
10
Objects

It was amazing to me, and it is still amazing, that people could not imagine what the
psychological difference would be to have an interactive terminal. You can talk about it
on a blackboard until you are blue in the face, and people would say, “Oh, yes, but why
do you need that?”. . . We used to try to think of all these analogies, like describing it in

terms of the difference between mailing a letter to your mother and getting on the
telephone. To this day I can still remember people only realizing when they saw a real

demo, say, “Hey, it talks back. Wow! You just type that and you got an answer.”
Fernando Corbató (who worked on Whirlwind in the 1950s),

Charles Babbage Institute interview, 1989

So far, we have seen two main approaches for solving problems:

Functional programming
Break a problem into a group of simpler procedures that can be com-
posed to solve the problem (introduced in Chapter 4).

Data-centric programming
Model the data the problem involves, and develop procedures to ma-
nipulate that data (introduced in Chapter 5, and extended to imperative
programming with mutation in the previous chapter).

All computational problems involve both data and procedures. All proce-
dures act on some form of data; without data they can have no meaningful
inputs and outputs. Any data-focused design must involve some procedures
to perform computations using that data.

This chapter introduces a new problem-solving approach known as object-
oriented programming . By packaging procedures and data together it over- object-oriented programming

comes a weakness of both previous approaches: the data and the procedures
that manipulate it are separate.

Unlike many programming languages, Scheme does not provide special built-
in support for objects.1 We build an object system ourselves, taking advan-
tage of the stateful evaluation rules. By building an object system from simple
components, we provide a clearer and deeper understanding of how object
systems work. In Chapter 11, we see how Python provides language support
for object-oriented programming.

1This refers to the standard Scheme language, not the many extended Scheme languages pro-
vided by DrScheme. The MzScheme language does provide additional constructs for supporting
objects, but we do not cover them in this book.

224 10.1. Packaging Procedures and State

The next section introduces techniques for programming with objects that
combine state with procedures that manipulate that state. Section 10.2 de-
scribes inheritance, a powerful technique for programming with objects byinheritance

implementing new objects that add or modify the behaviors of previously im-
plemented objects. Section 10.3 provides some historical background on the
development of object-oriented programming.

10.1 Packaging Procedures and State

Recall our counter from Example 9.1:

(define (update-counter!) (set! counter (+ counter 1)) counter)

Every time an application of update-counter! is evaluated, we expect to obtain
a value one larger than the previous application. This only works, however, if
there are no other evaluations that modify the counter variable. Hence, we
can only have one counter: there is only one counter place in the global en-
vironment. If we want to have a second counter, we would need to define
a new variable (such as counter2, and implement a new procedure, update-
counter2! , that is identical to update-counter! , but manipulates counter2 in-
stead. For each new counter, we would need a new variable and a new proce-
dure.

10.1.1 Encapsulation

It would be more useful to package the counter variable with the procedure
that manipulates it. Then we could create as many counters as we want, each
with its own counter variable to manipulate.

The Stateful Application Rule (from Section 9.2.2) suggests a way to do this:
evaluating an application creates a new environment, so a counter variable
defined an the application environment is only visible through body of the
created procedure.

The make-counter procedure creates a counter object that packages the count
variable with the procedure that increases its value:

(define (make-counter)
((lambda (count)

(lambda () (set! count (+ 1 count)) count))
0))

Each application of make-counter produces a new object that is a procedure
with its own associated count variable. Protecting state so it can only be ma-
nipulated in controlled ways is known as encapsulation.encapsulation

Chapter 10. Objects 225

The count place is encapsulated within the counter object. Whereas the pre-
vious counter used the global environment to store the counter in a way that
could be manipulated by other expressions, this version encapsulates the
counter variable so the only way to manipulate the counter value is through
the counter object.

An equivalent make-counter definition uses a let expression to make the ini-
tialization of the count variable clearer:

(define (make-counter)
(let ((count 0))

(lambda () (set! count (+ 1 count)) count)))

Figure 10.1 depicts the environment after creating two counter objects and
applying one of them.

Figure 10.1. Environment produced by evaluating:

(define counter1 (make-counter))
(define counter2 (make-counter))
(counter1)

10.1.2 Messages

The object produced by make-counter is limited to only one behavior: ev-
ery time it is applied the associated count variable is increased by one and
the new value is output. To produce more useful objects, we need a way to
combine state with multiple behaviors.

For example, we might want a counter that can also return the current count
and reset the count. We do this by adding a message parameter to the proce-
dure produced by make-counter :

226 10.1. Packaging Procedures and State

(define (make-counter)
(let ((count 0))

(lambda (message)
(if (eq? message ’get-count) count

(if (eq? message ’reset!) (set! count 0)
(if (eq? message ’next!) (set! count (+ 1 count))

(error "Unrecognized message")))))))

Like the earlier make-counter , this procedure produces a procedure with an
environment containing a frame with a place named count . The produced
procedure takes a message parameter and selects different behavior depend-
ing on the input message.

The message parameter is a Symbol. A Symbol is a sequence of characters
preceded by a quote character such as ’next!. Two Symbols are equal, as de-
termined by the eq? procedure, if their sequences of characters are identical.
The running time of the eq? procedure on symbol type inputs is constant; it
does not increase with the length of the symbols since the symbols can be
represented internally as small numbers and compared quickly using num-
ber equality. This makes symbols a more efficient way of selecting object be-
haviors than Strings, and a more memorable way to select behaviors than
using Numbers.

Here are some sample interactions using the counter object:

> (define counter (make-counter))
> (counter ’next!)
> (counter ’get-count)
1

> (counter ’previous!)
Unrecognized message

Conditional expressions. For objects with many behaviors, the nested if
expressions can get quite cumbersome. Scheme provides a compact condi-
tional expression for combining many if expressions into one smaller expres-
sion:

Expression ::⇒ CondExpression
CondExpression::⇒ (cond CondClauseList)
CondClauseList ::⇒ CondClause CondClauseList
CondClauseList ::⇒ ε

CondClause ::⇒ (Expressionpredicate Expressionconsequent)

The evaluation rule for a conditional expression can be defined as a transfor-
mation into an if expression:

Chapter 10. Objects 227

Evaluation Rule 9: Conditional. The conditional expression (cond)
has no value. All other conditional expressions are of the form (cond
(Expressionp1 Expressionc1) Rest) where Rest is a list of conditional
clauses. The value of such a conditional expression is the value of the
if expression:

(if Expressionp1 Expressionc1 (cond Rest))

This evaluation rule is recursive since the transformed expression still in-
cludes a conditional expression, but uses the empty conditional with no value
as its base case.

The conditional expression can be used to define make-counter more clearly
than the nested if expressions:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond ((eq? message ’get-count) count)

((eq? message ’reset!) (set! count 0))
((eq? message ’next!) (set! count (+ 1 count)))
(true (error "Unrecognized message"))))))

For linguistic convenience, Scheme provides a special syntax else for use in
conditional expressions. When used as the predicate in the last conditional
clause it means the same thing as true. So, we could write the last clause
equivalently as (else (error "Unrecognized message")).

Sending messages. A more natural way to interact with objects is to define a
generic procedure that takes an object and a message as its parameters, and
send the message to the object.

The ask procedure is a simple procedure that does this:

(define (ask object message) (object message))

It applies the object input to the message input. So, (ask counter ’next!) is
equivalent to (counter ’next!), but looks more like passing a message to an ob-
ject than applying a procedure. Later, we will develop more complex versions
of the ask procedure to provide a more powerful object model.

Messages with parameters. Sometimes it is useful to have behaviors that
take additional parameters. For example, we may want to support a message
adjust! that increases the counter value by an input value.

To support such behaviors, we generalize the behaviors so that the result of
applying the message dispatching procedure is itself a procedure. The pro-
cedures for reset! , next! , and get-count take no parameters; the procedure for
adjust! takes one parameter.

228 10.1. Packaging Procedures and State

(define (make-adjustable-counter)
(let ((count 0))

(lambda (message)
(cond ((eq? message ’get-count) (lambda () count))

((eq? message ’reset!) (lambda () (set! count 0)))
((eq? message ’next!) (lambda () (set! count (+ 1 count))))
((eq? message ’adjust!)
(lambda (val) (set! count (+ count val))))

(else (error "Unrecognized message"))))))

We also need to also change the ask procedure to pass in the extra arguments.
So far, all the procedures we have defined take a fixed number of operands. To
allow ask to work for procedures that take a variable number of arguments,
we use a special definition construct:

Definition ::⇒ (define (Name Parameters . NameRest) Expression)

The name following the dot is bound to all the remaining operands combined
into a list. This means the defined procedure can be applied to n or more
operands where n is the number of names in Parameters. If there are only
n operand expressions, the value bound to NameRest is null. If there are n +
k operand expressions, the value bound to NameRest is a list containing the
values of the last k operand expressions.

To apply the procedure we use the built-in apply procedure which takes two
inputs, a Procedure and a List. It applies the procedure to the values in the
list, extracting them from the list as each operand in order.

(define (ask object message . args)
(apply (object message) args))

We can use the new ask procedure with two or more parameters to invoke
methods with any number of arguments (e.g., > (ask counter ’adjust! 5)).

10.1.3 Object Terminology

An object is an entity that packages state and procedures.object

The state variables that are part of an object are called instance variables. Theinstance variables

instance variables are stored in places that are part of the application envi-
ronment for the object. This means they are encapsulated with the object
and can only be accessed through the object. An object produced by (make-
counter) defines a single instance variable, count .

The procedures that are part of an object are called methods. Methods maymethods

provide information about the state of an object (we call these observers) or
modify the state of an object (we call these mutators). An object produced by

Chapter 10. Objects 229

(make-counter) provides three methods: reset! (a mutator), next! (a mutator),
and get-count (an observer).

An object is manipulated using the object’s methods. We invoke a method on invoke

an object by sending the object a message. This is analogous to applying a
procedure.

A class is a kind of object. Classes are similar to data types. They define a class

set of possible values and operations (methods in the object terminology) for
manipulating those values. We also need procedures for creating new objects,
such as the make-counter procedure above. We call these constructors. By constructors

convention, we call the constructor for a class make-<class> where <class>
is the name of the class. Hence, an instance of the counter class is the result
produced when the make-counter procedure is applied.

Exercise 10.1. Modify the make-counter definition to add a previous! method
that decrements the counter value by one.

Exercise 10.2. [★] Define a variable-counter object that provides these meth-
ods:

make-variable-counter : Number→ VariableCounter
Creates a variable-counter object with an initial counter value of 0 and
an initial increment value given by the parameter.

set-increment! : Number→ Void
Sets the increment amount for this counter to the input value.

next! : Void→ Void
Adds the increment amount to the value of the counter.

get-count : Void→ Number
Outputs the current value of the counter.

Here are some sample interactions using a variable-counter object:

> (define vcounter (make-variable-counter 1))
> (ask vcounter ’next!)
> (ask vcounter ’set-increment! 2)
> (ask vcounter ’next!)
> (ask vcounter ’get-count)
3

10.2 Inheritance

Objects are particularly well-suited to programs that involve modeling real or
imaginary worlds such as graphical user interfaces (modeling windows, files,
and folders on a desktop), simulations (modeling physical objects in the real
world and their interactions), and games (modeling creatures and things in
an imagined world).

230 10.2. Inheritance

Objects in the real world (or most simulated worlds) are complex. Suppose
we are implementing a game that simulates a typical university. It might in-
clude many different kinds of objects including places (which are stationary
and may contain other objects), things, and people. There are many different
kinds of people, such as students and professors. All objects in our game have
a name and a location; some objects also have methods for talking and mov-
ing. We could define classes independently for all of the object types, but this
would involve a lot of duplicate effort. It would also make it hard to add a new
behavior to all of the objects in the game without modifying many different
procedures.

The solution is to define more specialized kinds of objects using the defini-
tions of other objects. For example, a student is a kind of person. A student
has all the behaviors of a normal person, as well as some behaviors particu-
lar to a student such as choosing a major and graduating. To implement a
student class, we want to reuse methods from the person class without need-
ing to duplicate them in the student implementation. We call the more spe-
cialized class (in this case the student class) the subclass and say student issubclass

a subclass of person. The reused class is known as the superclass, so personsuperclass

is the superclass of student . A class can have many subclasses but only one
superclass.2

Figure 10.2 illustrates some inheritance relationships for a university simula-
tor. The arrows point from subclasses to their superclass. A class may be both
a subclass to another class, and a superclass to a different class. For exam-
ple, person is a subclass of movable-object , but a superclass of student and
professor .

Figure 10.2. Inheritance Hierarchy.

Our goal is to be able to reuse superclass methods in subclasses. When a
method is invoked in a subclass, if the subclass does not provide a definition

2Some object systems (such as the one provided by the C++ programming language) allow
a class to have more than one superclass. This can be confusing, though. If a class has two
superclasses and both define methods with the same name, it may be ambiguous which of the
methods is used when it is invoked on an object of the subclass. In our object system, a class may
have only one superclass.

Chapter 10. Objects 231

of the method, then the definition of the method in the superclass is used.
This can continue up the superclass chain. For instance, student is a sub-
class of person, which is a subclass of movable-object , which is a subclass of
sim-object (simulation object), which is the superclass of all classes in the
simulator.

Hence, if the sim-object class defines a get-name method, when the get-name
method is invoked on a student object, the implementation of get-name in
the sim-object class will be used (as long as neither person nor movable-object
defines its own get-name method).

When one class implementation uses the methods from another class we say
the subclass inherits from the superclass. Inheritance is a powerful way to inherits

obtain many different objects with a small amount of code.

10.2.1 Implementing Subclasses

To implement inheritance we change class definitions so that if a requested
method is not defined by the subclass, the method defined by its superclass
will be used.

The make-sub-object procedure does this. It takes two inputs, a superclass
object and the object dispatching procedure of the subclass, and produces
an instance of the subclass which is a procedure that takes a message as in-
put and outputs the method corresponding to that message. If the method is
defined by the subclass, the result will be the subclass method. If the method
is not defined by the subclass, it will be the superclass method.

(define (make-sub-object super subproc)
(lambda (message)

(let ((method (subproc message)))
(if method method (super message)))))

When an object produced by (make-sub-object obj proc) is applied to a mes-
sage, it first applies the subclass dispatch procedure to the message to find an
appropriate method if one is defined. If no method is defined by the subclass
implementation, it evaluates to (super message), the method associated with
the message in the superclass.

References to self. It is useful to add an extra parameter to all methods so
the object on which the method was invoked is visible. Otherwise, the object
will lose its special behaviors as it is moves up the superclasses. We call this
the self object (in some languages it is called the this object instead). To sup-
port this, we modify the ask procedure to pass in the object parameter to the
method:

(define (ask object message . args)
(apply (object message) object args))

All methods now take the self object as their first parameter, and may take

232 10.2. Inheritance

additional parameters. So, the counter constructor is defined as:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond
((eq? message ’get-count) (lambda (self) count))
((eq? message ’reset!) (lambda (self) (set! count 0)))
((eq? message ’next!) (lambda (self) (set! count (+ 1 count))))
(else (error "Unrecognized message"))))))

Subclassing counter. Since subclass objects cannot see the instance vari-
ables of their superclass objects directly, if we want to provide a versatile
counter class we need to also provide a set-count! method for setting the
value of the counter to an arbitrary value. For reasons that will become clear
later, we should use set-count! everywhere the value of the count variable is
changed instead of setting it directly:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond
((eq? message ’get-count) (lambda (self) count))
((eq? message ’set-count!) (lambda (self val) (set! count val)))
((eq? message ’reset!) (lambda (self) (ask self ’set-count! 0)))
((eq? message ’next!)
(lambda (self) (ask self ’set-count! (+ 1 (ask self ’current)))))

(else (error "Unrecognized message"))))))

Previously, we defined make-adjustable-counter by repeating all the code from
make-counter and adding an adjust! method. With inheritance, we can de-
fine make-adjustable-counter as a subclass of make-counter without repeat-
ing any code:

(define (make-adjustable-counter)
(make-sub-object
(make-counter)
(lambda (message)

(cond
((eq? message ’adjust!)
(lambda (self val)

(ask self ’set-count! (+ (ask self ’get-count) val))))
(else false)))))

We use make-sub-object to create an object that inherits the behaviors from
one class, and extends those behaviors by defining new methods in the sub-
class implementation.

The new adjust! method takes one Number parameter (in addition to the self
object that is passed to every method) and adds that number to the current

Chapter 10. Objects 233

counter value. It cannot use (set! count (+ count val)) directly, though, since
the count variable is defined in the application environment of its superclass
object and is not visible within adjustable-counter . Hence, it accesses the
counter using the set-count! and get-count methods provided by the super-
class.

Suppose we create an adjustable-counter object:

(define acounter (make-adjustable-counter))

Consider what happens when (ask acounter ’adjust! 3) is evaluated. The acounter
object is the result of the application of make-sub-object which is the proce-
dure,

(lambda (message)
(let ((method (subproc message)))

(if method method (super message)))))

where super is the counter object resulting from evaluating (make-counter)
and subproc is the procedure created by the lambda expression in make-
adjustable-counter . The body of ask evaluates (object message) to find the
method associated with the input message, in this case ’adjust!. The acounter
object takes the message input and evaluates the let expression:

(let ((method (subproc message))) . . .)

The result of applying subproc to message is the adjust! procedure defined by
make-adjustable-counter :

(lambda (self val)
(ask self ’set-count! (+ (ask self ’get-count) val)))

Since this is not false, the predicate of the if expression is non-false and the
value of the consequent expression, method, is the result of the procedure
application. The ask procedure uses apply to apply this procedure to the ob-
ject and args parameters. The object is the acounter object, and the args is
the list of the extra parameters, in this case (3).

Thus, the adjust! method is applied to the acounter object and 3. The body of
the adjust! method uses ask to invoke the set-count! method on the self ob-
ject. As with the first invocation, the body of ask evaluates (object message)
to find the method. In this case, the subclass implementation provides no
set-count! method so the result of (subproc message) in the application of the
subclass object is false. Hence, the alternate expression is evaluated: (super
message). This evaluates to the method associated with the set-count! mes-
sage in the superclass. The ask body will apply this method to the self object,
setting the value of the counter to the new value.

We can define new classes by defining subclasses of previously defined classes.
For example, reversible-counter inherits from adjustable-counter :

234 10.2. Inheritance

(define (make-reversible-counter)
(make-subobject
(make-adjustable-counter)
(lambda (message)

(cond
((eq? message ’previous!) (lambda (self) (ask self ’adjust! −1)))
(else false)))))

The reversible-counter object defines the previous! method which provides a
new behavior. If the message to a adjustable-counter object is not previous! ,
the method from its superclass, adjustable-counter is used. Within the previ-
ous! method we use ask to invoke the adjust! method on the self object. Since
the subclass implementation does not provide an adjust! method, this results
in the superclass method being applied.

10.2.2 Overriding Methods

In addition to adding new methods, subclasses can replace the definitions
of methods defined in the superclass. When a subclass replaces a method
defined by its superclass, then the subclass method overrides the superclassoverrides

method. When the method is invoked on a subclass object, the new method
will be used.

For example, we can define a subclass of reversible-counter that is not allowed
to have negative counter values. If the counter would reach a negative num-
ber, instead of setting the counter to the new value, it produces an error mes-
sage and maintains the counter at zero. We do this by overriding the set-count!
method, replacing the superclass implementation of the method with a new
implementation.

(define (make-positive-counter)
(make-subobject
(make-reversible-counter)
(lambda (message)

(cond
((eq? message ’set-count!)
(lambda (self val) (if (< val 0) (error "Negative count")

. . .)))
(else false)))))

What should go in place of the . . .? When the value to set the count to is not
negative, what should happen is the count is set as it would be by the super-
class set-count! method. In the positive-counter code though, there is no way
to access the count variable since it is in the superclass procedure’s applica-
tion environment. There is also no way to invoke the superclass’ set-count!
method since it has been overridden by positive-counter .

The solution is to provide a way for the subclass object to obtain its superclass
object. We can do this by adding a get-super method to the object produced

Chapter 10. Objects 235

by make-sub-object :

(define (make-sub-object super subproc)
(lambda (message)

(if (eq? message ’get-super)
(lambda (self) super)
(let ((method (subproc message)))

(if method method (super message))))))

Thus, when an object produced by make-sub-object is passed the get-super
message it returns a method that produces the super object. The rest of the
procedure is the same as before, so for every other message it behaves like the
earlier make-sub-object procedure.

With the get-super method we can define the set-count! method for positive-
counter , replacing the . . . with:

(ask (ask self ’get-super) ’set-count! val))

Figure 10.3 shows the subclasses that inherit from counter and the methods
they define or override.

Figure 10.3. Counter class hierarchy.

Consider these sample interactions with a positive-counter object:

> (define poscount (make-positive-counter))
> (ask poscount ’next!)
> (ask poscount ’previous!)
> (ask poscount ’previous!)

Negative count

> (ask poscount ’get-count)
0

236 10.2. Inheritance

For the first ask application, the next! method is invoked on a positive-counter
object. Since the positive-counter class does not define a next! method, the
message is sent to the superclass, reversible-counter . The reversible-counter
implementation also does not define a next! method, so the message is passed
up to its superclass, adjustable-counter . This class also does not define a next!
method, so the message is passed up to its superclass, counter . The counter
class defines a next! method, so that method is used.

For the next ask, the previous! method is invoked. Since the positive-counter
class does not define a previous! method, the message is sent to the super-
class. The superclass, reversible-counter , defines a previous! method. Its im-
plementation involves an invocation of the adjust! method: (ask self ’adjust!

−1). This invocation is done on the self object, which is an instance of the
positive-counter class. Hence, the adjust! method is found from the positive-
counter class implementation. This is the method that overrides the adjust!
method defined by the adjustable-counter class. Hence, the second invoca-
tion of previous! produces the “Negative count” error and does not adjust the
count to −1.

The property this object system has where the method invoked depends on
the object is known as dynamic dispatch. The method used for an invocationdynamic dispatch

depends on the self object. In this case, for example, it means that when we
inspect the implementation of the previous! method in the reversible-counter
class by itself it is not possible to determine what procedure will be applied for
the method invocation, (ask self ’adjust!−1). It depends on the actual self ob-
ject: if it is a positive-counter object, the adjust! method defined by positive-
counter is used; if it is a reversible-counter object, the adjust! method defined
by adjustable-counter class (the superclass of reversible-counter) is used.

Dynamic dispatch provides for a great deal of expressiveness. It enables us to
use the same code to produce many different behaviors by overriding meth-
ods in subclasses. This is very useful, but also very dangerous — it makes
it impossible to reason about what a given procedure does, without know-
ing about all possible subclasses. For example, we cannot make any claims
about what the previous! method in reversible-counter actually does without
knowing what the adjust! method does in all subclasses of reversible-counter .

The value of encapsulation and inheritance increases as programs get more
complex. Programming with objects allows a programmer to manage com-
plexity by hiding implementation details inside the objects from how those
objects are used.

Exercise 10.3. Define a countdown class that simulates a rocket launch
countdown: it starts at some initial value, and counts down to zero, at which
point the rocket is launched. Can you implement countdown as a subclass of
counter?

Exercise 10.4. Define the variable-counter object from Exercise 10.2 as a sub-
class of counter .

Chapter 10. Objects 237

Exercise 10.5. Define a new subclass of parameterizable-counter where the
increment for each next! method application is a parameter to the construc-
tor procedure. For example, (make-parameterizable-counter 0.1) would pro-
duce a counter object whose counter has value 0.1 after one invocation of the
next! method.

10.3 Object-Oriented Programming

Object-oriented programming is a style of programming where programs are
broken down into objects that can be combined to solve a problem or model
a simulated world. The notion of designing programs around object manip-
ulations goes back at least to Ada (see the quote at the end if Chapter 6), but
started in earnest in the early 1960s.

During World War II, the US Navy began to consider the possibility of build-
ing a airplane simulator for training pilots and aiding aircraft designers. At
the time, pilots trained in mechanical simulators that were custom designed
for particular airplanes. The Navy wanted a simulator that could be used for
multiple airplanes and could accurately model the aerodynamics of different
airplanes.

Project Whirlwind was started at MIT to build the simulator. The initial plans
called for an analog computer which would need to be manually reconfig-
ured to change the aerodynamics model to a different airplane. Jay Forrester
learned about emerging projects to build digital computers, including ENIAC
which became operational in 1946, and realized that building a programmable
digital computer would enable a much more flexible and powerful simulator,
as well as a machine that could be used for many other purposes.

Jay Forrester with magnetic-core

memory
Before Whirlwind, all digital computers operated as batch processors where
a programmer creates a program (typically described using a stack of punch
cards) and submits it to the computer. A computer operator would set up the
computer to run the program, after which it would run and (hopefully) pro-
duce a result. A flight simulator, though, requires direct interaction between
a human user and the computer.

The first Whirlwind computer was designed in 1947 and operational by 1950.
It was the first interactive programmable digital computer. Producing a ma-
chine that could perform the complex computations needed for a flight sim-
ulator fast enough to be used interactively required much faster and more re-
liable memory that was possible with available technologies based on storing
electrostatic charges in vacuum tubes. Jay Forrester invented a much faster
memory based known as magnetic-core memory. Magnetic-core memory
stores a bit using magnetic polarity.

The interactiveness of the Whirlwind computer opened up many new possi-
bilities for computing. Shortly after the first Whirlwind computer, Ken Olson
led an effort to build a version of the computer using transistors. The succes-
sor to this machine became the TX-2, and Ken Olsen went on to found Digital

238 10.3. Object-Oriented Programming

Equipment Corporation (DEC) which pioneered the widespread use of mod-
erately priced computers in science and industry. DEC was very successful
in the 1970s and 1980s, but suffered a long decline before eventually being
bought by Compaq.

Ivan Sutherland, then a graduate student at MIT, had an opportunity to use
the TX-2 machine. He developed a program called Sketchpad that was the
first program to have an interactive graphical interface. Sketchpad allowed
users to draw and manipulate objects on the screen using a light pen. It was
designed around objects and operations on those objects:3

In the process of making the Sketchpad system operate, a few very gen-
eral functions were developed which make no reference at all to the
specific types of entities on which they operate. These general func-
tions give the Sketchpad system the ability to operate on a wide range
of problems. The motivation for making the functions as general as
possible came from the desire to get as much result as possible from the
programming effort involved. . . Each of the general functions imple-
mented in the Sketchpad system abstracts, in some sense, some com-
mon property of pictures independent of the specific subject matter of
the pictures themselves.

Components in Sketchpad
Sketchpad was a great influence on Douglas Engelbart who developed a re-
search program around a vision of using computers interactively to enhance
human intellect. In what has become known as “the mother of all demos”,
Engelbart and his colleagues demonstrated a networked, graphical, interac-
tive computing system to the general public for the first time in 1968. With
Bill English, Engelbard also invented the computer mouse.

Sketchpad also influenced Alan Kay in developing object-oriented program-
ming. The first language to include support for objects was the Simula pro-
gramming language, developed in Norway in the 1960s by Kristen Nygaard
and Ole Johan Dahl. Simula was designed as a language for implementing
simulations. It provided mechanisms for packaging data and procedures, and
for implementing subclasses using inheritance.

In 1966, Alan Kay entered graduate school at the University of Utah, where
Ivan Sutherland was then a professor. Here’s how he describes his first as-
signment:4

Alan Kay

Head whirling, I found my desk. On it was a pile of tapes and list-
ings, and a note: “This is the Algol for the 1108. It doesn’t work. Please
make it work.” The latest graduate student gets the latest dirty task.
The documentation was incomprehensible. Supposedly, this was the
Case-Western Reserve 1107 Algol—but it had been doctored to make
a language called Simula; the documentation read like Norwegian
transliterated into English, which in fact it was. There were uses of

3Ivan Sutherland, Sketchpad: a Man-Machine Graphical Communication System, 1963
4Alan Kay, The Early History of Smalltalk, 1993

Chapter 10. Objects 239

words like activity and process that didn’t seem to coincide with nor-
mal English usage. Finally, another graduate student and I unrolled
the program listing 80 feet down the hall and crawled over it yelling
discoveries to each other. The weirdest part was the storage alloca-
tor, which did not obey a stack discipline as was usual for Algol. A
few days later, that provided the clue. What Simula was allocating
were structures very much like the instances of Sketchpad. There were
descriptions that acted like masters and they could create instances,
each of which was an independent entity. . . .

This was the big hit, and I’ve not been the same since. . . For the first
time I thought of the whole as the entire computer and wondered why
anyone would want to divide it up into weaker things called data
structures and procedures. Why not divide it up into little computers,
as time sharing was starting to? But not in dozens. Why not thou-
sands of them, each simulating a useful structure?

Alan Kay went on to design the language Smalltalk, which became the first
widely used object-oriented language. Smalltalk was developed as part of a
project at XEROX’s Palo Alto Research Center to develop a hand-held com-
puter that could be used as a learning environment by children. Don’t worry about what anybody

else is going to do. The best way to
predict the future is to invent it.
Really smart people with
reasonable funding can do just
about anything that doesn’t violate
too many of Newton’s Laws!
Alan Kay

In Smalltalk, everything is an object, and all computation is done by sending
messages to objects. For example, in Smalltalk one computes (+ 1 2) by send-
ing the message + 2 to the object 1. Here is Smalltalk code for implementing
a counter object:

class name counter
instance variable names count
new count <− 0
next count <− count + 1
current ˆ count

The new method is a constructor analogous to make-counter . The count in-
stance variable stores the current value of the counter, and the next method
updates the counter value by sending the message + 1 to the count object.

Nearly all widely-used languages today provide built-in support for some form
of object-oriented programming. For example, here is how a counter object
could be defined in Python:

class counter:
def init (self): self. count = 0
def rest(self): self. count = 0
def next(self): self. count = self. count + 1
def current(self): return self. count

The constructor is named init . Similarly to the object system we devel-
oped for Scheme, each method takes the self object as its parameter.

240 10.4. Summary

10.4 Summary

An object is an entity that packages state with procedures that manipulate
that state. By packaging state and procedures together, we can encapsulate
state in ways that enable more elegant and robust programs.

Inheritance allows an implementation of one class to reuse or override meth-
ods in another class, known as its superclass. Programming using objects and
inheritance enables a style of problem solving known as object-oriented pro-
gramming in which we solve problems by modeling problem instances using
objects.

Dynabook Images

From Alan Kay, A Personal Computer for Children of All Ages, 1972.

