.

After publishing his solution to the Entscheidungsproblem in 1936, Turing
went to Princeton and studied with Alonzo Church (inventor of the Lambda
calculus, on which Scheme is based). With the start of World War II, Turing
joined the highly secret British effort to break Nazi codes at Bletchley Park.
Turing was instrumental in breaking the Enigma code, used by the Nazi’s
to communicate with field units and submarines, and designed an electro-
mechanical machine for searching possible keys to decrypt Enigma-encrypted
messages. The machines, known as bombes, used logical operations to search

Alan Turing

Image from Bletchley Park Ltd.

the possible rotor settings on the Enigma to find the settings that were most
likely to have generated an intercepted encrypted message. Bletchley Park
was able to break thousands of Enigma messages during the war, and the Al-
lies used the knowledge gained from them to avoid Nazi submarines and gain
a tremendous tactical advantage.

After the war, Turing continued to make both practical and theoretical contri-
butions to computer science. He worked on designing general-purpose com-
puting machines and published a paper Intelligent Machinery, speculating on
the ability of computers to exhibit intelligence. Turing introduced a test for
machine intelligence (now known as the Turing Test) based on a machines
ability to answer questions indistinguishably from a human, and speculated
that machines would be able to pass the test within 50 years (that is, by the
year 2000). Turing also studied how biological systems grow, including study-
ing why Fibonacci numbers appear so often in plants.

Bombe

Rebuilt at Bletchley Park
In 1952, Turing’s house was broken into, and Turing reported the crime to the
police. The investigation revealed that Turing was a homosexual, which at
the time was considered a crime in Britain. Turing did not attempt to hide
his homosexuality, and was convicted and given a choice between serving
time in prison and taking hormone treatments. He accepted the treatments,
and has his security clearance revoked. In 1954, at the age of 41, Turing was
found dead in an apparent suicide, with a cynide-laced partially-eaten apple
next to him. The codebreaking effort at Bletchley Park was kept secret for
many years after the war (Turing’s report on Enigma was not declassified until
1996), so Turing never received public recognition for his contributions to the
war effort.
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6.4 Summary

The power of computers comes from their programmability. Universal com-
puters can be programmed to execute any algorithm. The Turing Machine
model provides a simple, abstract, model of a computing machine. Every al-
gorithm can be implemented as a Turing Machine, and a Turing Machine can
simulate any other reasonable computer.

As the first computer programmer, Ada deserves the last word:

By the word operation, we mean any process which alters the mutual
relation of two or more things, be this relation of what kind it may.
This is the most general definition, and would include all subjects in
the universe. In abstract mathematics, of course operations alter those
particular relations which are involved in the considerations of num-
ber and space, and the results of operations are those peculiar results
which correspond to the nature of the subjects of operation. But the
science of operations, as derived from mathematics more especially,
is a science of itself, and has its own abstract truth and value; just as
logic has its own peculiar truth and value, independently of the sub-
jects to which we may apply its reasonings and processes.. . .

The operating mechanism can even be thrown into action indepen-
dently of any object to operate upon (although of course no result
could then be developed). Again, it might act upon other things be-
sides number, were objects found whose mutual fundamental rela-
tions could be expressed by those of the abstract science of operations,
and which should be also susceptible of adaptations to the action of
the operating notation and mechanism of the engine. Supposing, for
instance, that the fundamental relations of pitched sounds in the sci-
ence of harmony and of musical composition were susceptible of such
expression and adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or extent.

Ada, Countess of Lovelace, Sketch of The Analytical Engine, 1843
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7
Cost

A LISP programmer knows the value of everything, but the cost of nothing.
Alan Perlis

I told my dad that someday I’d have a computer that I could write programs on. He said that would
cost as much as a house. I said, “Well, then I’m going to live in an apartment.”

Steve Wozniak

This chapter develops tools for reasoning about the cost of evaluating a given
expression. Predicting the cost of executing a procedure has practical value
(for example, we can estimate how much computing power is needed to solve
a particular problem or decide between two possible implementations), but
also provides deep insights into the nature of procedures and problems.

The most commonly used cost metric is time. Other measures of cost include
the amount of memory needed and the amount of energy consumed. Indi-
rectly, these costs can often be translated into money: the number of transac-
tions per second a service can support, or the price of the computer needed
to solve a problem.

7.1 Empirical Measurements

We can measure the cost of evaluating a given expression empirically. If we
are primarily concerned with time, we could just use a stopwatch to measure
the evaluation time. For more accurate results, we use the built-in (time Ex-
pression) special form.1 Evaluating (time Expression) produces the value of
the input expression, but also prints out the time required to evaluate the ex-
pression (shown in our examples using slanted font). It prints out three time
values:

cpu time
The time in milliseconds the processor ran to evaluate the expression.
CPU is an abbreviation for “central processing unit”, the computer’s main
processor.

1The time construct must be a special form, since the expression is not evaluated before en-
tering time as it would be with the normal application rule. If it were evaluated normally, there
would be no way to time how long it takes to evaluate, since it would have already been evaluated
before time is applied.
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real time
The actual time in milliseconds it took to evaluate the expression. Since
other processes may be running on the computer while this expression is
evaluated, the real time may be longer than the CPU time, which reflects
just the amount of time the processor was working on evaluating this
expression.

gc time
The time in milliseconds the interpreter spent on garbage collection to
evaluate the expression. Garbage collection is used to reclaim memory
that is storing data that will never be used again.

For example, using the definitions from Chapter 5,

(time (solve-pegboard (board-remove-peg (make-board 5)
(make-position 1 1))))

prints: cpu time: 141797 real time: 152063 gc time: 765. The real time is 152 sec-
onds, meaning this evaluation took just over two and a half minutes. Of this
time, the evaluation was using the CPU for 142 seconds, and the garbage col-
lector ran for less than one second.

Here are two more examples:

> (time (car (list-append (intsto 1000) (intsto 100))))
cpu time: 531 real time: 531 gc time: 62
1
> (time (car (list-append (intsto 1000) (intsto 100))))
cpu time: 609 real time: 609 gc time: 0
1

The two expressions evaluated are identical, but the reported time varies.
Even on the same computer, the time needed to evaluate the same expression
varies. Many properties unrelated to our expression (such as where things
happen to be stored in memory) impact the actual time needed for any par-
ticular evaluation. Hence, it is dangerous to draw conclusions about which
procedure is faster based on a few timings.

Another limitation of this way of measuring cost is it only works if we wait
for the evaluation to complete. If we try an evaluation and it has not finished
after an hour, say, we have no idea if the actual time to finish the evaluation is
sixty-one minutes or a quintillion years. We could wait another minute, but if
it still hasn’t finished we don’t know if the execution time is sixty-two minutes
or a quintillion years. The techniques we develop allow us to predict the time
an evaluation needs without waiting for it to execute.There’s no sense in being precise

when you don’t even know what
you’re talking about.

John von Neumann
Finally, measuring the time of a particular application of a procedure does
not provide much insight into how long it will take to apply the procedure to
different inputs. We would like to understand how the evaluation time scales
with the size of the inputs so we can understand which inputs the procedure
can sensibly be applied to, and can choose the best procedure to use for dif-
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ferent situations. The next section introduces mathematical tools that are
helpful for capturing how cost scales with input size.

Exercise 7.1. Suppose you are defining a procedure that needs to append
two lists, one short list, short and one very long list, long , but the order of
elements in the resulting list does not matter. Is it better to use (list-append
short long ) or (list-append long short)? (A good answer will involve both ex-
perimental results and an analytical explanation.)

Exploration 7.1: Multiplying Like Rabbits

Filius Bonacci was an Italian monk and mathematician in the 12th century.
He published a book, Liber Abbaci, on how to calculate with decimal numbers
that introduced Hindu-Arabic numbers to Europe (replacing Roman num-
bers) along with many of the algorithms for doing arithmetic we learn in el-
ementary school. It also included the problem for which Fibonacci numbers
are named:2

A pair of newly-born male and female rabbits are put in a field. Rab-
bits mate at the age of one month and after that procreate every month,
so the female rabbit produces a new pair of rabbits at the end of its
second month. Assume rabbits never die and that each female rabbit
produces one new pair (one male, one female) every month from her
second month on. How many pairs will there be in one year?

Filius BonacciWe can define a function that gives the number of pairs of rabbits at the be-
ginning of the nth month as:

Fibonacci(n) =

⎧⎨⎩ 1 : n = 1
1 : n = 2

Fibonacci(n− 1) + Fibonacci(n− 2) : n > 1

The third case follows from Bonacci’s assumptions: all the rabbits alive at the
beginning of the previous month are still alive (the Fibonacci(n − 1) term),
and all the rabbits that are at least two months old reproduce (the Fibonacci(n−
2) term).

The sequence produced is known as the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

After the first two 1s, each number in the sequence is the sum of the previous
two numbers. Fibonacci numbers occur frequently in nature, such as the ar-
rangement of florets in thesunflower (34 spirals in one direction and 55 in the
other) or the number of petals in common plants (typically 1, 2, 3, 5, 8, 13, 21,
or 34), hence the rarity of the four-leaf clover.

Sunflower
2Although the sequence is named for Bonacci, it was probably not invented by him. The se-

quence was already known to Indian mathematicians with whom Bonacci studied.
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Translating the definition of the Fibonacci function into a Scheme procedure
is straightforward; we combine the two base cases using the or special form:

(define (fibo n)
(if (or (= n 1) (= n 2)) 1

(+ (fibo (− n 1)) (fibo (− n 2)))))

Applying fibo to small inputs works fine:

> (time (fibo 10))
cpu time: 0 real time: 0 gc time: 0
55
> (time (fibo 30))
cpu time: 2156 real time: 2187 gc time: 0
832040

But when we try to determine the number of rabbits in five years by comput-
ing (fibo 60), our interpreter just hangs without producing a value.

The fibo procedure is defined in a way that guarantees it eventually completes
when applied to a non-negative whole number: each recursive call reduces
the input by 1 or 2, so both recursive calls get closer to the base case. Hence,
we always make progress and must eventually reach the base case, unwind
the recursive applications, and produce a value. To understand why the eval-
uation of (fibo 60) did not finish in our interpreter, we need to consider how
much work is required to evaluate the expression.

To evaluate (fibo 60), the interpreter follows the if expressions to the recursive
case, where it needs to evaluate (+ (fibo 59) (fibo 58)). To evaluate (fibo 59), it
needs to evaluate (fibo 58) again and also evaluate (fibo 57). To evaluate (fibo
58) (which needs to be done twice), it needs to evaluate (fibo 57) and (fibo
56). So, there is one evaluation of (fibo 60), one evaluation of (fibo 59), two
evaluations of (fibo 58), and three evaluations of (fibo 57).

The total number of evaluations of the fibo procedure for each input is itself
the Fibonacci sequence! To understand why, consider the evaluation tree for
(fibo 4) shown in Figure 7.1. The only direct number values are the 1 values
that result from evaluations of either (fibo 1) or (fibo 2). Hence, the number of
1 values must be the value of the final result, which just sums all these num-
bers. For (fibo 4), there are 5 leaf applications, and 3 more inner applications,
for 8 (= Fibonacci(5)) total recursive applications. The number of evaluations
of applications of fibo needed to evaluate (fibo 60) is the 61st Fibonacci num-
ber — 2,504,730,781,961 — over two and a half trillion applications of fibo!

Although our fibo definition is correct, it is ridiculously inefficient and only
finishes for input numbers below about 40. It involves a tremendous amount
of duplicated work: for the (fibo 60) example, there are two evaluations of (fibo
58) and over a trillion evaluations of (fibo 1) and (fibo 2).

We can avoid this duplicated effort by building up to the answer starting from
the base cases. This is more like the way a human would determine the num-
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(fibo 5)

hhhhhhhhhhhhh

VVVVVVVVVVVVV

(fibo 4)

qqqqqqq
MMMMMMM (fibo 3)

qqqqqqq
MMMMMMM

(fibo 3)

qqqqqqq
MMMMMMM (fibo 2) (fibo 2) (fibo 1)

(fibo 2) (fibo 1) 1 1 1

1 1

Figure 7.1. Evaluation of fibo procedure.

bers in the Fibonacci sequence: we find the next number by adding the pre-
vious two numbers, and stop once we have reached the number we want.

The fast-fibo procedure computes the nth Fibonacci number, but avoids the
duplicate effort by computing the results building up from the first two Fi-
bonacci numbers, instead of working backwards.

(define (fast-fibo n)
(define (fibo-iter a b left)

(if (<= left 0) b
(fibo-iter b (+ a b) (− left 1))))

(fibo-iter 1 1 (− n 2)))

This is a form of what is known as dynamic programming . The definition is dynamic programming

still recursive, but unlike the original definition the problem is broken down
differently. Instead of breaking the problem down into a slightly smaller in-
stance of the original problem, with dynamic programming we build up from
the base case to the desired solution. In the case of Fibonacci, the fast-fibo
procedure builds up from the two base cases until reaching the desired an-
swer. The additional complexity is we need to keep track of when to stop; we
do this using the left parameter.

The helper procedure, fibo-iter (short for iteration), takes three parameters:
a is the value of the previous-previous Fibonacci number, b is the value of
the previous Fibonacci number, and left is the number of iterations needed
before reaching the target. The initial call to fibo-iter passes in 1 as a (the
value of Fibonacci(1)), and 1 as b (the value of Fibonacci(2)), and (− n 2) as
left (we have n − 2 more iterations to do to reach the target, since the first
two Fibonacci numbers were passed in as a and b we are now working on
Fibonacci(2)). Each recursive call to fibo-iter reduces the value passed in as
left by one, and advances the values of a and b to the next numbers in the
Fibonacci sequence.

The fast-fibo procedure produces the same output values as the original fibo
procedure, but requires far less work to do so. The number of applications
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of fibo-iter needed to evaluate (fast-fibo 60) is now only 59. The value passed
in as left for the first application of fibo-iter is 58, and each recursive call re-
duces the value of left by one until the zero case is reached. This allows us to
compute the expected number of rabbits in 5 years is 1548008755920 (over 1.5
Trillion)3.

7.2 Orders of Growth

As illustrated by the Fibonacci exploration, the same problem can be solved
by procedures that require vastly different resources. The important question
in understanding the resources required to evaluate a procedure application
is how the required resources scale with the size of the input. For small inputs,
both Fibonacci procedures work using with minimal resources. For large in-
puts, the first Fibonacci procedure never finishes, but the fast Fibonacci pro-
cedure finishes effectively instantly.Remember that accumulated

knowledge, like accumulated
capital, increases at compound

interest: but it differs from the
accumulation of capital in this;

that the increase of knowledge
produces a more rapid rate of

progress, whilst the accumulation
of capital leads to a lower rate of

interest. Capital thus checks its
own accumulation: knowledge

thus accelerates its own advance.
Each generation, therefore, to

deserve comparison with its
predecessor, is bound to add much
more largely to the common stock

than that which it immediately
succeeds.

Charles Babbage, 1851

In this section, we introduce three functions computer scientists use to cap-
ture the important properties of how resources required grow with input size.
Each function takes as input a function, and produces as output a set of func-
tions:

O( f ) (“big oh”)
The set of functions that grow no faster than f grows.

Θ( f ) (theta)
The set of functions that grow as fast as f grows.

Ω( f ) (omega)
The set of functions that grow no slower than f grows.

These functions capture the asymptotic behavior of functions, that is, how
they behave as the inputs get arbitrarily large. To understand how the time
required to evaluate a procedure increases as the inputs to that procedure
increase, we need to know the asymptotic behavior of a function that takes
the size of input to the target procedure as its input and outputs the number
of steps to evaluate the target procedure on that input.

Figure 7.2 depicts the sets O, Θ, Ω for some function f . Next, we define each
function and provide some examples. Section 7.3 analyzes the time required
to evaluate applications of procedures using these notations.

7.2.1 Big O

The first notation we introduce is O, pronounced “big oh”. The O function
takes as input a function, and produces as output the set of all functions that

3Perhaps Bonacci’s assumptions are not a good model for actual rabbit procreation. This re-
sult suggests that in about 10 years the mass of all the rabbits produced from the initial pair will
exceed the mass of the Earth, which, although scary, seems unlikely!
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Figure 7.2. Visualization of the sets O( f ), Ω( f ), and Θ( f ).

grow no faster than the input function. The set O( f ) is the set of all functions
that grow as fast as, or slower than, f grows. In Figure 7.2, the O( f ) set is
represented by everything inside the outer circle.

To define the meaning of O precisely, we need to consider what it means for a
function to grow. We want to capture how the output of the function increases
as the input to the function increases. First, we consider a few examples; then
we provide a formal definition of O.

f (n) = n + 12 and g(n) = n− 7
No matter what n value we use, the value of f (n) is greater than the value
of g(n). This doesn’t matter for the growth rates, though. What matters
is how the difference between g(n) and f (n) changes as the input val-
ues increase. No matter what values we choose for n1 and n2, we know
g(n1)− f (n1) = g(n2)− f (n2) = −19. Thus, the growth rates of f and
g are identical and n− 7 is in the set O(n + 12), and n + 12 is in the set
O(n− 7).

f (n) = 2n and g(n) = 3n
The difference between g(n) and f (n) is n. This difference increases as
the input value n increases, but it increases by the same amount as n
increases. So, the growth rate as n increases is n

n = 1. The value of 2n is
always within a constant multiple of 3n, so they grow asymptotically at
the same rate. Hence, 2n is in the set O(3n) and 3n is in the set O(2n). x

f (n) = n and g(n) = n2

The difference between g(n) and f (n) is n2 − n = n(n− 1). The growth

rate as n increases is n(n−1)
n = n − 1. The value of n − 1 increases as n

increases, so g grows faster than f . This means n2 is not in O(n) since n2

grows faster than n. The function n is in O(n2) since n grows slower than
n2 grows.

f (n) = Fibonacci(n) and g(n) = n
The Fibonacci function grows very rapidly. The value of Fibonacci(n+ 2)
is more than double the value of Fibonacci(n) since

Fibonacci(n + 2) = Fibonacci(n + 1) + Fibonacci(n)
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and Fibonacci(n + 1) > Fibonacci(n). The rate of increase is multiplica-
tive, and must be at least a factor of

√
2 ≈ 1.414 (since increasing by one

twice more than doubles the value).4 This is much faster than the growth
rate of n, which increases by one when we increase n by one. So, n is in
the set O(Fibonacci(n)), but Fibonacci(n) is not in the set O(n).

Some of the example functions are plotted in Figure 7.2.1. The O notation
reveals the asymptotic behavior of functions. In the first graph, the rightmost
value of n2 is greatest; for higher input values, however, eventually the value of
Fibonacci(n) will be greatest. In the second graph, the values of Fibonacci(n)
for input values up to 20 are so high, that the other functions appear as nearly
flat lines on the graph.
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Figure 7.3. Orders of Growth.
Both graphs show the same functions, but scaled for different input ranges.

Definition of O. The function g is a member of the set O( f ) if and only if
there exist positive constants c and n0 such that

g(n) ≤ c f (n)

for all values n ≥ n0.

We can show g is in O( f ) using the definition of O( f ) by choosing positive
constants for the values of c and n0, and showing that the property g(n) ≤
c f (n) holds for all values n ≥ n0. To show g is not in O( f ), we need to explain
how, for any choices of c and n0, we can find values of n that are greater than
n0 such that g(n) ≤ c f (n) does not hold.

Example 7.1: O Examples. We now show the properties claimed earlier are
true using the formal definition.

n− 7 is in O(n + 12)
Choose c = 1 and n0 = 1. Then, we need to show n− 7 ≤ 1(n + 12) for
all values n ≥ 1. This is true, since n− 7 > n + 12 for all values n.

n + 12 is in O(n− 7)
Choose c = 2 and n0 = 26. Then, we need to show n + 12 ≤ 2(n − 7)

4In fact, the rate of increase is a factor of φ = (1 +
√

5)/2 ≈ 1.618, also known as the “golden
ratio”. This is a rather remarkable result, but explaining why is beyond the scope of this book.
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for all values n ≥ 26. The equation simplifies to n + 12 ≤ 2n− 14, which
simplifies to 26 ≤ n. This is trivially true for all values n ≥ 26.

2n is in O(3n)
Choose c = 1 and n0 = 1. Then, 2n ≤ 3n for all values n ≥ 1.

3n is in O(2n)
Choose c = 2 and n0 = 1. Then, 3n ≤ 2(2n) simplifies to n ≤ 4/3n which
is true for all values n ≥ 1.

n is in O(n2)
Choose c = 1 and n0 = 1. Then n ≤ n2 for all values n ≥ 1.

n2 is not in O(n)
We need to show that no matter what values are chosen for c and n0,
there are values of n ≥ n0 such that the inequality n2 ≤ cn does not hold.
For any value of c, we can make n2 > cn by choosing n > c.

n is in O(Fibonacci(n))
Choose c = 1 and n0 = 3. Then n ≤ Fibonacci(n) for all values n ≥ n0.

Fibonacci(n) is not in O(n− 2)
No matter what values are chosen for c and n0, there are values of n ≥ n0
such that Fibonacci(n) > c(n). We know Fibonacci(12) = 144, and, from
the discussion above, that:

Fibonacci(n + 2) > 2 ∗ Fibonacci(n)

This means, for n > 12, we know Fibonacci(n) > n2. So, no matter what
value is chosen for c, we can choose n = c. Then, we need to show

Fibonacci(n) > n(n)

The right side simplifies to n2. For n > 12, we know Fibonacci(n) > n2.
Hence, we can always choose an n that contradicts the Fibonacci(n) ≤
cn inequality by choosing an n that is greater than n0, 12, and c.

For all of the examples where g is in O( f ), there are many acceptable choices
for c and n0. For the given c values, we can always use a higher n0 value than
the selected value. It only matters that there is some finite, positive constant
we can choose for n0, such that the required inequality, g(n) ≤ c f (n) holds for
all values n ≥ n0. Hence, our proofs work equally well with higher values for
n0 than we selected. Similarly, we could always choose higher c values with
the same n0 values. The key is just to pick any appropriate values for c and n0,
and show the inequality holds for all values n ≥ n0.

Proving that a function is not in O( f ) is usually tougher. The key to these
proofs is that the value of n that invalidates the inequality is selected after the
values of c and n0 are chosen. One way to think of this is as a game between
two adversaries. The first player picks c and n0, and the second player picks
n. To show the property that g is not in O( f ), we need to show that no matter
what values the first player picks for c and n0, the second player can always
find a value n that is greater than n0 such that g(n) > c f (n).

Exercise 7.2. For each of the g functions below, answer whether or not g is in
the set O(n). Your answer should include a proof. If g is in O(n) you should
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identify values of c and n0 that can be selected to make the necessary inequal-
ity hold. If g is not in O(n) you should argue convincingly that no matter what
values are chosen for c and n0 there are values of n ≥ n0 such the inequality
in the definition of O does not hold.

a. g(n) = n + 5

b. g(n) = .01n
c. g(n) = 150n +

√
n

d. g(n) = n1.5

e. g(n) = n!

Exercise 7.3. [★] Given f is some function in O(h), and g is some function not
in O(h), which of the following must always be true:

a. For all positive integers m, f (m) ≤ g(m).

b. For some positive integer m, f (m) < g(m).

c. For some positive integer m0, and all positive integers m > m0,

f (m) < g(m)

7.2.2 Omega

The set Ω( f ) (omega) is the set of functions that grow no slower than f grows.
So, a function g is in Ω( f ) if g grows as fast as f or faster. Constrast this with
O( f ), the set of all functions that grow no faster than f grows. In Figure 7.2,
Ω( f ) is the set of all functions outside the darker circle.

The formal definition of Ω( f ) is nearly identical to the definition of O( f ): the
only difference is the≤ comparison is changed to≥.

Definition of Ω( f ). The function g is a member of the set Ω( f ) if and only if
there exist positive constants c and n0 such that

g(n) ≥ c f (n)

for all values n ≥ n0.

Example 7.2: Ω Examples. We repeat selected examples from the previous
section with Ω instead of O. The strategy is similar: we show g is in Ω( f ) using
the definition of Ω( f ) by choosing positive constants for the values of c and
n0, and showing that the property g(n) ≥ c f (n) holds for all values n ≥ n0. To
show g is not in Ω( f ), we need to explain how, for any choices of c and n0, we
can find a choice for n ≥ n0 such that g(n) < c f (n).

n− 7 is in Ω(n + 12)
Choose c = 1

2 and n0 = 38. Then, we need to show n − 7 ≥ 1
2 (n + 12)

for all values n ≥ 38. This is true, since the inequality simplifies n
2 ≥ 19

which holds for all values n ≥ 38.
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2n is in Ω(3n)
Choose c = 1

3 and n0 = 1. Then, 2n ≥ 1
3 (3n) simplifies to n ≥ 0 which

holds for all values n ≥ 1.

n is not in Ω(n2)
Whatever values are chosen for c and n0, we can choose n ≥ n0 such that
n ≥ cn2 does not hold. Choose n > 1

c (note that c must be less than 1
for the inequality to hold for any positive n, so if c is not less than 1 we
can just choose n ≥ 2). Then, the right side of the inequality cn2 will be
greater than n, and the needed inequality n ≥ cn2 does not hold.

n is not in Ω(Fibonacci(n))
No matter what values are chosen for c and n0, we can choose n ≥ n0
such that n ≥ Fibonacci(n) does not hold. The value of Fibonacci(n)
more than doubles every time n is increased by 2 (see Section 7.2.1), but
the value of c(n) only increases by 2c. Hence, if we keep increasing n,
eventually Fibonacci(n + 1) > c(n− 2) for any choice of c.

Exercise 7.4. Repeat Exercise 7.2 using Ω instead of O.

Exercise 7.5. For each part, identify a function g that satisfies the stated prop-
erty.

a. g is in O(n2) but not in Ω(n2).

b. g is not in O(n2) but is in Ω(n2).

c. g is in both O(n2) and Ω(n2).

7.2.3 Theta

The function Θ( f ) denotes the set of functions that grow at the same rate as
f . It is the intersection of the sets O( f ) and Ω( f ). Hence, a function g is in
Θ( f ) if and only if g is in O( f ) and g is in Ω( f ). In Figure 7.2, Θ( f ) is the ring
between the outer and inner circles.

An alternate definition combines the inequalities for O and Ω:

Definition of Θ( f ). The function g is a member of the set Θ( f ) if any only if
there exist positive constants c1, c2, and n0 such that

c1 f (n) ≥ g(n) ≥ c2 f (n)

is true for all values n ≥ n0.

If g(n) is in Θ( f (n)), then the sets Θ( f (n)) and Θ(g(n)) are identical. If
g(n) ∈ Θ( f (n)) then g and f grow at the same rate,

Example 7.3: Θ Examples. Determining membership in Θ( f ) is simple
once we know membership in O( f ) and Ω( f ).
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n− 7 is in Θ(n + 12)
Since n− 7 is in O(n + 12) and n− 7 is in Ω(n + 12) we know n− 7 is in
Θ(n + 12). Intuitively, n − 7 increases at the same rate as n + 12, since
adding one to n adds one to both function outputs. We can also show
this using the definition of Θ( f ): choose c1 = 1, c2 = 1

2 , and n0 = 38.

2n is in Θ(3n)
2n is in O(3n) and in Ω(3n). Choose c1 = 1, c2 = 1

3 , and n0 = 1.

n is not in Θ(n2)
n is not in Ω(n2). Intuitively, n grows slower than n2 since increasing
n by one always increases the value of the first function, n, by one, but
increases the value of n2 by 2n + 1, a value that increases as n increases.

n2 is not in Θ(n): n2 is not in O(n).

n− 2 is not in Θ(Fibonacci(n + 1)): n− 2 is not in Ω(n).

Fibonacci(n) is not in Θ(n): Fibonacci(n + 1) is not in O(n− 2).

Properties of O, Ω, and Θ. Because O, Ω, and Θ are concerned with the
asymptotic properties of functions, that is, how they grow as inputs approach
infinity, many functions that are different when the actual output values mat-
ter generate identical sets with the O, Ω, and Θ functions. For example, we
saw n− 7 is in Θ(n + 12) and n + 12 is in Θ(n− 7). In fact, every function that
is in Θ(n− 7) is also in Θ(n + 12).

More generally, if we could prove g is in Θ(an + k) where a is a positive con-
stant and k is any constant, then g is also in Θ(n). Thus, the set Θ(an + k) is
equivalent to the set Θ(n).

We prove Θ(an + k) ≡ Θ(n) using the definition of Θ. To prove the sets are
equivalent, we need to show inclusion in both directions.

Θ(n) ⊆ Θ(an + k): For any function g, if g is in Θ(n) then g is in Θ(an + k).
Since g is in Θ(n) there exist positive constants c1, c2, and n0 such that
c1n ≥ g(n) ≥ c2n. To show g is also in Θ(an + k) we find d1, d2, and m0
such that d1(an + k) ≥ g(n) ≥ d2(an + k) for all n ≥ m0. Simplifying the
inequalities, we need (ad1)n + kd1 ≥ g(n) ≥ (ad2)n + kd2. Ignoring the
constants for now, we can pick d1 = c1

a and d2 = c2
a . Since g is in Θ(n),

we know
(a

c1

a
)n ≥ g(n) ≥ (a

c2

a
)n

is satisfied. As for the constants, as n increases they become insignifi-
cant. Adding one to d1 and d2 adds an to the first term and k to the second
term. Hence, as n grows, an becomes greater than k.

Θ(an + k) ⊆ Θ(k): For any function g, if g is in Θ(an + k) then g is in Θ(n).
Since g is in Θ(an + k) there exist positive constants c1, c2, and n0 such
that c1(an + k) ≥ g(n) ≥ c2(an + k). Simplifying the inequalities, we
have (ac1)n + kc1 ≥ g(n) ≥ (ac2)n + kc2 or, for some different positive
constants b1 = ac1 and b2 = ac2 and constants k1 = kc1 and k2 = kc2,
b1n + k1 ≥ g(n) ≥ b2n + k2. To show g is also in Θ(n), we find d1, d2,
and m0 such that d1n ≥ g(n) ≥ d2n for all n ≥ m0. If it were not for the
constants, we already have this with d1 = b1 and d2 = b2. As before, the
constants become inconsequential as n increases.
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This property also holds for the O and Ω operators since our proof for Θ also
proved the property for the O and Ω inequalities.

This result can be generalized to any polynomial. The set Θ(a0 + a1n+ a2n2 +
... + aknk) is equivalent to Θ(nk). Because we are concerned with the asymp-
totic growth, only the highest power term of the polynomial matters once n
gets big enough.

Exercise 7.6. Repeat Exercise 7.2 using Θ instead of O.

Exercise 7.7. Show that Θ(n2 − n) is equivalent to Θ(n2).

Exercise 7.8. [★] Is Θ(n2) equivalent to Θ(n2.1)? Either prove they are identi-
cal, or prove they are different.

Exercise 7.9. [★] Is Θ(2n) equivalent to Θ(3n)? Either prove they are identical,
or prove they are different.

7.3 Analyzing Procedures

By considering the asymptotic growth of functions, rather than their actual
outputs, the O, Ω, and Θ operators allow us to hide constants and factors
that change depending on the speed of our processor, how data is arranged
in memory, and the specifics of how our interpreter is implemented. Instead,
we can consider the essential properties of how the running time of the pro-
cedures increases with the size of the input.

This section explains how to measure input sizes and running times. To un-
derstand the growth rate of a procedure’s running time, we need a function
that maps the size of the inputs to the procedure to the amount of time it
takes to evaluate the application. First we consider how to measure the input
size; then, we consider how to measure the running time. In Section 7.3.3 we
consider which input of a given size should be used to reason about the cost
of applying a procedure. Section 7.4 provides examples of procedures with
different growth rates. The growth rate of a procedure’s running time gives us
an understanding of how the running time increases as the size of the input
increases.

7.3.1 Input Size

Procedure inputs may be many different types: Numbers, Lists of Numbers,
Lists of Lists, Procedures, etc. Our goal is to characterize the input size with a
single number that does not depend on the types of the input.

We use the Turing machine to model a computer, so the way to measure the
size of the input is the number of characters needed to write the input on
the tape. The characters can be from any fixed-size alphabet, such as the ten
decimal digits, or the letters of the alphabet. The number of different symbols
in the tape alphabet does not matter for our analysis since we are concerned
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with orders of growth not absolute values. Within the O, Ω, and Θ operators,
a constant factor does not matter (e.g., Θ(n) ≡ Θ(17n + 523)). This means is
doesn’t matter whether we use an alphabet with two symbols or an alphabet
with 256 symbols. With two symbols the input may be 8 times as long as it
is with a 256-symbol alphabet, but the constant factor does not matter inside
the asymptotic operator.

Thus, we measure the size of the input as the number of symbols required to
write the number on a Turing Machine input tape. To figure out the input size
of a given type, we need to think about how many symbols it would require to
write down inputs of that type.

Booleans. There are only two Boolean values: true and false. Hence, the
length of a Boolean input is fixed.

Numbers. Using the decimal number system (that is, 10 tape symbols), we
can write a number of magnitude n using log10 n digits. Using the binary
number system (that is, 2 tape symbols), we can write it using log2 n bits.
Within the asymptotic operators, the base of the logarithm does not matter
(as long as it is a constant) since it changes the result by a constant factor. We
can see this from the argument above — changing the number of symbols in
the input alphabet changes the input length by a constant factor which has
no impact within the asymptotic operators.

Lists. If the input is a List, the size of the input is related to the number of
elements in the list. If each element is a constant size (for example, a list of
numbers where each number is between 0 and 100), the size of the input list is
some constant multiple of the number of elements in the list. Hence, the size
of an input that is a list of n elements is cn for some constant c. Since Θ(cn) =
Θ(n), the size of a List input is Θ(n) where n is the number of elements in the
List. If List elements can vary in size, then we need to account for that in the
input size. For example, suppose the input is a List of Lists, where there are
n elements in each inner List, and there are n List elements in the main List.
Then, there are n2 total elements and the input size is in Θ(n2).

7.3.2 Running Time

We want a measure of the running time of a procedure that satisfies two prop-
erties: (1) it should be robust to ephemeral properties of a particular execu-
tion or computer, and (2) it should provide insights into how long it takes
evaluate the procedure on a wide range of inputs.

To estimate the running time of an evaluation, we use the number of steps
required to perform the evaluation. The actual number of steps depends on
the details of how much work can be done on each step. For any particular
processor, both the time it takes to perform a step and the amount of work
that can be done in one step varies. When we analyze procedures, however,
we usually don’t want to deal with these details. Instead, what we care about is
how the running time changes as the input size increases. This means we can
count anything we want as a “step” as long as each step is the approximately
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same size and the time a step requires does not depend on the size of the
input.

The clearest and simplest definition of a step is to use one Turing Machine
step. We have a precise definition of exactly what a Turing Machine can do in
one step: it can read the symbol in the current square, write a symbol into that
square, transition its internal state number, and move one square to the left
or right. Counting Turing Machine steps is very precise, but difficult because
we do not usually start with a Turing Machine description of a procedure and
creating one is tedious. Time makes more converts than

reason.
Thomas PaineInstead, we usually reason directly from a Scheme procedure (or any precise

description of a procedure) using larger steps. As long as we can claim that
whatever we consider a step could be simulated using a constant number of
steps on a Turing Machine, our larger steps will produce the same answer
within the asymptotic operators. One possibility is to count the number of
times an evaluation rule is used in an evaluation of an application of the pro-
cedure. The amount of work in each evaluation rule may vary slightly (for
example, the evaluation rule for an if expression seems more complex than
the rule for a primitive) but does not depend on the input size.

Hence, it is reasonable to assume all the evaluation rules to take constant
time. This does not include any additional evaluation rules that are needed to
apply one rule. For example, the evaluation rule for application expressions
includes evaluating every subexpression. Evaluating an application consti-
tutes one work unit for the application rule itself, plus all the work required
to evaluate the subexpressions. In cases where the bigger steps are unclear,
we can always return to our precise definition of a step as one step of a Turing
Machine.

7.3.3 Worst Case Input

A procedure may have different running times for inputs of the same size.

For example, consider this procedure that takes a List as input and outputs
the first positive number in the list:

(define (list-first-pos p)
(if (null? p) (error "No positive element found")

(if (> (car p) 0) (car p) (list-first-pos (cdr p)))))

If the first element in the input list is positive, evaluating the application of
list-first-pos requires very little work. It is not necessary to consider any other
elements in the list if the first element is positive. On the other hand, if none
of the elements are positive, the procedure needs to test each element in the
list until it reaches the end of the list (where the base case reports an error).

In our analyses we usually consider the worst case input. For a given size, worst case

the worst case input is the input for which evaluating the procedure takes the
most work. By focusing on the worst case input, we know the maximum run-
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ning time for the procedure. Without knowing something about the possible
inputs to the procedure, it is safest to be pessimistic about the input and not
assume any properties that are not known (such as that the first number in
the list is positive for the first-pos example).

In some cases, we also consider the average case input. Since most proce-
dures can take infinitely many inputs, this requires understanding the distri-
bution of possible inputs to determine an “average” input. This is often nec-
essary when we are analyzing the running time of a procedure that uses an-
other helper procedure. If we use the worst-case running time for the helper
procedure, we will grossly overestimate the running time of the main proce-
dure. Instead, since we know how the main procedure uses the helper proce-
dure, we can more precisely estimate the actual running time by considering
the actual inputs. We see an example of this in the analysis of how the + pro-
cedure is used by list-length in Section 7.4.2.

7.4 Growth Rates

Since our goal is to understand how the running time of an application of a
procedure is related to the size of the input, we want to devise a function that
takes as input a number that represents the size of the input and outputs the
maximum number of steps required to complete the evaluation on an input
of that size. Symbolically, we can think of this function as:

Max-StepsProc : Number → Number

where Proc is the name of the procedure we are analyzing. Because the out-
put represents the maximum number of steps required, we need to consider
the worst-case input of the given size.

Because of all the issues with counting steps exactly, and the uncertainty about
how much work can be done in one step on a particular machine, we cannot
usually determine the exact function for Max-StepsProc . Instead, we char-
acterize the running time of a procedure with a set of functions denoted by
an asymptotic operator. Inside the O, Ω, and Θ operators, the actual time
needed for each step does not matter since the constant factors are hidden
by the operator; what matters is how the number of steps required grows as
the size of the input grows.

Hence, we will characterize the running time of a procedure using a set of
functions produced by one of the asymptotic operators. The Θ operator pro-
vides the most information. Since Θ( f ) is the intersection of O( f ) (no faster
than) and Ω( f ) (no slower than), knowing that the running time of a proce-
dure is in Θ( f ) for some function f provides much more information than
just knowing it is in O( f ) or just knowing that it is in Ω( f ). Hence, our goal
is to characterize the running time of a procedure using the set of functions
defined by Θ( f ) of some function f .
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The rest of this section provides examples of procedures with different growth
rates, from slowest (no growth) through increasingly rapid growth rates. The
growth classes described are important classes that are commonly encoun-
tered when analyzing procedures, but these are only examples of growth classes.
Between each pair of classes described here, there are an unlimited number
of different growth classes.

7.4.1 No Growth: Constant Time

If the running time of a procedure does not increase when the size of the input
increases, the procedure must be able to produce its output by looking at only
a constant number of symbols in the input.

Procedures whose running time does not increase with the size of the input
are known as constant time procedures. Their running time is in O(1) — it constant time

does not grow at all. By convention, we use O(1) instead of Θ(1) to describe
constant time. Since there is no way to grow slower than no growth, O(1) and
Θ(1) are equivalent.

We cannot do much in constant time, since we cannot even examine the
whole input. A constant time procedure must be able to produce its output
by examining only a fixed-size part of the input. Recall that the input size
measures the number of squares needed to represent the input. A constant
time procedure can look at no more than C squares on the tape where C is
some constant. If the input is larger than C, a constant time procedure can
not even read parts of the input.

An example of a constant time procedure is the built-in procedure car . When
car is applied to a non-empty list, it evaluates to the first element of that list.
No matter how long the input list is, all the car procedure needs to do is ex-
tract the first component of the list. So, the running time of car is in O(1).5

Other built-in procedures that involve lists and pairs that have running times
in O(1) include cons, cdr , null?, and pair?. None of these procedures need to
examine more than the first pair of the list.

7.4.2 Linear Growth

When the running time of a procedure increases by a constant amount when
the size of the input grows by one, the running time of the procedure grows
linearly with the input size. If the input size is n, the running time is in Θ(n). linearly

If a procedure has running time in Θ(n), doubling the size of the input will
approximately double the execution time.

5Since we are speculating based on what car does, not examining how car a particular Scheme
interpreter actually implements it, we cannot say definitively that its running time is in O(1). It
would be rather shocking, however, for an implementation to implement car in a way such that
its running time that is not in O(1). The implementation of scar in Section 5.2.1 is constant time:
regardless of the input size, evaluating an application of it involves evaluating a single application
expression, and then evaluating an if expression.
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An example of a procedure that has linear growth is the elementary school
addition algorithm from Section 6.2.3. To add two d-digit numbers, we need
to perform a constant amount of work for each digit. The number of steps
required grows linearly with the size of the numbers (recall from Section 7.3.1
that the size of a number is the number of input symbols needed to represent
the number).

Many procedures that take a List as input have linear time growth. A pro-
cedure that does something that takes constant time with every element in
the input List, has running time that grows linearly with the size of the in-
put since adding one element to the list increases the number of steps by a
constant amount. Next, we analyze three list procedures, all of which have
running times that scale linearly with the size of their input.

Example 7.4: Append. Consider the list-append procedure (from Example 5.6):

(define (list-append p q)
(if (null? p) q (cons (car p) (list-append (cdr p) q))))

Since list-append takes two inputs, we need to be careful about how we refer
to the input size. We use np to represent the number of elements in the first
input, and nq to represent the number of elements in the second input. So,
our goal is to define a function Max-Stepslist-append (np, nq) that captures

how the maximum number of steps required to evaluate an application of
list-append scales with the size of its input.

To analyze the running time of list-append, we examine its body which is an
if expression. The predicate expression applies the null? procedure with is
constant time since the effort required to determine if a list is null does not
depend on the length of the list. When the predicate expression evaluates to
true, the alternate expression is just q, which can also be evaluated in constant
time.

Next, we consider the alternate expression. It includes a recursive applica-
tion of list-append. Hence, the running time of the alternate expression is
the time required to evaluate the recursive application plus the time required
to evaluate everything else in the expression. The other expressions to eval-
uate are applications of cons, car , and cdr , all of which is are constant time
procedures.

So, we can defined the total running time recursively as:

Max-Stepslist-append (np, nq) = C + Max-Stepslist-append (np − 1, nq)

where C is some constant that reflects the time for all the operations besides
the recursive call. Note that the value of nq does not matter, so we simplify
this to:

Max-Stepslist-append (np) = C + Max-Stepslist-append (np − 1).

This does not yet provide a useful characterization of the running time of list-
append though, since it is a circular definition. To make it a recursive defini-
tion, we need a base case. The base case for the Max-Steps definition is the
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same as the base case for the procedure: when the input is null. For the base
case, the running time is constant:

Max-Stepslist-append (0) = C0

where C0 is some constant.

To better characterize the running time of list-append, we want a closed form
solution. For a given input n, Max-Steps(n) is C + C + C + C + . . . + C + C0
where there are n− 1 of the C terms in the sum. This simplifies to (n− 1)C +
C0 = nC − C + C0 = nC + C2. We do not know what the values of C and C2
are, but within the asymptotic notations the constant values do not matter.
The important property is that the running time scales linearly with the value
of its input. Thus, the running time of list-append is in Θ(np) where np is the
number of elements in the first input.

Usually, we do not need to reason at quite this low a level. Instead, to ana-
lyze the running time of a recursive procedure it is enough to determine the
amount of work involved in each recursive call (excluding the recursive ap-
plication itself) and multiply this by the number of recursive calls. For this
example, there are np recursive calls since each call reduces the length of the
p input by one until the base case is reached. Each call involves only constant-
time procedures (other than the recursive application), so the amount of work
involved in each call is constant. Hence, the running time is in Θ(np). Equiv-
alently, the running time for the list-append procedure scales linearly with
the length of the first input list.

Example 7.5: Length. Consider the list-length procedure from Example 5.1:

(define (list-length p) (if (null? p) 0 (+ 1 (list-length (cdr p)))))

This procedure makes one recursive application of list-length for each ele-
ment in the input p. If the input has n elements, there will be n + 1 total
applications of list-length to evaluate (one for each element, and one for the
null). So, the total work is in Θ(n ⋅work for each recursive application).

To determine the running time, we need to determine how much work is in-
volved in each application. Evaluating an application of list-length involves
evaluating its body, which is an if expression. To evaluate the if expression,
the predicate expression, (null? p), must be evaluated first. This requires
constant time since the null? procedure has constant running time (see Sec-
tion 7.4.1). The consequent expression is the primitive expression, 0, which
can be evaluated in constant time. The alternate expression, (+ 1 (list-length
(cdr p))), includes the recursive call. There are n + 1 total applications of list-
length to evaluate, the total running time is n + 1 times the work required for
each application (other than the recursive application itself).

The remaining work is evaluating (cdr p) and evaluating the + application.
The cdr procedure is constant time. Analyzing the running time of the + pro-
cedure application is more complicated.

Cost of Addition. Since + is a built-in procedure, we need to think about
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how it might be implemented. Following the elementary school addition al-
gorithm (from Section 6.2.3), we know we can add any two numbers by walk-
ing down the digits. The work required for each digit is constant; we just need
to compute the corresponding result and carry bits using a simple formula or
lookup table. The number of digits to add is the maximum number of digits
in the two input numbers. Thus, if there are b digits to add, the total work is
in Θ(b). In the worst case, we need to look at all the digits in both numbers.
In general, we cannot do asymptotically better than this, since adding two
arbitrary numbers might require looking at all the digits in both numbers.

But, in the list-length procedure the + is used in a very limited way: one of
the inputs is always 1. We might be able to add 1 to a number without looking
at all the digits in the number. Recall the addition algorithm: we start at the
rightmost (least significant) digit, add that digit, and continue with the carry.
If one of the input numbers is 1, then once the carry is zero we know now of
the more significant digits will need to change. In the worst case, adding one
requires changing every digit in the other input. For example, (+ 99999 1) is
100000. In the best case (when the last digit is below 9), adding one requires
only examining and changing one digit.

Worst Case
Figuring out the average case is more difficult, but necessary to get a good
estimate of the running time of list-length. We assume the numbers are rep-
resented in binary, so instead of decimal digits we are counting bits (this is
both simpler, and closer to how numbers are actually represented in the com-
puter). Approximately half the time, the least significant bit is a 0, so we only
need to examine one bit. When the last bit is not a 0, we need to examine the
second least significant bit (the second bit from the right): if it is a 0 we are
done; if it is a 1, we need to continue.

We always need to examine one bit, the least significant bit. Half the time
we also need to examine the second least significant bit. Of those times, half
the time we need to continue and examine the next least significant bit. This
continues through the whole number. Thus, the expected number of bits we
need to examine is,

1 +
1
2

(
1 +

1
2

(
1 +

1
2

(
1 +

1
2
(1 + . . .)

)))
where the number of terms is the number of bits in the input number, b. Sim-
plifying the equation, we get:

1 +
1
2
+

1
4
+

1
8
+

1
16

+ . . . +
1
2b

No matter how large b gets, this value is always less than 2. So, on average,
the number of bits to examine to add 1 is constant: it does not depend on the
length of the input number. Although adding two arbitrary values cannot be
done in constant time, adding 1 to an arbitrary value can, on average, be done
in constant time.

This result generalizes to addition where one of the inputs is any constant.
Adding any constant C to a number n is equivalent to adding one C times.
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Since adding one is a constant time procedure, adding one C times can also
be done in constant time for any constant C.

Excluding the recursive application, the list-length application involves appli-
cations of two constant time procedures: cdr and adding one using +. Hence,
the total time needed to evaluate one application of list-length, excluding the
recursive application, is constant.

There are n + 1 total applications of list-length to evaluate total, so the total
running time is c(n + 1) where c is the amount of time needed for each appli-
cation. The set Θ(c(n + 1)) is identical to the set Θ(n), so the running time
for the length procedure is in Θ(n) where n is the length of the input list.

Example 7.6: Accessing List Elements. Consider the list-get-element pro-
cedure from Example 5.3:

(define (list-get-element p n)
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1))))

The procedure takes two inputs, a List and a Number selecting the element
of the list to get. Since there are two inputs, we need to think carefully about
the input size. We can use variables to represent the size of each input, for
example sp and sn for the size of p and n respectively. In this case, however,
only the size of the first input really matters.

The procedure body is an if expression. The predicate uses the built-in =
procedure to compare n to 1. The worst case running time of the = procedure
is linear in the size of the input: it potentially needs to look at all bits in the
input numbers to determine if they are equal. Similarly to +, however, if one
of the inputs is a constant, the comparison can be done in constant time.
To compare a number of any size to 1, it is enough to look at a few bits. If
the least significant bit of the input number is not a 1, we know the result is
false. If it is a 1, we need to examine a few other bits of the input number to
determine if its value is different from 1 (the exact number of bits depends on
the details of how numbers are represented). So, the = comparison can be
done in constant time.

If the predicate is true, the base case applies the car procedure, which has
constant running time. The alternate expression involves the recursive calls,
as well as evaluating (cdr p), which requires constant time, and (− n 1). The−
procedure is similar to +: for arbitrary inputs, its worst case running time is
linear in the input size, but when one of the inputs is a constant the running
time is constant. This follows from a similar argument to the one we used
for the + procedure (Exercise 7.13 asks for a more detailed analysis of the
running time of subtraction). So, the work required for each recursive call is
constant.

The number of recursive calls is determined by the value of n and the number
of elements in the list p. In the best case, when n is 1, there are no recursive
calls and the running time is constant since the procedure only needs to ex-
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amine the first element. Each recursive call reduces the value passed in as n
by 1, so the number of recursive calls scales linearly with n (the actual num-
ber is n− 1 since the base case is when n equals 1). But, there is a limit on the
value of n for which this is true. If the value passed in as n exceeds the num-
ber of elements in p, the procedure will produce an error when it attempts to
evaluate (cdr p) for the empty list. This happens after sp recursive calls, where
sp is the number of elements in p. Hence, the running time of list-get-element
does not grow with the length of the input passed as n; after the value of n
exceeds the number of elements in p it does not matter how much bigger it
gets, the running time does not continue to increase.

Thus, the worst case running time of list-get-element grows linearly with the
length of the input list. Equivalently, the running time of list-get-element is in
Θ(sp) where sp is the number of elements in the input list.

Exercise 7.10. Explain why the list-map procedure from Section 5.4.1 has
running time that is linear in the size of its List input. Assume the procedure
input has constant running time.

Exercise 7.11. Consider the list-sum procedure (from Example 5.2):

(define (list-sum p) (if (null? p) 0 (+ (car p) (list-sum (cdr p)))))

What assumptions are needed about the elements in the list for the running
time to be linear in the number if elements in the input list?

Exercise 7.12. For the decimal six-digit odometer (shown in the picture on
page 162), we measure the amount of work to add one as the total number
of wheel digit turns required. For example, going from 000000 to 000001 re-
quires one work unit, but going from 000099 to 000100 requires three work
units.

a. What are the worst case inputs?

b. What are the best case inputs?

c. [★] On average, how many work units are required for each mile? Assume
over the lifetime of the odometer, the car travels 1,000,000 miles.

d. Lever voting machines were used by the majority of American voters in
the 1960s, although they are not widely used today. Most level machines
used a three-digit odometer to tally votes. Explain why candidates ended
up with 99 votes on a machine far more often than 98 or 100 on these ma-
chines.

Voting Machine Counter

Exercise 7.13. [★] The list-get-element argued by comparison to +, that the
− procedure has constant running time when one of the inputs is a constant.
Develop a more convincing argument why this is true by analyzing the worst
case and average case inputs for−.
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Exercise 7.14. [★] Our analysis of the work required to add one to a num-
ber argued that it could be done in constant time. Test experimentally if the
DrScheme + procedure actually satisfies this property. Note that one + ap-
plication is too quick to measure well using the time procedure, so you will
need to design a procedure that applies + many times without doing much
other work.

7.4.3 Quadratic Growth

If the running time of a procedure scales as the square of the size of the input,
the procedure’s running time grows quadratically. Doubling the size of the quadratically

input approximately quadruples the running time. The running time is in
Θ(n2) where n is the size of the input.

A procedure that takes a list as input has running time that grows quadrati-
cally if it goes through all elements in the list once for every element in the
list. For example, we can compare every element in a list of length n with ev-
ery other element using n(n− 1) comparisons. This simplifies to n2 − n, but
Θ(n2 − n) is equivalent to Θ(n2) since as n increases only the highest power
term matters (see Exercise 7.7).

Example 7.7: Reverse. Consider the list-reverse procedure defined in Sec-
tion 5.4.2:

(define (list-reverse p)
(if (null? p) null (list-append (list-reverse (cdr p)) (list (car p)))))

To determine the running time of list-reverse, we need to know how many
recursive calls there are and how much work is involved in each recursive
call. Each recursive application passes in (cdr p) as the input, so reduces the
length of the input list by one. Hence, applying list-reverse to a input list with
n elements involves n recursive calls.

The work for each recursive application, excluding the recursive call itself, is
applying list-append. The first input to list-append is the output of the re-
cursive call. As we argued in Example 7.4, the running time of list-append is
in Θ(np) where np is the number of elements in its first input. So, to deter-
mine the running time we need to know the length of the first input list to
list-append. For the first call, (cdr p) is the parameter, with length n− 1; for
the second call, there will be n− 2 elements; and so forth, until the final call
where (cdr p) has 0 elements. The total number of elements in all of these
calls is:

(n− 1) + (n− 2) + . . . + 1 + 0.

The average number of elements in each call is approximately n
2 . Within the

asymptotic operators the constant factor of 1
2 does not matter, so the average

running time for each recursive application is in Θ(n).

There are n recursive applications, so the total running time of list-reverse is
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n times the average running time of each recursive application:

n ⋅Θ(n) = Θ(n2).

Thus, the running time is quadratic in the size of the input list.

Example 7.8: Multiplication. Consider the problem of multiplying two
numbers. The elementary school long multiplication algorithm works by mul-
tiplying each digit in b by each digit in a, aligning the intermediate results in
the right places, and summing the results:

an−1 ⋅ ⋅ ⋅ a1 a0
× bn−1 ⋅ ⋅ ⋅ b1 b0

an−1b0 ⋅ ⋅ ⋅ a1b0 a0b0
an−1b1 ⋅ ⋅ ⋅ a1b1 a0b1

+ an−1bn−1 ⋅ ⋅ ⋅ a1bn−1 a0bn−1

r2n−1 r2n−2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ r3 r2 r1 r0

If both input numbers have n digits, there are n2 digit multiplications, each of
which can be done in constant time. The intermediate results will be n rows,
each containing n digits. So, the total number of digits to add is n2: 1 digit in
the ones place, 2 digits in the tens place, . . ., n digits in the 10n−1s place, . . ., 2
digits in the 102n−3s place, and 1 digit in the 102n−2s place. Each digit addition
requires constant work, so the total work for all the digit additions is in Θ(n2).
Adding the work for both the digit multiplications and the digit additions,
the total running time for the elementary school multiplication algorithm is
quadratic in the number of input digits, Θ(n2) where n is the number if digits
in the inputs.

This is not the fastest known algorithm for multiplying two numbers, although
it was the best algorithm known until 1960. In 1960, Anatolii Karatsuba dis-
covers a multiplication algorithm with running time in Θ(nlog2 3). Since log2 3 <

1.585 this is an improvement over the Θ(n2) elementary school algorithm. In
2007, Martin Fürer discovered an even faster algorithm for multiplication.6 It
is not yet known if this is the fastest possible multiplication algorithm, or if
faster ones exist.

Exercise 7.15. [★] Analyze the running time of the elementary school long
division algorithm.

Exercise 7.16. [★] Define a Scheme procedure that multiplies two multi-digit
numbers (without using the built-in ∗ procedure except to multiply single-
digit numbers). Strive for your procedure to have running time in Θ(n) where
n is the total number of digits in the input numbers.

Exercise 7.17. [★ ★ ★★] Devise an asymptotically faster general multiplication
algorithm than Fürer’s, or prove that no faster algorithm xists.

6Martin Fürer, Faster Integer Multiplication, ACM Symposium on Theory of Computing, 2007.
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7.4.4 Exponential Growth

If the running time of a procedure scales as a power of the size of the input,
the procedure’s running time grows exponentially. When the size of the input
increases by one, the running time is multiplied by some constant factor. The
growth rate of a function whose output is multiplied by w when the input size,
n, increases by one is wn. Exponential growth is very fast—it is not feasible to
evaluate applications of an exponential time procedure on large inputs.

For a surprisingly large number of interesting problems, the best known algo-
rithm has exponential running time. Examples of problems like this include
finding the best route between two locations on a map (the problem men-
tioned at the beginning of Chapter 4), the pegboard puzzle (Exploration 5.2,
solving generalized versions of most other games such as Suduko and Mine-
sweeper, and finding the factors of a number. Whether or not it is possible
to design faster algorithms that solve these problems is the most important
open problem in computer science, which we will return to in Chapter 13.

Example 7.9: Factoring. A simple way to find a factor of a given input num-
ber is to exhaustively try all possible numbers below the input number to find
the first one that divides the number evenly. The find-factor procedure takes
one number as input and outputs the lowest factor of that number (other
than 1):

(define (find-factor n)
(define (find-factor-helper v)

(if (= (modulo n v) 0) v (find-factor-helper (+ 1 v))))
(find-factor-helper 2))

The find-factor-helper procedure takes two inputs, the number to factor and
the current guess. Since all numbers are divisible by themselves, the modulo
test will eventually be true for any positive input number, so the maximum
number of recursive calls is n, the magnitude of the input to find-factor . The
magnitude of n is exponential in its size, so the number of recursive calls is
in Θ(2b) where b is the number of bits in the input. This means even if the
amount of work required for each recursive call were constant, the running
time of the find-factor procedure is still exponential in the size of its input.

The actual work for each recursive call is not constant, though, since it in-
volves an application of modulo. The modulo built-in procedure takes two
inputs and outputs the remainder when the first input is divided by the sec-
ond input. Hence, it output is 0 if n is divisible by v. Computing a remainder,
in the worst case, at least involves examining every bit in the input number,
so scales at least linearly in the size of its input7. This means the running time
of find-factor is in Ω(2b): it grows at least as fast as 2b.

There are lots of ways we could produce a faster procedure for finding factors:
stopping once the square root of the input number is reached since we know

7In fact, it computing the remainder requires performing division, which is quadratic in the
size of the input.
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there is no need to check the rest of the numbers, skipping even numbers af-
ter 2 since if a number is divisible by any even number it is also divisible by
2, or using advanced sieve methods. This techniques can improve the run-
ning time by constant factors, but there is no known factoring algorithm that
runs in faster than exponential time. The security of the widely used RSA en-
cryption algorithm depends on factoring being hard; if someone finds a faster
than exponential time factoring algorithm it would put the codes used to se-
cure Internet commerce at risk.8

Example 7.10: Power Set. The power set of a set S is the set of all subsets ofpower set

S. For example, the power set of {1, 2, 3} is

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The number of elements in the power set of S is 2∣S∣ (where ∣S∣ is the number
of elements in the set S).

Here is a procedure that takes a list as input, and produces as output the
power set of the elements of the list:

(define (list-powerset s)
(if (null? s) (list null)

(list-append (list-map (lambda (t) (cons (car s) t))
(list-powerset (cdr s)))

(list-powerset (cdr s)))))

The list-powerset procedure produces a List of Lists. Hence, for the base case,
instead of just producing null, it produces a list containing a single element,
null. In the recursive case, we can produce the power set by appending the list
of all the subsets that include the first element, with the list of all the subsets
that do not include the first element. For example, the powerset of {1, 2, 3}
is found by finding the powerset of {2, 3}, which is {{}, {2}, {3}, {2, 3}}, and
taking the union of that set with the set of all elements in that set unioned
with {1}.

An application of list-powerset involves applying list-append, and two recur-
sive applications of (list-powerset (cdr s)). Increasing the size of the input
list by one, doubles the total number of applications of list-powerset since we
need to evaluate (list-powerset (cdr s)) twice. The number of applications of
list-powerset is 2n where n is the length of the input list.9

The body of list-powerset is an if expression. The predicate applies the constant-
time procedure, null?. The consequent expression, (list null) is also constant
time. The alternate expression is an application of list-append. From Exam-
ple 7.4, we know the running time of list-append is Θ(np) where np is the
number of elements in its first input. The first input is the result of applying
list-map to a procedure and the List produced by (list-powerset (cdr s)). The

8The movie Sneakers is a fictional account of what would happen if someone finds a faster
than exponential time factoring algorithm.

9Observant readers will note that it is not really necessary to perform this evaluation twice
since we could do it once and reuse the result. Even with this change, though, the running time
would still be in Θ(2n).
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length of the list output by list-map is the same as the length of its input, so
we need to determine the length of (list-powerset (cdr s)).

We use ns to represent the number of elements in s. The length of the input list
to map is the number of elements in the power set of a size ns − 1 set: 2ns−1.
But, for each application, the value of ns is different. Since we are trying to
determine the total running time, we can do this by thinking about the total
length of all the input lists to list-map over all of the list-powerset . In the input
is a list of length n, the total list length is:

2n−1 + 2n−2 + ... + 21 + 20

which is equal to 2n − 1. So, the running time for all the list-map applications
is in Θ(2n).

The analysis of the list-append applications is similar. The length of the first
input to list-append is the length of the result of the list-powerset application,
so the total length of all the inputs to append is 2n.

Other than the applications of list-map and list-append, the rest of each list-
powerset application requires constant time. So, the running time required
for 2n applications is in Θ(2n). The total running time for list-powerset is
the sum of the running times for the list-powerset applications, in Θ(2n); the
list-map applications, in Θ(2n); and the list-append applications, in Θ(2n).
Hence, the total running time is in Θ(2n).

In this case, we know there can be no faster than exponential procedure that
solves the same problem, since the size of the output is exponential in the size
of the input. Since the most work a Turing Machine can do in one step is write
one square, the size of the output provides a lower bound on the running time
of the Turing Machine. The size of the powerset is 2n where n is the size of the
input set. Hence, the fastest possible procedure for this problem has at least
exponential running time.

7.4.5 Faster than Exponential Growth

We have already seen an example of a procedure that grows faster than expo-
nentially in the size of the input: the fibo procedure at the beginning of this
chapter! Evaluating an application of fibo involves Θ(φn) recursive applica-
tions where n is the magnitude of the input parameter. The size of a numeric
input is the number of bits needed to express it, so the value n can be as high
as 2b − 1 where b is the number of bits. Hence, the running time of the fibo
procedure is in Θ(φ2b

) where b is the size of the input. This is why we are still
waiting for (fibo 60) to finish evaluating.

7.4.6 Non-terminating Procedures

All of the procedures so far in the section are algorithms: they may be slow,
but they are guaranteed to eventually finish if one can wait long enough.
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Some procedures never terminate. For example,

(define (run-forever) (run-forever))

defines a procedure that never finishes. Its body calls itself, never making any
progress toward a base case. The running time of this procedure is effectively
infinite since it never finishes.

7.5 Summary

Because the speed of computers varies and the exact time required for a par-
ticular application depends on many details, the most important property to
understand is how the work required scales with the size of the input. The
asymptotic operators provide a convenient way of understanding the cost in-
volved in evaluating a procedure applications.

Procedures that can produce an output only touching a fixed amount have
constant running times. Procedures whose running times increase by a fixed
amount when the input size increases by one have linear (in Θ(n)) running
times. Procedures whose running time quadruples when the input size dou-
bles have quadratic (in Θ(n2)) running times. Procedures whose running
time doubles when the input size increases by one have exponential (in Θ(2n))
running times. Procedures with exponential running time can only be evalu-
ated for small inputs.

Asymptotic analysis, however, must be interpreted cautiously. For sufficiently
large inputs, a procedure with running time in Θ(n) is always faster than a
procedure with running time in Θ(n2). But, for an input of a particular size,
the Θ(n2) procedure may be faster. Without knowing the constants that are
hidden by the asymptotic operators, there is no way to accurately predict the
actual running time on a given input.

So far, we have analyzed the running times of a known procedures. A deeper
question concerns the running time of the best possible procedure that solves
a particular problem. We explore that question in Chapter 13.

Exercise 7.18. Analyze the asymptotic running time of the list-sum procedure
(from Example 5.2):

(define (list-sum p)
(if (null? p) 0 (+ (car p) (list-sum (cdr p)))))

You may assume all of the elements in the list have values below some con-
stant (but explain why this assumption is useful in your analysis).
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Exercise 7.19. Analyze the asymptotic running time of the factorial procedure
(from Example 4.1):

(define (factorial n)
(if (= n 0) 1 (∗ n (factorial (− n 1)))))

Be careful to describe the running time in terms of the size (not the magni-
tude) of the input.

Exercise 7.20. Consider the intsto problem (from Example 5.8).

a. [★] Analyze the asymptotic running time of this intsto procedure:

(define (revintsto n)
(if (= n 0) null (cons n (revintsto (− n 1)))))

(define (intsto n) (list-reverse (revintsto n)))

b. [★] Analyze the asymptotic running time of this instto procedure:

(define (intsto n)
(if (= n 0) null (list-append (intsto (− n 1)) (list n))))

c. Which version is better?

d. [★★] Is there an asymptotically faster intsto procedure?

Exercise 7.21. Analyze the running time of the board-replace-peg procedure
(from Exploration 5.2):

(define (row-replace-peg pegs col val)
(if (= col 1) (cons val (cdr pegs))

(cons (car pegs) (row-replace-peg (cdr pegs) (− col 1) val))))
(define (board-replace-peg board row col val)

(if (= row 1) (cons (row-replace-peg (car board) col val) (cdr board))
(cons (car board) (board-replace-peg (cdr board) (− row 1) col val))))

Exercise 7.22. Analyze the running time of the deep-list-flatten procedure
from Section 5.5:

(define (deep-list-flatten p)
(if (null? p) null

(list-append (if (list? (car p))
(deep-list-flatten (car p))
(list (car p)))

(deep-list-flatten (cdr p)))))
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Exercise 7.23. [★] Find and correct at least one error in the Orders of Growth
section of the Wikipedia page on Analysis of Algorithms (http://en.wikipedia.
org/wiki/Analysis of algorithms). This is rated as [★] now (13 August 2009),
since the current entry contains many fairly obvious errors. Hopefully it will
soon become a [★ ★ ★] challenge, and perhaps, eventually will become im-
possible!

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms


8
Sorting and Searching

If you keep proving stuff that others have done, getting confidence, increasing the complexities
of your solutions—for the fun of it—then one day you’ll turn around and discover that nobody

actually did that one! And that’s the way to become a computer scientist.
Richard Feynman, Lectures on Computation

This chapter presents two extended examples that use the programming tech-
niques from Chapters 2–5 and analysis ideas from Chapters 6–7 to solve some
interesting and important problems. First, we consider the problem of ar-
ranging a list in order. Next, we consider the problem of finding an item
that satisfies some property. These examples involve some quite challenging
problems and incorporate many of the ideas we have seen up to this point
in the book. Readers who can understand them well are well on their way to
thinking like computer scientists!

8.1 Sorting

The sorting problem takes two inputs: a list of elements and a comparison
procedure. It outputs a list containing same elements as the input list ordered
according to the comparison procedure. For example, if we sort a list of num-
bers using < as the comparison procedure, the output is the list of numbers
sorted in order from least to greatest.

Sorting is one of the most widely studied problems in computing, and many
different sorting algorithms have been proposed. Curious readers should
attempt to develop their own sorting procedures before continuing further.
It may be illuminating to try sorting some items by hand an think carefully
about how you do it and how much work it is. For example, take a shuffled
deck of cards and arrange them in sorted order by ranks. Or, try arranging all
the students in your class in order by birthday. Next, we present and analyze
three different sorting procedures.

8.1.1 Best-First Sort

A simple sorting strategy is to find the best element in the list and put that at
the front. The best element is an element for which the comparison proce-
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dure evaluates to true when applied to that element and every other element.
For example, if the comparison function is <, the best element is the lowest
number in the list. This element belongs at the front of the output list.

The notion of the best element in the list for a given comparison function
only makes sense if the comparison function is transitive. This means it hastransitive

the property that for any inputs a, b, and c, if (cf a b) and (cf b c) are both true,
the result of (cf a c) must be true. The < function is transitive: a < b and b < c
implies a < c for all numbers a, b, and c. If the comparison function does not
have this property, there may be no way to arrange the elements in a single
sorted list. All of our sorting procedures require that the procedure passed as
the comparison function is transitive.

Once we can find the best element in a given list, we can sort the whole list by
repeatedly finding the best element of the remaining elements until no more
elements remain. To define our best-first sorting procedure, we first define a
procedure for finding the best element in the list, and then define a procedure
for removing an element from a list.

Finding the Best. The best element in the list is either the first element,
or the best element from the rest of the list. Hence, we define list-find-best
recursively. An empty list has no best element, so the base case is for a list
that has one element. When the input list has only one element, that element
is the best element. If the list has more than one element, the best element is
the better of the first element in the list and the best element of the rest of the
list.

To pick the better element from two elements, we define the pick-better pro-
cedure that takes three inputs: a comparison function and two values.

(define (pick-better cf p1 p2) (if (cf p1 p2) p1 p2))

Assuming the procedure passed as cf has constant running time, the running
time of pick-better is constant. For most of our examples, we use the < pro-
cedure as the comparison function. For arbitrary inputs, the running time of
< is not constant since in the worst case performing the comparison requires
examining every digit in the input numbers. But, if the maximum value of a
number in the input list is limited, then we can consider < a constant time
procedure since all of the inputs passed to it are below some fixed size.

We use pick-better to define list-find-best :

(define (list-find-best cf p)
(if (null? (cdr p)) (car p)

(pick-better cf (car p) (list-find-best cf (cdr p)))))

We use n to represent the number of elements in the input list p. An appli-
cation of list-find-best involves n − 1 recursive applications since each one
passes in (cdr p) as the new p operand and the base case stops when the list
has one element left. The running time for each application (excluding the
recursive application) is constant since it involves only applications of the
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constant time procedures null?, cdr , and pick-better . So, the total running
time for list-find-best is in Θ(n); it scales linearly with the length of the input
list.

Deleting an Element. To implement best first sorting, we need to produce
a list that contains all the elements of the original list except for the best el-
ement, which will be placed at the front of the output list. We define a pro-
cedure, list-delete, that takes as inputs a List and a Value, and produces a List
that contains all the elements of the input list in the original order except for
the first element that is equal to the input value.

(define (list-delete p el)
(if (null? p) null

(if (equal? (car p) el) (cdr p) ; found match, skip this element
(cons (car p) (list-delete (cdr p) el)))))

We use the equal? procedure to check if the element matches instead of = so
the list-delete procedure works on elements that are not just Numbers. The
equal? procedure behaves identically to = when both inputs are Numbers,
but also works sensibly on many other datatypes including Booleans, Char-
acters, Pairs, Lists, and Strings. Since we assume the sizes of the inputs to
equal? are bounded, we can consider equal? to be a constant time procedure
(even though it would not be constant time on arbitrary inputs).

The worst case running time for list-delete occurs when no element in the
list matches the value of el (in the best case, the first element matches and
the running time does not depend on the length of the input list at all). We
use n to represent the number of elements in the input list. There can be
up to n recursive applications of list-delete. Each application has constant
running time since all of the procedures applied (except the recursive call)
have constant running times. Hence, the total running time for list-delete is
in Θ(n) where n is the length of the input list.

Best-First Sorting. We define list-sort-best-first using list-find-best and list-
delete:

(define (list-sort-best-first cf p)
(if (null? p) null

(cons (list-find-best cf p)
(list-sort-best-first cf (list-delete p (list-find-best cf p))))))

The running time of the list-sort-best-first procedure grows quadratically with
the length of the input list. We use n to represent the number of elements in
the input list. There are n recursive applications since each application of
list-delete produces an output list that is one element shorter than its input
list. In addition to the constant time procedures (null? and cons), the body of
list-sort-best-first involves two applications of list-find-best on the input list,
and one application of list-delete on the input list.

Each of these applications has running time in Θ(m) where m is the length
of the input list to list-find-best and list-delete (we use m here to avoid con-
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fusion with n, the length of the first list passed into list-sort-best-first). In the
first application, this input list will be a list of length n, but in later applica-
tions it will be involve lists of decreasing length: n − 1, n − 2, ⋅ ⋅ ⋅, 1. Hence,
the average length of the input lists to list-find-best and list-delete is approxi-
mately n

2 . Thus, the average running time for each of these applications is in
Θ( n

2 ), which is equivalent to Θ(n).

There are three applications (two of list-find-best and one of list-delete) for
each application of list-sort-best-first , so the total running time for each ap-
plication is in Θ(3n), which is equivalent to Θ(n).

There are n recursive applications, each with average running time in Θ(n), so
the running time for list-sort-best-first is in Θ(n2). This means doubling the
length of the input list quadruples the expected running time, so we predict
that sorting a list of 2000 elements to take approximately four times as long
as sorting a list of 1000 elements.

Let expression. Each application of the list-sort-best-first procedure involves
two evaluations of (list-find-best cf p), a procedure with running time in Θ(n)
where n is the length of the input list.

The result of both evaluations is the same, so there is no need to evaluate this
expression twice. We could just evaluate (list-find-best cf p) once and reuse
the result. One way to do this is to introduce a new procedure using a lambda
expression and pass in the result of (list-find-best cf p) as a parameter to this
procedure so it can be used twice:

(define (list-sort-best-first-nodup cf p)
(if (null? p) null

((lambda (best)
(cons best (list-sort-best-first-nodup cf (list-delete p best))))

(list-find-best cf p))))

This procedure avoids the duplicate evaluation of (list-find-best cf p), but is
quite awkward to read and understand.

Scheme provides the let expression special form to avoid this type of dupli-
cate work more elegantly. The grammar for the let expression is:

Expression ::⇒ LetExpression
LetExpression ::⇒ (let (Bindings) Expression)
Bindings ::⇒ Binding Bindings
Bindings ::⇒ ε
Binding ::⇒ (Name Expression)

The evaluation rule for the let expression is:

Evaluation Rule 6: Let expression. To evaluate a let expression,
evaluate each binding in order. To evaluate each binding, evalu-
ate the binding expression and bind the name to the value of that
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expression. Then, the value of the let expression is the value of the
body expression evaluated with the names in the expression that
match binding names substituted with their bound values.

A let expression can be transformed into an equivalent application expres-
sion. The let expression

(let ((Name1 Expression1) (Name2 Expression2)
⋅ ⋅ ⋅ (Namek Expressionk))

Expressionbody)

is equivalent to the application expression:

((lambda (Name1 Name2 . . . Namek) Expressionbody)
Expression1 Expression2 . . . Expressionk)

The advantage of the let expression syntax is it puts the expressions next to
the names to which they are bound. Using a let expression, we define list-
sort-best-first-let to avoid the duplicate evaluations:

(define (list-sort-best-first-let cf p)
(if (null? p) null

(let ((best (list-find-best cf p)))
(cons best (list-sort-best-first-let cf (list-delete p best))))))

This runs faster than list-sort-best-first since it avoids the duplicate evalua-
tions, but the asymptotic asymptotic running time is still in Θ(n2): there are n
recursive applications of list-sort-best-first-let and each application involves
linear time applications of list-find-best and list-delete. Using the let expres-
sion improves the actual running time by avoiding the duplicate work, but
does not impact the asymptotic growth rate since the duplicate work is hid-
den in the constant factor.

Exercise 8.1. What is the best case input for list-sort-best-first? What is its
asymptotic running time on the best case input?

Exercise 8.2. Use the time special form (Section 7.1) to experimentally mea-
sure the evaluation times for the list-sort-best-first-let procedure. Do the re-
sults match the expected running times based on the Θ(n2) asymptotic run-
ning time?

You may find it helpful to define a procedure that constructs a list containing
n random elements. To generate the random elements use the built-in proce-
dure random that takes one number as input and evaluates to a pseudoran-
dom number between 0 and one less than the value of the input number. Be
careful in your time measurements that you do not include the time required
to generate the input list.
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Exercise 8.3. Define the list-find-best procedure using the list-accumulate
procedure from Section 5.4.2 and evaluate its asymptotic running time.

Exercise 8.4. [★] Define and analyze a list-sort-worst-last procedure that sorts
by finding the worst element first and putting it at the end of the list.

8.1.2 Insertion Sort

The list-sort-best-first procedure seems quite inefficient. For every output el-
ement, we are searching the whole remaining list to find the best element, but
do nothing of value with all the comparisons that were done to find the best
element.

An alternate approach is to build up a sorted list as we go through the ele-
ments. Insertion sort works by putting the first element in the list in the right
place in the list that results from sorting the rest of the elements.

First, we define the list-insert-one procedure that takes three inputs: a com-
parison procedure, an element, and a List. The input List must be sorted ac-
cording to the comparison function. As output, list-insert-one produces a List
consisting of the elements of the input List, with the input element inserts in
the right place according to the comparison function.

(define (list-insert-one cf el p) ; requires: p is sorted by cf
(if (null? p) (list el)

(if (cf el (car p)) (cons el p)
(cons (car p) (list-insert-one cf el (cdr p))))))

The running time for list-insert-one is in Θ(n) where n is the number of ele-
ments in the input list. In the worst case, the input element belongs at the end
of the list and it makes n recursive applications of list-insert-one. Each appli-
cation involves constant work so the overall running time of list-insert-one is
in Θ(n).

To sort the whole list, we insert each element into the list that results from
sorting the rest of the elements:

(define (list-sort-insert cf p)
(if (null? p) null

(list-insert-one cf (car p) (list-sort-insert cf (cdr p)))))

Evaluating an application of list-sort-insert on a list of length n involves n
recursive applications. The lengths of the input lists in the recursive appli-
cations are n − 1, n − 2, . . ., 0. Each application involves an application of
list-insert-one which has linear running time. The average length of the in-
put list over all the applications is approximately n

2 , so the average running
time of the list-insert-one applications is in Θ(n). There are n applications of
list-insert-one, so the total running time is in Θ(n2).
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Exercise 8.5. We analyzed the worst case running time of list-sort-insert
above. Analyze the best case running time. Your analysis should identify the
inputs for which list-sort-insert runs fastest, and describe the asymptotic run-
ning time for the best case input.

Exercise 8.6. Both the list-sort-best-first-sort and list-sort-insert procedures
have asymptotic running times in Θ(n2). This tells us how their worst case
running times grow with the size of the input, but isn’t enough to know which
procedure is faster for a particular input. For the questions below, use both
analytical and empirical analysis to provide a convincing answer.

a. How do the actual running times of list-sort-best-first-sort and list-sort-
insert on typical inputs compare?

b. Are there any inputs for which list-sort-best-first is faster than list-sort-
insert?

c. For sorting a long list of n random elements, how long does each procedure
take? (See Exercise 8.2 for how to create a list of random elements.)

8.1.3 Quicker Sorting

Although insertion sort is typically faster than best-first sort, its running time
is still scales quadratically with the length of the list. If it takes 100 millisec-
onds (one tenth of a second) to sort a list containing 1000 elements using list-
sort-insert , we expect it will take four (= 22) times as long to sort a list con-
taining 2000 elements, and a million times (= 10002) as long (over a day!) to
sort a list containing one million (1000 ∗ 1000) elements. Yet computers rou-
tinely need to sort lists containing many millions of elements (for example,
consider processing credit card transactions or analyzing the data collected
by a super collider).

The problem with our insertion sort is that it divides the work unevenly into
inserting one element and sorting the rest of the list. This is a very unequal
division. Any sorting procedure that works by considering one element at a
time and putting it in the sorted position as is done by list-sort-find-best and
list-sort-insert has a running time in Ω(n2). We cannot do better than this
with this strategy since there are n elements, and the time required to figure
out where each element goes is in Ω(n).

To do better, we need to either reduce the number of recursive applications
needed (this would mean each recursive call results in more than one element
being sorted), or reduce the time required for each application. The approach
we take is to use each recursive application to divide the list into two approx-
imately equal-sized parts, but to do the division in such a way that the results
of sorting the two parts can be combined directly to form the result. We par-
tition the elements in the list so that all elements in the first part are less than
(according to the comparison function) all elements in the second part.
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Our first attempt is to modify insert-one to partition the list into two parts.
This approach does not produce a better-than-quadratic time sorting proce-
dure because of the inefficiency of accessing list elements; however, it leads
to insights for producing a quicker sorting procedure.

First, we define a list-extract procedure that takes as inputs a list and two
numbers indicating the start and end positions, and outputs a list containing
the elements of the input list between the start and end positions:

(define (list-extract p start end)
(if (= start 0)

(if (= end 0) null
(cons (car p) (list-extract (cdr p) start (− end 1))))

(list-extract (cdr p) (− start 1) (− end 1))))

The running time of the list-extract procedure is in Θ(n) where n is the num-
ber of elements in the input list. The worst case input is when the value of
end is the length of the input list, which means there will be n recursive ap-
plications, each involving a constant amount of work.

We use list-extract to define procedures for obtaining first and second halves
of a list (when the list has an odd number of elements, we put the middle
element in the second half of the list):

(define (list-first-half p)
(list-extract p 0 (floor (/ (list-length p) 2))))

(define (list-second-half p)
(list-extract p (floor (/ (list-length p) 2)) (list-length p)))

The list-first-half and list-second-half procedures use list-extract so their run-
ning times are linear in the number of elements in the input list.

The list-insert-one-split procedure inserts an element in sorted order by first
splitting the list in halves and then recursively inserting the new element in
the appropriate half of the list:

(define (list-insert-one-split cf el p) ; requires: p is sorted by cf
(if (null? p) (list el)

(if (null? (cdr p))
(if (cf el (car p)) (cons el p) (list (car p) el))
(let ((front (list-first-half p)) (back (list-second-half p)))

(if (cf el (car back))
(list-append (list-insert-one-split cf el front) back)
(list-append front (list-insert-one-split cf el back)))))))

In addition to the normal base case when the input list is null, we need a spe-
cial case when the input list has one element. If the element to be inserted
is before this element, the output is produced using cons; otherwise, we pro-
duce a list of the first (only) element in the list followed by the inserted ele-
ment.
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In the recursive case, we use the list-first-half and list-second-half proce-
dures to split the input list and bind the results of the first and second halves
to the front and back variables so we do not need to evaluate these expres-
sions more than once.

Since the list passed to list-insert-one-split is required to be sorted, the ele-
ments in front are all less than the first element in back. Hence, only one
comparison is needed to determine which of the sublists contains the new
element: if the element is before the first element in back it is in the first half,
and we produce the result by appending the result of inserting the element
in the front half with the back half unchanged; otherwise, it is in the second
half, so we produce the result by appending the front half unchanged with the
result of inserting the element in the back half.

To analyze the running time of list-insert-one-split we determine the number
of recursive calls and the amount of work involved in each application. We
use n to denote the number of elements in the input list. Unlike the other
recursive list procedures we have analyzed, the number of recursive applica-
tions of list-insert-one-split does not scale linearly with the length of the input
list. The reason for this is that instead of using (cdr p) in the recursive call, list-
insert-one-split passes in either the front or back value which is the result of
(first-half p) or (second-half p) respectively. The length of the list produced
by these procedures is approximately 1

2 the length of the input list. With each
recursive application, the size of the input list is halved. This means, dou-
bling the size of the input list only adds one more recursive application. This
means the number of recursive calls is logarithmic in the size of the input.

Recall that the logarithm (logb) of a number n is the number x such that
bx = n where b is the base of the logarithm. In computing, we most com-
monly encounter logarithms with base 2. Doubling the input value increases
the value of its logarithm base two by one: log2 2n = 1 + log2 n. Changing the
base of a logarithm from k to b changes the value by the constant factor (see
Section 7.3.1), so inside the asymptotic operators a constant base of a loga-
rithm does not matter. Thus, when the amount of work increases by some
constant amount when the input size doubles, we write that the growth rate
is in Θ(log n) without specifying the base of the logarithm.

Each list-insert-one-split application applies list-append to a first parameter
that is either the front half of the list or the result of inserting the element in
the front half of the list. In either case, the length of the list is approximately
n
2 . The running time of list-append is in Θ(m) where m is the length of the
first input list. So, the time required for each list-insert-one-split application
is in Θ(n) where n is the length of the input list to list-insert-one-split .

The lengths of the input lists to list-insert-one-split in the recursive calls are
approximately n

2 , n
4 , n

8 , . . ., 1, since the length of the list halves with each call.
The summation has log2 n terms, and the total length of the list is n, so the av-
erage length input is n

log2 n . Hence, the total running time for the list-append

applications in each application of list-insert-one-split is in Θ(log2 n× n
log2 n ) =

Θ(n).
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The analysis of the applications of list-first-half and list-second-half is simi-
lar: each requires running time in Θ(m) where m is the length of the input list,
which averages n

log2 n where n is the length of the input list of list-insert-one-

split . Hence, the total running time for list-insert-one-split is in Θ(n).

The list-sort-insert-split procedure is identical to list-sort-insert (except for
calling list-insert-one-split):

(define (list-sort-insert-split cf p)
(if (null? p) null

(list-insert-one-split cf (car p) (list-sort-insert-split cf (cdr p)))))

Similarly to list-sort-insert , list-sort-insert-split involves n applications of list-
insert-one-split , and the average length of the input list is n

2 . Since list-sort-
insert-split involves Θ(n) applications of list-insert-one-split with average in-
put list length of n

2 , the total running time for list-sort-insert-split is in Θ(n2).
Because of the cost of evaluating the list-append, list-first-half , and list-second-
half applications, the change to splitting the list in halves has not improved
the asymptotic performance; in fact, because of all the extra work in each ap-
plication, the actual running time is higher than it was for list-sort-insert .

The problem with our list-insert-one-split procedure is that the list-first-half
and list-second-half procedures have to cdr down the whole list to get to the
middle of the list, and the list-append procedure needs to walk through the
entire input list to put the new element in the list. All of these procedures have
running times that scale linearly with the length of the input list. To use the
splitting strategy effectively, we need is a way to get to the middle of the list
quickly. With the standard list representation this is impossible: it requires
one cdr application to get to the next element in the list, so there is no way to
access the middle of the list without using at least n

2 applications of cdr . To do
better, we need to change the way we represent our data. The next subsection
introduces such a structure; in Section 8.1.5 shows a way of sorting efficiently
using lists directly by changing how we split the list.

8.1.4 Binary Trees

The data structure we will use is known as a sorted binary tree. While a listsorted binary tree

provides constant time procedures for accessing the first element and the rest
of the elements, a binary tree provides constant time procedures for accessing
the root element, the left side of the tree, and the right side of the tree. The
left and right sides of the tree are themselves trees. So, like a list, a binary tree
is a recursive data structure.

Whereas we defined a List (in Chapter 5) as:

A List is either (1) null or (2) a Pair whose second cell is a List.

a Tree is defined as:
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A Tree is either (1) null or (2) a triple while first and third parts are
both Trees.

Symbolically:

Tree ::⇒ null
Tree ::⇒ (make-tree Tree Element Tree)

The make-tree procedure can be defined using cons to package the three in-
puts into a tree:

(define (make-tree left element right)
(cons element (cons left right)))

We define selector procedures for extracting the parts of a non-null tree:

(define (tree-element tree) (car tree))
(define (tree-left tree) (car (cdr tree)))
(define (tree-right tree) (cdr (cdr tree)))

The tree-left and tree-right procedures are constant time procedures that eval-
uate to the left or right subtrees respectively of a tree.

In a sorted tree, the elements are maintained in a sorted structure. All ele-
ments in the left subtree of a tree are less than (according to the comparison
function) the value of the root element of the tree; all elements in the right
subtree of a tree are greater than or equal to the value of the root element
of the tree (the result of comparing them with the root element is false). For
example, here is a sorted binary tree containing 6 elements using < as the
comparison function:

7

qqqqqqq
MMMMMMM

5

qqqqqqq
MMMMMMM 12

MMMMMMM

1 6 17

The top node has element value 7, and its left subtree is a tree containing the
tree elements whose values are less than 7. The null subtrees are not shown.
For example, the left subtree of the element whose value is 12 is null. Al-
though there are six elements in the tree, we can reach any element from the
top by following at most two branches. By contrast, with a list of six elements,
we need five cdr operations to reach the last element.

The depth of a tree is the largest number of steps needed to reach any node depth

in the tree starting from the root. The example tree has depth 2, since we can
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reach every node starting from the root of the tree in two or fewer steps. A tree
of depth d can contain up to 2d+1 − 1 elements. One way to see this is from
this recursive definition for the maximum number of nodes in a tree:

TreeNodes(d) =
{

1 : d = 0
TreeNodes(d− 1) + 2× TreeLeaves(d− 1) : d > 0

A tree of depth zero has one node. Increasing the depth of a tree by one means
we can add two nodes for each leaf node in the tree, so the total number of
nodes in the new tree is the sum of the number of nodes in the original tree
and twice the number of leaves in the original tree. The maximum number of
leaves in a tree of depth d is 2d since each level doubles the number of leaves.
Hence, the second equation simplifies to

TreeNodes(d− 1) + 2× 2d−1 = TreeNodes(d− 1) + 2d.

The value of TreeNodes(d − 1) is 2d−1 + 2d−2 + . . . + 1 = 2d − 1. Adding 2d

and 2d − 1 gives 2d+1 − 1 as the maximum number of nodes in a tree of depth
d. Hence, a well-balanced tree containing n nodes has depth approximately
log2 n. A tree is well-balanced if the left and right subtrees of all nodes in thewell-balanced

contain nearly the same number of elements.

Procedures that are analogous to the list-first-half , list-second-half , and list-
append procedures that had linear running times for the standard list rep-
resentation can all be implemented with constant running times for the tree
representation. For example, tree-left is analogous to list-first-half and make-
tree is analogous to list-append.

The tree-insert-one procedure inserts an element in a sorted binary tree:

(define (tree-insert-one cf el tree)
(if (null? tree) (make-tree null el null)

(if (cf el (tree-element tree))
(make-tree (tree-insert-one cf el (tree-left tree))

(tree-element tree)
(tree-right tree))

(make-tree (tree-left tree)
(tree-element tree)
(tree-insert-one cf el (tree-right tree))))))

When the input tree is null, the new element is the top element of a new tree
whose left and right subtrees are null. Otherwise, the procedure compares
the element to insert with the element at the top node of the tree. If the com-
parison evaluates to true, the new element belongs in the left subtree. The
result is a tree where the left tree is the result of inserting this element in the
old left subtree, and the element and right subtree are the same as they were
in the original tree. For the alternate case, the element is inserted in the right
subtree, and the left subtree is unchanged.

In addition to the recursive call, tree-insert-one only applies constant time
procedures. If the tree is well-balanced, each recursive application halves
the size of the input tree so there are approximately log2 n recursive calls.



Chapter 8. Sorting and Searching 185

Hence, the running time to insert an element in a well-balanced tree using
tree-insert-one is in Θ(log n).

Using tree-insert-one, we define list-to-sorted-tree, a procedure that takes a
comparison function and a list as its inputs, and outputs a sorted binary tree
containing the elements in the input list. It inserts each element of the list in
turn into the sorted tree:

(define (list-to-sorted-tree cf p)
(if (null? p) null

(tree-insert-one cf (car p) (list-to-sorted-tree cf (cdr p)))))

Assuming well-balanced trees as above (we revisit this assumption later), the
expected running time of list-to-sorted-tree is in Θ(n log n) where n is the size
of the input list. There are n recursive applications of list-to-sorted-tree since
each application uses cdr to reduce the size of the input list by one. Each
application involves an application of tree-insert-one (as well as only con-
stant time procedures), so the expected running time of each application is in
Θ(log n). Hence, the total running time for list-to-sorted-tree is in Θ(n log n).

To use our list-to-sorted-tree procedure to perform sorting we need to extract
a list of the elements in the tree in the correct order. The leftmost element
in the tree should be the first element in the list. Starting from the top node,
all elements in its left subtree should appear before the top element, and all
the elements in its right subtree should follow it. The tree-extract-elements
procedure does this:

(define (tree-extract-elements tree)
(if (null? tree) null

(list-append (tree-extract-elements (tree-left tree))
(cons (tree-element tree)

(tree-extract-elements (tree-right tree))))))

The total number of applications of tree-extract-elements is between n (the
number of elements in the tree) and 3n since there can be up to two null trees
for each leaf element (it could never actually be 3n, but for our asymptotic
analysis it is enough to know it is always less than some constant multiple of
n). For each application, the body applies list-append where the first param-
eter is the elements extracted from the left subtree. The end result of all the
list-append applications is the output list, containing the n elements in the
input tree.

Hence, the total size of all the appended lists is at most n, and the running
time for all the list-append applications is in Θ(n). Since this is the total time
for all the list-append applications, not the time for each application of tree-
extract-elements, the total running time for tree-extract-elements is the time
for the recursive applications, in Θ(n), plus the time for the list-append ap-
plications, in Θ(n), which is in Θ(n).

Putting things together, we define list-sort-tree:
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(define (list-sort-tree cf p)
(tree-extract-elements (list-to-sorted-tree cf p)))

The total running time for list-sort-tree is the running time of the list-to-sorted-
tree application plus the running time of the tree-extract-elements applica-
tion. The running time of list-sort-tree is in Θ(n log n) where n is the number
of elements in the input list (in this case, the number of elements in p), and
the running time of tree-extract-elements is in Θ(n) where n is the number
of elements in its input list (which is the result of the list-to-sorted tree ap-
plication, a list containing n elements where n is the number of elements in
p).

Only the fastest-growing term contributes to the total asymptotic running
time, so the expected total running time for an application of list-sort-tree-
insert to a list containing n elements is in Θ(n log n). This is substantially bet-
ter than the previous sorting algorithms which had running times in Θ(n2)
since logarithms grow far slower than their input. For example, if n is one
million, n2 is over 50,000 times bigger than n log2 n; if n is one billion, n2 is
over 33 million times bigger than n log2 n since log2 1000000000 is just under
30.

There is no general sorting procedure that has expected running time bet-
ter than Θ(n log n), so there is no algorithm that is asymptotically faster than
list-sort-tree (in fact, it can be proven that no asymptotically faster sorting
procedure exists). There are, however, sorting procedures that may have ad-
vantages such as how they use memory which may provide better absolute
performance in some situations.

Unbalanced Trees. Our analysis assumes the left and right halves of the
tree passed to tree-insert-one having approximately the same number of ele-
ments. If the input list is in random order, this assumption is likely to be valid:
each element we insert is equally likely to go into the left or right half, so the
halves contain approximately the same number of elements all the way down
the tree. But, if the input list is not in random order this may not be the case.

For example, suppose the input list is already in sorted order. Then, each
element that is inserted will be the rightmost node in the tree when it is in-
serted. For the previous example, this produces the unbalanced tree shown
in Figure 8.1. This tree contains the same six elements as the earlier example,
but because it is not well-balanced the number of branches that must be tra-
versed to reach the deepest element is 5 instead of 2. Similarly, if the input list
is in reverse sorted order, we will have an unbalanced tree where only the left
branches are used.

In these pathological situations, the tree effectively becomes a list. The num-
ber of recursive applications of tree-insert-one needed to insert a new ele-
ment will not be in Θ(log n), but rather will be in Θ(n). Hence, the worst case
running time for list-sort-tree-insert is in Θ(n2) since the worst case time for
tree-insert-one is in Θ(n) and there are Θ(n) applications of tree-insert-one.
The list-sort-tree-insert procedure has expected running time in Θ(n log n)
for randomly distributed inputs, but has worst case running time in Θ(n2).
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Figure 8.1. Unbalanced trees.

Exercise 8.7. Define a procedure binary-tree-size that takes as input a binary
tree and outputs the number of elements in the tree. Analyze the running
time of your procedure.

Exercise 8.8. [★] Define a procedure binary-tree-depth that takes as input a
binary tree and outputs the depth of the tree. The running time of your
procedure should not grow faster than linearly with the number of nodes in
the tree.

Exercise 8.9. [★★] Define a procedure binary-tree-balance that takes as in-
put a sorted binary tree and the comparison function, and outputs a sorted
binary tree containing the same elements as the input tree but in a well-
balanced tree. The depth of the output tree should be no higher than log2 n +
1 where n is the number of elements in the input tree.

My first task was to implement . . .
a library subroutine for a new fast
method of internal sorting just
invented by Shell. . . My boss and
tutor, Pat Shackleton, was very
pleased with my completed
program. I then said timidly that I
thought I had invented a sorting
method that would usually run
faster than Shell sort, without
taking much extra store. He bet me
sixpence that I had not. Although
my method was very difficult to
explain, he finally agreed that I
had won my bet.
Sir Tony Hoare, The Emperor’s Old
Clothes, 1980 Turing Award Lecture.
(Shell sort is a Θ(n2) sorting algorithm,
somewhat similar to insertion sort.)

8.1.5 Quicksort

Although building and extracting elements from trees allows us to sort with
expected time in Θ(n log n), the constant time required to build all those trees
and extract the elements from the final tree is high.

In fact, we can use the same approach to sort without needing to build trees.
Instead, we keep the two sides of the tree as separate lists, and sort them re-
cursively. The key is to divide the list into halves by value, instead of by po-
sition. The values in the first half of the list are all less than the values in the
second half of the list, so the lists can be sorted separately.

The list-quicksort procedure uses list-filter (from Example 5.5) to divide the
input list into sublists containing elements below and above the comparison
element, and then recursively sorts those sublists:
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(define (list-quicksort cf p)
(if (null? p) null

(list-append
(list-quicksort cf
(list-filter (lambda (el) (cf el (car p))) (cdr p)))

(cons (car p)
(list-quicksort cf
(list-filter (lambda (el) (not (cf el (car p)))) (cdr p)))))))

This is the famous quicksort algorithm that was invented by Sir C. A. R. (Tony)
Hoare while he was an exchange student at Moscow State University in 1959.
He was there to study probability theory, but also got a job working on a
project to translate Russian into English. The translation depended on look-
ing up words in a dictionary. Since the dictionary was stored on a magnetic
tape which could be read in order faster than if it was necessary to jump
around, the translation could be done more quickly if the words to translate
were sorted alphabetically. Hoare invented the quicksort algorithm for this
purpose and it remains the most widely used sorting algorithm.

Sir Tony Hoare

Photo by Gespür für Licht
As with list-sort-tree-insert , the expected running time for a randomly ar-
ranged list is in Θ(n log n) and the worst case running time is in Θ(n2). In
the expected cases, each recursive call halves the size of the input list (since if
the list is randomly arranged we expect about half of the list elements are be-
low the value of the first element), so there are approximately log n expected
recursive calls.There are two ways of constructing

a software design: one way is to
make it so simple that there are

obviously no deficiencies, and the
other way is to make it so

complicated that there are no
obvious deficiencies. The first

method is far more difficult. It
demands the same skill, devotion,

insight, and even inspiration as the
discovery of the simple physical

laws which underlie the complex
phenomena of nature.

Sir Tony Hoare, The Emperor’s Old
Clothes (1980 Turing Award Lecture)

Each call involves an application of list-filter , which has running time in Θ(m)
where m is the length of the input list. At each call depth, the total length of
the inputs to all the calls to list-filter is n since the original list is subdivided
into 2d sublists, which together include all of the elements in the original list.
Hence, the total running time is in Θ(n log n) in the expected cases where the
input list is randomly arranged. As with list-sort-tree-insert , if the input list is
not randomly rearranged it is possible that all elements end up in the same
partition. Hence, the worst case running time of list-quicksort is still in Θ(n2).

Exercise 8.10. Estimate the time it would take to sort a list of one million
elements using list-quicksort .

Exercise 8.11. Both the list-quicksort and list-sort-tree-insert procedures
have expected running times in Θ(n log n). Experimentally compare their ac-
tual running times.

Exercise 8.12. What is the best case input for list-quicksort? Analyze the
asymptotic running time for list-quicksort on best case inputs.
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Exercise 8.13. [★] Instead of using binary trees, we could use ternary trees.
A node in a ternary tree has two elements, a left element and a right ele-
ment, where the left element must be before the right element according to
the comparison function. Each node has three subtrees: left , containing ele-
ments before the left element; middle, containing elements between the left
and right elements; and right , containing elements after the right element. Is
it possible to sort faster using ternary trees?

8.2 Searching

In a broad sense, nearly all problems can be thought of as search problems.
We can solve any problem by defining the space of possible solutions, and
then search that space to find a correct solution. For example, to solve the
pegboard puzzle (Exploration 5.2) we enumerate all possible sequences of
moves and searched that space to find a winning sequence.

This section explores a few specific types of search problems. First, we con-
sider the simple problem of finding an element in a list that satisfies some
property. Then, we consider searching for an item in sorted data. Finally, we
consider the more specific problem of efficiently searching for documents
(such as web pages) that contain some target word.

8.2.1 Unstructured Search

Finding an item that satisfies an arbitrary property in unstructured data re-
quires testing each element in turn until one that satisfies the property is
found. Since we have no more information about the property or data, there
is no way to more quickly find a satisfying element.

The list-search procedure takes as input a matching function and a list, and
outputs the first element in the list that satisfies the matching function or false
if there is no satisfying element:1

(define (list-search ef p)
(if (null? p) false ; Not found

(if (ef (car p)) (car p) (list-search ef (cdr p)))))

For example,

(list-search (lambda (el) (= 12 el)) (intsto 10))⇒ false
(list-search (lambda (el) (= 12 el)) (intsto 15))⇒ 12
(list-search (lambda (el) (> el 12)) (intsto 15))⇒ 13

1If the input list contains false as an element, we do not know when the list-search result is
false if it means the element is not in the list or the element whose value is false satisfies the
property. An alternative would be to produce an error if no satisfying element is found, but this
is more awkward when list-search is used by other procedures.
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Assuming the matching function has constant running time, the worst case
running time of list-search is linear in the size of the input list. The worst case
is when there is no satisfying element in the list. If the input list has length n,
there are n recursive calls to list-search, each of which involves only constant
time procedures.

Without imposing more structure on the input and comparison function, there
is no more efficient search procedure. In the worst case, we always need to
test every element in the input list before concluding that there is no element
that satisfies the matching function.

8.2.2 Binary Search

If the data to search is structured, it may be possible to find an element that
satisfies some property without examining all elements. Suppose the input
data is a sorted binary tree, as introduced in Section 8.1.4. Then, with a single
comparison we can determine if the element we are searching for would be
in the left or right subtree. Instead of eliminating just one element with each
application of the matching function as was the case with list-search, with a
sorted binary tree a single application of the comparison function is enough
to exclude approximately half the elements.

The binary-tree-search procedure takes a sorted binary tree and two proce-
dures as its inputs. The first procedure determines when a satisfying element
has been found (we call this the ef procedure, suggesting equality). The sec-
ond procedure, cf , determines whether to search the left or right subtree.
Since cf is used to traverse the tree, the input tree must be sorted by cf .

(define (binary-tree-search ef cf tree) ; requires: tree is sorted by cf
(if (null? tree) false

(if (ef (tree-element tree)) (tree-element tree)
(if (cf (tree-element tree))

(binary-tree-search ef cf (tree-left tree))
(binary-tree-search ef cf (tree-right tree))))))

For example, we can search for a number in a sorted binary tree using = as
the equality function and < as the comparison function:

(define (binary-tree-number-search tree target)
(binary-tree-search (lambda (el) (= target el))

(lambda (el) (< target el))
tree))

To analyze the running time of binary-tree-search, we need to determine the
number of recursive calls. Like our analysis of list-sort-tree, we assume the in-
put tree is well-balanced. If not, all the elements could be in the right branch,
for example, and binary-tree-search becomes like list-search in the patholog-
ical case.
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If the tree is well-balanced, each recursive call approximately halves the num-
ber of elements in the input tree since it passed in either the left or right sub-
tree. Hence, the number of calls needed to reach a null tree is in Θ(log n)
where n is the number of elements in the input tree. This is the depth of the
tree: binary-tree-search traverses one path from the root through the tree un-
til either reaching an element that satisfies the ef function, or reaching a null
node.

Assuming the procedures passed as ef and cf have constant running time, the
work for each call is constant except for the recursive call. Hence, the total
running time for binary-tree-search is in Θ(log n) where n is the number of
elements in the input tree. This is a huge improvement over linear searching:
with linear search, doubling the number of elements in the input doubles the
search time; with binary search, doubling the input size only increases the
search time by a constant.

8.2.3 Indexed Search

The limitation of binary search is we can only use is when the input data is
already sorted. What if we want to search a collection of documents, such as
finding all web pages that contain a given word? The web visible to search
engines contains billions of web pages most of which contain hundreds or
thousands of words. A linear search over such a vast corpus would be infeasi-
ble: supposing each word can be tested in 1 millisecond, the time to search 1
trillion words would be over 30 years!

Providing useful searches over large data sets like web documents requires
finding a way to structure the data so it is not necessary to examine all doc-
uments to perform a search. One way to do this is to build an index that
provides a mapping from words to the documents that contain them. Then,
we can build the index once, store it in a sorted binary tree, and use it to per-
form all the searches. Once the index is built, the work required to perform
one search is just the time it takes to look up the target word in the index. If
the index is stored as a sorted binary tree, this is logarithmic in the number of
distinct words.

Strings. We use the built-in String datatype to represent documents and tar-
get words. A String is similar to a List, but specialized for representing se-
quences of characters. A convenient way to make a String it to just use double
quotes around a sequence of characters. For example, "abcd" evaluates to a
String containing four characters.

The String datatype provides procedures for matching, ordering, and con-
verting between Strings and Lists of characters:

string=?: String× String→ Boolean
Outputs true if the input Strings have exactly the same sequence of char-
acters, otherwise false.

string<?: String× String→ Boolean
Outputs true if the first input String is lexicographically before the second



192 8.2. Searching

input String, otherwise false.

string->list : String→ List
Outputs a List containing the characters in the input String.

list->string : List→ String
Outputs a String containing the characters in the input List.

One advantage of using Strings instead of Lists of characters is the built-in
procedures for comparing Strings; we could write similar procedures for Lists
of characters, but lexicographic ordering is somewhat tricky to get right, so it
is better to use the built-in procedures.

Building the index. The entries in the index are Pairs of a word represented
as a string, and a list of locations where that word appears. Each location is a
Pair consisting of a document identifier (for web documents, this is the Uni-
form Resource Locator (URL) that is the address of the web page represented
as a string) and a Number identifying the position within the document where
the word appears (we label positions as the number of characters in the doc-
ument before this location).

To build the index, we split each document into words and record the posi-
tion of each word in the document. The first step is to define a procedure
that takes as input a string representing an entire document, and produces
a list of (word . position) pairs containing one element for each word in the
document. We define a word as a sequence of alphabetic characters; non-
alphabetic characters including spaces, numbers, and punctuation marks sep-
arate words and are not included in the index.

The text-to-word-positions procedure takes a string as input and outputs a list
of word-position pairs corresponding to each word in the input:

(define (text-to-word-positions s)
(define (text-to-word-positions-iter p w pos)

(if (null? p)
(if (null? w) null (list (cons (list->string w) pos)))
(if (not (char-alphabetic? (car p))) ; finished word

(if (null? w) ; no current word
(text-to-word-positions-iter (cdr p) null (+ pos 1))
(cons (cons (list->string w) pos)

(text-to-word-positions-iter (cdr p) null
(+ pos (list-length w) 1))))

(text-to-word-positions-iter (cdr p)
(list-append w (list (char-downcase (car p))))
pos))))

(text-to-word-positions-iter (string->list s) null 0))

The inner procedure, text-to-word-positions-iter , takes three inputs: a list of
the characters in the document, a list of the characters in the current word,
and a number representing the position in the string where the current word
starts; it outputs the list of (word . position) pairs. The value passed in as w
can be null, meaning there is no current word. Otherwise, it is a list of the
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characters in the current word. A word starts when the first alphabetic char-
acter is found, and continues until either the first non-alphabetic character
or the end of the document. We use the built-in char-downcase procedure to
convert all letters to their lowercase form, so KING, King, and king all corre-
spond to the same word.

The next step is to build an index from the list of word-position pairs. To en-
able fast searching, we store the index in a binary tree sorted by the target
word. The insert-into-index procedure takes as input an index and a word-
position pair and outputs an index consisting of the input index with the in-
put word-position pair added.

The index is represented as a sorted binary tree where each element is a pair
of a word and a list of the positions where that word appears. Each word
should appear in the tree only once, so if the word-position pair to be added
corresponds to a word that is already in the index, the position is added to
the corresponding list of positions. Otherwise, a new entry is added to the
index for the word with a list of positions containing the position as its only
element.

(define (insert-into-index index wp)
(if (null? index)

(make-tree null (cons (car wp) (list (cdr wp))) null)
(if (string=? (car wp) (car (tree-element index)))

(make-tree (tree-left index)
(cons (car (tree-element index))

(list-append (cdr (tree-element index))
(list (cdr wp))))

(tree-right index))
(if (string<? (car wp) (car (tree-element index)))

(make-tree (insert-into-index (tree-left index) wp)
(tree-element index)
(tree-right index))

(make-tree (tree-left index)
(tree-element index)
(insert-into-index (tree-right index) wp))))))

To insert all the (word . position) pairs in a list into the index, we use insert-
into-index to add each pair, passing the resulting index into the next recursive
call:

(define (insert-all-wps index wps)
(if (null? wps) index

(insert-all-wps (insert-into-index index (car wps)) (cdr wps))))

To add all the words in a document to the index we use text-to-word-positions
to obtain the list of word-position pairs. Since we want to include the docu-
ment identity in the positions, we use list-map to add the url (a string that
identifies the document location) to the position of each word. Then, we use
insert-all-wps to add all the word-position pairs in this document to the in-
dex. The index-document procedure takes a document identifier and its text
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as a string, and produces an index of all words in the document.

(define (index-document url text)
(insert-all-wps
null
(list-map (lambda (wp) (cons (car wp) (cons url (cdr wp))))

(text-to-word-positions text))))

We leave analyzing the running time of index-document as an exercise. The
important point, though, is that it only has to be done once for a given set of
documents. Once the index is built, we can use it to answer any number of
search queries without needing to reconstruct the index.

Merging indexes. Our goal is to produce an index for a set of documents, not
just a single document. So, we need a way to take two indexes produced by
index-document and combine them into a single index. We use this repeat-
edly to create an index of any number of documents. To merge two indexes,
we combine their word occurrences. If a word occurs in both documents,
the word should appear in the merged index with a position list that includes
all the positions in both indexes. If the word occurs in only one of the docu-
ments, that word and its position list should be included in the merged index.

(define (merge-indexes d1 d2)
(define (merge-elements p1 p2)

(if (null? p1) p2
(if (null? p2) p1

(if (string=? (car (car p1)) (car (car p2)))
(cons (cons (car (car p1))

(list-append (cdr (car p1)) (cdr (car p2))))
(merge-elements (cdr p1) (cdr p2)))

(if (string<? (car (car p1)) (car (car p2)))
(cons (car p1) (merge-elements (cdr p1) p2))
(cons (car p2) (merge-elements p1 (cdr p2))))))))

(list-to-sorted-tree
(lambda (e1 e2) (string<? (car e1) (car e2)))
(merge-elements (tree-extract-elements d1)

(tree-extract-elements d2)))))))

To merge the indexes, we first use tree-extract-elements to convert the tree
representations to lists. The inner merge-elements procedure takes the two
lists of word-position pairs and outputs a single list.

Since the lists are sorted by the target word, we can perform the merge ef-
ficiently. If the first words in both lists are the same, we produce a word-
position pair that appends the position lists for the two entries. If they are
different, we use string<? to determine which of the words belongs first, and
include that element in the merged list. This way, the two lists are kept syn-
chronized, so there is no need to search the lists to see if the same word ap-
pears in both lists.

Obtaining documents. To build a useful index for searching, we need some
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documents to index. The web provides a useful collection of freely available
documents. To read documents from the web, we use library procedures pro-
vided by DrScheme.

This expression loads the libraries for managing URLs and getting files from
the network: (require (lib "url.ss" "net")). One procedure this library defines
is string->url, which takes a string as input and produces a representation of
that string as a URL. A Uniform Resource Locator (URL) is a standard way to
identify a document on the network. The address bar in most web browsers
displays the URL of the current web page.

The full grammar for URLs is quite complex (see Exercise 2.14), but we will
use simple web page addresses of the form:2

URL ::⇒ http:// Domain OptPath
Domain ::⇒ Name SubDomains
SubDomains ::⇒ . Domain
SubDomains ::⇒ ε
OptPath ::⇒ Path
OptPath ::⇒ ε
Path ::⇒ / Name OptPath

An example of a URL is http://www.whitehouse.gov/index.html. The http indi-
cates the HyperText Transfer Protocol, which prescribes how the web client
(browser) and server communicate with each other. The domain name is
www.whitehouse.gov, and the path name is /index.html (which is the default
page for most web servers).

The library also defines the get-pure-port procedure that takes as input a URL
and produces a port for reading the document at that location. The read-char
procedure takes as input a port, and outputs the first character in that port.
It also has a side effect: it advances the port to the next character. We can
use read-char repeatedly to read each character in the web page of the port.
When the end of the file is reached, the next application of read-char outputs
a special marker representing the end of the file. The procedure eof-object?
evaluates to true when applied to this marker, and false for all other inputs.

The read-all-chars procedure takes a port as its input, and produces a list
containing all the characters in the document associated with the port:

(define (read-all-chars port)
(let ((c (read-char port)))

(if (eof-object? c) null
(cons c (read-all-chars port)))))

Using these procedures, we define web-get , a procedure that takes as input a
string that represents the URL of some web page, and outputs a string repre-
senting the contents of that page.

2We use Name to represent sequences of characters in the domain and path names, although
the actual rules for valid names for each of these are different.

http://www.whitehouse.gov/index.html
http
www.whitehouse.gov
/index.html
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(define (web-get url)
(list->string (read-all-chars (get-pure-port (string->url url)))))

To make it easy to build an index of a set of web pages, we define the index-
pages procedure that takes as input a list of web pages and outputs an index
of the words in those pages. It recurses through the list of pages, indexing
each document, and merging that index with the result of indexing the rest of
the pages in the list.

(define (index-pages p)
(if (null? p) null

(merge-indexes (index-document (car p) (web-get (car p)))
(index-pages (cdr p)))))

We can use this to create an index of any set of web pages. For example, here
we use Jeremy Hylton’s collection of the complete works of William Shake-
speare (http://shakespeare.mit.edu) to define shakespeare-index as an index
of the words used in all of Shakespeare’s plays.

(define shakespeare-index
(index-pages
(list-map
(lambda (play)
(string-append "http://shakespeare.mit.edu/" play "/full.html"))
;; List of plays following the site’s naming conventions.

(list "allswell" "asyoulikeit" "comedy errors" "cymbeline" "lll"
"measure" "merry wives" "merchant" "midsummer" "much ado"
"pericles" "taming shrew" "tempest" "troilus cressida" "twelfth night"
"two gentlemen" "winters tale" "1henryiv" "2henryiv" "henryv"
"1henryvi" "2henryvi" "3henryvi" "henryviii" "john" "richardii"
"richardiii" "cleopatra" "coriolanus" "hamlet" "julius caesar" "lear"
"macbeth" "othello" "romeo juliet" "timon" "titus"))))

Building the index takes about two and a half hours on my laptop. It con-
tains 22949 distinct words and over 1.6 million word occurrences. Much of
the time spent building the index is in constructing new lists and trees for ev-
ery change, which can be avoided by using the mutable data types we cover
in the next chapter. The key idea, though, is that the index only needs to be
built once. Once the documents have been indexed, we can use the index to
quickly perform any search.

Searching. Using an index, searching for pages that use a given word is easy
and efficient. Since the index is a sorted binary tree, we use binary-tree-search
to search for a word in the index:

(define (search-in-index index word)
(binary-tree-search
(lambda (el) (string=? word (car el))) ; first element of (word . position)
(lambda (el) (string<? word (car el)))
index))

http://shakespeare.mit.edu
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As analyzed in the previous section, the expected running time of binary-tree-
search is in Θ(log n) where n is the number of nodes in the input tree.3 The
body of search-in-index applies binary-tree-search to the index. The number
of nodes in the index is the number of distinct words in the indexed docu-
ments. So, the running time of search-in-index scales logarithmically with
the number of distinct words in the indexed documents. Note that the num-
ber and size of the documents does not matter! This is why a search engine
such as Google can respond to a query quickly even though its index contains
many billions of documents.

One issue we should be concerned with is the running time of the procedures
passed into binary-tree-search. Our analysis of binary-tree-search assumes
the equality and comparison functions are constant time procedures. Here,
the procedures as string=? and string<?, which both have worst case running
times that are linear in the length of the input string. As used here, one of
the inputs is the target word. So, the amount of work for each binary-tree-
search recursive call is in Θ(w) where w is the length of word. Thus, the overall
running time of search-in-index is in Θ(w log d) where w is the length of word
and d is the number of words in the index. If we assume all words are of some
maximum length, though, the w term disappears as a constant factor (that is,
we are assuming w < C for some constant C. Thus, the overall running time
is in Θ(log d).

Here are some examples:

> (search-in-index shakespeare-index "mathematics")
("mathematics" The mathematics and the

metaphysics, Fall to them as you
find your stomach serves you; No
profit grows where is no pleasure
ta’en: In brief, sir, study what you
most affect.
William Shakespeare,
The Taming of the Shrew

("http://shakespeare.mit.edu/taming shrew/full.html" . 26917)
("http://shakespeare.mit.edu/taming shrew/full.html" . 75069)
("http://shakespeare.mit.edu/taming shrew/full.html" . 77341))
> (search-in-index shakespeare-index "procedure")
false

Our search-in-index and index-pages procedures form the beginnings of a
search engine service. A useful web search engine needs at least two more
capabilities: a way to automate the process of finding documents to index,
and a way to rank the documents that contain the target word by the like-
lihood they are useful. The exploration at the end of this section addresses
these capabilities.

Histogram. We can also use our index to analyze Shakespeare’s writing. The
index-histogram procedure produces a list of the words in an index sorted by
how frequently they appear:

3Because of the way merge-indexes is defined, we do not actually get this expected running
time. See Exercise 8.17.
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(define (index-histogram index)
(list-quicksort
(lambda (e1 e2) (> (cdr e1) (cdr e2)))
(list-map (lambda (el) (cons (car el) (length (cdr el))))

(tree-extract-elements index))))

The expression,

(list-filter (lambda (entry) (> string-length (car entry) 5))
(index-histogram shakespeare-index))

evaluates to a list of Shakespeare’s favorite 6-letter and longer words along
with the number of times they appear in the corpus (the first two entries are
from their use in the page formatting):

(("blockquote" . 63345) ("speech" . 31099)
("should" . 1557) ("father" . 1086) ("exeunt" . 1061)
("master" . 861) ("before" . 826) ("mistress" . 787)
. . . ("brother" . 623)
. . . ("daughter" . 452)
. . . ("mother" . 418)
. . . ("mustardseed" . 13)
. . . ("excrement" . 5)
. . . ("zwaggered" . 1))

Exercise 8.14. Define a procedure for finding the longest word in a document.
Analyze the running time of your procedure.

Exercise 8.15. Produce a list of the words in Shakespeare’s plays sorted by
their length.

Exercise 8.16. [★] Analyze the running time required to build the index.

a. Analyze the running time of the text-to-word-positions procedure. Use n to
represent the number of characters in the input string, and w to represent
the number of distinct words. Be careful to clearly state all assumptions
on which your analysis relies.

b. Analyze the running time of the insert-into-index procedure.

c. Analyze the running time of the index-document procedure.

d. Analyze the running time of the merge-indexes procedure.

e. Analyze the overall running time of the index-pages procedure. Your result
should describe how the running time is impacted by the number of doc-
uments to index, the size of each document, and the number of distinct
words.

Exercise 8.17. [★] The search-in-index procedure does not actually have the
expected running time in Θ(log w) (where w is the number of distinct words
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in the index) for the Shakespeare index because of the way it is built using
merge-indexes. The problem has to do with the running time of the binary
tree on pathological inputs. Explain why the input to list-to-sorted-tree in the
merge-indexes procedure leads to a binary tree where the running time for
searching is in Θ(w). Modify the merge-indexes definition to avoid this prob-
lem and ensure that searches on the resulting index run in Θ(log w).

Exercise 8.18. [★★] The site http://www.speechwars.com provides an interest-
ing way to view political speeches by looking at how the frequency of the use
of different words changes over time. Use the index-histogram procedure
to build a historical histogram program that takes as input a list of indexes
ordered by time, and a target word, and output a list showing the number of
occurrences of the target word in each of the indexes. You could use your
program to analyze how Shakespeare’s word use is different in tragedies and
comedies or to compare Shakespeare’s vocabulary to Jefferson’s.

Exploration 8.1: Searching the Web

In addition to fast indexed search, web search engines have to solve two prob-
lems: (1) find documents to index, and (2) identify the most important docu-
ments that contain a particular search term.

For our Shakespeare index example, we manually found a list of interesting
documents to index. This approach does not scale well to indexing the World
Wide Web where there are trillions of documents and new ones are created
all the time. For this, we need a web crawler . web crawler

A web crawler finds documents on the web. Typical web crawlers start with
a set of seed URLs, and then find more documents to index by following the
links on those pages. This proceeds recursively: the links on each newly dis-
covered page are added to the set of URLs for the crawler to index. To develop
a web crawler, we need a way to extract the links on a given web page, and to
manage the set of pages to index.

a. [★] Define a procedure extract-links that takes as input a string represent-
ing the text of a web page and outputs a list of all the pages linked to
from this page. Linked pages can be found by searching for anchor tags
on the web page. An anchor tag has the form:4 <a href=target>. (The text-
to-word-positions procedure may be a helpful starting point for defining
extract-links.)

b. Define a procedure crawl-page that takes as input an index and a string
representing a URL. As output, it produces a pair consisting of an index
(that is the result of adding all words from the page at the input URL to
the input index) and a list of URLs representing all pages linked to by the
crawled page.

c. [★★] Define a procedure crawl-web that takes as input a list of seed URLs
and a Number indicating the maximum depth of the crawl. It should out-
put an index of all the words on the web pages at the locations given by

4Not all links match this structure exactly, so this may miss some of the links on a page.

http://www.speechwars.com
target
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the seed URLs and any page that can be reached from these seed URLs by
following no more than the maximum depth number of links.

The rank assigned to a document is
calculated from the ranks of

documents citing it. In addition,
the rank of a document is

calculated from a constant
representing the probability that a
browser through the database will
randomly jump to the document.
The method is particularly useful
in enhancing the performance of

search engine results for
hypermedia databases, such as the
world wide web, whose documents

have a large variation in quality.
United States Patent #6,285,999,

September 2001. (Inventor: Lawrence
Page, Assignee: Stanford University)

For a web search engine to be useful, we don’t want to just get a list of all the
pages that contain some target word, we want the list to be sorted accord-
ing to which of those pages are most likely to be interesting. Selecting the
best pages for a given query is a challenging and important problem, and the
ability to do this well is one of the main things that distinguishes web search
engines. Many factors are used to rank pages including an analysis of the text
on the page itself, whether the target word is part of a title, and how recently
the page was updated.

The best ways of ranking pages also consider the pages that link to the ranked
page. If many pages link to a given page, it is more likely that the given page is
useful. This property can also be defined recursively: a page is highly ranked
if there are many highly-ranked pages that link to it.

The ranking system used by Google is based on this formula:

R(u) = ∑
v∈Lu

R(v)
L(v)

where Lu is the set of web pages that contain links to the target page u and
L(v) is the number of links on the page v (thus, the value of a link from a page
containing many links is less than the value of a link from a page containing
only a few links). The value R(u) gives a measure of the ranking of the page
identified by u, where higher values indicate more valuable pages.

The problem with this formula is that is is circular: there is no base case, and
no way to order the web pages to compute the correct rank of each page in
turn, since the rank of each page depends on the rank of the other pages that
link to it.

One way to approximate equations like this one is to use relaxation. Relax-relaxation

ation obtains an approximate solution to some systems of equations by re-
peatedly evaluating the equations. To estimate the page ranks for a set of web
pages, we initially assume every page has rank 1 and evaluate R(u) for all the
pages (using the value of 1 as the rank for every other page). Then, re-evaluate
the R(u) values using the resulting ranks. A relaxation keeps repeating until
the values stop changing by some threshold amount, but there is no guar-
antee how quickly this will happen. For the page ranking evaluation, it may
be enough to decide on some fixed number of iterations and use the ranks
resulting from the last iteration as the final ranks.

d. [★★] Define a procedure, web-link-graph, that takes as input a set of URLs
and produces as output a graph of the linking structure of those docu-
ments. The linking structure can be represented as a List where each el-
ement of the List is a pair of a URL and a list of all the URLs that include
a link to that URL. The extract-links procedure from the previous explo-
ration will be useful for determining the link targets of a given URL.
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e. [★] Define a procedure that takes as input the output of web-link-graph
and outputs a preliminary ranking of each page that measures the number
of other pages that link to that page.

f. [★★] Refine your page ranking procedure to weight links from highly-ranked
pages more heavily in a page’s rank by using a algorithm.

g. [★ ★ ★★] Come up with a cool name, set up your search engine as a web
service, and attract more than 0.001% of all web searches to your site.

8.3 Summary

The focus of Part II has been on predicting properties of procedures, in partic-
ular how their running time scales with the size of their input. This involved
many encounters with the three powerful ideas introduced in Section 1.4: re-
cursive definitions, universality, and abstraction. The simple Turing Machine
model is a useful abstraction for modeling nearly all conceivable computing
machines, and the few simple operations it defines are enough for a universal
computer. Actual machines use the digital abstraction to allow a continuous
range of voltages to represent just two values. The asymptotic operators used
to describe running times are also a kind of abstraction—they allow us to rep-
resent the set of infinitely many different functions with a compact notation.

In Part III, we will see many more recursive definitions, and extend the no-
tion of recursive definitions to the language interpreter itself. We change the
language evaluation rules themselves, and see how different evaluation rules
enable different ways of expressing computations.
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9
Mutation

Faced with the choice between changing one’s mind and proving
that there is no need to do so, almost everyone gets busy on the proof.

John Kenneth Galbraith

The subset of Scheme we have used so far provides no way to change the
value associated with a name. This enables the substitution model of eval-
uation. Since the value associated with a name was always the value it was
defined as, no complex evaluation rules are needed to determine the value
associated with a name.

This chapter introduces special forms known as mutators that allow programs mutators

to change the value in a given place. Introducing mutation does not change
the computations we can express—every computation that can be expressed
using mutation could also be expressed using the only purely functional sub-
set of Scheme from Chapter 3. It does, however, make it possible to express
certain computations more efficiently and clearly than could be done with-
out it. Adding mutation is not free, however; reasoning about the value of
expressions becomes much more complex.

9.1 Assignment

The set! (pronounced “set-bang!”) special form associates a new value with
an already defined name. The exclamation point at the end of set! follows
a naming convention to indicate that an operation may mutate state. A set
expression is also known as an assignment . It assigns a value to a variable. assignment

The grammar rule for assignment is:

Expression ::⇒ Assignment
Assignment ::⇒ (set! Name Expression)

The evaluation rule for an assignment is:

Evaluation Rule 7: Assignment. To evaluate an assignment, eval-
uate the expression, and replace the value associated with the name
with the value of the expression. An assignment has no value.
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Assignments do not produce output values, but are used for their side effects.
They change the value of some state (namely, the value associated with the
name in the set expression), but do not produce an output.

Here is an example use of set!:

> (define num 200)
> num
200
> (set! num 150)
> (set! num 1120)
> num
1120

Begin expression. Since assignments do not evaluate to a value, they are
often used inside a begin expression. A begin expression is a special form
that evaluates a sequence of expressions in order and evaluates to the value
of the last expression.

The grammar rule for the begin expression is:

Expression ::⇒ BeginExpression
BeginExpression ::⇒ (begin MoreExpressions Expression)

The evaluation rule is:

Evaluation Rule 8: Begin. To evaluate a begin expression,

(begin Expression1 Expression2 . . . Expressionk)

evaluate each subexpression in order from left to right. The value
of the begin expression is the value of the last subexpression, Expressionk.

The values of all the subexpressions except the last one are ignored; these
subexpressions are only evaluated for their side effects.

The begin expression must be a special form. It is not possible to define a
procedure that behaves identically to a begin expression since the applica-
tion rule does not specify the order in which the operand subexpressions are
evaluated.

The definition syntax for procedures includes a hidden begin expression.

(define (Name Parameters) MoreExpressions Expression)

is an abbreviation for:

(define Name
(lambda (Parameters) (begin MoreExpressions Expression)))
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The let expression introduced in Section 8.1.1 also includes a hidden begin
expression.

(let ((Name1 Expression1) (Name2 Expression2)
⋅ ⋅ ⋅ (Namek Expressionk))

MoreExpressions Expression)

is equivalent to the application expression:

((lambda (Name1 Name2 . . . Namek)
(begin MoreExpressions Expression))

Expression1 Expression2 . . . Expressionk)

9.2 Impact of Mutation

Introducing assignment presents many complications for our programming
model. It invalidates the substitution model of evaluation introduced in Sec-
tion 3.6.2 and found satisfactory until this point. All the procedures we can
define without using mutation behave almost like mathematical functions—
every time they are applied to the same inputs they produce the same out-
put.1 Assignments allow us to define non-functional procedures that produce
different results for different applications even with the same inputs.

Example 9.1: Counter. Consider the update-counter! procedure:

(define (update-counter!)
(set! counter (+ counter 1))
counter)

To use update-counter! , we must first define the counter variable it uses:

(define counter 0)

Every time (update-counter!) is evaluated the value associated with the name
counter is increased by one and the result is the new value of counter. Because
of the hidden begin expression in the definition, the (set! counter (+ counter
1)) is always evaluated first, followed by counter which is the last expression
in the begin expression so its value is the value of the procedure. Thus, the
value of (update-counter!) is 1 the first time it is evaluated, 2 the second time,
and so on.

The substitution model of evaluation doesn’t make any sense for this evalua-
tion: the value of counter changes during the course of the evaluation. Even
though (update-counter!) is the same expression, every time it is evaluated it
evaluates to a different value.

1Observant readers should notice that we have already used a few procedures that are not
functions including the printing procedures from Section 4.5.1, and random and read-char from
the previous chapter.
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Mutation also means some expressions have undetermined values. Consider
evaluating the expression (+ counter (update-counter!)). The evaluation rule
for the application expression does not specify the order in which the operand
subexpressions are evaluated. But, the value of the name expression counter
depends on whether it is evaluated before or after the application of update-
counter! is evaluated!

The meaning of the expression is ambiguous: if the second subexpression,
counter , is evaluated before the third subexpression, (update-counter!), the
value of the expression is 1 the first time it is evaluated, and 3 the second time
it is evaluated. Alternately, but still following the evaluation rules, the third
subexpression could be evaluated before the second subexpression. With this
ordering, the value of the expression is 2 the first time it is evaluated, and 4 the
second time it is evaluated.

9.2.1 Names, Places, Frames, and Environments

Because assignments can change the value associated with a name, the order
in which expressions are evaluated now matters. As a result, we need to re-
visit several of our other evaluation rules and change the way we think about
processes.

Since the value associated with a name can now change, instead of associat-
ing a value directly with a name we use a name as a way to identify a place. Aplace

place has a name and holds the value associated with that name. With mu-
tation, we can change the value in a place; this changes the value associated
with the place’s name. A frame is a collection of places.frame

An environment is a pair consisting of a frame and a pointer to a parent envi-environment

ronment. A special environment known as the global environment has no
parent environment. The global environment exists when the interpreter
starts, and is maintained for the lifetime of the interpreter. Initially, the global
environment contains the built-in procedures. Names defined in the inter-
actions buffer are placed in the global environment. Other environments are
created and destroyed as a program is evaluated. Figure 9.1 shows some ex-
ample environments, frames, and places.

Every environment has a parent environment except for the global environ-
ment. All other environments descend from the global environment. Hence,
if we start with any environment, and continue to follow its parent pointers
we always eventually reach the global environment.

The key change to our evaluation model is that whereas before we could eval-
uate expressions without any notion of where they are evaluated, once we
introduce mutation, we need to consider the environment in which an ex-
pression is evaluated. An environment captures the current state of the inter-
preter. The value of an expression depends on both the expression itself, and
on the environment in which it is evaluated.
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9.2.2 Evaluation Rules with State

Introducing mutation requires us to revise the evaluation rule for names, the
definition rule, and the application rule for constructed procedures. All of
these rules must be adapted to be more precise about how values are associ-
ated with names by using places and environments.

Names. The new evaluation rule for a name expression is:

Stateful Evaluation Rule 2: Names. To evaluate a name expression,
search the evaluation environment’s frame for a place with a name
that matches the name in the expression. If such a place exists, the
value of the name expression is the value in that place. Otherwise,
the value of the name expression is the result of evaluating the name
expression in the parent environment. If the evaluation environment
has no parent, the name is not defined and the name expression eval-
uates to an error.

For example, to evaluate the value of the name expression x in Environment
B in Figure 9.1, we first look in the frame of Environment B for a place named
x. Since there is no place named x in that frame, we follow the parent pointer
to Environment A, and evaluate the value of the name expression in Environ-
ment A. Environment A’s frame contains a place named x that contains the
value 7, so the value of evaluating x in Environment B is 7.

The value of the same expression in the Global Environment is 3 since that is
the value in the place named x in the Global Environment’s frame.

To evaluate the value of y in Environment A, we first look in the frame in En-
vironment A for a place named y. Since no y place exists, evaluation con-

Figure 9.1. Sample environments.
The global environment contains a frame with three names. Each name has an associated place
that contains the value associated with that name. The value associated with counter is the
currently 0. The value associated with set-counter! is the procedure we defined in Example 9.1.
A procedure is characterized by its parameters, body code, and a pointer to the environment in
which it will be evaluated.



210 9.2. Impact of Mutation

tinues by evaluating the expression in the parent environment, which is the
Global Environment. The Global Environments frame does not contain a
place named y, and the global environment has no parent, so the name is
undefined and the evaluation results in an error.

Definition. The revised evaluation rule for a definition is:

Stateful Definition Rule. A definition creates a new place with the
definition’s name in the frame associated with the evaluation envi-
ronment. The value in the place is value of the definition’s expression.
If there is already a place with the name in the current frame, the def-
inition replaces the old place with a new place and value.

The rule for redefinitions means we could use define in some situations to
mean something similar to set!. The meaning is different, though, since an
assignment finds the place associated with the name and puts a new value
in that place. Evaluating an assignment follows the Stateful Evaluation Rule 2
to find the place associated with a name. Hence, (define Name Expression)
has a different meaning from (set! Name Expression) when there is no place
named Name in the current execution environment. To avoid this confusion,
only use define for the first definition of a name and always use set! when the
intent is to change the value associated with a name.

Application. The final rule that must change because of mutation is the
application rule for constructed procedures. Instead of using substitution,
the new application rule creates a new environment with a frame containing
places named for the parameters.

Stateful Application Rule 2: Constructed Procedures. To apply a
constructed procedure:

1. Construct a new environment, whose parent is the environment
of the applied procedure.

2. For each procedure parameter, create a place in the frame of
the new environment with the name of the parameter. Evaluate
each operand expression in the environment or the application
and initialize the value in each place to the value of the corre-
sponding operand expression.

3. Evaluate the body of the procedure in the newly created envi-
ronment. The resulting value is the value of the application.

Consider evaluating the application expression (bigger 3 4) where bigger is
the procedure from Example 3.3: (define (bigger a b) (if (> a b) a b))).

To evaluate an application of bigger follow Stateful Application Rule 2. First,
create a new environment. Since bigger was defined in the global environ-
ment, its environment pointer points to the global environment. Hence, the
parent environment for the new environment is the global environment.
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Next, create places in the new environment’s frame named for the procedure
parameters, a and b. The value in the place associated with a is 3, the value
of the first operand expression. The value in the place associated with b is
4. Figure 9.2 shows the resulting environment. The final step is to evaluate
the body expression, (if (> a b) a b), in the newly created environment. The
values of a and b are found in the application environment.

Figure 9.2. Environment created to evaluate (bigger 3 4).

The new application rule becomes more interesting when we consider proce-
dures that create new procedures. For example, make-adder takes a number
as input and produces as output a procedure:

(define (make-adder v) (lambda (n) (+ n v)))

The environment that results from evaluating (define inc (make-adder 1)) is
shown in Figure 9.3. The name inc has a value that is the procedure result-
ing from the application of (make-adder 1). To evaluate the application, we
follow the application rule above and create a new environment containing a
frame with the parameter name, inc, and its associated operand value, 1.

The result of the application is the value of evaluating its body in this new
environment. Since the body is a lambda expression, it evaluates to a pro-
cedure. That procedure was created in the execution environment that was

Figure 9.3. Environment after evaluating (define inc (make-adder 1)).



212 9.2. Impact of Mutation

Figure 9.4. Environment for evaluating the body of (inc 149).

created to evaluate the application of make-adder , hence, its environment
pointer points to the application environment which contains a place named
inc holding the value 1.

Next, consider evaluating (inc 149). Figure 9.4 illustrates the environment for
evaluating the body of the inc procedure. The evaluation creates a new envi-
ronment with a frame containing the place n and its associated value 149. We
evaluate the body of the procedure, (+ n v), in that environment. The value
of n is found in the execution environment. The value of v is not found there,
so evaluation continues by looking in the parent environment. It contains a
place v containing the value 1.

Exercise 9.1. Devise a Scheme expression that has four possible values de-
pending on the order in which application subexpressions are evaluated.

Exercise 9.2. Draw the environment that results after evaluating:

> (define alpha 0)
> (define beta 1)
> (define update-beta! (lambda () (set! beta (+ alpha 1)))
> (set! alpha 3)
> (update-beta!)
> (set! alpha 4)

Exercise 9.3. Draw the environment that results after evaluating the follow-
ing expressions, and explain what the value of the final expression is. (Hint:
first, rewrite the let expression as an application.)

> (define (make-applier proc) (lambda (x) (proc x))
> (define p (make-applier (lambda (x) (let ((x 2)) x))))
> (p 4)
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9.3 Mutable Pairs and Lists

The Pair datatype introduced in Chapter 5 is immutable. This means that immutable

once a Pair is created, the values in its cells cannot be changed.2

The MutablePair datatype is a mutable pair. A MutablePair is constructed us-
ing mcons, which is similar to cons but produces a MutablePair. The parts of
a MutablePair can be extracted using the mcar and mcdr procedures, which
behave analogously to the car and cdr procedures. A MutablePair is a distinct
datatype from a Pair; it is an error to apply car to a MutablePair, or to apply
mcar to an immutable Pair.

The MutablePair datatype also provides two procedures that change the val-
ues in the cells of a MutablePair:

set-mcar! : MutablePair× Value→ Void
Replaces the value in the first cell of the MutablePair with the value of
the second input.

set-mcdr! : MutablePair× Value→ Void
Replaces the value in the second cell of the MutablePair with the value
of the second input.

The Void result type indicates that set-mcar! and set-mcdr! do not output any
value.

Here are some interactions using a MutablePair:

> (define pair (mcons 1 2))
> (set-mcar! pair 3)
> pair
(3 . 2)
> (set-mcdr! pair 4)
> pair
(3 . 4)

The set-mcdr! procedure allows us to create a pair where the second cell of
the pair is itself: (set-mcdr! pair pair). This produces the rather frightening
object shown in Figure 9.5.

Figure 9.5. Mutable pair created by evaluating (set-mcdr! pair pair).

2The mutability of standard Pairs is quite a controversial issue. In most Scheme implemen-
tations and the standard definition of Scheme, a standard cons pair is mutable. But, as we will
see later in the section, mutable pairs cause lots of problems. So, the designers of DrScheme de-
cided for Version 4.0 to make the standard Pair datatype immutable and to provide a MutablePair
datatype for use when mutation is needed.
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Every time we apply mcdr to pair , we get the same pair as the output. Hence,
the value of (mcar (mcdr (mcdr (mcdr pair)))) is 3.

We can also create objects that combine mutable and immutable Pairs. For
example, (define mstruct (cons (mcons 1 2) 3)) defines mstruct as an immutable
Pair containing a MutablePair in its first cell. Since the outer Pair is immutable,
we cannot change the objects in its cells. Thus, the second cell of mstruct al-
ways contains the value 3. We can, however, change the values in the cells of
the mutable pair in its first cell. For example, (set-mcar! (car mstruct) 7) re-
places the value in the first cell of the MutablePair in the first cell of mstruct .

Mutable Lists. As we used immutable Pairs to build immutable Lists, we can
use MutablePairs to construct MutableLists. A MutableList is either null or a
MutablePair whose second cell contains a MutableList.

The MutableList type is defined by a library. To use it, evaluate the following
expression: (require scheme/mpair). All of the examples in this chapter as-
sume this expression has been evaluated. This library defines the mlist pro-
cedure that is similar to the list procedure, but produces a MutableList in-
stead of an immutable List. For example, (mlist 1 2 3) produces the structure
shown in Figure 9.6.

Figure 9.6. MutableList created by evaluating (mlist 1 2 3).

Each node in the list is a MutablePair, so we can use the set-mcar! and set-
mcdr! procedures to change the values in the cells.

> (define m1 (mlist 1 2 3))
> (set-mcar! (mcdr m1) 5)
> (set-mcar! (mcdr (mcdr m1)) 0)
> m1
{1 5 0} ; DrScheme denotes MutableLists using curly brackets.

Many of the list procedures from Chapter 5 can be directly translated to work
on mutable lists. For example, we can define mlist-length as:

(define (mlist-length m)
(if (null? m) 0 (+ 1 (mlist-length (mcdr m)))))

As shown in Exercise 9.4, though, we need to be careful when using mcdr to
recurse through a MutableList since structures created with MutablePairs can
include circular pointers.

Exercise 9.4. What does (mlist-length pair) evaluate to for the pair shown in
Figure 9.5?
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Exercise 9.5. [★] Define a mpair-circular? procedure that takes a MutablePair
as its input and outputs true when the input contains a cycle and false other-
wise.

9.4 Imperative Programming

Mutation enables a style of programming known as imperative programming . imperative programming

Whereas functional programming is concerned with defining procedures that
can be composed to solve a problem, imperative programming is primarily
concerned with modifying state in ways that lead to a state that provides a
solution to a problem.

The main operation in function programming is application. A functional
program applies a series of procedures, passing the outputs of one applica-
tion as the inputs to the next procedure application. With imperative pro-
gramming, the primary operation is assignment (performed by set!, set-mcar! ,
and set-mcdr! in Scheme; but typically by an assignment operator, often := or
=, in languages designed for imperative programming such as Pascal, Algol60,
Java, and Python).

The next subsection presents imperative-style versions of some of the proce-
dures we have seen in previous chapters for manipulating lists. The following
subsection introduces some imperative control structures.

9.4.1 List Mutators

All the procedures for changing the value of a list in Section 5.4.3 actually do
not change any values; instead they construct new lists. When our goal is only
to change some elements in an existing list, this wastes memory constructing
a new list and may require more running time than a procedure that modi-
fies the input list instead. Here, we revisit some of the procedures from Sec-
tion 5.4.3, but instead of producing new lists with the desired property these
procedures modify the input list.

Example 9.2: Mapping. The list-map procedure (from Example 5.4) pro-
duces a new list that is the result of applying the same procedure to every
element in the input list.

(define (list-map f p)
(if (null? p) null (cons (f (car p)) (list-map f (cdr p)))))

Whereas the functional list-map procedure uses cons to build up the output
list, the imperative mlist-map! procedure uses set-car! to mutate the input
list’s elements:
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(define (mlist-map! f p)
(if (null? p) (void)

(begin (set-mcar! p (f (mcar p)))
(mlist-map! f (mcdr p)))))

The base case uses (void) to evaluate to no value. Unlike list-map, mlist-map!
produces no output but is used for its side effects.

Assuming the procedure passed as f has constant running time, the running
time of the mlist-map! procedure is in Θ(n) where n is the number of ele-
ments in the input list. There will be n recursive applications of mlist-map!
since each one passes in a list one element shorter than the input list, and
each application requires constant time. This is asymptotically the same as
the list-map procedure, but we would expect the actual running time to be
faster since there is no need to construct a new list.

The memory consumed is asymptotically different. The list-map procedure
allocates n new cons cells, so it requires memory in Θ(n) where n is the num-
ber of elements in the input list. The mlist-map! procedure is tail recursive (so
no stack needs to be maintained) and does not allocate any new cons cells, so
it requires constant memory.

Example 9.3: Filtering. The list-filter procedure takes as inputs a test pro-
cedure and a list and outputs a list containing the elements of the input list for
which applying the test procedure evaluates to a true value. In Example 5.5,
we defined list-filter as:

(define (list-filter test p)
(if (null? p) null

(if (test (car p)) (cons (car p) (list-filter test (cdr p)))
(list-filter test (cdr p)))))

An imperative version of list-filter removes the unsatisfying elements from a
mutable list. We define mlist-filter! using set-mcdr! to skip over elements that
should not be included in the filtered list:

(define (mlist-filter! test p)
(if (null? p) null

(begin (set-mcdr! p (mlist-filter! test (mcdr p)))
(if (test (mcar p)) p (mcdr p)))))

Assuming the test procedure has constant running time, the running time
of the mlist-filter! procedure is linear in the length of the input list. As with
mlist-map! , the space used by mlist-filter! is constant, which is better than
the Θ(n) space used by list-filter .

Unlike mlist-map! , mlist-filter! outputs a value. This is needed when the first
element is not in the list. Consider this example:

> (define a (mlist 1 2 3 1 4))
> (mlist-filter! (lambda (x) (> x 1)) a)
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{2 3 4}
> a
{1 2 3 4}

The value of a still includes the initial 1. There is no way for mlist-filter! to
remove the first element of the list: the set-mcar! and set-mcdr! procedures
only enable us to change what the mutable pair’s components contain.

To avoid this, mlist-filter! should be used with set! to assign the variable to the
resulting mutable list:

(set! a (mlist-filter! (lambda (x) (> x 1)) a))

Example 9.4: Append. The list-append procedure takes as input two lists
and produces a list consisting of the elements of the first list followed by the
elements of the second list. An imperative version of this procedure instead
mutates the first list to contain the elements of both lists.

(define (mlist-append! p q)
(if (null? p) (error "Cannot append to an empty list")

(if (null? (mcdr p)) (set-mcdr! p q)
(mlist-append! (mcdr p) q))))

The mlist-append! procedure produces an error when the first input is null
— this is necessary since if the input is null there is no pair to modify.3

Like list-append, the running time of the mlist-append! procedure is in Θ(n)
where n is the number of elements in the first input list. The list-append pro-
cedure copies the first input list, so its memory use is in Θ(n) where n is the
number of elements in the first input list. The memory use of mlist-append!
is constant: it does not create any new cons cells to append the lists.

Aliasing. Adding mutation makes it possible to define many procedures more
efficiently and compactly, but introduces many new potential pitfalls in pro-
ducing reliable programs. Since our evaluation model now depends on the
environment in which an expression is evaluated, it becomes much harder to
reason about code by itself.

One challenge introduced by mutation is aliasing . There may be different aliasing

ways to refer to the same object. This was true before mutation also, but didn’t
matter since the value of an object never changed. Once object values can
change, however, aliasing can lead to surprising behaviors. For example,

> (define m1 (mlist 1 2 3))
> (define m2 (mlist 4 5 6))
> (mlist-append! m1 m2)

3The mappend! library procedure in DrScheme takes a different approach: when the first in-
put is null it produces the value of the second list as output in this case. This has unexpected
behavior when an expression like (append! a b) is evaluated where the value of a is null since the
value of a is not modified.
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> (set! m1 (mlist-filter! (lambda (el) (= (modulo el 2) 0)) m1))

The value of m2 was defined as {4 5 6}, and no expressions since then ex-
plicitly modified m2. But, the value of m2 has still changed! It changed be-
cause after evaluating (mlist-append! m1 m2) the m1 object shares cells with
m2. Thus, when the mlist-filter! application changes the value of m1, it also
changes the value of m2 to {4 6}.

The built-in procedure eq? takes as input any two objects and outputs a Boolean.
The result is true if and only if the inputs are the same object. For example,
(eq? 3 3) evaluates to true but (eq? (mcons 1 2) (mcons 1 2)) evaluates to false.
Even though the input pairs have the same value, they are different objects—
mutating one of the pairs does not effect the value of the other pair.

For the earlier mlist-append! example, (eq? m1 m2) evaluates to false since m1
and m2 do not refer to the same object. But, (eq? (mcdr m1) m2) evaluates to
true since the second cell of m1 points to the same object as m2. Evaluating
(set-mcar! m2 3) changes the value of both m1 and m2 since the modified cell
is common to both structures.

Exercise 9.6. Define an imperative-style procedure, mlist-inc! that takes as
input a MutableList of Numbers and modifies the list by adding one to the
value of each element in the list.

Exercise 9.7. [★] Define a procedure mlist-truncate! that takes as input a Mu-
tableList and modifies the list by removing the last element in the list. Specify
carefully the requirements for the input list to your procedure.

Exercise 9.8. [★] Define a procedure mlist-make-circular! that takes as input
a MutableList and modifies the list to be a circular list containing all the ele-
ments in the original list, repeated indefinitely. For example, (mlist-make-
circular! (mlist 3)) should produce the same structure as the circular pair
shown in Figure 9.5.

Exercise 9.9. [★] Define an imperative-style procedure, mlist-reverse! , that re-
verses the elements of a list. Is it possible to implement a mlist-reverse! pro-
cedure that is asymptotically faster than the list-reverse procedure from Ex-
ample 5.4?

Exercise 9.10. [★★] Define a procedure mlist-aliases? that takes as input two
mutable lists and outputs true if and only if there are any mcons cells shared
between the two lists.

9.4.2 Imperative Control Structures

The imperative style of programming makes progress by using assignments to
manipulate state. In many cases, solving a problem requires repeated opera-
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tions. With functional programming, this is done using recursive definitions.
We make progress towards a base case by passing in different values for the
operands with each recursive application. With imperative programming, we
can make progress by changing state repeatedly without needing to pass in
different operands.

A common control structure in imperative programming is a while loop. A while loop

while loop has a test condition and a body. The test condition is a predicate.
If it evaluates to true, the while loop body is executed. Then, the test con-
dition is evaluated again. The while loop continues to execute until the test
condition evaluates to false.

We can define while as a procedure that takes as input two procedures, a test
procedure and a body procedure, each of which take no parameters. Even
though the test and body procedures take no parameters, they need to be
procedures instead of expressions, since every iteration of the loop should
re-evaluate the test and body expressions of the passed procedures.

(define (while test body)
(if (test)

(begin (body) (while test body))
(void))) ; no result value

We can use the while procedure to implement Fibonacci similarly to the fast-
fibo procedure:

(define (fibo-while n)
(let ((a 1) (b 1))

(while (lambda () (> n 2))
(lambda () (set! b (+ a b))

(set! a (− b a))
(set! n (− n 1))))

b))

The final value of b is the result of the fibo-while procedure. In each iteration,
the body procedure is applied, updating the values of a and b to the next
Fibonacci numbers.

The value assigned to a is computed as (− b a) instead of b. The reason for
this is the previous assignment expression has already changed the value of
b, by adding a to it. Since the next value of a should be the old value of b,
we can find the necessary value by subtracting a. The fact that the value of
a variable can change depending on when it is used often makes imperative
programming trickier than functional programming.

An alternative approach, which would save the need to do subtraction, is to
store the old value in a temporary value. We could use this as the body proce-
dure instead:
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(lambda ()
(let ((oldb b))

(set! b (+ a b))
(set! a oldb)
(set! n (− n 1))))

Many programming languages provide control constructs similar to the while
procedure defined above. For example, here is a version of the procedure in
the Python programming language:

def fibonacci (n):
a = 1
b = 1
while n > 2:

a, b = b, a + b
n = n− 1

return b

We use Python starting in Chapter 11, although you can probably guess what
most of this procedure means without knowing Python. The most interesting
statement is the double assignment: a, b = b, a + b. This assigns the new value
of a to the old value of b, and the new value of b to the sum of the old values
of a and b. Without the double assignment operator, it would be necessary
to store the old value of b in a new variable so it can be assigned to a after
updating b to the new value.

Exercise 9.11. Define mlist-map! from the previous section using while.

Exercise 9.12. Another common imperative programming structure is a repeat-
until loop. Define a repeat-until procedure that takes two inputs, a body pro-repeat-until

cedure and a test procedure. The procedure should evaluate the body proce-
dure repeatedly, until the test procedure evaluates to a true value. For exam-
ple, using repeat-until we could define factorial as:

(define (factorial n)
(let ((fact 1))

(repeat-until
(lambda () (set! fact (∗ fact n)) (set! n (− n 1)))
(lambda () (< n 1)))

fact))

Exercise 9.13. [★★] Improve the efficiency of the indexing procedures from
Section 8.2.3 by using mutation. Start by defining a mutable binary tree ab-
straction, and use this and the MutableList data type to implement an im-
perative-style insert-into-index! procedure that mutates the input index by
adding a new word-position pair to it. Then, define an efficient merge-index!
procedure that takes two mutable indexes as its inputs and modifies the first
index to incorporate all word occurrences in the second index. Analyze the
impact of your changes on the asymptotic running time.
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9.5 Summary

Adding the ability to change the value associated with a name complicates
our evaluation rules, but enables simpler and more efficient solutions to many
problems. Mutation allows us to efficiently manipulate larger data structures
since it is not necessary to copy the data structure to make changes to it.

Once we add assignment to our language, the order in which things happen
affects the value of some expressions. Instead of evaluating expressions using
substitution, we now need to always evaluate an expression in a particular
execution environment.

The problem with mutation is that it makes it much tougher to reason about
the meaning of an expression. In the next chapter, we introduce a new kind
of abstraction that packages procedures with the state they manipulate. This
helps manage some of the complexity resulting from mutation by limiting the
places where data may be accessed and modified.
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10
Objects

It was amazing to me, and it is still amazing, that people could not imagine what the
psychological difference would be to have an interactive terminal. You can talk about it
on a blackboard until you are blue in the face, and people would say, “Oh, yes, but why
do you need that?”. . . We used to try to think of all these analogies, like describing it in

terms of the difference between mailing a letter to your mother and getting on the
telephone. To this day I can still remember people only realizing when they saw a real

demo, say, “Hey, it talks back. Wow! You just type that and you got an answer.”
Fernando Corbató (who worked on Whirlwind in the 1950s),

Charles Babbage Institute interview, 1989

So far, we have seen two main approaches for solving problems:

Functional programming
Break a problem into a group of simpler procedures that can be com-
posed to solve the problem (introduced in Chapter 4).

Data-centric programming
Model the data the problem involves, and develop procedures to ma-
nipulate that data (introduced in Chapter 5, and extended to imperative
programming with mutation in the previous chapter).

All computational problems involve both data and procedures. All proce-
dures act on some form of data; without data they can have no meaningful
inputs and outputs. Any data-focused design must involve some procedures
to perform computations using that data.

This chapter introduces a new problem-solving approach known as object-
oriented programming . By packaging procedures and data together it over- object-oriented programming

comes a weakness of both previous approaches: the data and the procedures
that manipulate it are separate.

Unlike many programming languages, Scheme does not provide special built-
in support for objects.1 We build an object system ourselves, taking advan-
tage of the stateful evaluation rules. By building an object system from simple
components, we provide a clearer and deeper understanding of how object
systems work. In Chapter 11, we see how Python provides language support
for object-oriented programming.

1This refers to the standard Scheme language, not the many extended Scheme languages pro-
vided by DrScheme. The MzScheme language does provide additional constructs for supporting
objects, but we do not cover them in this book.
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The next section introduces techniques for programming with objects that
combine state with procedures that manipulate that state. Section 10.2 de-
scribes inheritance, a powerful technique for programming with objects byinheritance

implementing new objects that add or modify the behaviors of previously im-
plemented objects. Section 10.3 provides some historical background on the
development of object-oriented programming.

10.1 Packaging Procedures and State

Recall our counter from Example 9.1:

(define (update-counter!) (set! counter (+ counter 1)) counter)

Every time an application of update-counter! is evaluated, we expect to obtain
a value one larger than the previous application. This only works, however, if
there are no other evaluations that modify the counter variable. Hence, we
can only have one counter: there is only one counter place in the global en-
vironment. If we want to have a second counter, we would need to define
a new variable (such as counter2, and implement a new procedure, update-
counter2! , that is identical to update-counter! , but manipulates counter2 in-
stead. For each new counter, we would need a new variable and a new proce-
dure.

10.1.1 Encapsulation

It would be more useful to package the counter variable with the procedure
that manipulates it. Then we could create as many counters as we want, each
with its own counter variable to manipulate.

The Stateful Application Rule (from Section 9.2.2) suggests a way to do this:
evaluating an application creates a new environment, so a counter variable
defined an the application environment is only visible through body of the
created procedure.

The make-counter procedure creates a counter object that packages the count
variable with the procedure that increases its value:

(define (make-counter)
((lambda (count)

(lambda () (set! count (+ 1 count)) count))
0))

Each application of make-counter produces a new object that is a procedure
with its own associated count variable. Protecting state so it can only be ma-
nipulated in controlled ways is known as encapsulation.encapsulation
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The count place is encapsulated within the counter object. Whereas the pre-
vious counter used the global environment to store the counter in a way that
could be manipulated by other expressions, this version encapsulates the
counter variable so the only way to manipulate the counter value is through
the counter object.

An equivalent make-counter definition uses a let expression to make the ini-
tialization of the count variable clearer:

(define (make-counter)
(let ((count 0))

(lambda () (set! count (+ 1 count)) count)))

Figure 10.1 depicts the environment after creating two counter objects and
applying one of them.

Figure 10.1. Environment produced by evaluating:
(define counter1 (make-counter))
(define counter2 (make-counter))
(counter1)

10.1.2 Messages

The object produced by make-counter is limited to only one behavior: ev-
ery time it is applied the associated count variable is increased by one and
the new value is output. To produce more useful objects, we need a way to
combine state with multiple behaviors.

For example, we might want a counter that can also return the current count
and reset the count. We do this by adding a message parameter to the proce-
dure produced by make-counter :



226 10.1. Packaging Procedures and State

(define (make-counter)
(let ((count 0))

(lambda (message)
(if (eq? message ’get-count) count

(if (eq? message ’reset!) (set! count 0)
(if (eq? message ’next!) (set! count (+ 1 count))

(error "Unrecognized message")))))))

Like the earlier make-counter , this procedure produces a procedure with an
environment containing a frame with a place named count . The produced
procedure takes a message parameter and selects different behavior depend-
ing on the input message.

The message parameter is a Symbol. A Symbol is a sequence of characters
preceded by a quote character such as ’next!. Two Symbols are equal, as de-
termined by the eq? procedure, if their sequences of characters are identical.
The running time of the eq? procedure on symbol type inputs is constant; it
does not increase with the length of the symbols since the symbols can be
represented internally as small numbers and compared quickly using num-
ber equality. This makes symbols a more efficient way of selecting object be-
haviors than Strings, and a more memorable way to select behaviors than
using Numbers.

Here are some sample interactions using the counter object:

> (define counter (make-counter))
> (counter ’next!)
> (counter ’get-count)
1
> (counter ’previous!)

Unrecognized message

Conditional expressions. For objects with many behaviors, the nested if
expressions can get quite cumbersome. Scheme provides a compact condi-
tional expression for combining many if expressions into one smaller expres-
sion:

Expression ::⇒ CondExpression
CondExpression::⇒ (cond CondClauseList)
CondClauseList ::⇒ CondClause CondClauseList
CondClauseList ::⇒ ε
CondClause ::⇒ (Expressionpredicate Expressionconsequent)

The evaluation rule for a conditional expression can be defined as a transfor-
mation into an if expression:
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Evaluation Rule 9: Conditional. The conditional expression (cond)
has no value. All other conditional expressions are of the form (cond
(Expressionp1 Expressionc1) Rest) where Rest is a list of conditional
clauses. The value of such a conditional expression is the value of the
if expression:

(if Expressionp1 Expressionc1 (cond Rest))

This evaluation rule is recursive since the transformed expression still in-
cludes a conditional expression, but uses the empty conditional with no value
as its base case.

The conditional expression can be used to define make-counter more clearly
than the nested if expressions:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond ((eq? message ’get-count) count)

((eq? message ’reset!) (set! count 0))
((eq? message ’next!) (set! count (+ 1 count)))
(true (error "Unrecognized message"))))))

For linguistic convenience, Scheme provides a special syntax else for use in
conditional expressions. When used as the predicate in the last conditional
clause it means the same thing as true. So, we could write the last clause
equivalently as (else (error "Unrecognized message")).

Sending messages. A more natural way to interact with objects is to define a
generic procedure that takes an object and a message as its parameters, and
send the message to the object.

The ask procedure is a simple procedure that does this:

(define (ask object message) (object message))

It applies the object input to the message input. So, (ask counter ’next!) is
equivalent to (counter ’next!), but looks more like passing a message to an ob-
ject than applying a procedure. Later, we will develop more complex versions
of the ask procedure to provide a more powerful object model.

Messages with parameters. Sometimes it is useful to have behaviors that
take additional parameters. For example, we may want to support a message
adjust! that increases the counter value by an input value.

To support such behaviors, we generalize the behaviors so that the result of
applying the message dispatching procedure is itself a procedure. The pro-
cedures for reset! , next! , and get-count take no parameters; the procedure for
adjust! takes one parameter.
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(define (make-adjustable-counter)
(let ((count 0))

(lambda (message)
(cond ((eq? message ’get-count) (lambda () count))

((eq? message ’reset!) (lambda () (set! count 0)))
((eq? message ’next!) (lambda () (set! count (+ 1 count))))
((eq? message ’adjust!)
(lambda (val) (set! count (+ count val))))

(else (error "Unrecognized message"))))))

We also need to also change the ask procedure to pass in the extra arguments.
So far, all the procedures we have defined take a fixed number of operands. To
allow ask to work for procedures that take a variable number of arguments,
we use a special definition construct:

Definition ::⇒ (define (Name Parameters . NameRest) Expression)

The name following the dot is bound to all the remaining operands combined
into a list. This means the defined procedure can be applied to n or more
operands where n is the number of names in Parameters. If there are only
n operand expressions, the value bound to NameRest is null. If there are n +
k operand expressions, the value bound to NameRest is a list containing the
values of the last k operand expressions.

To apply the procedure we use the built-in apply procedure which takes two
inputs, a Procedure and a List. It applies the procedure to the values in the
list, extracting them from the list as each operand in order.

(define (ask object message . args)
(apply (object message) args))

We can use the new ask procedure with two or more parameters to invoke
methods with any number of arguments (e.g., > (ask counter ’adjust! 5)).

10.1.3 Object Terminology

An object is an entity that packages state and procedures.object

The state variables that are part of an object are called instance variables. Theinstance variables

instance variables are stored in places that are part of the application envi-
ronment for the object. This means they are encapsulated with the object
and can only be accessed through the object. An object produced by (make-
counter) defines a single instance variable, count .

The procedures that are part of an object are called methods. Methods maymethods

provide information about the state of an object (we call these observers) or
modify the state of an object (we call these mutators). An object produced by
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(make-counter) provides three methods: reset! (a mutator), next! (a mutator),
and get-count (an observer).

An object is manipulated using the object’s methods. We invoke a method on invoke

an object by sending the object a message. This is analogous to applying a
procedure.

A class is a kind of object. Classes are similar to data types. They define a class

set of possible values and operations (methods in the object terminology) for
manipulating those values. We also need procedures for creating new objects,
such as the make-counter procedure above. We call these constructors. By constructors

convention, we call the constructor for a class make-<class> where <class>
is the name of the class. Hence, an instance of the counter class is the result
produced when the make-counter procedure is applied.

Exercise 10.1. Modify the make-counter definition to add a previous! method
that decrements the counter value by one.

Exercise 10.2. [★] Define a variable-counter object that provides these meth-
ods:

make-variable-counter : Number→ VariableCounter
Creates a variable-counter object with an initial counter value of 0 and
an initial increment value given by the parameter.

set-increment! : Number→ Void
Sets the increment amount for this counter to the input value.

next! : Void→ Void
Adds the increment amount to the value of the counter.

get-count : Void→ Number
Outputs the current value of the counter.

Here are some sample interactions using a variable-counter object:

> (define vcounter (make-variable-counter 1))
> (ask vcounter ’next!)
> (ask vcounter ’set-increment! 2)
> (ask vcounter ’next!)
> (ask vcounter ’get-count)
3

10.2 Inheritance

Objects are particularly well-suited to programs that involve modeling real or
imaginary worlds such as graphical user interfaces (modeling windows, files,
and folders on a desktop), simulations (modeling physical objects in the real
world and their interactions), and games (modeling creatures and things in
an imagined world).
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Objects in the real world (or most simulated worlds) are complex. Suppose
we are implementing a game that simulates a typical university. It might in-
clude many different kinds of objects including places (which are stationary
and may contain other objects), things, and people. There are many different
kinds of people, such as students and professors. All objects in our game have
a name and a location; some objects also have methods for talking and mov-
ing. We could define classes independently for all of the object types, but this
would involve a lot of duplicate effort. It would also make it hard to add a new
behavior to all of the objects in the game without modifying many different
procedures.

The solution is to define more specialized kinds of objects using the defini-
tions of other objects. For example, a student is a kind of person. A student
has all the behaviors of a normal person, as well as some behaviors particu-
lar to a student such as choosing a major and graduating. To implement a
student class, we want to reuse methods from the person class without need-
ing to duplicate them in the student implementation. We call the more spe-
cialized class (in this case the student class) the subclass and say student issubclass

a subclass of person. The reused class is known as the superclass, so personsuperclass

is the superclass of student . A class can have many subclasses but only one
superclass.2

Figure 10.2 illustrates some inheritance relationships for a university simula-
tor. The arrows point from subclasses to their superclass. A class may be both
a subclass to another class, and a superclass to a different class. For exam-
ple, person is a subclass of movable-object , but a superclass of student and
professor .

Figure 10.2. Inheritance Hierarchy.

Our goal is to be able to reuse superclass methods in subclasses. When a
method is invoked in a subclass, if the subclass does not provide a definition

2Some object systems (such as the one provided by the C++ programming language) allow
a class to have more than one superclass. This can be confusing, though. If a class has two
superclasses and both define methods with the same name, it may be ambiguous which of the
methods is used when it is invoked on an object of the subclass. In our object system, a class may
have only one superclass.
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of the method, then the definition of the method in the superclass is used.
This can continue up the superclass chain. For instance, student is a sub-
class of person, which is a subclass of movable-object , which is a subclass of
sim-object (simulation object), which is the superclass of all classes in the
simulator.

Hence, if the sim-object class defines a get-name method, when the get-name
method is invoked on a student object, the implementation of get-name in
the sim-object class will be used (as long as neither person nor movable-object
defines its own get-name method).

When one class implementation uses the methods from another class we say
the subclass inherits from the superclass. Inheritance is a powerful way to inherits

obtain many different objects with a small amount of code.

10.2.1 Implementing Subclasses

To implement inheritance we change class definitions so that if a requested
method is not defined by the subclass, the method defined by its superclass
will be used.

The make-sub-object procedure does this. It takes two inputs, a superclass
object and the object dispatching procedure of the subclass, and produces
an instance of the subclass which is a procedure that takes a message as in-
put and outputs the method corresponding to that message. If the method is
defined by the subclass, the result will be the subclass method. If the method
is not defined by the subclass, it will be the superclass method.

(define (make-sub-object super subproc)
(lambda (message)

(let ((method (subproc message)))
(if method method (super message)))))

When an object produced by (make-sub-object obj proc) is applied to a mes-
sage, it first applies the subclass dispatch procedure to the message to find an
appropriate method if one is defined. If no method is defined by the subclass
implementation, it evaluates to (super message), the method associated with
the message in the superclass.

References to self. It is useful to add an extra parameter to all methods so
the object on which the method was invoked is visible. Otherwise, the object
will lose its special behaviors as it is moves up the superclasses. We call this
the self object (in some languages it is called the this object instead). To sup-
port this, we modify the ask procedure to pass in the object parameter to the
method:

(define (ask object message . args)
(apply (object message) object args))

All methods now take the self object as their first parameter, and may take
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additional parameters. So, the counter constructor is defined as:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond
((eq? message ’get-count) (lambda (self ) count))
((eq? message ’reset!) (lambda (self ) (set! count 0)))
((eq? message ’next!) (lambda (self ) (set! count (+ 1 count))))
(else (error "Unrecognized message"))))))

Subclassing counter. Since subclass objects cannot see the instance vari-
ables of their superclass objects directly, if we want to provide a versatile
counter class we need to also provide a set-count! method for setting the
value of the counter to an arbitrary value. For reasons that will become clear
later, we should use set-count! everywhere the value of the count variable is
changed instead of setting it directly:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond
((eq? message ’get-count) (lambda (self ) count))
((eq? message ’set-count!) (lambda (self val) (set! count val)))
((eq? message ’reset!) (lambda (self ) (ask self ’set-count! 0)))
((eq? message ’next!)
(lambda (self ) (ask self ’set-count! (+ 1 (ask self ’current)))))

(else (error "Unrecognized message"))))))

Previously, we defined make-adjustable-counter by repeating all the code from
make-counter and adding an adjust! method. With inheritance, we can de-
fine make-adjustable-counter as a subclass of make-counter without repeat-
ing any code:

(define (make-adjustable-counter)
(make-sub-object
(make-counter)
(lambda (message)

(cond
((eq? message ’adjust!)
(lambda (self val)

(ask self ’set-count! (+ (ask self ’get-count) val))))
(else false)))))

We use make-sub-object to create an object that inherits the behaviors from
one class, and extends those behaviors by defining new methods in the sub-
class implementation.

The new adjust! method takes one Number parameter (in addition to the self
object that is passed to every method) and adds that number to the current
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counter value. It cannot use (set! count (+ count val)) directly, though, since
the count variable is defined in the application environment of its superclass
object and is not visible within adjustable-counter . Hence, it accesses the
counter using the set-count! and get-count methods provided by the super-
class.

Suppose we create an adjustable-counter object:

(define acounter (make-adjustable-counter))

Consider what happens when (ask acounter ’adjust! 3) is evaluated. The acounter
object is the result of the application of make-sub-object which is the proce-
dure,

(lambda (message)
(let ((method (subproc message)))

(if method method (super message)))))

where super is the counter object resulting from evaluating (make-counter)
and subproc is the procedure created by the lambda expression in make-
adjustable-counter . The body of ask evaluates (object message) to find the
method associated with the input message, in this case ’adjust!. The acounter
object takes the message input and evaluates the let expression:

(let ((method (subproc message))) . . .)

The result of applying subproc to message is the adjust! procedure defined by
make-adjustable-counter :

(lambda (self val)
(ask self ’set-count! (+ (ask self ’get-count) val)))

Since this is not false, the predicate of the if expression is non-false and the
value of the consequent expression, method, is the result of the procedure
application. The ask procedure uses apply to apply this procedure to the ob-
ject and args parameters. The object is the acounter object, and the args is
the list of the extra parameters, in this case (3).

Thus, the adjust! method is applied to the acounter object and 3. The body of
the adjust! method uses ask to invoke the set-count! method on the self ob-
ject. As with the first invocation, the body of ask evaluates (object message)
to find the method. In this case, the subclass implementation provides no
set-count! method so the result of (subproc message) in the application of the
subclass object is false. Hence, the alternate expression is evaluated: (super
message). This evaluates to the method associated with the set-count! mes-
sage in the superclass. The ask body will apply this method to the self object,
setting the value of the counter to the new value.

We can define new classes by defining subclasses of previously defined classes.
For example, reversible-counter inherits from adjustable-counter :
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(define (make-reversible-counter)
(make-subobject
(make-adjustable-counter)
(lambda (message)

(cond
((eq? message ’previous!) (lambda (self ) (ask self ’adjust! −1)))
(else false)))))

The reversible-counter object defines the previous! method which provides a
new behavior. If the message to a adjustable-counter object is not previous! ,
the method from its superclass, adjustable-counter is used. Within the previ-
ous! method we use ask to invoke the adjust! method on the self object. Since
the subclass implementation does not provide an adjust! method, this results
in the superclass method being applied.

10.2.2 Overriding Methods

In addition to adding new methods, subclasses can replace the definitions
of methods defined in the superclass. When a subclass replaces a method
defined by its superclass, then the subclass method overrides the superclassoverrides

method. When the method is invoked on a subclass object, the new method
will be used.

For example, we can define a subclass of reversible-counter that is not allowed
to have negative counter values. If the counter would reach a negative num-
ber, instead of setting the counter to the new value, it produces an error mes-
sage and maintains the counter at zero. We do this by overriding the set-count!
method, replacing the superclass implementation of the method with a new
implementation.

(define (make-positive-counter)
(make-subobject
(make-reversible-counter)
(lambda (message)

(cond
((eq? message ’set-count!)
(lambda (self val) (if (< val 0) (error "Negative count")

. . .)))
(else false)))))

What should go in place of the . . .? When the value to set the count to is not
negative, what should happen is the count is set as it would be by the super-
class set-count! method. In the positive-counter code though, there is no way
to access the count variable since it is in the superclass procedure’s applica-
tion environment. There is also no way to invoke the superclass’ set-count!
method since it has been overridden by positive-counter .

The solution is to provide a way for the subclass object to obtain its superclass
object. We can do this by adding a get-super method to the object produced
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by make-sub-object :

(define (make-sub-object super subproc)
(lambda (message)

(if (eq? message ’get-super)
(lambda (self ) super)
(let ((method (subproc message)))

(if method method (super message))))))

Thus, when an object produced by make-sub-object is passed the get-super
message it returns a method that produces the super object. The rest of the
procedure is the same as before, so for every other message it behaves like the
earlier make-sub-object procedure.

With the get-super method we can define the set-count! method for positive-
counter , replacing the . . . with:

(ask (ask self ’get-super) ’set-count! val))

Figure 10.3 shows the subclasses that inherit from counter and the methods
they define or override.

Figure 10.3. Counter class hierarchy.

Consider these sample interactions with a positive-counter object:

> (define poscount (make-positive-counter))
> (ask poscount ’next!)
> (ask poscount ’previous!)
> (ask poscount ’previous!)

Negative count
> (ask poscount ’get-count)
0
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For the first ask application, the next! method is invoked on a positive-counter
object. Since the positive-counter class does not define a next! method, the
message is sent to the superclass, reversible-counter . The reversible-counter
implementation also does not define a next! method, so the message is passed
up to its superclass, adjustable-counter . This class also does not define a next!
method, so the message is passed up to its superclass, counter . The counter
class defines a next! method, so that method is used.

For the next ask, the previous! method is invoked. Since the positive-counter
class does not define a previous! method, the message is sent to the super-
class. The superclass, reversible-counter , defines a previous! method. Its im-
plementation involves an invocation of the adjust! method: (ask self ’adjust!
−1). This invocation is done on the self object, which is an instance of the
positive-counter class. Hence, the adjust! method is found from the positive-
counter class implementation. This is the method that overrides the adjust!
method defined by the adjustable-counter class. Hence, the second invoca-
tion of previous! produces the “Negative count” error and does not adjust the
count to −1.

The property this object system has where the method invoked depends on
the object is known as dynamic dispatch. The method used for an invocationdynamic dispatch

depends on the self object. In this case, for example, it means that when we
inspect the implementation of the previous! method in the reversible-counter
class by itself it is not possible to determine what procedure will be applied for
the method invocation, (ask self ’adjust!−1). It depends on the actual self ob-
ject: if it is a positive-counter object, the adjust! method defined by positive-
counter is used; if it is a reversible-counter object, the adjust! method defined
by adjustable-counter class (the superclass of reversible-counter) is used.

Dynamic dispatch provides for a great deal of expressiveness. It enables us to
use the same code to produce many different behaviors by overriding meth-
ods in subclasses. This is very useful, but also very dangerous — it makes
it impossible to reason about what a given procedure does, without know-
ing about all possible subclasses. For example, we cannot make any claims
about what the previous! method in reversible-counter actually does without
knowing what the adjust! method does in all subclasses of reversible-counter .

The value of encapsulation and inheritance increases as programs get more
complex. Programming with objects allows a programmer to manage com-
plexity by hiding implementation details inside the objects from how those
objects are used.

Exercise 10.3. Define a countdown class that simulates a rocket launch
countdown: it starts at some initial value, and counts down to zero, at which
point the rocket is launched. Can you implement countdown as a subclass of
counter?

Exercise 10.4. Define the variable-counter object from Exercise 10.2 as a sub-
class of counter .



Chapter 10. Objects 237

Exercise 10.5. Define a new subclass of parameterizable-counter where the
increment for each next! method application is a parameter to the construc-
tor procedure. For example, (make-parameterizable-counter 0.1) would pro-
duce a counter object whose counter has value 0.1 after one invocation of the
next! method.

10.3 Object-Oriented Programming

Object-oriented programming is a style of programming where programs are
broken down into objects that can be combined to solve a problem or model
a simulated world. The notion of designing programs around object manip-
ulations goes back at least to Ada (see the quote at the end if Chapter 6), but
started in earnest in the early 1960s.

During World War II, the US Navy began to consider the possibility of build-
ing a airplane simulator for training pilots and aiding aircraft designers. At
the time, pilots trained in mechanical simulators that were custom designed
for particular airplanes. The Navy wanted a simulator that could be used for
multiple airplanes and could accurately model the aerodynamics of different
airplanes.

Project Whirlwind was started at MIT to build the simulator. The initial plans
called for an analog computer which would need to be manually reconfig-
ured to change the aerodynamics model to a different airplane. Jay Forrester
learned about emerging projects to build digital computers, including ENIAC
which became operational in 1946, and realized that building a programmable
digital computer would enable a much more flexible and powerful simulator,
as well as a machine that could be used for many other purposes.

Jay Forrester with magnetic-core

memoryBefore Whirlwind, all digital computers operated as batch processors where
a programmer creates a program (typically described using a stack of punch
cards) and submits it to the computer. A computer operator would set up the
computer to run the program, after which it would run and (hopefully) pro-
duce a result. A flight simulator, though, requires direct interaction between
a human user and the computer.

The first Whirlwind computer was designed in 1947 and operational by 1950.
It was the first interactive programmable digital computer. Producing a ma-
chine that could perform the complex computations needed for a flight sim-
ulator fast enough to be used interactively required much faster and more re-
liable memory that was possible with available technologies based on storing
electrostatic charges in vacuum tubes. Jay Forrester invented a much faster
memory based known as magnetic-core memory. Magnetic-core memory
stores a bit using magnetic polarity.

The interactiveness of the Whirlwind computer opened up many new possi-
bilities for computing. Shortly after the first Whirlwind computer, Ken Olson
led an effort to build a version of the computer using transistors. The succes-
sor to this machine became the TX-2, and Ken Olsen went on to found Digital



238 10.3. Object-Oriented Programming

Equipment Corporation (DEC) which pioneered the widespread use of mod-
erately priced computers in science and industry. DEC was very successful
in the 1970s and 1980s, but suffered a long decline before eventually being
bought by Compaq.

Ivan Sutherland, then a graduate student at MIT, had an opportunity to use
the TX-2 machine. He developed a program called Sketchpad that was the
first program to have an interactive graphical interface. Sketchpad allowed
users to draw and manipulate objects on the screen using a light pen. It was
designed around objects and operations on those objects:3

In the process of making the Sketchpad system operate, a few very gen-
eral functions were developed which make no reference at all to the
specific types of entities on which they operate. These general func-
tions give the Sketchpad system the ability to operate on a wide range
of problems. The motivation for making the functions as general as
possible came from the desire to get as much result as possible from the
programming effort involved. . . Each of the general functions imple-
mented in the Sketchpad system abstracts, in some sense, some com-
mon property of pictures independent of the specific subject matter of
the pictures themselves.

Components in Sketchpad Sketchpad was a great influence on Douglas Engelbart who developed a re-
search program around a vision of using computers interactively to enhance
human intellect. In what has become known as “the mother of all demos”,
Engelbart and his colleagues demonstrated a networked, graphical, interac-
tive computing system to the general public for the first time in 1968. With
Bill English, Engelbard also invented the computer mouse.

Sketchpad also influenced Alan Kay in developing object-oriented program-
ming. The first language to include support for objects was the Simula pro-
gramming language, developed in Norway in the 1960s by Kristen Nygaard
and Ole Johan Dahl. Simula was designed as a language for implementing
simulations. It provided mechanisms for packaging data and procedures, and
for implementing subclasses using inheritance.

In 1966, Alan Kay entered graduate school at the University of Utah, where
Ivan Sutherland was then a professor. Here’s how he describes his first as-
signment:4

Alan Kay

Head whirling, I found my desk. On it was a pile of tapes and list-
ings, and a note: “This is the Algol for the 1108. It doesn’t work. Please
make it work.” The latest graduate student gets the latest dirty task.
The documentation was incomprehensible. Supposedly, this was the
Case-Western Reserve 1107 Algol—but it had been doctored to make
a language called Simula; the documentation read like Norwegian
transliterated into English, which in fact it was. There were uses of

3Ivan Sutherland, Sketchpad: a Man-Machine Graphical Communication System, 1963
4Alan Kay, The Early History of Smalltalk, 1993
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words like activity and process that didn’t seem to coincide with nor-
mal English usage. Finally, another graduate student and I unrolled
the program listing 80 feet down the hall and crawled over it yelling
discoveries to each other. The weirdest part was the storage alloca-
tor, which did not obey a stack discipline as was usual for Algol. A
few days later, that provided the clue. What Simula was allocating
were structures very much like the instances of Sketchpad. There were
descriptions that acted like masters and they could create instances,
each of which was an independent entity. . . .

This was the big hit, and I’ve not been the same since. . . For the first
time I thought of the whole as the entire computer and wondered why
anyone would want to divide it up into weaker things called data
structures and procedures. Why not divide it up into little computers,
as time sharing was starting to? But not in dozens. Why not thou-
sands of them, each simulating a useful structure?

Alan Kay went on to design the language Smalltalk, which became the first
widely used object-oriented language. Smalltalk was developed as part of a
project at XEROX’s Palo Alto Research Center to develop a hand-held com-
puter that could be used as a learning environment by children. Don’t worry about what anybody

else is going to do. The best way to
predict the future is to invent it.
Really smart people with
reasonable funding can do just
about anything that doesn’t violate
too many of Newton’s Laws!
Alan Kay

In Smalltalk, everything is an object, and all computation is done by sending
messages to objects. For example, in Smalltalk one computes (+ 1 2) by send-
ing the message + 2 to the object 1. Here is Smalltalk code for implementing
a counter object:

class name counter
instance variable names count
new count <− 0
next count <− count + 1
current ˆ count

The new method is a constructor analogous to make-counter . The count in-
stance variable stores the current value of the counter, and the next method
updates the counter value by sending the message + 1 to the count object.

Nearly all widely-used languages today provide built-in support for some form
of object-oriented programming. For example, here is how a counter object
could be defined in Python:

class counter:
def init (self): self. count = 0
def rest(self): self. count = 0
def next(self): self. count = self. count + 1
def current(self): return self. count

The constructor is named init . Similarly to the object system we devel-
oped for Scheme, each method takes the self object as its parameter.
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10.4 Summary

An object is an entity that packages state with procedures that manipulate
that state. By packaging state and procedures together, we can encapsulate
state in ways that enable more elegant and robust programs.

Inheritance allows an implementation of one class to reuse or override meth-
ods in another class, known as its superclass. Programming using objects and
inheritance enables a style of problem solving known as object-oriented pro-
gramming in which we solve problems by modeling problem instances using
objects.

Dynabook Images

From Alan Kay, A Personal Computer for Children of All Ages, 1972.
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Interpreters

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means
just what I choose it to mean - nothing more nor less.”

“The question is,” said Alice, “whether you can make words mean so many
different things.”
Lewis Carroll, Through the Looking Glass

The tools we use have a profound (and devious!) influence on our thinking
habits, and, therefore, on our thinking abilities.

Edsger Dijkstra, How do we tell truths that might hurt?

Languages are powerful tools for thinking. Different languages encourage dif-
ferent ways of thinking and lead to different thoughts. Hence, inventing new
languages is a powerful way for solving problems. We can solve a problem by
designing a language in which it is easy to express a solution and implement-
ing an interpreter for that language.

An interpreter is just a program. As input, it takes a specification of a pro- interpreter

gram in some language. As output, it produces the output of the input pro-
gram. Implementing an interpreter further blurs the line between data and
programs, that we first crossed in Chapter 3 by passing procedures as param-
eters and returning new procedures as results. Programs are just data input
for the interpreter program. The interpreter determines the meaning of the
program.

To implement an interpreter for a given target language we need to:

1. Implement a parser that takes as input a string representation of a pro- parser

gram in the target language and produces a structural parse of the in-
put program. The parser should break the input string into its language
components, and form a parse tree data structure that represents the
input text in a structural way. Section 11.2 describes our parser imple-
mentation.

2. Implement an evaluator that takes as input a structural parse of an in- evaluator

put program, and evaluates that program. The evaluator should imple-
ment the target language’s evaluation rules. Section 11.3 describes our
evaluator.
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Our target language is a simple subset of Scheme we call Charme.1 The Charme
language is very simple, yet is powerful enough to express all computations
(that is, it is a universal programming language). Its evaluation rules are a
subset of the stateful evaluation rules for Scheme. The full grammar and eval-
uation rules for Charme are given in Section 11.3. The evaluator implements
those evaluation rules.

Section 11.4 illustrates how changing the evaluation rules of our interpreter
opens up new ways of programming.

11.1 Python

We could implement a Charme interpreter using Scheme or any other uni-
versal programming language, but implement it using the programming lan-
guage Python. Python is a popular programming language initially designed
by Guido van Rossum in 1991.2 Python is freely available from http://www.
python.org.

We use Python instead of Scheme to implement our Charme interpreter for
a few reasons. The first reason is pedagogical: it is instructive to learn new
languages. As Dijkstra’s quote at the beginning of this chapter observes, the
languages we use have a profound effect on how we think. This is true for nat-
ural languages, but also true for programming languages. Different languages
make different styles of programming more convenient, and it is important
for every programmer to be familiar with several different styles of program-
ming. All of the major concepts we have covered so far apply to Python nearly
identically to how they apply to Scheme, but seeing them in the context of a
different language should make it clearer what the fundamental concepts are
and what are artifacts of a particular programming language.

Another reason for using Python is that it provides some features that en-
hance expressiveness that are not available in Scheme. These include built-in
support for objects and imperative control structures. Python is also well-
supported by most web servers (including Apache), and is widely used to de-
velop dynamic web applications.

The grammar for Python is quite different from the Scheme grammar, so Python
programs look very different from Scheme programs. The evaluation rules,
however, are quite similar to the evaluation rules for Scheme. This chapter
does not describe the entire Python language, but introduces the grammar
rules and evaluation rules for the most important Python constructs as we
use them to implement the Charme interpreter.

Like Scheme, Python is a universal programming language. Both languages

1The original name of Scheme was “Schemer”, a successor to the languages “Planner” and
“Conniver”. Because the computer on which “Schemer” was implemented only allowed six-letter
file names, its name was shortened to “Scheme”. In that spirit, we name our snake-charming
language, “Charmer” and shorten it to Charme. Depending on the programmer’s state of mind,
the language name can be pronounced either “charm” or “char me”.

2The name Python alludes to Monty Python’s Flying Circus.

http://www.python.org
http://www.python.org
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can express all mechanical computations. For any computation we can ex-
press in Scheme, there is a Python program that defines the same computa-
tion. Conversely, every Python program has an equivalent Scheme program.

One piece of evidence that every Scheme program has an equivalent Python
program is the interpreter we develop in this chapter. Since we can imple-
ment an interpreter for a Scheme-like language in Python, we know we can
express every computation that can be expressed by a program in that lan-
guage with an equivalent Python program: the Charme interpreter with the
Charme program as its input.

Tokenizing. We introduce Python using one of the procedures in our in-
terpreter implementation. We divide the job of parsing into two procedures
that are combined to solve the problem of transforming an input string into a
list describing the input program’s structure. The first part is the tokenizer . It tokenizer

takes as input a string representing a Charme program, and outputs a list of
the tokens in that string.

A token is an indivisible syntactic unit. For example, the Charme expression, token

(define square (lambda (x) (∗ x x))), contains 15 tokens: (, define, square, (,
lambda, (, x, ), (, *, x, x, ), ), and ). Tokens are separated by whitespace (spaces,
tabs, and newlines). Punctuation marks such as the left and right parentheses
are tokens by themselves.

The tokenize procedure below takes as input a string s in the Charme target
language, and produces as output a list of the tokens in s. We describe the
Python language constructs it uses next.

def tokenize(s): # # starts a comment until the end of the line

current = '' # initialize current to the empty string (two single quotes)

tokens = [] # initialize tokens to the empty list

for c in s: # for each character, c, in the string s

if c.isspace(): # if c is a whitespace

if len(current) > 0: # if the current token is non-empty

tokens.append(current) # add it to the list

current = '' # reset current token to empty string

elif c in '()': # otherwise, if c is a parenthesis

if len(current) > 0: # end the current token

tokens.append(current) # add it to the tokens list

current = '' # and reset current to the empty string

tokens.append(c) # add the parenthesis to the token list

else: # otherwise (it is an alphanumeric)

current = current + c # add the character to the current token

# end of the for loop reached the end of s

if len(current) > 0: # if there is a current token

tokens.append(current) # add it to the token list

return tokens # the result is the list of tokens
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11.1.1 Python Programs

Whereas Scheme programs are composed of expressions and definitions, Python
programs are mostly sequences of statements. Unlike expressions, a state-
ment has no value. The emphasis on statements impacts the style of pro-
gramming used with Python. It is more imperative than that used with Scheme:
instead of composing expressions in ways that pass the result of one expres-
sion as an operand to the next expression, Python procedures consist mostly
of statements, each of which alters the state in some way towards reaching the
goal state. Nevertheless, it is possible (but not recommended) to program in
Scheme using an imperative style (emphasizing assignments), and it is pos-
sible (but not recommended) to program in Python using a functional style
(emphasizing procedure applications and eschewing statements).

Defining a procedure in Python is similar to defining a procedure in Scheme,
except the syntax is different:

ProcedureDefinition ::⇒ def Name ( Parameters ) : Block
Parameters ::⇒ ε
Parameters ::⇒ SomeParameters
SomeParameters ::⇒ Name
SomeParameters ::⇒ Name , SomeParameters

Block ::⇒ Statement
Block ::⇒ <newline> indented(Statements)
Statements ::⇒ Statement <newline> MoreStatements
MoreStatements ::⇒ Statement <newline> MoreStatements
MoreStatements ::⇒ ε

Unlike in Scheme, whitespace (such as new lines) has meaning in Python.
Statements cannot be separated into multiple lines, and only one statement
may appear on a single line. Indentation within a line also matters. Instead of
using parentheses to provide code structure, Python uses the indentation to
group statements into blocks. The Python interpreter reports an error if the
indentation does not match the logical structure of the code.

Since whitespace matters in Python, we include newlines (<newline>) and
indentation in our grammar. We use indented(elements) to indicate that the
elements are indented. For example, the rule for Block is a newline, followed
by one or more statements. The statements are all indented one level inside
the block’s indentation. The block ends when the indenting returns to the
outer level.

The evaluation rule for a procedure definition is similar to the rule for evalu-
ating a procedure definition in Scheme.
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Python Procedure Definition. The procedure definition,

def Name (Parameters): Block

defines Name as a procedure that takes as inputs the Parameters and
has the body expression Block.

The procedure definition, def tokenize(s): ..., defines a procedure named tokenize
that takes a single parameter, s.

Assignment. The body of the procedure uses several different types of Python
statements. Following Python’s more imperative style, five of the statements
in tokenize are assignment statements including the first two statements. For
example, the assignment statement, tokens = [] assigns the value [] (the empty
list) to the name tokens.

The grammar for the assignment statement is:

Statement ::⇒ AssignmentStatement
AssignmentStatement ::⇒ Target = Expression
Target ::⇒ Name

For now, we use only a Name as the left side of an assignment, but since other
constructs can appear on the left side of an assignment statement, we in-
troduce the nonterminal Target for which additional rules can be defined to
encompass other possible assignees. Anything that can hold a value (such as
an element of a list) can be the target of an assignment.

The evaluation rule for an assignment statement is similar to Scheme’s eval-
uation rule for assignments: the meaning of x = e in Python is similar to the
meaning of (set! x e) in Scheme, except that in Python the target Name need
not exist before the assignment. In Scheme, it is an error to evaluate (set! x
7) where the name x has not been previously defined; in Python, if x is not
already defined, evaluating x = 7 creates a new place named x with its value
initialized to 7.

Python Evaluation Rule: Assignment. To evaluate an assignment
statement, evaluate the expression, and assign the value of the ex-
pression to the place identified by the target. If no such place exists,
create a new place with that name.

Arithmetic and Comparison Expressions. Python supports many differ-
ent kinds of expressions for performing arithmetic and comparisons. Since
Python does not use parentheses to group expressions, the grammar provides
the grouping by breaking down expressions in several steps. This defines an
order of precedence for parsing expressions. precedence

For example, consider the expression 3 + 4 * 5. In Scheme, the expressions
(+ 3 (∗ 4 5)) and (∗ (+ 3 4) 5) are clearly different and the parentheses group
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the subexpressions. The Python expression, 3 + 4 * 5, means (+ 3 (∗ 4 5)) and
evaluates to 23.

Supporting precedence makes the Python grammar rules more complex since
they must deal with * and + differently, but it makes the meaning of Python
expressions match our familiar mathematical interpretation, without need-
ing to clutter expressions with parentheses. This is done is by defining the
grammar rules so an AddExpression can contain a MultExpression as one of
its subexpressions, but a MultExpression cannot contain an AddExpression.
This makes the multiplication operator have higher precedence than the ad-
dition operator. If an expression contains both + and * operators, the * op-
erator is grouped with its operands first. The replacement rules that happen
first have lower precedence, since their components must be built from the
remaining pieces.

Here are the grammar rules for Python expressions for comparison, multipli-
cation, and addition expressions:

Expression ::⇒ CompExpr
CompExpr ::⇒ CompExpr Comparator CompExpr
Comparator ::⇒ < ∣ > ∣ == ∣ <= ∣ >=
CompExpr ::⇒ AddExpression

AddExpression ::⇒ AddExpression + MultExpression
AddExpression ::⇒ AddExpression - MultExpression
AddExpression ::⇒ MultExpression

MultExpression ::⇒ MultExpression * PrimaryExpression
MultExpression ::⇒ PrimaryExpression

PrimaryExpression ::⇒ Literal
PrimaryExpression ::⇒ Name
PrimaryExpression ::⇒ ( Expression )

The last rule allows expressions to be grouped explicitly using parentheses.
For example, (3 + 4) * 5 is parsed as the PrimaryExpression, (3 + 4), times 5,
so evaluates to 35; without the parentheses, 3 + 4 * 5 is parsed as 3 plus the
MultExpression, 4 * 5, so evaluates to 23.

A PrimaryExpression can be a Literal, such as a number. Numbers in Python
are similar (but not identical) to numbers in Scheme.

A PrimaryExpression can also be a name, similar to names in Scheme. The
evaluation rule for a name in Python is similar to the stateful rule for evaluat-
ing a name in Scheme3.

3There are some subtle differences and complexities (see Section 4.1 of the Python Reference
Manual), however, which we do not go into here.



Chapter 11. Interpreters 247

Exercise 11.1. Draw the parse tree for each of the following Python expres-
sions and provide the value of each expression.

a. 1 + 2 + 3 * 4

b. 3 > 2 + 2

c. 3 * 6 >= 15 == 12

d. (3 * 6 >= 15) == True

Exercise 11.2. Do comparison expressions have higher or lower precedence
than addition expressions? Explain why using the grammar rules.

11.1.2 Data Types

Python provides many built-in data types. We describe three of the most use-
ful data types here: lists, strings, and dictionaries.

Lists. Python provides a list datatype similar to lists in Scheme, except in-
stead of building lists from simpler parts (that is, using cons pairs in Scheme),
the Python list type is a built-in datatype. The other important difference is
that Python lists are mutable like mlist from Section 9.3.

Lists are denoted in Python using square brackets. For example, [] denotes an
empty list and [1, 2] denotes a list containing two elements. The elements in
a list can be of any type (including other lists).

Elements can be selected from a list using the list subscript expression:

PrimaryExpression ::⇒ SubscriptExpression
SubscriptExpression ::⇒ PrimaryExpression [ Expression ]

A subscript expression evaluates to the element indexed by value of the inner
expression from the list. For example,

≫ a = [1, 2, 3]
≫ a[0] ⇒ 1
≫ a[1+1] ⇒ 3
≫ a[3] ⇒ IndexError: list index out of range

The expression p[0] in Python is analogous to (car p) in Scheme.

The subscript expression has constant running time; unlike indexing Scheme
lists, the time required does not depend on the length of the list even if the
selection index is the end of the list. The reason for this is that Python stores
lists internally differently from how Scheme stores as chains of pairs. The
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elements of a Python list are stored as a block in memory, so the location of
the kth element can be calculated directly by adding k times the size of one
element to the location of the start of the list.

A subscript expression can also select a range of elements from the list:

SubscriptExpression ::⇒ PrimaryExpression [ BoundLow : BoundHigh ]
Bound ::⇒ Expression ∣ ε

Subscript expressions with ranges evaluate to a list containing the elements
between the low bound and the high bound. If the low bound is missing, the
low bound is the beginning of the list. If the high bound is missing, the high
bound is the end of the list. For example,

≫ a = [1, 2, 3]
≫ a[:1] ⇒ [1]
≫ a[1:] ⇒ [2, 3]
≫ a[4−2:3] ⇒ [3]
≫ a[:] ⇒ [1, 2, 3]

The expression p[1:] in Python is analogous to (cdr p) in Scheme.

Python lists are mutable (the value of a list can change after it is created). We
can use list subscripts as the targets for an assignment expression:

Target ::⇒ SubscriptExpression

Assignments using ranges as targets can add elements to the list as well as
changing the values of existing elements:

≫ a = [1, 2, 3]
≫ a[0] = 7
≫ a ⇒ [7, 2, 3]
≫ a[1:4] = [4, 5, 6]
≫ a ⇒ [7, 4, 5, 6]
≫ a[1:] = [6]
≫ a ⇒ [7, 6]

In the tokenize procedure, we use tokens = [] to initialize tokens to an empty
list, and use tokens.append(current) to append an element to the tokens list.
The Python append procedure is similar to the mlist-append! procedure (ex-
cept it works on the empty list, where there is no way in Scheme to modify
the null input list).

Strings. The other datatype used in tokenize is the string datatype, named str
in Python. As in Scheme, a String is a sequence of characters. Unlike Scheme
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strings which are mutable, the Python str datatype is immutable. Once a
string is created its value cannot change. This means all the string methods
that seem to change the string values actually return new strings (for exam-
ple, capitalize() returns a copy of the string with its first letter capitalized).

Strings can be enclosed in single quotes (e.g., 'hello'), double quotes (e.g., ''hello''),
and triple-double quotes (e.g., '' '' ''hello'' '' ''; a string inside triple quotes can
span multiple lines). In our example program, we use the assignment expres-
sion, current = '' (two single quotes), to initialize the value of current to the
empty string. The input, s, is a string object.

The addition operator can be used to concatenate two strings. In tokenize,
we use current = current + c to update the value of current to include a new
character. Since strings are immutable there is no string method analogous
to the list append method. Instead, appending a character to a string involves
creating a new string object.

Dictionaries. A dictionary is a lookup-table where values are associated with
keys. The keys can be any immutable type (strings and numbers are com-
monly used as keys); the values can be of any type. We did not use the dic-
tionary type in tokenize, but it is very useful for implementing frames in the
evaluator.

A dictionary is denoted using curly brackets. The empty dictionary is {}. We
add a key-value pair to the dictionary using an assignment where the left side
is a subscript expression that specifies the key and the right side is the value
assigned to that key. For example,

birthyear = {}
birthyear['Euclid'] = '300BC'
birthyear['Ada'] = 1815
birthyear['Alan Turing'] = 1912
birthyear['Alan Kay'] = 1940

defines birthyear as a dictionary containing four entries. The keys are all
strings; the values are numbers, except for Euclid’s entry which is a string.

We can obtain the value associated with a key in the dictionary using a sub-
script expression. For example, birthyear['Alan Turing'] evaluates to 1912. We
can replace the value associated with a key using the same syntax as adding a
key-value pair to the dictionary. The statement,

birthyear['Euclid'] =−300

replaces the value of birthyear['Euclid'] with the number−300.

The dictionary type also provides a method has key that takes one input and
produces a Boolean indicating if the dictionary object contains the input value
as a key. For the birthyear dictionary,

≫ birthyear.has key('John Backus') ⇒ False
≫ birthyear.has key('Ada') ⇒ True
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The dictionary type lookup and update operations have approximately con-
stant running time: the time it takes to lookup the value associated with a key
does not scale as the size of the dictionary increases. This is done by comput-
ing a number based on the key that determines where the associated value
would be stored (if that key is in the dictionary). The number is used to index
into a structure similar to a Python list (so it has constant time to retrieve any
element). Mapping keys to appropriate numbers to avoid many keys map-
ping to the same location in the list is a difficult problem, but one the Python
dictionary object does well for most sets of keys.

11.1.3 Applications and Invocations

The grammar rules for expressions that apply procedures are:

PrimaryExpression ::⇒ CallExpression
CallExpression ::⇒ PrimaryExpression ( ArgumentList )
ArgumentList ::⇒ SomeArguments
ArgumentList ::⇒ ε
SomeArguments ::⇒ Expression
SomeArguments ::⇒ Expression , SomeArguments

In Python, nearly every data value (including lists and strings) is an object.
This means the way we manipulate data is to invoke methods on objects. To
invoke a method we use the same rules, but the PrimaryExpression of the
CallExpression specifies an object and method:

PrimaryExpression ::⇒ AttributeReference
AttributeReference ::⇒ PrimaryExpression . Name

The name AttributeReference is used since the same syntax is used for access-
ing the internal state of objects as well.

The tokenize procedure includes five method applications, four of which are
tokens.append(current). The object reference is tokens, the list of tokens in
the input. The list append method takes one parameter and adds that value
to the end of the list.

The other method invocation is c.isspace() where c is a string consisting of one
character in the input. The isspace method for the string datatype returns true
if the input string is non-empty and all characters in the string are whitespace
(either spaces, tabs, or newlines).

The tokenize procedure also uses the built-in function len which takes as in-
put an object of a collection datatype such as a list or a string, and outputs
the number of elements in the collection. It is a procedure, not a method; the
input object is passed in as a parameter. In tokenize, we use len(current) to
find the number of characters in the current token.
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11.1.4 Control Statements

Python provides control statements for making decisions, looping, and for
returning from a procedure.

If statement. Python’s if statement is similar to the conditional expression in
Scheme:

Statement ::⇒ IfStatement
IfStatement ::⇒ if ExpressionPredicate : Block Elifs OptElse
Elifs ::⇒ ε
Elifs ::⇒ elif ExpressionPredicate : Block Elifs
OptElse ::⇒ ε
OptElse ::⇒ else : Block

Unlike in Scheme, there is no need to have an alternate clause since the Python
if statement does not need to produce a value. The evaluation rule is similar
to Scheme’s conditional expression:

Python Evaluation Rule: If. First, evaluate the ExpressionPredicate. If it
evaluates to a true value, the consequent Block is evaluated, and none
of the rest of the IfStatement is evaluated. Otherwise, each of the elif
predicates is evaluated in order. If one evaluates to a true value, its
Block is evaluated and none of the rest of the IfStatement is evaluated.
If none of the elif predicates evaluates to a true value, the else Block is
evaluated if there is one.

The main if statement in tokenize is:

if c.isspace(): ...
elif c in '()': ...
else: current = current + c

The first if predicate tests if the current character is a space. If so, the end of
the current token has been reached. The consequent Block is itself an IfState-
ment:

if len(current) > 0:
tokens.append(current)
current = ''

If the current token has at least one character, it is appended to the list of
tokens in the input string and the current token is reset to the empty string.
This IfStatement has no elif or else clauses, so if the predicate is false, there is
nothing to do.

For statement. A for statement provides a way of iterating through a set of
values, carrying out a body block for each value.
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Statement ::⇒ ForStatement
ForStatement ::⇒ for Target in Expression : Block

Its evaluation rule is:

Python Evaluation Rule: For. First evaluate the Expression which
must produce a value that is a collection. Then, for each value in the
collection assign the Target to that value and evaluate the Block.

Other than the first two initializations, and the final two statements, the bulk
of the tokenize procedure is contained in a for statement. The for statement in
tokenize header is for c in s: .... The string s is the input string, a collection of
characters. So, the loop will repeat once for each character in s, and the value
of c is each character in the input string (represented as a singleton string), in
turn.

Return statement. In Scheme, the body of a procedure is an expression
and the value of that expression is the result of evaluating an application of
the procedure. In Python, the body of a procedure is a block of one or more
statements. Statements have no value, so there is no obvious way to decide
what the result of a procedure application should be. Python’s solution is to
use a return statement.

The grammar for the return statement is:

Statement ::⇒ ReturnStatement
ReturnStatement ::⇒ return Expression

A return statement finishes execution of a procedure, returning the value of
the Expression to the caller as the result. The last statement of the tokenize
procedure is: return tokens. It returns the value of the tokens list to the caller.

11.2 Parser

The parser takes as input a Charme program string, and produces as output
a nested list that encodes the structure of the input program. The first step is
to break the input string into tokens; this is done by the tokenize procedure
defined in the previous section.

The next step is to take the list of tokens and produce a data structure that en-
codes the structure of the input program. Since the Charme language is built
from simple parenthesized expressions, we can represent the parsed program
as a list. But, unlike the list returned by tokenize which is a flat list containing
the tokens in order, the list returned by parse is a structured list that may have
lists (and lists of lists, etc.) as elements.
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Charme’s syntax is very simple, so the parser can be implemented by just
breaking an expression into its components using the parentheses and whites-
pace. The parser needs to balance the open and close parentheses that en-
close expressions. For example, if the input string is

(define square (lambda (x) (∗ x x)))

the output of tokenizer is the list:

['(', 'define', 'square', '(', 'lambda', '(', 'x', ')', '(', '*', 'x', 'x', ')', ')', ')']

The parser structures the tokens according to the program structure, produc-
ing a parse tree that encodes the structure of the input program. The paren-
thesis provide the program structure, so are removed from the parse tree. For
the example, the resulting parse tree is:

['define',
'square',
[ 'lambda',

['x'],
['*', 'x', 'x'] ] ]

Here is the definition of parse:

def parse(s):
def parsetokens(tokens, inner):

res = []
while len(tokens) > 0:

current = tokens.pop(0)
if current == '(':

res.append (parsetokens(tokens, True))
elif current == ')':

if inner: return res
else:

error('Unmatched close paren: ' + s)
return None

else:
res.append(current)

if inner:
error ('Unmatched open paren: ' + s)
return None

else:
return res

return parsetokens(tokenize(s), False)

The input to parse is a string in the target language. The output is a list of the
parenthesized expressions in the input. Here are some examples:
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≫ parse('150') ⇒ ['150']
≫ parse('(+ 1 2)') ⇒ [['+', '1', '2']]
≫ parse('(+ 1 (* 2 3))') ⇒ [['+', '1', ['*', '2', '3']]]
≫ parse('(define square (lambda (x) (* x x)))')

⇒ [['define', 'square', ['lambda', ['x'], ['*', 'x', 'x']]]]
≫ parse('(+ 1 2) (+ 3 4)') ⇒ [['+', '1', '2'], ['+', '3', '4']]

The parentheses are no longer included as tokens in the result, but their pres-
ence in the input string determines the structure of the result.

The parse procedure implements a recursive descent parser. The main parserecursive descent

procedure defines the parsetokens helper procedure and returns the result of
calling it with inputs that are the result of tokenizing the input string and the
Boolean literal False: return parsetokens(tokenize(s), False).

The parsetokens procedure takes two inputs: tokens, a list of tokens (that re-
sults from the tokenize procedure); and inner, a Boolean that indicates whether
the parser is inside a parenthesized expression. The value of inner is False for
the initial call since the parser starts outside a parenthesized expression. All of
the recursive calls result from encountering a '(', so the value passed as inner
is True for all the recursive calls.

The body of the parsetokens procedure initializes res to an empty list that is
used to store the result. Then, the while statement iterates as long as the
token list contains at least one element.

The first statement of the while statement block assigns tokens.pop(0) to current.
The pop method of the list takes a parameter that selects an element from
the list. The selected element is returned as the result. The pop method also
mutates the list object by removing the selected element. So, tokens.pop(0)
returns the first element of the tokens list and removes that element from the
list. This is essential to the parser making progress: every time the tokens.pop(0)
expression is evaluated the number of elements in the token list is reduced by
one.

If the current token is an open parenthesis, parsetokens is called recursively
to parse the inner expression (that is, all the tokens until the matching close
parenthesis). The result is a list of tokens, which is appended to the result.
If the current token is a close parenthesis, the behavior depends on whether
or not the parser is parsing an inner expression. If it is inside an expression
(that is, an open parenthesis has been encountered with no matching close
parenthesis yet), the close parenthesis closes the inner expression, and the
result is returned. If it is not in an inner expression, the close parenthesis has
no matching open parenthesis so a parse error is reported.

The else clause deals with all other tokens by appending them to the list.

The final if statement checks that the parser is not in an inner context when
the input is finished. This would mean there was an open parenthesis without
a corresponding close, so an error is reported. Otherwise, the list representing
the parse tree is returned.
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11.3 Evaluator

The evaluator takes a list representing the parse tree of a Charme expression
or definition and an environment, and outputs the result of evaluating the ex-
pression in the input environment. The evaluator implements the evaluation
rules for the target language.

The core of the evaluator is the procedure meval:

def meval(expr, env):
if isPrimitive(expr): return evalPrimitive(expr)
elif isIf(expr): return evalIf(expr, env)
elif isDefinition(expr): evalDefinition(expr, env)
elif isName(expr): return evalName(expr, env)
elif isLambda(expr): return evalLambda(expr, env)
elif isApplication(expr): return evalApplication(expr, env)
else: error ('Unknown expression type: ' + str(expr))

The if statement matches the input expression with one of the expression
types (or the definition) in the Charme language, and returns the result of
applying the corresponding evaluation procedure (if the input is a definition,
no value is returned since definitions do not produce an output value). We
next consider each evaluation rule in turn.

11.3.1 Primitives

Charme supports two kinds of primitives: natural numbers and primitive
procedures.

def isPrimitive(expr):
return isNumber(expr) or isPrimitiveProcedure(expr)

If the expression is a number, it is a string of digits. The isNumber procedure
evaluates to True if and only if its input is a number:

def isNumber(expr):
return isinstance(expr, str) and expr.isdigit()

Here, we use the built-in function isinstance to check if expr is of type str. The
and expression in Python evaluates similarly to the Scheme and special form:
the left operand is evaluated first; if it evaluates to a false value, the value of
the and expression is that false value. If it evaluates to a true value, the right
operand is evaluated, and the value of the and expression is the value of its
right operand. This evaluation rule means it is safe to use expr.isdigit() in the
right operand, since it is only evaluated if the left operand evaluated to a true
value, which means expr is a string.

Primitive procedures are defined using Python procedures. The callable pro-
cedure returns true only for callable objects such as procedures and methods
so we can use this to implement isPrimitiveProcedure:
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def isPrimitiveProcedure(expr):
return callable(expr)

The evaluation rule for a primitive is identical to the Scheme rule:

Charme Evaluation Rule 1: Primitives. A primitive expression eval-
uates to its pre-defined value.

We need to implement the pre-defined values in our Charme interpreter.

To evaluate a number primitive, we need to convert the string representation
to a number of type int. The int(s) constructor takes a string as its input and
outputs the corresponding integer:

def evalPrimitive(expr):
if isNumber(expr): return int(expr)
else: return expr

The else clause means that all other primitives (in Charme, this is only primi-
tive procedures and Boolean constants) self-evaluate: the value of evaluating
a primitive is itself.

For the primitive procedures, we need to define Python procedures that im-
plement the primitive procedure. For example, here is the primitivePlus pro-
cedure that is associated with the + primitive procedure:

def primitivePlus (operands):
if (len(operands) == 0): return 0
else: return operands[0] + primitivePlus (operands[1:])

The input is a list of operands. Since a procedure is applied only after all
subexpressions are evaluated, there is no need to evaluate the operands: they
are already the evaluated values. For numbers, the values are Python inte-
gers, so we can use the Python + operator to add them. To provide the same
behavior as the Scheme primitive + procedure, we define our Charme prim-
itive + procedure to evaluate to 0 when there are no operands, and otherwise
to recursively add all of the operand values.

The other primitive procedures are defined similarly:

def primitiveTimes (operands):
if (len(operands) == 0): return 1
else: return operands[0] * primitiveTimes (operands[1:])

def primitiveMinus (operands):
if (len(operands) == 1): return−1 * operands[0]
elif len(operands) == 2: return operands[0]− operands[1]
else:

evalError('− expects 1 or 2 operands, given %s: %s'
% (len(operands), str(operands)))
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def primitiveEquals (operands):
checkOperands (operands, 2, '=')
return operands[0] == operands[1]

def primitiveLessThan (operands):
checkOperands (operands, 2, '<')
return operands[0] < operands[1]

The checkOperands procedure reports an error if a primitive procedure is ap-
plied to the wrong number of operands:

def checkOperands(operands, num, prim):
if (len(operands) != num):

evalError('Primitive %s expected %s operands, given %s: %s'
% (prim, num, len(operands), str(operands)))

11.3.2 If Expressions

Charme provides an if expression special form with a syntax and evaluation
rule identical to the Scheme if expression. The grammar rule for an if expres-
sion is:

IfExpression ::⇒ (if ExpressionPredicate
ExpressionConsequent
ExpressionAlternate)

The expression object representing an if expression should be a list contain-
ing three elements, with the first element matching the keyword if.

All special forms have this property: they are represented by lists where the
first element is a keyword that identifies the special form.

The isSpecialForm procedure takes an expression and a keyword and outputs
a Boolean. The result is True if the expression is a special form matching the
keyword:

def isSpecialForm(expr, keyword):
return isinstance(expr, list) and len(expr) > 0 and expr[0] == keyword

We can use this to recognize different special forms by passing in different
keywords. We recognize an if expression by the if token at the beginning of
the expression:

def isIf(expr):
return isSpecialForm(expr, 'if')

The evaluation rule for an if expression is:4

4We number the Charme evaluation rules using the numbers we used for the analogous
Scheme evaluation rules, but present them in a different order.
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Charme Evaluation Rule 5: If. To evaluate an if expression in the cur-
rent environment, (a) evaluate the predicate expression in the cur-
rent environment; then, (b) if the value of the predicate expression is
a false value then the value of the if expression is the value of the al-
ternate expression in the current environment; otherwise, the value
of the if expression is the value of the consequent expression in the
current environment.

This procedure implements the if evaluation rule:

def evalIf(expr,env):
if meval(expr[1], env) != False: return meval(expr[2],env)
else: return meval(expr[3],env)

11.3.3 Definitions and Names

To evaluate definitions and names we need to represent environments. A def-
inition adds a name to a frame, and a name expression evaluates to the value
associated with a name.

We use a Python class to represent an environment. As in Chapter 10, a class
packages state and procedures that manipulate that state. In Scheme, we
needed to use a message-accepting procedure to do this. Python provides
the class construct to support it directly. We define the Environment class for
representing an environment. It has internal state for representing the par-
ent (itself an Environment or None, Python’s equivalent to null for the global
environment’s parent), and for the frame.

The dictionary datatype provides a convenient way to implement a frame.
The init procedure constructs a new object. It initializes the frame of the
new environment to the empty dictionary using self. frame = {}.

The addVariable method either defines a new variable or updates the value
associated with a variable. With the dictionary datatype, we can do this with
a simple assignment statement.

The lookupVariable method first checks if the frame associated with this envi-
ronment has a key associated with the input name. If it does, the value associ-
ated with that key is the value of the variable and that value is returned. Oth-
erwise, if the environment has a parent, the value associated with the name is
the value of looking up the variable in the parent environment. This directly
follows from the stateful Scheme evaluation rule for name expressions. The
else clause addresses the situation where the name is not found and there is
no parent environment (since we have already reached the global environ-
ment) by reporting an evaluation error indicating an undefined name.

class Environment:
def init (self, parent):

self. parent = parent
self. frame = {}
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def addVariable(self, name, value):
self. frame[name] = value

def lookupVariable(self, name):
if self. frame.has key(name): return self. frame[name]
elif (self. parent): return self. parent.lookupVariable(name)
else: evalError('Undefined name: %s' % (name))

Using the Environment class, the evaluation rules for definitions and name
expressions are straightforward.

def isDefinition(expr): return isSpecialForm(expr, 'define')
def evalDefinition(expr, env):

name = expr[1]
value = meval(expr[2], env)
env.addVariable(name, value)

def isName(expr): return isinstance(expr, str)
def evalName(expr, env):

return env.lookupVariable(expr)

11.3.4 Procedures

The result of evaluating a lambda expression is a procedure. Hence, to define
the evaluation rule for lambda expressions we need to define a class for rep-
resenting user-defined procedures. It needs to record the parameters, proce-
dure body, and defining environment:

class Procedure:
def init (self, params, body, env):

self. params = params
self. body = body
self. env = env

def getParams(self): return self. params
def getBody(self): return self. body
def getEnvironment(self): return self. env

The evaluation rule for lambda expressions creates a Procedure object:

def isLambda(expr): return isSpecialForm(expr, 'lambda')

def evalLambda(expr,env):
return Procedure(expr[1], expr[2], env)
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11.3.5 Application

Evaluation and application are defined recursively. To perform an applica-
tion, we need to evaluate all the subexpressions of the application expression,
and then apply the result of evaluating the first subexpression to the values of
the other subexpressions.

def isApplication(expr): # requires: all special forms checked first
return isinstance(expr, list)

def evalApplication(expr, env):
subexprs = expr
subexprvals = map (lambda sexpr: meval(sexpr, env), subexprs)
return mapply(subexprvals[0], subexprvals[1:])

The evalApplication procedure uses the built-in map procedure, which is sim-
ilar to list-map from Chapter 5. The first parameter to map is a procedure
constructed using a lambda expression (similar in meaning, but not in syntax,
to Scheme’s lambda expression); the second parameter is the list of subex-
pressions.

The mapply procedure implements the application rules. If the procedure is
a primitive, it “just does it”: it applies the primitive procedure to its operands.

To apply a constructed procedure (represented by an object of the Procedure
class) it follows the stateful application rule for applying constructed proce-
dures:

Charme Application Rule 2: Constructed Procedures. To apply a
constructed procedure:

1. Construct a new environment, whose parent is the environment
of the applied procedure.

2. For each procedure parameter, create a place in the frame of
the new environment with the name of the parameter. Evaluate
each operand expression in the environment or the application
and initialize the value in each place to the value of the corre-
sponding operand expression.

3. Evaluate the body of the procedure in the newly created envi-
ronment. The resulting value is the value of the application.

The mapply procedure implements the application rules for primitive and
constructed procedures:

def mapply(proc, operands):
if (isPrimitiveProcedure(proc)): return proc(operands)
elif isinstance(proc, Procedure):

params = proc.getParams()
newenv = Environment(proc.getEnvironment())
if len(params) != len(operands):
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evalError ('Parameter length mismatch: %s given operands %s'
% (str(proc), str(operands)))

for i in range(0, len(params)):
newenv.addVariable(params[i], operands[i])

return meval(proc.getBody(), newenv)
else: evalError('Application of non−procedure: %s' % (proc))

11.3.6 Finishing the Interpreter

To finish the interpreter, we define the evalLoop procedure that sets up the
global environment and provides an interactive interface to the interpreter.
The evaluation loop reads a string from the user using the Python built-in
procedure raw input. It uses parse to convert that string into a structured list
representation. Then, it uses a for loop to iterate through the expressions. It
evaluates each expression using meval and the result is printed.

To initialize the global environment, we create an environment with no par-
ent and place variables in it corresponding to the primitives in Charme.

def evalLoop():
globalEnvironment = Environment(None)
globalEnvironment.addVariable('true', True)
globalEnvironment.addVariable('false', False)
globalEnvironment.addVariable('+', primitivePlus)
globalEnvironment.addVariable('−', primitiveMinus)
globalEnvironment.addVariable('*', primitiveTimes)
globalEnvironment.addVariable('=', primitiveEquals)
globalEnvironment.addVariable('<', primitiveLessThan)
while True:

inv = raw input('Charme> ')
if inv == 'quit': break
for expr in parse(inv):

print str(meval(expr, globalEnvironment))

Here are some sample interactions with our Charme interpreter:

≫ evalLoop()
Charme> (+ 2 2)
4
Charme> (define fibo

(lambda (n)
(if (= n 1) 1

(if (= n 2) 1
(+ (fibo (− n 1)) (fibo (− n 2)))))))

None
Charme> (fibo 10)
55
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11.4 Lazy Evaluation

Once we have an interpreter, we can change the meaning of our language
by changing the evaluation rules. This enables a new problem-solving strat-
egy: if the solution to a problem cannot be expressed easily in an existing
language, define and implement an interpreter for a new language in which
the problem can be solved more easily. This section explores a variation on
Charme we call LazyCharme. LazyCharme changes the application evalua-
tion rule so that operand expressions are not evaluated until their values are
needed. This is known as lazy evaluation. Lazy evaluation enables many pro-lazy evaluation

cedures which would otherwise be awkward to express to be defined con-
cisely. Since both Charme and LazyCharme are universal programming lan-
guages they can express the same set of computations: all of the procedures
we define that take advantage of lazy evaluation could be defined with eager
evaluation (for example, by first defining a lazy interpreter as we do here).

11.4.1 Lazy Interpreter

Like the standard Scheme interpreter, the Charme interpreter evaluates ap-
plication expressions eagerly: all the operand subexpressions are evaluated
whether or not their values are needed. Lazy evaluation means an expressionMuch of my work has come from

being lazy.
John Backus

is evaluated only when its value is needed. This involves changing the evalua-
tion rule for applications of constructed procedures. Instead of evaluating all
operand expressions, lazy evaluation delays evaluation of an operand expres-
sion until its value is needed. To keep track of what is needed to perform the
evaluation when and if it is needed, a special object known as a thunk is cre-thunk

ated and stored in the place associated with the parameter name. By delaying
evaluation of operand expressions until their value is needed, we can enable
programs to define procedures that conditionally evaluate their operands like
the if special form.

The lazy rule for applying constructed procedures is:

Lazy Application Rule 2: Constructed Procedures. To apply a con-
structed procedure:

1. Construct a new environment, whose parent is the environment of
the applied procedure.

2. For each procedure parameter, create a place in the frame of the
new environment with the name of the parameter. Put a thunk in
that place, which is an object that can be used later to evaluate
the value of the corresponding operand expression if and when its
value is needed.

3. Evaluate the body of the procedure in the newly created environ-
ment. The resulting value is the value of the application.
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The rule is identical to the Stateful Application Rule except for the bold part of
step 2. To implement lazy evaluation we modify the interpreter to implement
the lazy application rule. We start by defining a Python class for representing
thunks and then modify the interpreter to support lazy evaluation.

Making Thunks. A thunk keeps track of an expression whose evaluation is de-
layed until it is needed. Once the evaluation is performed, the resulting value
is saved so the expression does not need to be re-evaluated the next time the
value is needed. Thus, a thunk is in one of two possible states: unevaluated
and evaluated. We will encourage you to develop

the three great virtues of a
programmer: Laziness,
Impatience, and Hubris.
Larry Wall, Programming Perl

The Thunk class implements thunks:

class Thunk:
def init (self, expr, env):

self. expr = expr
self. env = env
self. evaluated = False

def value(self):
if not self. evaluated:

self. value = forceEval(self. expr, self. env)
self. evaluated = True

return self. value

A Thunk object keeps track of the expression in the expr instance variable.
Since the value of the expression may be needed when the evaluator is eval-
uating an expression in some other environment, it also keeps track of the
environment in which the thunk expression should be evaluated in the env
instance variable.

The evaluated instance variable is a Boolean that records whether or not the
thunk expression has been evaluated. Initially this value is False. After the
expression is evaluated, evaluated is True and the value instance variable
keeps track of the resulting value.

The value method uses forceEval (defined later) to obtain the evaluated value
of the thunk expression and stores that result in value.

The isThunk procedure returns True only when its parameter is a thunk:

def isThunk(expr): return isinstance(expr, Thunk)

Changing the evaluator. To implement lazy evaluation, we change the eval-
uator so there are two different evaluation procedures: meval is the standard
evaluation procedure (which leaves thunks in their unevaluated state), and
forceEval is the evaluation procedure that forces thunks to be evaluated to
values. The interpreter uses meval when the actual expression value may not
be needed, and forceEval to force evaluation of thunks when the value of an
expression is needed.

In the meval procedure, a thunk evaluates to itself. We add a new elif clause
for thunk objects to the meval procedure:

elif isThunk(expr): return expr
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The forceEval procedure first uses meval to evaluate the expression normally.
If the result is a thunk, it uses the Thunk.value method to force evaluation
of the thunk expression. That method uses forceEval to find the value of the
thunk expression, so any thunks inside the expression will be recursively eval-
uated.

def forceEval(expr, env):
val = meval(expr, env)
if isThunk(val): return val.value()
else: return val

Next, we change the application rule to perform delayed evaluation and change
a few other places in the interpreter to use forceEval instead of meval to ob-
tain the actual values when they are needed.

We change evalApplication to delay evaluation of the operands by creating
Thunk objects representing each operand:

def evalApplication(expr, env):
ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
return mapply(forceEval(expr[0], env), ops)

Only the first subexpression must be evaluated to obtain the procedure to
apply. Hence, evalApplication uses forceEval to obtain the value of the first
subexpression, but makes Thunk objects for the operand expressions.

To apply a primitive, we need the actual values of its operands, so must force
evaluation of any thunks in the operands. Hence, the definition for mapply
forces evaluation of the operands to a primitive procedure:

def mapply(proc, operands):
def deThunk(expr):

if isThunk(expr): return expr.value()
else: return expr

if (isPrimitiveProcedure(proc)):
ops = map (deThunk, operands)
return proc(ops)

elif isinstance(proc, Procedure):
... # same as in Charme interpreter

To evaluate an if expression, it is necessary to know the actual value of the
predicate expressions. We change the evalIf procedure to use forceEval when
evaluating the predicate expression:

def evalIf(expr,env):
if forceEval(expr[1], env) != False: return meval(expr[2],env)
else: return meval(expr[3],env)

This forces the predicate to evaluate to a value so its actual value can be used
to determine how the rest of the if expression evaluates; the evaluations of the
consequent and alternate expressions are left as mevals since it is not neces-
sary to force them to be evaluated yet.
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The final change to the interpreter is to force evaluation when the result is
displayed to the user in the evalLoop procedure by replacing the call to meval
with forceEval.

11.4.2 Lazy Programming

Lazy evaluation enables programming constructs that are not possible with
eager evaluation. For example, with lazy evaluation we can define a proce-
dure that behaves like the if expression special form. We first define true and
false as procedures that take two parameters and output the first or second
parameter:

(define true (lambda (a b) a))
(define false (lambda (a b) b))

Then, this definition defines a procedure with behavior similar to the if spe-
cial form:

(define ifp (lambda (p c a) (p c a)))

With eager evaluation, this would not work since all operands would be eval-
uated; with lazy evaluation, only the operand that corresponds to the appro-
priate consequent or alternate expression is evaluated.

Lazy evaluation also enables programs to deal with seemingly infinite data
structures. This is possible since only those values of the apparently infinite
data structure that are used need to be created. Modern methods of production

have given us the possibility of ease
and security for all; we have
chosen, instead, to have overwork
for some and starvation for others.
Hitherto we have continued to be
as energetic as we were before there
were machines; in this we have
been foolish, but there is no reason
to go on being foolish forever.
Bertrand Russell, In Praise of Idleness,
1932

Suppose we define procedures similar to the Scheme procedures for manip-
ulating pairs:

(define cons (lambda (a b) (lambda (p) (if p a b))))
(define car (lambda (p) (p true)))
(define cdr (lambda (p) (p false)))
(define null false)
(define null? (lambda (x) (= x false)))

These behave similarly to the corresponding Scheme procedures, except in
LazyCharme their operands are evaluated lazily. This means, we can define
an infinite list:

(define ints-from (lambda (n) (cons n (ints-from (+ n 1)))))

With eager evaluation, (ints-from 1) would never finish evaluating; it has no
base case for stopping the recursive applications. In LazyCharme, however,
the operands to the cons application in the body of ints-from are not eval-
uated until they are needed. Hence, (ints-from 1) terminates and produces
a seemingly infinite list, but only the evaluations that are needed are per-
formed. For example, (car (cdr (cdr (cdr (ints-from 1))))) evaluates to 4.
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Some evaluations fail to terminate even with lazy evaluation. For example,
assume the standard definition of list-length:

(define list-length
(lambda (lst) (if (null? lst) 0 (+ 1 (list-length (cdr lst))))))

An evaluation of (length (ints-from 1)) never terminates. Every time an appli-
cation of list-length is evaluated, it applies cdr to the input list, which causes
ints-from to evaluate another cons, increasing the length of the list by one.
The actual length of the list is infinite, so the application of list-length does
not terminate.

Lists with delayed evaluation can be used in useful programs. Reconsider the
Fibonacci sequence from Chapter 7. Using lazy evaluation, we can define a
list that is the infinitely long Fibonacci sequence:5

(define fibo-gen (lambda (a b) (cons a (fibo-gen b (+ a b)))))
(define fibos (fibo-gen 0 1))

The nth Fibonacci number is the nth element of fibos:

(define fibo (lambda (n) (list-get-element fibos n)))

where list-get-element is defined as it was defined in Chapter 5.

Another strategy for defining the Fibonacci sequence is to first define a pro-
cedure that merges two (possibly infinite) lists, and then define the Fibonacci
sequence recursively. The merge-lists procedure combines elements in two
lists using an input procedure.

(define merge-lists
(lambda (lst1 lst2 proc)

(if (null? lst1) null
(if (null? lst2) null

(cons (proc (car lst1) (car lst2))
(merge-lists (cdr lst1) (cdr lst2) proc))))))

We can define the Fibonacci sequence as the combination of two sequences,
starting with the 0 and 1 base cases, combined using addition where the sec-
ond sequence is offset by one position:

(define fibos (cons 0 (cons 1 (merge-lists fibos (cdr fibos) +))))

The sequence is defined to start with 0 and 1 as the first two elements. The
following elements are the result of merging fibos and (cdr fibos) using the
+ procedure. This definition relies heavily on lazy evaluation; otherwise, the

5This example is based on Abelson and Sussman, Structure and Interpretation of Computer
Programs, Section 3.5.2, which also presents several other examples of interesting programs con-
structed using delayed evaluation.
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evaluation of (merge-lists fibos (cdr fibos) +) would never terminate: the in-
put lists are effectively infinite.

Exercise 11.3. Define the sequence of factorials as an infinite list using de-
layed evaluation.

Exercise 11.4. Describe the infinite list defined by each of the following defi-
nitions. (Check your answers by evaluating the expressions in LazyCharme.)

a. (define p (cons 1 (merge-lists p p +)))

b. (define t (cons 1 (merge-lists t (merge-lists t t +) +)))

c. (define twos (cons 2 twos))

d. (define doubles (merge-lists (ints-from 1) twos ∗))

Exercise 11.5. [★★] A simple procedure known as the Sieve of Eratosthenes for
finding prime numbers was created by Eratosthenes, an ancient Greek math-
ematician and astronomer. The procedure imagines starting with an (infi-
nite) list of all the integers starting from 2. Then, it repeats the following two
steps forever:

1. Circle the first number that is not crossed off; it is prime.
2. Cross off all numbers that are multiples of the circled number.

To carry out the procedure in practice, of course, the initial list of numbers
must be finite, otherwise it would take forever to cross off all the multiples of
2. But, with delayed evaluation, we can implement the Sieve procedure on an
effectively infinite list.

Implement the sieve procedure using lists with lazy evaluation. You may find
the list-filter and merge-lists procedures useful, but will probably find it nec-
essary to define some additional procedures.

Eratosthenes

11.5 Summary

Languages are tools for thinking, as well as means to express executable pro-
grams. A programming language is defined by its grammar and evaluation
rules. To implement a language, we need to implement a parser that carries
out the grammar rules and an evaluator that implements the evaluation rules.

We can produce new languages by changing the evaluation rules of an in-
terpreter. Changing the evaluation rules changes what programs mean, and
enables new approaches to solving problems.
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Part IV

The Limits of Computing





12
Computability

However unapproachable these problems may seem to us and however helpless we
stand before them, we have, nevertheless, the firm conviction that their solution

must follow by a finite number of purely logical processes. . .This conviction of the
solvability of every mathematical problem is a powerful incentive to the worker.

We hear within us the perpetual call: There is the problem. Seek its solution. You
can find it by pure reason; for in mathematics these is no ignorabimus.

David Hilbert, 1900

Charme, Python, and Scheme are each sufficient to define a procedure that
produces any possible computation. What remains to be considered, how-
ever, is what problems can and cannot be solved by mechanical computa-
tion. This is the question of computability: a problem is computable if it can computability

be solved by some algorithm; a problem that is noncomputable cannot be
solved by any algorithm.

Section 12.1 considers first the analogous question for declarative knowledge:
are there true statements that cannot be proven by any proof? Section 12.2
introduces the Halting Problem, a problem that cannot be solved by any al-
gorithm. Section 12.3 sketches Alan Turing’s proof that the Halting Problem
is noncomputable. Section 12.4 discusses how to show other problems are
noncomputable.

12.1 Mechanizing Reasoning

Humans have been attempting to mechanize reasoning for thousands of years.
Aristotle’s Organon developed rules of inference known as syllogisms to codify syllogisms

logical deductions in approximately 350 BC.

Euclid went beyond Aristotle by developing a formal axiomatic system. An
axiomatic system is a formal system consisting of a set of axioms and a set axiomatic system

of inference rules. The goal of an axiomatic system is to codify knowledge in
some domain.

The axiomatic system Euclid developed in The Elements concerned construc-
tions that could be drawn using just a straightedge and a compass.

Euclid started with five axioms (more commonly known as postulates); an ex-
ample axiom is: A straight line segment can be drawn joining any two points.
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In addition to the postulates, Euclid states five common notions, which could
be considered inference rules. An example of a common notion is: The whole
is greater than the part.

Starting from the axioms and common notions, along with a set of definitions
(e.g., defining a circle), Euclid proved 468 propositions mostly about geome-
try and number theory. A proposition is a statement that is stated preciselyproposition

enough to be either true or false. Euclid’s first proposition is: given any line,
an equilateral triangle can be constructed whose edges are the length of that
line.

A proof of a proposition in an axiomatic system is a sequence of steps thatproof

ends with the proposition. Each step must follow from the axioms using the
inference rules. Most of Euclid’s proofs are constructive: propositions state
that a thing with a particular property exists, and proofs show steps for con-
structing something with the stated property. The steps start from the postu-
lates and follow the inference rules to prove that the constructed thing result-
ing at the end satisfies the requirements of the proposition.

A consistent axiomatic system is one that can never derive contradictory state-consistent

ments by starting from the axioms and following the inference rules. If a sys-
tem can generate both A and not A for any proposition A, the system is in-
consistent. If the system cannot generate any contradictory pairs of state-
ments it is consistent.

A complete axiomatic system can derive all true statements by starting fromcomplete

the axioms and following the inference rules. This means if a given proposi-
tion is true, some proof for that proposition can be found in the system. Since
we do not have a clear definition of true (if we defined true as something that
can be derived in the system, all axiomatic systems would automatically be
complete by definition), we state this more clearly by saying that the system
can decide any proposition. This means, for any proposition P, a complete
axiomatic system would be able to derive either P or not P. A system that
cannot decide all statements in the system is incomplete. An ideal axiomatic
system would be complete and consistent: it would derive all true statements
and no false statements.

The completeness of a system depends on the set of possible propositions.
Euclid’s system is consistent but not complete for the set of propositions about
geometry. There are statements that concern simple properties in geometry
(a famous example is any angle can be divided into three equal sub-angles)
that cannot be derived in the system; trisecting an angle requires more pow-
erful tools than the straightedge and compass provided by Euclid’s postulates.

Figure 12.1 depicts two axiomatic systems. The one on the left one incom-
plete: there are some propositions that can be stated in the system that are
true for which no valid proof exists in the system. The one on the right is in-
consistent : it is possible to construct valid proofs of both P and not P starting
from the axioms and following the inference rules. Once a single contradic-
tory proposition can be proven the system becomes completely useless. The
contradictory propositions amount to a proof that true = false, so once a sin-
gle pair of contradictory propositions can be proven every other false propo-
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sition can also be proven in the system. Hence, only consistent systems are
interesting and we focus on whether it is possible for them to also be com-
plete.

Figure 12.1. Incomplete and inconsistent axiomatic systems.

Russell’s Paradox. Towards the end of the 19th century, many mathemati-
cians sought to systematize mathematics by developing a consistent axiomatic
system that is complete for some area of mathematics. One notable attempt
was Gottlob Frege’s Grundgestze der Arithmetik (1893) which attempted to
develop an axiomatic system for all of mathematics built from simple logic.

Bertrand Russell discovered a problem with Frege’s system, which is now known
as Russell’s paradox. Suppose R is defined as the set containing all sets that do Russell’s paradox

not contain themselves as members. For example, the set of all prime num-
bers does not contain itself as a member, so it is a member of R. On the other
hand, the set of all entities that are not prime numbers is a member of R.
This set contains all sets, since a set is not a prime number, so it must contain
itself.

The paradoxical question is: is the set R a member of R? There are two possible
answers to consider but neither makes sense:

Yes: R is a member of R
We defined the set R as the set of all sets that do not contain themselves
as member. Hence, R cannot be a member of itself, and the statement
that R is a member of R must be false.

No: R is not a member of R
If R is not a member of R, then R does not contain itself and, by defini-
tion, must be a member of set R. This is a contradiction, so the statement
that R is not a member of R must be false.

The question is a perfectly clear and precise binary question, but neither the
“yes” nor the “no” answer makes any sense. Symbolically, we summarize the
paradox: for any set s, s ∈ R if and only if s /∈ s. Selecting s = R leads to the
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contradiction: R ∈ R if and only if R /∈ R.

Whitehead and Russell attempted to resolve this paradox by constructing their
system to make it impossible to define the set R. Their solution was to intro-
duce types. Each set has an associated type, and a set cannot contain mem-
bers of its own type. The set types are defined recursively:

• A type zero set is a set that contains only non-set objects.
• A type-n set can only contain sets of type n− 1 and below.

This definition avoids the paradox: the definition of R must now define R as a
set of type k set containing all sets of type k− 1 and below that do not contain
themselves as members. Since R is a type k set, it cannot contain itself, since
it cannot contain any type k sets.

In 1913, Whitehead and Russell published Principia Mathematica, a bold at-Principia Mathematica

tempt to mechanize mathematical reasoning that stretched to over 2000 pages.
Whitehead and Russell attempted to derive all true mathematical statements
about numbers and sets starting from a set of axioms and formal inference
rules. They employed the type restriction to eliminate the particular para-
dox caused by set inclusion, but it does not eliminate all self-referential para-
doxes.

For example, consider this paradox named for the Cretan philosopher Epi-
menides who was purported to have said “All Cretans are liars”. If the state-
ment is true, than Epimenides, a Cretan, is not a liar and the statement that all
Cretans are liars is false. Another version is the self-referential sentence: this
statement is false. If the statement is true, then it is true that the statement
is false (a contradiction). If the statement is false, then it is a true statement
(also a contradiction). It was not clear until Gödel, however, if such state-
ments could be stated in the Principia Mathematica system.

12.1.1 Gödel’s Incompleteness Theorem

Kurt Gödel was born in Brno (then part of Austria-Hungary, now in the Czech
Republic) in 1906. Gödel proved that the axiomatic system in Principia Math-
ematica could not be complete and consistent, but more generally that no
powerful axiomatic system could be both complete and consistent. He proved
that no matter what the axiomatic system is, if it is powerful enough to express
a notion of proof, it must also be the case that there exist statements that can
be expressed in the system but cannot be proven either true or false within
the system.

Gödel with Einstein, Princeton

1950

Institute for Advanced Study Archives

Gödel’s proof used construction: to prove that Principia Mathematica con-
tains statements which cannot be proven either true or false, it is enough to
find one such statement. Gödel’s statement is:

GPM: Statement GPM does not have any proof in the system
of Principia Mathematica.
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Similarly to Russel’s Paradox, this statement leads to a contradiction. It makes
no sense for GPM to be either true or false:

Statement GPM is provable in the system.
If GPM is proven, then it means GPM does have a proof, but GPM stated
that GPM has no proof. The system is inconsistent: it can be used to
prove a statement that is not true.

Statement GPM is not provable in the system.
Since GPM cannot be proven in the system, GPM is a true statement. The
system is incomplete: we have a true statement that is not provable in
the system.

The proof generalizes to any axiomatic system, powerful enough to express a
corresponding statement G:

G: Statement G does not have any proof in the system.

For the proof to be valid, it is necessary to show that statement G can be ex-
pressed in the system.

To express G formally, we need to consider what it means for a statement to
not have any proof in the system. A proof of the statement G is a sequence of
steps, T0, T1, T2, . . ., TN . Each step is the set of all statements that have been
proven true so far. Initially, T0 is the set of axioms in the system. To be a proof
of G, TN must contain G. To be a valid proof, each step should be producible
from the previous step by applying one of the inference rules to statements
from the previous step.

To express statement G an axiomatic system needs to be powerful enough
to express the notion that a valid proof does not exist. Gödel showed that
such a statement could be constructed using the Principia Mathematica sys-
tem, and using any system powerful enough to be able to express interesting
properties. That is, in order for an axiomatic system to be complete and con-
sistent, it must be so weak that it is not possible to express this statement has
no proof in the system.

12.2 The Halting Problem

Gödel established that no interesting and consistent axiomatic system is ca-
pable of proving all true statements in the system. Now we consider the anal-
ogous question for computing: are there problems for which no algorithm ex-
ists?

Recall these definitions form Chapters 1 and 4:

problem: A description of an input and a desired output.

procedure: A specification of a series of actions.

algorithm: A procedure that is guaranteed to always terminate.
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A procedure solves a problem if that procedure produces a correct output for
every possible input. If that procedure always terminates, it is an algorithm.
So, the question can be stated as: are there problems for which no procedure
exists that produces the correct output for every possible problem instance in a
finite amount of time?

A problem is computable if there exists an algorithm that solves the problem.computable

It is important to remember that in order for an algorithm to be a solution
for a problem P, it must always terminate (otherwise it is not an algorithm)
and must always produce the correct output for all possible inputs to P. If no
such algorithm exists, the problem is noncomputable.1noncomputable

Alan Turing proved that there exist noncomputable problems. The way to
show that uncomputable problems exist is to find one, similarly to the way
Gödel showed unprovable true statements exist by finding an unprovable true
statement.

The problem Turing found is known as the Halting Problem:2

Halting Problem
Input: A string representing a Python program.

Output: If evaluating the input program would ever finish, output
True. Otherwise, output False.

Suppose we had a procedure halts that solves the Halting Problem. The input
to halts is a Python program expressed as a string.

For example, halts('(+ 2 3)') should evaluate to True, halts('while True: pass') should
evaluate to False (the Python pass statement does nothing, but is needed to
make the while loop syntactically correct), and

halts(''''''
def fibo(n):

if n == 1 or n == 2: return 1
else: return fibo(n−1) + fibo(n−2)

fibo(60)
'''''')

should evaluate to True. From the last example, it is clear that halts cannot
be implemented by evaluating the expression and outputting True if it termi-
nates. The problem is knowing when to give up and output False. As we ana-
lyzed in Chapter 7, evaluating fibo(60) would take trillions of years; in theory,
though, it eventually finishes so halts should output True.

1The terms decidable and undecidable are sometimes used to mean the same things as com-
putable and noncomputable.

2This problem is a variation on Turing’s original problem, which assumed a procedure that
takes one input. Of course, Turing did not define the problem using a Python program since
Python had not yet been invented when Turing proved the Halting Problem was noncomputable
in 1936. In fact, nothing resembling a programmable digital computer would emerge until sev-
eral years later.
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This argument is not sufficient to prove that halts is noncomputable. It just
shows that one particular way of implementing halts would not work. To
show that halts is noncomputable, we need to show that it is impossible to
implement a halts procedure that would produce the correct output for all
inputs in a finite amount of time.

Here is another example that suggests (but does not prove) the unlikeliness
of halts:

halts('n = 4; while sumOfTwoPrimes(n): n = n + 2')

Assuming sumOfTwoPrimes is defined as an algorithm that take a number
as input and outputs True if the number is the sum of two prime numbers
and False otherwise, this program halts if there exists an even number greater
than 2 that is not the sum of two primes. We assume unbounded integers
even though every actual computer has a limit on the largest number it can
represent. Our computing model, though, uses an infinite tape, so there is no
arbitrary limit on number sizes.

Knowing whether or not the program halts would settle an open problem
known as Goldbach’s Conjecture: every even integer greater than 2 can be writ-
ten as the sum of two primes. Christian Goldbach proposed a form of the con-
jecture in a letter to Leonhard Euler in 1742. Euler refined it and believed it to
be true, but couldn’t prove it.

With a halts algorithm, we could settle the conjecture using the expression
above: if the result is False, the conjecture is proven; if the result is True, the
conjecture is disproved. We could use a halts algorithm like this to resolve
many other open problems. This strongly suggests there is no halts algorithm,
but does not prove it cannot exist.

Proving Noncomputability. Proving non-existence is requires more than
just showing a hard problem could be solved if something exists. One way to
prove non-existence of an X, is to show that if an X exists it leads to a contra-
diction. We prove that the existence of a halts algorithm leads to a contradic-
tion, so no halts algorithm exists.

We obtain the contradiction by showing one input for which the halts proce-
dure could not possibly work correctly. Consider this procedure:

def paradox():
if halts('paradox()'): while True: pass

The body of the paradox procedure is an if expression. The consequent ex-
pression is a never-ending loop.

The predicate expression cannot sensibly evaluate to either True or False:

halts(‘paradox()’)⇒ True
If the predicate expression evaluates to True, the consequent block is
evaluated producing a never-ending loop. Thus, if halts('paradox()') eval-
uates to True, the evaluation of an application of paradox never halts.
But, this means the result of halts('paradox()') was incorrect.
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halts(‘paradox()’)⇒ False
If the predicate expression evaluates to False, the alternate block is eval-
uated. It is empty, so evaluation terminates. Thus, the evaluation of
paradox() terminates, contradicting the result of halts('paradox()').

Either result for halts(`paradox()') leads to a contradiction! The only sensible
thing halts could do for this input is to not produce a value. That means there
is no algorithm that solves the Halting Problem. Any procedure we define to
implement halts must sometimes either produce the wrong result or fail to
produce a result at all (that is, run forever without producing a result). This
means the Halting Problem is noncomputable.

There is one important hole in our proof: we argued that because paradox
does not make sense, something in the definition of paradox must not exist
and identified halts as the component that does not exist. This assumes that
everything else we used to define paradox does exist.

This seems reasonable enough—they are built-in to Python so they seem to
exist. But, perhaps the reason paradox leads to a contradiction is because True
does not really exist or because it is not possible to implement an if expression
that strictly follows the Python evaluation rules. Although we have been using
these and they seems to always work fine, we have no formal model in which
to argue that evaluating True always terminates or that an if expression means
exactly what the evaluation rules say it does.

Our informal proof is also insufficient to prove the stronger claim that no al-
gorithm exists to solve the halting problem. All we have shown is that no
Python procedure exists that solves halts. Perhaps there is a procedure in
some more powerful programming language in which it is possible to imple-
ment a solution to the Halting Problem. In fact, we will see that no more
powerful programming language exists.

A convincing proof requires a formal model of computing. This is why Alan
Turing developed a model of computation.

12.3 Universality

Recall the Turing Machine model from Chapter 6: a Turing Machine consists
of an infinite tape divided into discrete square into which symbols from a
fixed alphabet can be written, and a tape head that moves along the tape. On
each step, the tape head can read the symbol in the current square, write a
symbol in the current square, and move left or right one square or halt. The
machine can keep track of a finite number of possible states, and determines
which action to take based on a set of transition rules that specify the output
symbol and head action for a given current state and read symbol.

Turing argued that this simple model corresponds to our intuition about what
can be done using mechanical computation. Recall this was 1936, so the
model for mechanical computation was not what a mechanical computer
can do, but what a human computer can do. Turing argued that his model
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Figure 12.2. Universal Turing Machine.

corresponded to what a human computer could do by following a systematic
procedure: the infinite tape was as powerful as a two-dimensional sheet of
paper or any other recording medium, the set of symbols must be finite oth-
erwise it would not be possible to correctly distinguish all symbols, and the
number of machine states must be finite because there is a limited amount a
human can keep in mind at one time.

We can enumerate all possible Turing Machines. One way to see this is to de-
vise a notation for writing down any Turing Machine. A Turing Machine is
completely described by its alphabet, states and transition rules. We could
write down any Turing Machine by numbering each state and listing each
transition rule as a tuple of the current state, alphabet symbol, next state, out-
put symbol, and tape direction. We can map each state and alphabet symbol
to a number, and use this encoding to write down a unique number for every
possible Turing Machine. Hence, we can enumerate all possible Turing Ma-
chines by just enumerating the positive integers. Most positive integers do
not correspond to valid Turing Machines, but if we go through all the num-
bers we will eventually reach every possible Turing Machine.

This is step towards proving that some problems cannot be solved by any
algorithm. The number of Turing Machines is less than the number of real
numbers. Both numbers are infinite, but as explained in Section 1.2.2, Can-
tor’s diagonalization proof showed that the real numbers are not countable.
Any attempt to map the real numbers to the integers must fail to include all
the real numbers. This means there are real numbers that cannot be pro-
duced by any Turing Machine: there are fewer Turing Machines than there
are real numbers, so there must be some real numbers that cannot be pro-
duced by any Turing Machine.

The next step is to define the machine depicted in Figure 12.2. A Universal
Turing Machine is a machine that takes as input a number that identifies a Universal Turing Machine

Turing Machine and simulates the specified Turing Machine running on ini-
tially empty input tape.

The Universal Turing Machine can simulate any Turing Machine. In his proof,
Turing describes the transition rules for such a machine. It simulates the Tur-
ing Machine encoded by the input number. One can imagine doing this by
using the tape to keep track of the state of the simulated machine. For each
step, the universal machine searches the description of the input machine to
find the appropriate rule. This is the rule for the current state of the simu-
lated machine on the current input symbol of the simulated machine. The
universal machine keeps track of the machine and tape state of the simulated
machine, and simulates each step. Thus, there is a single Turing Machine that
can simulate every Turing Machine.
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Since a Universal Turing Machine can simulate every Turing Machine, and a
Turing Machine can perform any computation according to our intuitive no-
tion of computation, this means a Universal Turing Machine can perform all
computations. Using the universal machine and a diagonalization argument
similar to the one above for the real numbers, Turing reached a similar contra-
diction for a problem analogous to the Halting Problem for Python programs
but for Turing Machines instead.

If we can simulate a Universal Turing Machine in a programming language,
that language is a universal programming language. There is some programuniversal programming language

that can be written in that language to perform every possible computation.

To show that a programming language is universal, it is sufficient to show that
it can simulate any Turing Machine, since a Turing Machine can perform ev-
ery possible computation. To simulate a Universal Turing Machine, we need
some way to keep track of the state of the tape (for example, the list datatypes
in Scheme or Python would be adequate), a way to keep track of the inter-
nal machine state (a number can do this), and a way to execute the transi-
tion rules (we could define a procedure that does this using an if expression
to make decisions about which transition rule to follow for each step), and
a way to keep going (we can do this in Scheme with recursive applications).
Thus, Scheme is a universal programming language: one can write a Scheme
program to simulate a Universal Turing Machine, and thus, perform any me-
chanical computation.

12.4 Proving Non-Computability

We can show that a problem is computable by describing a procedure and
proving that the procedure always terminates and always produces the cor-
rect answer. It is enough to provide a convincing argument that such a pro-
cedure exists; finding the actual procedure is not necessary (but often helps
to make the argument more convincing).

To show that a problem is not computable, we need to show that no algorithm
exists that solves the problem. Since there are an infinite number of possible
procedures, we cannot just list all possible procedures and show why each
one does not solve the problem. Instead, we need to construct an argument
showing that if there were such an algorithm it would lead to a contradiction.

The core of our argument is based on knowing the Halting Problem is non-
computable. If a solution to some new problem P could be used to solve the
Halting Problem, then we know that P is also noncomputable. That is, no al-
gorithm exists that can solve P since if such an algorithm exists it could be
used to also solve the Halting Problem which we already know is impossible.

Reduction Proofs. The proof technique where we show that a solution for
some problem P can be used to solve a different problem Q is known as a
reduction. A problem Q is reducible to a problem P if a solution to P couldreduction

be used to solve Q. This means that problem Q is no harder than problem P,
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since a solution to problem Q leads to a solution to problem P.

Example 12.1: Prints-Three Problem. Consider the problem of determin-
ing if an application of a procedure would ever print 3:

Prints-Three
Input: A string representing a Python program.

Output: If evaluating the input program would print 3, output
True; otherwise, output False.

We show the Prints-Three Problem is noncomputable by showing that it is as
hard as the Halting Problem, which we already know is noncomputable.

Suppose we had an algorithm printsThree that solves the Prints-Three Prob-
lem. Then, we could define halts as:

def halts(p): return printsThree(p + '; print(3)')

The printsThree application would evaluate to True if evaluating the Python
program specified by p would halt since that means the print(3) statement
appended to p would be evaluated. On the other hand, if evaluating p would
not halt, the added print statement never evaluated. As long as the program
specified by p would never print 3, the application of printsThree should eval-
uate to False. Hence, if a printsThree algorithm exists, we would use it to im-
plement an algorithm that solves the Halting Problem.

The one wrinkle is that the specified input program might print 3 itself. We
can avoid this problem by transforming the input program so it would never
print 3 itself, without otherwise altering its behavior. One way to do this
would be to replace all occurrences of print (or any other built-in procedure
that prints) in the string with a new procedure, dontprint that behaves like
print but doesn’t actually print out anything. Suppose the replacePrints pro-
cedure is defined to do this. Then, we could use printsThree to define halts:

def halts(p): return printsThree(replacePrints(p) + '; print(3)')

We know that the Halting Problem is noncomputable, so this means the Prints-
Three Problem must also be noncomputable.

Exploration 12.1: Virus Detection

The Halting Problem and Prints-Three Problem are noncomputable, but do
seem to be obviously important problems. It is useful to know if a procedure
application will terminate in a reasonable amount of time, but the Halting
Problem does not answer that question. It concerns the question of whether
the procedure application will terminate in any finite amount of time, no
matter how long it is. This example considers a problem for which it would
be very useful to have a solution for it one existed.

A virus is a program that infects other programs. A virus spreads by copying
its own code into the code of other programs, so when those programs are
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executed the virus will execute. In this manner, the virus spreads to infect
more and more programs. A typical virus also includes a malicious payload
so when it executes in addition to infecting other programs it also performs
some damaging (corrupting data files) or annoying (popping up messages)
behavior. The Is-Virus Problem is to determine if a procedure specification
contains a virus:

Is-Virus
Input: A specification of a Python program.

Output: If the expression contains a virus (a code fragment that
will infect other files) output True. Otherwise, output False.

We demonstrate the Is-Virus Problem is noncomputable using a similar strat-
egy to the one we used for the Prints-Three Problem: we show how to define
a halts algorithm given a hypothetical isVirus algorithm. Since we know halts
is noncomputable, this shows there is no isVirus algorithm.

Assume infectFiles is a procedure that infects files, so the result of evaluating
isVirus('infectFiles()') is True. We could define halts as:

def halts(p): return isVirus(p + '; infectFiles()')

This works as long as the program specified by p does not exhibit the file-
infecting behavior. If it does, p could infect a file and never terminate, and
halts would produce the wrong output. To solve this we need to do some-
thing like we did in the previous example to hide the printing behavior of the
original program.

A rough definition of file-infecting behavior would be to consider any write
to an executable file to be an infection. To avoid any file infections in the
specific program, we replace all procedures that write to files with procedures
that write to shadow copies of these files. For example, we could do this by
creating a new temporary directory and prepend that path to all file names.
We call this (assumed) procedure, sandBox, since it transforms the original
program specification into one that would execute in a protected sandbox.

def halts(p): return isVirus(sandBox(p) + '; infectFiles()')

Since we know there is no algorithm that solves the Halting Problem, this
proves that there is no algorithm that solves the Is-Virus problem.

Virus scanners such as Symantec’s Norton AntiVirus attempt to solve the Is-
Virus Problem, but its non-computability means they are doomed to always
fail. Virus scanners detect known viruses by scanning files for strings that
match signatures in a database of known viruses. As long as the signature
database is frequently updated they may be able to detect currently spreading
viruses, but this approach cannot detect a new virus that will not match the
signature of a previously known virus.

Sophisticated virus scanners employ more advanced techniques to attempt
to detect complex viruses such as metamorphic viruses that alter their own
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code as they propagate to avoid detection. But, because the general Is-Virus
Problem is noncomputable, we know that it is impossible to create a program
that always terminates and that always correctly determines if an input pro-
cedure specification is a virus.

Exercise 12.1. Is the Launches-Missiles Problem described below com-
putable? Provide a convincing argument supporting your answer.

Launches-Missiles
Input: A specification of a procedure.

Output: If an application of the procedure would lead to the mis-
siles being launched, outputs True. Otherwise, outputs False.

You may assume that the only thing that causes the missiles to be launched is
an application of the launchMissiles procedure.

Exercise 12.2. Is the Same-Result Problem described below computable?
Provide a convincing argument supporting your answer.

Same-Result
Input: Specifications of two procedures, P and Q.

Output: If an application of P terminates and produces the same
value as applying Q, outputs True. If an application of P does not
terminate, and an application of Q also does not terminate, out-
puts True. Otherwise, outputs False.

Exercise 12.3. Is the Check-Proof Problem described below computable?
Provide a convincing argument supporting your answer.

Check-Proof
Input: A specification of an axiomatic system, a statement (the
theorem), and a proof (a sequence of steps, each identifying the
axiom that is applied).

Output: Outputs True if the proof is a valid proof of the theorem in
the system, or False if it is not a valid proof.
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Exercise 12.4. Is the Find-Finite-Proof Problem described below com-
putable? Provide a convincing argument supporting your answer.

Find-Finite-Proof
Input: A specification of an axiomatic system, a statement (the
theorem), and a maximum number of steps (max-steps).

Output: If there is a proof in the axiomatic system of the theorem
that uses max-steps or fewer steps, outputs True. Otherwise, out-
puts False.

I am rather puzzled why you draw
this distinction between proof

finders and proof checkers. It seems
to me rather unimportant as one

can always get a proof finder from
a proof checker, and the converse is
almost true: the converse false if for

instance one allows the proof
finder to go through a proof in the
ordinary way, and then, rejecting
the steps, to write down the final
formula as a ’proof ’ of itself. One

can easily think up suitable
restrictions on the idea of proof

which will make this converse true
and which agree well with our

ideas of what a proof should be
like. I am afraid this may be more

confusing to you than
enlightening.

Alan Turing, letter to Max Newman,
1940

Exercise 12.5. [★] Is the Find-Proof Problem described below computable?
Provide a convincing argument why it is or why it is not computable.

Find-Proof
Input: A specification of an axiomatic system, and a statement
(the theorem).

Output: If there is a proof in the axiomatic system of the theorem,
outputs True. Otherwise, outputs False.

Exploration 12.2: Busy Beavers

Consider the Busy-Beaver Problem (devised by Tibor Radó in 1962):

Busy-Beaver
Input: A positive integer, n.

Output: A number representing that maximum number of steps a
Turing Machine with n states and a two-symbol tape alphabet can
run starting on an empty tape before halting.

We use 0 and 1 for the two tape symbols, where the blank squares on the tape
are interpreted as 0s (alternately, we could use blank and X as the symbols,
but it is more natural to describe machines where symbols are 0 and 1, so we
can think of the initially blank tape as containing all 0s).

For example, if the Busy Beaver input n is 1, the output should be 1. The best
we can do with only one state is to halt on the first step. If the transition
rule for a 0 input moves left, then it will reach another 0 square and continue
forever without halting; similarly it if moves right.

For n = 2, there are more options to consider. The machine in Figure 12.3
runs for 6 steps before halting, and there is no two-state machine that runs
for more steps. One way to support this claim would be to try simulating all
possible two-state Turing Machines.

Busy Beaver numbers increase extremely quickly. The maximum number of
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Figure 12.3. Two-state Busy Beaver Machine.

steps for a three-state machine is 21, and for a four-state machine is 107. The
value for a five-state machine is not yet known, but the best machine found
to date runs for 47,176,870 steps! For six states, the best known result, discov-
ered in 2007 by Terry Ligocki and Shawn Ligocki, is over 2879 digits long.

We can prove the Busy Beaver Problem is noncomputable by reducing the
Halting Problem to it. Suppose we had an algorithm, bb(n), that takes the
number of states as input and outputs the corresponding Busy Beaver. Then,
we could solve the Halting Problem for a Turing Machine:

TM Halting Problem
Input: A string representing a Turing Machine.

Output: If executing the input Turing Machine starting with a blank
tape would ever finish, output True. Otherwise, output False.

The TM Halting Problem is different from the Halting Problem as we defined
it earlier, so first we need to show that the TM Halting Problem is noncom-
putable by showing it could be used to solve the Python Halting Problem. Be-
cause Python is universal programming language, it is possible to transform
any Turing Machine into a Python program. Once way to do this would be
to write a Universal Turing Machine simulator in Python, and then create a
Python program that first creates a tape containing the input Turing Machine
description, and then calls the Universal Turing Machine simulator on that
input. This shows that the TM Halting Problem is noncomputable.

Next, we show that an algorithm that solves the Busy Beaver Problem could
be used to solve the TM Halting Problem. Here’s how (in Pythonish pseu-
docode):

def haltsTM(m):
states = numberOfStates(m)
maxSteps = bb(states)
state = 0
tape = []
for step in range(0, maxSteps):

state, tape = simulateOneStep(m, state, tape)
if halted(state): return True

return False

The simulateOneStep procedure takes as inputs a Turing Machine descrip-
tion, its current state and tape, and simulates the next step on the machine.
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So, haltsTM simulates up to bb(n) steps of the input machine m where n is the
number of states in m. Since bb(n) is the maximum number of steps a Turing
Machine with n states can execute before halting, we know if m has not halted
in the simulate before maxSteps is reached that the machine m will never halt,
and can correctly return False. This means there is no algorithm that can solve
the Busy Beaver Problem.

Exercise 12.6. Confirm that the machine showing in Figure 12.3 runs for 6
steps before halting.

Exercise 12.7. Prove the Beaver Bound problem described below is also non-
computable:

Beaver-Bound
Input: A positive integer, n.

Output: A number that is greater than the maximum number of
steps a Turing Machine with n states and a two-symbol tape al-
phabet can run starting on an empty tape before halting.

A valid solution to the Beaver-Bound problem can produce any result for n as
long as it is greater than the Busy Beaver value for n.

Exercise 12.8. [★ ★ ★] Find a 5-state Turing Machine that runs for more than
47,176,870 steps, or prove that no such machine exists.

12.5 Summary

Although today’s computers can do amazing things, many of which could not
even have been imagined twenty years ago, there are problems that can never
be solved by computing. The Halting Problem is the most famous example:
it is impossible to define an algorithm determines if the computation speci-
fied by its input terminates. Once we know the Halting Problem is noncom-
putable, we can show that other problems are also noncomputable by illus-
trating how a solution to the other problem could be used to solve the Halting
Problem which we know to be impossible.

Noncomputable problems frequently arise in practice. For example, identi-
fying viruses, analyzing program paths, and constructing proofs, are all non-
computable problems. Just because a problem is noncomputable does not
mean we cannot produce useful programs that address the problem. These
programs provide approximate solutions, which are often useful in practice.
They produce the correct results on many inputs, but on some inputs must
either fail to produce any result or produce an incorrect result.
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