
11
Interpreters

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means
just what I choose it to mean - nothing more nor less.”

“The question is,” said Alice, “whether you can make words mean so many
different things.”
Lewis Carroll, Through the Looking Glass

The tools we use have a profound (and devious!) influence on our thinking
habits, and, therefore, on our thinking abilities.

Edsger Dijkstra, How do we tell truths that might hurt?

Languages are powerful tools for thinking. Different languages encourage dif-
ferent ways of thinking and lead to different thoughts. Hence, inventing new
languages is a powerful way for solving problems. We can solve a problem by
designing a language in which it is easy to express a solution and implement-
ing an interpreter for that language.

An interpreter is just a program. As input, it takes a specification of a pro- interpreter

gram in some language. As output, it produces the output of the input pro-
gram. Implementing an interpreter further blurs the line between data and
programs, that we first crossed in Chapter 3 by passing procedures as param-
eters and returning new procedures as results. Programs are just data input
for the interpreter program. The interpreter determines the meaning of the
program.

To implement an interpreter for a given target language we need to:

1. Implement a parser that takes as input a string representation of a pro- parser

gram in the target language and produces a structural parse of the in-
put program. The parser should break the input string into its language
components, and form a parse tree data structure that represents the
input text in a structural way. Section 11.2 describes our parser imple-
mentation.

2. Implement an evaluator that takes as input a structural parse of an in- evaluator

put program, and evaluates that program. The evaluator should imple-
ment the target language’s evaluation rules. Section 11.3 describes our
evaluator.

242 11.1. Python

Our target language is a simple subset of Scheme we call Charme.1 The Charme
language is very simple, yet is powerful enough to express all computations
(that is, it is a universal programming language). Its evaluation rules are a
subset of the stateful evaluation rules for Scheme. The full grammar and eval-
uation rules for Charme are given in Section 11.3. The evaluator implements
those evaluation rules.

Section 11.4 illustrates how changing the evaluation rules of our interpreter
opens up new ways of programming.

11.1 Python

We could implement a Charme interpreter using Scheme or any other uni-
versal programming language, but implement it using the programming lan-
guage Python. Python is a popular programming language initially designed
by Guido van Rossum in 1991.2 Python is freely available from http://www.

python.org.

We use Python instead of Scheme to implement our Charme interpreter for
a few reasons. The first reason is pedagogical: it is instructive to learn new
languages. As Dijkstra’s quote at the beginning of this chapter observes, the
languages we use have a profound effect on how we think. This is true for nat-
ural languages, but also true for programming languages. Different languages
make different styles of programming more convenient, and it is important
for every programmer to be familiar with several different styles of program-
ming. All of the major concepts we have covered so far apply to Python nearly
identically to how they apply to Scheme, but seeing them in the context of a
different language should make it clearer what the fundamental concepts are
and what are artifacts of a particular programming language.

Another reason for using Python is that it provides some features that en-
hance expressiveness that are not available in Scheme. These include built-in
support for objects and imperative control structures. Python is also well-
supported by most web servers (including Apache), and is widely used to de-
velop dynamic web applications.

The grammar for Python is quite different from the Scheme grammar, so Python
programs look very different from Scheme programs. The evaluation rules,
however, are quite similar to the evaluation rules for Scheme. This chapter
does not describe the entire Python language, but introduces the grammar
rules and evaluation rules for the most important Python constructs as we
use them to implement the Charme interpreter.

Like Scheme, Python is a universal programming language. Both languages

1The original name of Scheme was “Schemer”, a successor to the languages “Planner” and
“Conniver”. Because the computer on which “Schemer” was implemented only allowed six-letter
file names, its name was shortened to “Scheme”. In that spirit, we name our snake-charming
language, “Charmer” and shorten it to Charme. Depending on the programmer’s state of mind,
the language name can be pronounced either “charm” or “char me”.

2The name Python alludes to Monty Python’s Flying Circus.

Chapter 11. Interpreters 243

can express all mechanical computations. For any computation we can ex-
press in Scheme, there is a Python program that defines the same computa-
tion. Conversely, every Python program has an equivalent Scheme program.

One piece of evidence that every Scheme program has an equivalent Python
program is the interpreter we develop in this chapter. Since we can imple-
ment an interpreter for a Scheme-like language in Python, we know we can
express every computation that can be expressed by a program in that lan-
guage with an equivalent Python program: the Charme interpreter with the
Charme program as its input.

Tokenizing. We introduce Python using one of the procedures in our in-
terpreter implementation. We divide the job of parsing into two procedures
that are combined to solve the problem of transforming an input string into a
list describing the input program’s structure. The first part is the tokenizer . It tokenizer

takes as input a string representing a Charme program, and outputs a list of
the tokens in that string.

A token is an indivisible syntactic unit. For example, the Charme expression, token

(define square (lambda (x) (∗ x x))), contains 15 tokens: (, define, square, (,
lambda, (, x,), (, *, x, x,),), and). Tokens are separated by whitespace (spaces,
tabs, and newlines). Punctuation marks such as the left and right parentheses
are tokens by themselves.

The tokenize procedure below takes as input a string s in the Charme target
language, and produces as output a list of the tokens in s. We describe the
Python language constructs it uses next.

def tokenize(s): # # starts a comment until the end of the line

current = '' # initialize current to the empty string (two single quotes)

tokens = [] # initialize tokens to the empty list

for c in s: # for each character, c, in the string s

if c.isspace(): # if c is a whitespace

if len(current) > 0: # if the current token is non-empty

tokens.append(current) # add it to the list

current = '' # reset current token to empty string

elif c in '()': # otherwise, if c is a parenthesis

if len(current) > 0: # end the current token

tokens.append(current) # add it to the tokens list

current = '' # and reset current to the empty string

tokens.append(c) # add the parenthesis to the token list

else: # otherwise (it is an alphanumeric)

current = current + c # add the character to the current token

end of the for loop reached the end of s

if len(current) > 0: # if there is a current token

tokens.append(current) # add it to the token list

return tokens # the result is the list of tokens

244 11.1. Python

11.1.1 Python Programs

Whereas Scheme programs are composed of expressions and definitions, Python
programs are mostly sequences of statements. Unlike expressions, a state-
ment has no value. The emphasis on statements impacts the style of pro-
gramming used with Python. It is more imperative than that used with Scheme:
instead of composing expressions in ways that pass the result of one expres-
sion as an operand to the next expression, Python procedures consist mostly
of statements, each of which alters the state in some way towards reaching the
goal state. Nevertheless, it is possible (but not recommended) to program in
Scheme using an imperative style (emphasizing assignments), and it is pos-
sible (but not recommended) to program in Python using a functional style
(emphasizing procedure applications and eschewing statements).

Defining a procedure in Python is similar to defining a procedure in Scheme,
except the syntax is different:

ProcedureDefinition ::⇒ def Name (Parameters) : Block
Parameters ::⇒ ε

Parameters ::⇒ SomeParameters
SomeParameters ::⇒ Name

SomeParameters ::⇒ Name , SomeParameters

Block ::⇒ Statement
Block ::⇒ <newline> indented(Statements)
Statements ::⇒ Statement <newline> MoreStatements
MoreStatements ::⇒ Statement <newline> MoreStatements
MoreStatements ::⇒ ε

Unlike in Scheme, whitespace (such as new lines) has meaning in Python.
Statements cannot be separated into multiple lines, and only one statement
may appear on a single line. Indentation within a line also matters. Instead of
using parentheses to provide code structure, Python uses the indentation to
group statements into blocks. The Python interpreter reports an error if the
indentation does not match the logical structure of the code.

Since whitespace matters in Python, we include newlines (<newline>) and
indentation in our grammar. We use indented(elements) to indicate that the
elements are indented. For example, the rule for Block is a newline, followed
by one or more statements. The statements are all indented one level inside
the block’s indentation. The block ends when the indenting returns to the
outer level.

The evaluation rule for a procedure definition is similar to the rule for evalu-
ating a procedure definition in Scheme.

Chapter 11. Interpreters 245

Python Procedure Definition. The procedure definition,

def Name (Parameters): Block

defines Name as a procedure that takes as inputs the Parameters and
has the body expression Block.

The procedure definition, def tokenize(s): ..., defines a procedure named tokenize
that takes a single parameter, s.

Assignment. The body of the procedure uses several different types of Python
statements. Following Python’s more imperative style, five of the statements
in tokenize are assignment statements including the first two statements. For
example, the assignment statement, tokens = [] assigns the value [] (the empty
list) to the name tokens.

The grammar for the assignment statement is:

Statement ::⇒ AssignmentStatement
AssignmentStatement ::⇒ Target = Expression
Target ::⇒ Name

For now, we use only a Name as the left side of an assignment, but since other
constructs can appear on the left side of an assignment statement, we in-
troduce the nonterminal Target for which additional rules can be defined to
encompass other possible assignees. Anything that can hold a value (such as
an element of a list) can be the target of an assignment.

The evaluation rule for an assignment statement is similar to Scheme’s eval-
uation rule for assignments: the meaning of x = e in Python is similar to the
meaning of (set! x e) in Scheme, except that in Python the target Name need
not exist before the assignment. In Scheme, it is an error to evaluate (set! x
7) where the name x has not been previously defined; in Python, if x is not
already defined, evaluating x = 7 creates a new place named x with its value
initialized to 7.

Python Evaluation Rule: Assignment. To evaluate an assignment
statement, evaluate the expression, and assign the value of the ex-
pression to the place identified by the target. If no such place exists,
create a new place with that name.

Arithmetic and Comparison Expressions. Python supports many differ-
ent kinds of expressions for performing arithmetic and comparisons. Since
Python does not use parentheses to group expressions, the grammar provides
the grouping by breaking down expressions in several steps. This defines an
order of precedence for parsing expressions. precedence

For example, consider the expression 3 + 4 * 5. In Scheme, the expressions
(+ 3 (∗ 4 5)) and (∗ (+ 3 4) 5) are clearly different and the parentheses group

246 11.1. Python

the subexpressions. The Python expression, 3 + 4 * 5, means (+ 3 (∗ 4 5)) and
evaluates to 23.

Supporting precedence makes the Python grammar rules more complex since
they must deal with * and + differently, but it makes the meaning of Python
expressions match our familiar mathematical interpretation, without need-
ing to clutter expressions with parentheses. This is done is by defining the
grammar rules so an AddExpression can contain a MultExpression as one of
its subexpressions, but a MultExpression cannot contain an AddExpression.
This makes the multiplication operator have higher precedence than the ad-
dition operator. If an expression contains both + and * operators, the * op-
erator is grouped with its operands first. The replacement rules that happen
first have lower precedence, since their components must be built from the
remaining pieces.

Here are the grammar rules for Python expressions for comparison, multipli-
cation, and addition expressions:

Expression ::⇒ CompExpr
CompExpr ::⇒ CompExpr Comparator CompExpr
Comparator ::⇒ < ∣ > ∣ == ∣ <= ∣ >=
CompExpr ::⇒ AddExpression

AddExpression ::⇒ AddExpression + MultExpression
AddExpression ::⇒ AddExpression - MultExpression
AddExpression ::⇒ MultExpression

MultExpression ::⇒ MultExpression * PrimaryExpression
MultExpression ::⇒ PrimaryExpression

PrimaryExpression ::⇒ Literal
PrimaryExpression ::⇒ Name

PrimaryExpression ::⇒ (Expression)

The last rule allows expressions to be grouped explicitly using parentheses.
For example, (3 + 4) * 5 is parsed as the PrimaryExpression, (3 + 4), times 5,
so evaluates to 35; without the parentheses, 3 + 4 * 5 is parsed as 3 plus the
MultExpression, 4 * 5, so evaluates to 23.

A PrimaryExpression can be a Literal, such as a number. Numbers in Python
are similar (but not identical) to numbers in Scheme.

A PrimaryExpression can also be a name, similar to names in Scheme. The
evaluation rule for a name in Python is similar to the stateful rule for evaluat-
ing a name in Scheme3.

3There are some subtle differences and complexities (see Section 4.1 of the Python Reference
Manual), however, which we do not go into here.

Chapter 11. Interpreters 247

Exercise 11.1. Draw the parse tree for each of the following Python expres-
sions and provide the value of each expression.

a. 1 + 2 + 3 * 4

b. 3 > 2 + 2

c. 3 * 6 >= 15 == 12

d. (3 * 6 >= 15) == True

Exercise 11.2. Do comparison expressions have higher or lower precedence
than addition expressions? Explain why using the grammar rules.

11.1.2 Data Types

Python provides many built-in data types. We describe three of the most use-
ful data types here: lists, strings, and dictionaries.

Lists. Python provides a list datatype similar to lists in Scheme, except in-
stead of building lists from simpler parts (that is, using cons pairs in Scheme),
the Python list type is a built-in datatype. The other important difference is
that Python lists are mutable like mlist from Section 9.3.

Lists are denoted in Python using square brackets. For example, [] denotes an
empty list and [1, 2] denotes a list containing two elements. The elements in
a list can be of any type (including other lists).

Elements can be selected from a list using the list subscript expression:

PrimaryExpression ::⇒ SubscriptExpression
SubscriptExpression ::⇒ PrimaryExpression [Expression]

A subscript expression evaluates to the element indexed by value of the inner
expression from the list. For example,

≫ a = [1, 2, 3]
≫ a[0] ⇒ 1
≫ a[1+1] ⇒ 3
≫ a[3] ⇒ IndexError: list index out of range

The expression p[0] in Python is analogous to (car p) in Scheme.

The subscript expression has constant running time; unlike indexing Scheme
lists, the time required does not depend on the length of the list even if the
selection index is the end of the list. The reason for this is that Python stores
lists internally differently from how Scheme stores as chains of pairs. The

248 11.1. Python

elements of a Python list are stored as a block in memory, so the location of
the kth element can be calculated directly by adding k times the size of one
element to the location of the start of the list.

A subscript expression can also select a range of elements from the list:

SubscriptExpression ::⇒ PrimaryExpression [BoundLow : BoundHigh]

Bound ::⇒ Expression ∣ ε

Subscript expressions with ranges evaluate to a list containing the elements
between the low bound and the high bound. If the low bound is missing, the
low bound is the beginning of the list. If the high bound is missing, the high
bound is the end of the list. For example,

≫ a = [1, 2, 3]
≫ a[:1] ⇒ [1]
≫ a[1:] ⇒ [2, 3]
≫ a[4−2:3] ⇒ [3]
≫ a[:] ⇒ [1, 2, 3]

The expression p[1:] in Python is analogous to (cdr p) in Scheme.

Python lists are mutable (the value of a list can change after it is created). We
can use list subscripts as the targets for an assignment expression:

Target ::⇒ SubscriptExpression

Assignments using ranges as targets can add elements to the list as well as
changing the values of existing elements:

≫ a = [1, 2, 3]
≫ a[0] = 7
≫ a ⇒ [7, 2, 3]
≫ a[1:4] = [4, 5, 6]
≫ a ⇒ [7, 4, 5, 6]
≫ a[1:] = [6]
≫ a ⇒ [7, 6]

In the tokenize procedure, we use tokens = [] to initialize tokens to an empty
list, and use tokens.append(current) to append an element to the tokens list.
The Python append procedure is similar to the mlist-append! procedure (ex-
cept it works on the empty list, where there is no way in Scheme to modify
the null input list).

Strings. The other datatype used in tokenize is the string datatype, named str
in Python. As in Scheme, a String is a sequence of characters. Unlike Scheme

Chapter 11. Interpreters 249

strings which are mutable, the Python str datatype is immutable. Once a
string is created its value cannot change. This means all the string methods
that seem to change the string values actually return new strings (for exam-
ple, capitalize() returns a copy of the string with its first letter capitalized).

Strings can be enclosed in single quotes (e.g., 'hello'), double quotes (e.g., ''hello''),
and triple-double quotes (e.g., '' '' ''hello'' '' ''; a string inside triple quotes can
span multiple lines). In our example program, we use the assignment expres-
sion, current = '' (two single quotes), to initialize the value of current to the
empty string. The input, s, is a string object.

The addition operator can be used to concatenate two strings. In tokenize,
we use current = current + c to update the value of current to include a new
character. Since strings are immutable there is no string method analogous
to the list append method. Instead, appending a character to a string involves
creating a new string object.

Dictionaries. A dictionary is a lookup-table where values are associated with
keys. The keys can be any immutable type (strings and numbers are com-
monly used as keys); the values can be of any type. We did not use the dic-
tionary type in tokenize, but it is very useful for implementing frames in the
evaluator.

A dictionary is denoted using curly brackets. The empty dictionary is {}. We
add a key-value pair to the dictionary using an assignment where the left side
is a subscript expression that specifies the key and the right side is the value
assigned to that key. For example,

birthyear = {}
birthyear['Euclid'] = '300BC'

birthyear['Ada'] = 1815
birthyear['Alan Turing'] = 1912
birthyear['Alan Kay'] = 1940

defines birthyear as a dictionary containing four entries. The keys are all
strings; the values are numbers, except for Euclid’s entry which is a string.

We can obtain the value associated with a key in the dictionary using a sub-
script expression. For example, birthyear['Alan Turing'] evaluates to 1912. We
can replace the value associated with a key using the same syntax as adding a
key-value pair to the dictionary. The statement,

birthyear['Euclid'] =−300

replaces the value of birthyear['Euclid'] with the number−300.

The dictionary type also provides a method has key that takes one input and
produces a Boolean indicating if the dictionary object contains the input value
as a key. For the birthyear dictionary,

≫ birthyear.has key('John Backus') ⇒ False

≫ birthyear.has key('Ada') ⇒ True

250 11.1. Python

The dictionary type lookup and update operations have approximately con-
stant running time: the time it takes to lookup the value associated with a key
does not scale as the size of the dictionary increases. This is done by comput-
ing a number based on the key that determines where the associated value
would be stored (if that key is in the dictionary). The number is used to index
into a structure similar to a Python list (so it has constant time to retrieve any
element). Mapping keys to appropriate numbers to avoid many keys map-
ping to the same location in the list is a difficult problem, but one the Python
dictionary object does well for most sets of keys.

11.1.3 Applications and Invocations

The grammar rules for expressions that apply procedures are:

PrimaryExpression ::⇒ CallExpression
CallExpression ::⇒ PrimaryExpression (ArgumentList)
ArgumentList ::⇒ SomeArguments
ArgumentList ::⇒ ε

SomeArguments ::⇒ Expression
SomeArguments ::⇒ Expression , SomeArguments

In Python, nearly every data value (including lists and strings) is an object.
This means the way we manipulate data is to invoke methods on objects. To
invoke a method we use the same rules, but the PrimaryExpression of the
CallExpression specifies an object and method:

PrimaryExpression ::⇒ AttributeReference
AttributeReference ::⇒ PrimaryExpression . Name

The name AttributeReference is used since the same syntax is used for access-
ing the internal state of objects as well.

The tokenize procedure includes five method applications, four of which are
tokens.append(current). The object reference is tokens, the list of tokens in
the input. The list append method takes one parameter and adds that value
to the end of the list.

The other method invocation is c.isspace() where c is a string consisting of one
character in the input. The isspace method for the string datatype returns true
if the input string is non-empty and all characters in the string are whitespace
(either spaces, tabs, or newlines).

The tokenize procedure also uses the built-in function len which takes as in-
put an object of a collection datatype such as a list or a string, and outputs
the number of elements in the collection. It is a procedure, not a method; the
input object is passed in as a parameter. In tokenize, we use len(current) to
find the number of characters in the current token.

Chapter 11. Interpreters 251

11.1.4 Control Statements

Python provides control statements for making decisions, looping, and for
returning from a procedure.

If statement. Python’s if statement is similar to the conditional expression in
Scheme:

Statement ::⇒ IfStatement
IfStatement ::⇒ if ExpressionPredicate : Block Elifs OptElse
Elifs ::⇒ ε

Elifs ::⇒ elif ExpressionPredicate : Block Elifs
OptElse ::⇒ ε

OptElse ::⇒ else : Block

Unlike in Scheme, there is no need to have an alternate clause since the Python
if statement does not need to produce a value. The evaluation rule is similar
to Scheme’s conditional expression:

Python Evaluation Rule: If. First, evaluate the ExpressionPredicate. If it
evaluates to a true value, the consequent Block is evaluated, and none
of the rest of the IfStatement is evaluated. Otherwise, each of the elif
predicates is evaluated in order. If one evaluates to a true value, its
Block is evaluated and none of the rest of the IfStatement is evaluated.
If none of the elif predicates evaluates to a true value, the else Block is
evaluated if there is one.

The main if statement in tokenize is:

if c.isspace(): ...
elif c in '()': ...
else: current = current + c

The first if predicate tests if the current character is a space. If so, the end of
the current token has been reached. The consequent Block is itself an IfState-
ment:

if len(current) > 0:
tokens.append(current)
current = ''

If the current token has at least one character, it is appended to the list of
tokens in the input string and the current token is reset to the empty string.
This IfStatement has no elif or else clauses, so if the predicate is false, there is
nothing to do.

For statement. A for statement provides a way of iterating through a set of
values, carrying out a body block for each value.

252 11.2. Parser

Statement ::⇒ ForStatement
ForStatement ::⇒ for Target in Expression : Block

Its evaluation rule is:

Python Evaluation Rule: For. First evaluate the Expression which
must produce a value that is a collection. Then, for each value in the
collection assign the Target to that value and evaluate the Block.

Other than the first two initializations, and the final two statements, the bulk
of the tokenize procedure is contained in a for statement. The for statement in
tokenize header is for c in s: The string s is the input string, a collection of
characters. So, the loop will repeat once for each character in s, and the value
of c is each character in the input string (represented as a singleton string), in
turn.

Return statement. In Scheme, the body of a procedure is an expression
and the value of that expression is the result of evaluating an application of
the procedure. In Python, the body of a procedure is a block of one or more
statements. Statements have no value, so there is no obvious way to decide
what the result of a procedure application should be. Python’s solution is to
use a return statement.

The grammar for the return statement is:

Statement ::⇒ ReturnStatement
ReturnStatement ::⇒ return Expression

A return statement finishes execution of a procedure, returning the value of
the Expression to the caller as the result. The last statement of the tokenize
procedure is: return tokens. It returns the value of the tokens list to the caller.

11.2 Parser

The parser takes as input a Charme program string, and produces as output
a nested list that encodes the structure of the input program. The first step is
to break the input string into tokens; this is done by the tokenize procedure
defined in the previous section.

The next step is to take the list of tokens and produce a data structure that en-
codes the structure of the input program. Since the Charme language is built
from simple parenthesized expressions, we can represent the parsed program
as a list. But, unlike the list returned by tokenize which is a flat list containing
the tokens in order, the list returned by parse is a structured list that may have
lists (and lists of lists, etc.) as elements.

Chapter 11. Interpreters 253

Charme’s syntax is very simple, so the parser can be implemented by just
breaking an expression into its components using the parentheses and whites-
pace. The parser needs to balance the open and close parentheses that en-
close expressions. For example, if the input string is

(define square (lambda (x) (∗ x x)))

the output of tokenizer is the list:

['(', 'define', 'square', '(', 'lambda', '(', 'x', ')', '(', '*', 'x', 'x', ')', ')', ')']

The parser structures the tokens according to the program structure, produc-
ing a parse tree that encodes the structure of the input program. The paren-
thesis provide the program structure, so are removed from the parse tree. For
the example, the resulting parse tree is:

['define',
'square',
['lambda',

['x'],
['*', 'x', 'x']]]

Here is the definition of parse:

def parse(s):
def parsetokens(tokens, inner):

res = []
while len(tokens) > 0:

current = tokens.pop(0)
if current == '(':

res.append (parsetokens(tokens, True))
elif current == ')':

if inner: return res
else:

error('Unmatched close paren: ' + s)
return None

else:
res.append(current)

if inner:
error ('Unmatched open paren: ' + s)
return None

else:
return res

return parsetokens(tokenize(s), False)

The input to parse is a string in the target language. The output is a list of the
parenthesized expressions in the input. Here are some examples:

254 11.2. Parser

≫ parse('150') ⇒ ['150']
≫ parse('(+ 1 2)') ⇒ [['+', '1', '2']]
≫ parse('(+ 1 (* 2 3))') ⇒ [['+', '1', ['*', '2', '3']]]
≫ parse('(define square (lambda (x) (* x x)))')

⇒ [['define', 'square', ['lambda', ['x'], ['*', 'x', 'x']]]]
≫ parse('(+ 1 2) (+ 3 4)') ⇒ [['+', '1', '2'], ['+', '3', '4']]

The parentheses are no longer included as tokens in the result, but their pres-
ence in the input string determines the structure of the result.

The parse procedure implements a recursive descent parser. The main parserecursive descent

procedure defines the parsetokens helper procedure and returns the result of
calling it with inputs that are the result of tokenizing the input string and the
Boolean literal False: return parsetokens(tokenize(s), False).

The parsetokens procedure takes two inputs: tokens, a list of tokens (that re-
sults from the tokenize procedure); and inner, a Boolean that indicates whether
the parser is inside a parenthesized expression. The value of inner is False for
the initial call since the parser starts outside a parenthesized expression. All of
the recursive calls result from encountering a '(', so the value passed as inner
is True for all the recursive calls.

The body of the parsetokens procedure initializes res to an empty list that is
used to store the result. Then, the while statement iterates as long as the
token list contains at least one element.

The first statement of the while statement block assigns tokens.pop(0) to current.
The pop method of the list takes a parameter that selects an element from
the list. The selected element is returned as the result. The pop method also
mutates the list object by removing the selected element. So, tokens.pop(0)
returns the first element of the tokens list and removes that element from the
list. This is essential to the parser making progress: every time the tokens.pop(0)
expression is evaluated the number of elements in the token list is reduced by
one.

If the current token is an open parenthesis, parsetokens is called recursively
to parse the inner expression (that is, all the tokens until the matching close
parenthesis). The result is a list of tokens, which is appended to the result.
If the current token is a close parenthesis, the behavior depends on whether
or not the parser is parsing an inner expression. If it is inside an expression
(that is, an open parenthesis has been encountered with no matching close
parenthesis yet), the close parenthesis closes the inner expression, and the
result is returned. If it is not in an inner expression, the close parenthesis has
no matching open parenthesis so a parse error is reported.

The else clause deals with all other tokens by appending them to the list.

The final if statement checks that the parser is not in an inner context when
the input is finished. This would mean there was an open parenthesis without
a corresponding close, so an error is reported. Otherwise, the list representing
the parse tree is returned.

Chapter 11. Interpreters 255

11.3 Evaluator

The evaluator takes a list representing the parse tree of a Charme expression
or definition and an environment, and outputs the result of evaluating the ex-
pression in the input environment. The evaluator implements the evaluation
rules for the target language.

The core of the evaluator is the procedure meval:

def meval(expr, env):
if isPrimitive(expr): return evalPrimitive(expr)
elif isIf(expr): return evalIf(expr, env)
elif isDefinition(expr): evalDefinition(expr, env)
elif isName(expr): return evalName(expr, env)
elif isLambda(expr): return evalLambda(expr, env)
elif isApplication(expr): return evalApplication(expr, env)
else: error ('Unknown expression type: ' + str(expr))

The if statement matches the input expression with one of the expression
types (or the definition) in the Charme language, and returns the result of
applying the corresponding evaluation procedure (if the input is a definition,
no value is returned since definitions do not produce an output value). We
next consider each evaluation rule in turn.

11.3.1 Primitives

Charme supports two kinds of primitives: natural numbers and primitive
procedures.

def isPrimitive(expr):
return isNumber(expr) or isPrimitiveProcedure(expr)

If the expression is a number, it is a string of digits. The isNumber procedure
evaluates to True if and only if its input is a number:

def isNumber(expr):
return isinstance(expr, str) and expr.isdigit()

Here, we use the built-in function isinstance to check if expr is of type str. The
and expression in Python evaluates similarly to the Scheme and special form:
the left operand is evaluated first; if it evaluates to a false value, the value of
the and expression is that false value. If it evaluates to a true value, the right
operand is evaluated, and the value of the and expression is the value of its
right operand. This evaluation rule means it is safe to use expr.isdigit() in the
right operand, since it is only evaluated if the left operand evaluated to a true
value, which means expr is a string.

Primitive procedures are defined using Python procedures. The callable pro-
cedure returns true only for callable objects such as procedures and methods
so we can use this to implement isPrimitiveProcedure:

256 11.3. Evaluator

def isPrimitiveProcedure(expr):
return callable(expr)

The evaluation rule for a primitive is identical to the Scheme rule:

Charme Evaluation Rule 1: Primitives. A primitive expression eval-
uates to its pre-defined value.

We need to implement the pre-defined values in our Charme interpreter.

To evaluate a number primitive, we need to convert the string representation
to a number of type int. The int(s) constructor takes a string as its input and
outputs the corresponding integer:

def evalPrimitive(expr):
if isNumber(expr): return int(expr)
else: return expr

The else clause means that all other primitives (in Charme, this is only primi-
tive procedures and Boolean constants) self-evaluate: the value of evaluating
a primitive is itself.

For the primitive procedures, we need to define Python procedures that im-
plement the primitive procedure. For example, here is the primitivePlus pro-
cedure that is associated with the + primitive procedure:

def primitivePlus (operands):
if (len(operands) == 0): return 0
else: return operands[0] + primitivePlus (operands[1:])

The input is a list of operands. Since a procedure is applied only after all
subexpressions are evaluated, there is no need to evaluate the operands: they
are already the evaluated values. For numbers, the values are Python inte-
gers, so we can use the Python + operator to add them. To provide the same
behavior as the Scheme primitive + procedure, we define our Charme prim-
itive + procedure to evaluate to 0 when there are no operands, and otherwise
to recursively add all of the operand values.

The other primitive procedures are defined similarly:

def primitiveTimes (operands):
if (len(operands) == 0): return 1
else: return operands[0] * primitiveTimes (operands[1:])

def primitiveMinus (operands):
if (len(operands) == 1): return−1 * operands[0]
elif len(operands) == 2: return operands[0]− operands[1]
else:

evalError('− expects 1 or 2 operands, given %s: %s'

% (len(operands), str(operands)))

Chapter 11. Interpreters 257

def primitiveEquals (operands):
checkOperands (operands, 2, '=')
return operands[0] == operands[1]

def primitiveLessThan (operands):
checkOperands (operands, 2, '<')
return operands[0] < operands[1]

The checkOperands procedure reports an error if a primitive procedure is ap-
plied to the wrong number of operands:

def checkOperands(operands, num, prim):
if (len(operands) != num):

evalError('Primitive %s expected %s operands, given %s: %s'

% (prim, num, len(operands), str(operands)))

11.3.2 If Expressions

Charme provides an if expression special form with a syntax and evaluation
rule identical to the Scheme if expression. The grammar rule for an if expres-
sion is:

IfExpression ::⇒ (if ExpressionPredicate

ExpressionConsequent

ExpressionAlternate)

The expression object representing an if expression should be a list contain-
ing three elements, with the first element matching the keyword if.

All special forms have this property: they are represented by lists where the
first element is a keyword that identifies the special form.

The isSpecialForm procedure takes an expression and a keyword and outputs
a Boolean. The result is True if the expression is a special form matching the
keyword:

def isSpecialForm(expr, keyword):
return isinstance(expr, list) and len(expr) > 0 and expr[0] == keyword

We can use this to recognize different special forms by passing in different
keywords. We recognize an if expression by the if token at the beginning of
the expression:

def isIf(expr):
return isSpecialForm(expr, 'if')

The evaluation rule for an if expression is:4

4We number the Charme evaluation rules using the numbers we used for the analogous
Scheme evaluation rules, but present them in a different order.

258 11.3. Evaluator

Charme Evaluation Rule 5: If. To evaluate an if expression in the cur-
rent environment, (a) evaluate the predicate expression in the cur-
rent environment; then, (b) if the value of the predicate expression is
a false value then the value of the if expression is the value of the al-
ternate expression in the current environment; otherwise, the value
of the if expression is the value of the consequent expression in the
current environment.

This procedure implements the if evaluation rule:

def evalIf(expr,env):
if meval(expr[1], env) != False: return meval(expr[2],env)
else: return meval(expr[3],env)

11.3.3 Definitions and Names

To evaluate definitions and names we need to represent environments. A def-
inition adds a name to a frame, and a name expression evaluates to the value
associated with a name.

We use a Python class to represent an environment. As in Chapter 10, a class
packages state and procedures that manipulate that state. In Scheme, we
needed to use a message-accepting procedure to do this. Python provides
the class construct to support it directly. We define the Environment class for
representing an environment. It has internal state for representing the par-
ent (itself an Environment or None, Python’s equivalent to null for the global
environment’s parent), and for the frame.

The dictionary datatype provides a convenient way to implement a frame.
The init procedure constructs a new object. It initializes the frame of the
new environment to the empty dictionary using self. frame = {}.

The addVariable method either defines a new variable or updates the value
associated with a variable. With the dictionary datatype, we can do this with
a simple assignment statement.

The lookupVariable method first checks if the frame associated with this envi-
ronment has a key associated with the input name. If it does, the value associ-
ated with that key is the value of the variable and that value is returned. Oth-
erwise, if the environment has a parent, the value associated with the name is
the value of looking up the variable in the parent environment. This directly
follows from the stateful Scheme evaluation rule for name expressions. The
else clause addresses the situation where the name is not found and there is
no parent environment (since we have already reached the global environ-
ment) by reporting an evaluation error indicating an undefined name.

class Environment:
def init (self, parent):

self. parent = parent
self. frame = {}

Chapter 11. Interpreters 259

def addVariable(self, name, value):
self. frame[name] = value

def lookupVariable(self, name):
if self. frame.has key(name): return self. frame[name]
elif (self. parent): return self. parent.lookupVariable(name)
else: evalError('Undefined name: %s' % (name))

Using the Environment class, the evaluation rules for definitions and name
expressions are straightforward.

def isDefinition(expr): return isSpecialForm(expr, 'define')
def evalDefinition(expr, env):

name = expr[1]
value = meval(expr[2], env)
env.addVariable(name, value)

def isName(expr): return isinstance(expr, str)
def evalName(expr, env):

return env.lookupVariable(expr)

11.3.4 Procedures

The result of evaluating a lambda expression is a procedure. Hence, to define
the evaluation rule for lambda expressions we need to define a class for rep-
resenting user-defined procedures. It needs to record the parameters, proce-
dure body, and defining environment:

class Procedure:
def init (self, params, body, env):

self. params = params
self. body = body
self. env = env

def getParams(self): return self. params
def getBody(self): return self. body
def getEnvironment(self): return self. env

The evaluation rule for lambda expressions creates a Procedure object:

def isLambda(expr): return isSpecialForm(expr, 'lambda')

def evalLambda(expr,env):
return Procedure(expr[1], expr[2], env)

260 11.3. Evaluator

11.3.5 Application

Evaluation and application are defined recursively. To perform an applica-
tion, we need to evaluate all the subexpressions of the application expression,
and then apply the result of evaluating the first subexpression to the values of
the other subexpressions.

def isApplication(expr): # requires: all special forms checked first
return isinstance(expr, list)

def evalApplication(expr, env):
subexprs = expr
subexprvals = map (lambda sexpr: meval(sexpr, env), subexprs)
return mapply(subexprvals[0], subexprvals[1:])

The evalApplication procedure uses the built-in map procedure, which is sim-
ilar to list-map from Chapter 5. The first parameter to map is a procedure
constructed using a lambda expression (similar in meaning, but not in syntax,
to Scheme’s lambda expression); the second parameter is the list of subex-
pressions.

The mapply procedure implements the application rules. If the procedure is
a primitive, it “just does it”: it applies the primitive procedure to its operands.

To apply a constructed procedure (represented by an object of the Procedure
class) it follows the stateful application rule for applying constructed proce-
dures:

Charme Application Rule 2: Constructed Procedures. To apply a
constructed procedure:

1. Construct a new environment, whose parent is the environment
of the applied procedure.

2. For each procedure parameter, create a place in the frame of
the new environment with the name of the parameter. Evaluate
each operand expression in the environment or the application
and initialize the value in each place to the value of the corre-
sponding operand expression.

3. Evaluate the body of the procedure in the newly created envi-
ronment. The resulting value is the value of the application.

The mapply procedure implements the application rules for primitive and
constructed procedures:

def mapply(proc, operands):
if (isPrimitiveProcedure(proc)): return proc(operands)
elif isinstance(proc, Procedure):

params = proc.getParams()
newenv = Environment(proc.getEnvironment())
if len(params) != len(operands):

Chapter 11. Interpreters 261

evalError ('Parameter length mismatch: %s given operands %s'

% (str(proc), str(operands)))
for i in range(0, len(params)):

newenv.addVariable(params[i], operands[i])
return meval(proc.getBody(), newenv)

else: evalError('Application of non−procedure: %s' % (proc))

11.3.6 Finishing the Interpreter

To finish the interpreter, we define the evalLoop procedure that sets up the
global environment and provides an interactive interface to the interpreter.
The evaluation loop reads a string from the user using the Python built-in
procedure raw input. It uses parse to convert that string into a structured list
representation. Then, it uses a for loop to iterate through the expressions. It
evaluates each expression using meval and the result is printed.

To initialize the global environment, we create an environment with no par-
ent and place variables in it corresponding to the primitives in Charme.

def evalLoop():
globalEnvironment = Environment(None)
globalEnvironment.addVariable('true', True)
globalEnvironment.addVariable('false', False)
globalEnvironment.addVariable('+', primitivePlus)
globalEnvironment.addVariable('−', primitiveMinus)
globalEnvironment.addVariable('*', primitiveTimes)
globalEnvironment.addVariable('=', primitiveEquals)
globalEnvironment.addVariable('<', primitiveLessThan)
while True:

inv = raw input('Charme> ')
if inv == 'quit': break
for expr in parse(inv):

print str(meval(expr, globalEnvironment))

Here are some sample interactions with our Charme interpreter:

≫ evalLoop()
Charme> (+ 2 2)
4
Charme> (define fibo

(lambda (n)
(if (= n 1) 1

(if (= n 2) 1
(+ (fibo (− n 1)) (fibo (− n 2)))))))

None

Charme> (fibo 10)
55

262 11.4. Lazy Evaluation

11.4 Lazy Evaluation

Once we have an interpreter, we can change the meaning of our language
by changing the evaluation rules. This enables a new problem-solving strat-
egy: if the solution to a problem cannot be expressed easily in an existing
language, define and implement an interpreter for a new language in which
the problem can be solved more easily. This section explores a variation on
Charme we call LazyCharme. LazyCharme changes the application evalua-
tion rule so that operand expressions are not evaluated until their values are
needed. This is known as lazy evaluation. Lazy evaluation enables many pro-lazy evaluation

cedures which would otherwise be awkward to express to be defined con-
cisely. Since both Charme and LazyCharme are universal programming lan-
guages they can express the same set of computations: all of the procedures
we define that take advantage of lazy evaluation could be defined with eager
evaluation (for example, by first defining a lazy interpreter as we do here).

11.4.1 Lazy Interpreter

Like the standard Scheme interpreter, the Charme interpreter evaluates ap-
plication expressions eagerly: all the operand subexpressions are evaluated
whether or not their values are needed. Lazy evaluation means an expressionMuch of my work has come from

being lazy.
John Backus

is evaluated only when its value is needed. This involves changing the evalua-
tion rule for applications of constructed procedures. Instead of evaluating all
operand expressions, lazy evaluation delays evaluation of an operand expres-
sion until its value is needed. To keep track of what is needed to perform the
evaluation when and if it is needed, a special object known as a thunk is cre-thunk

ated and stored in the place associated with the parameter name. By delaying
evaluation of operand expressions until their value is needed, we can enable
programs to define procedures that conditionally evaluate their operands like
the if special form.

The lazy rule for applying constructed procedures is:

Lazy Application Rule 2: Constructed Procedures. To apply a con-
structed procedure:

1. Construct a new environment, whose parent is the environment of
the applied procedure.

2. For each procedure parameter, create a place in the frame of the
new environment with the name of the parameter. Put a thunk in
that place, which is an object that can be used later to evaluate
the value of the corresponding operand expression if and when its
value is needed.

3. Evaluate the body of the procedure in the newly created environ-
ment. The resulting value is the value of the application.

Chapter 11. Interpreters 263

The rule is identical to the Stateful Application Rule except for the bold part of
step 2. To implement lazy evaluation we modify the interpreter to implement
the lazy application rule. We start by defining a Python class for representing
thunks and then modify the interpreter to support lazy evaluation.

Making Thunks. A thunk keeps track of an expression whose evaluation is de-
layed until it is needed. Once the evaluation is performed, the resulting value
is saved so the expression does not need to be re-evaluated the next time the
value is needed. Thus, a thunk is in one of two possible states: unevaluated
and evaluated. We will encourage you to develop

the three great virtues of a
programmer: Laziness,
Impatience, and Hubris.
Larry Wall, Programming Perl

The Thunk class implements thunks:

class Thunk:
def init (self, expr, env):

self. expr = expr
self. env = env
self. evaluated = False

def value(self):
if not self. evaluated:

self. value = forceEval(self. expr, self. env)
self. evaluated = True

return self. value

A Thunk object keeps track of the expression in the expr instance variable.
Since the value of the expression may be needed when the evaluator is eval-
uating an expression in some other environment, it also keeps track of the
environment in which the thunk expression should be evaluated in the env
instance variable.

The evaluated instance variable is a Boolean that records whether or not the
thunk expression has been evaluated. Initially this value is False. After the
expression is evaluated, evaluated is True and the value instance variable
keeps track of the resulting value.

The value method uses forceEval (defined later) to obtain the evaluated value
of the thunk expression and stores that result in value.

The isThunk procedure returns True only when its parameter is a thunk:

def isThunk(expr): return isinstance(expr, Thunk)

Changing the evaluator. To implement lazy evaluation, we change the eval-
uator so there are two different evaluation procedures: meval is the standard
evaluation procedure (which leaves thunks in their unevaluated state), and
forceEval is the evaluation procedure that forces thunks to be evaluated to
values. The interpreter uses meval when the actual expression value may not
be needed, and forceEval to force evaluation of thunks when the value of an
expression is needed.

In the meval procedure, a thunk evaluates to itself. We add a new elif clause
for thunk objects to the meval procedure:

elif isThunk(expr): return expr

264 11.4. Lazy Evaluation

The forceEval procedure first uses meval to evaluate the expression normally.
If the result is a thunk, it uses the Thunk.value method to force evaluation
of the thunk expression. That method uses forceEval to find the value of the
thunk expression, so any thunks inside the expression will be recursively eval-
uated.

def forceEval(expr, env):
val = meval(expr, env)
if isThunk(val): return val.value()
else: return val

Next, we change the application rule to perform delayed evaluation and change
a few other places in the interpreter to use forceEval instead of meval to ob-
tain the actual values when they are needed.

We change evalApplication to delay evaluation of the operands by creating
Thunk objects representing each operand:

def evalApplication(expr, env):
ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
return mapply(forceEval(expr[0], env), ops)

Only the first subexpression must be evaluated to obtain the procedure to
apply. Hence, evalApplication uses forceEval to obtain the value of the first
subexpression, but makes Thunk objects for the operand expressions.

To apply a primitive, we need the actual values of its operands, so must force
evaluation of any thunks in the operands. Hence, the definition for mapply
forces evaluation of the operands to a primitive procedure:

def mapply(proc, operands):
def deThunk(expr):

if isThunk(expr): return expr.value()
else: return expr

if (isPrimitiveProcedure(proc)):
ops = map (deThunk, operands)
return proc(ops)

elif isinstance(proc, Procedure):
... # same as in Charme interpreter

To evaluate an if expression, it is necessary to know the actual value of the
predicate expressions. We change the evalIf procedure to use forceEval when
evaluating the predicate expression:

def evalIf(expr,env):
if forceEval(expr[1], env) != False: return meval(expr[2],env)
else: return meval(expr[3],env)

This forces the predicate to evaluate to a value so its actual value can be used
to determine how the rest of the if expression evaluates; the evaluations of the
consequent and alternate expressions are left as mevals since it is not neces-
sary to force them to be evaluated yet.

Chapter 11. Interpreters 265

The final change to the interpreter is to force evaluation when the result is
displayed to the user in the evalLoop procedure by replacing the call to meval
with forceEval.

11.4.2 Lazy Programming

Lazy evaluation enables programming constructs that are not possible with
eager evaluation. For example, with lazy evaluation we can define a proce-
dure that behaves like the if expression special form. We first define true and
false as procedures that take two parameters and output the first or second
parameter:

(define true (lambda (a b) a))
(define false (lambda (a b) b))

Then, this definition defines a procedure with behavior similar to the if spe-
cial form:

(define ifp (lambda (p c a) (p c a)))

With eager evaluation, this would not work since all operands would be eval-
uated; with lazy evaluation, only the operand that corresponds to the appro-
priate consequent or alternate expression is evaluated.

Lazy evaluation also enables programs to deal with seemingly infinite data
structures. This is possible since only those values of the apparently infinite
data structure that are used need to be created. Modern methods of production

have given us the possibility of ease
and security for all; we have
chosen, instead, to have overwork
for some and starvation for others.
Hitherto we have continued to be
as energetic as we were before there
were machines; in this we have
been foolish, but there is no reason
to go on being foolish forever.
Bertrand Russell, In Praise of Idleness,
1932

Suppose we define procedures similar to the Scheme procedures for manip-
ulating pairs:

(define cons (lambda (a b) (lambda (p) (if p a b))))
(define car (lambda (p) (p true)))
(define cdr (lambda (p) (p false)))
(define null false)
(define null? (lambda (x) (= x false)))

These behave similarly to the corresponding Scheme procedures, except in
LazyCharme their operands are evaluated lazily. This means, we can define
an infinite list:

(define ints-from (lambda (n) (cons n (ints-from (+ n 1)))))

With eager evaluation, (ints-from 1) would never finish evaluating; it has no
base case for stopping the recursive applications. In LazyCharme, however,
the operands to the cons application in the body of ints-from are not eval-
uated until they are needed. Hence, (ints-from 1) terminates and produces
a seemingly infinite list, but only the evaluations that are needed are per-
formed. For example, (car (cdr (cdr (cdr (ints-from 1))))) evaluates to 4.

266 11.4. Lazy Evaluation

Some evaluations fail to terminate even with lazy evaluation. For example,
assume the standard definition of list-length:

(define list-length
(lambda (lst) (if (null? lst) 0 (+ 1 (list-length (cdr lst))))))

An evaluation of (length (ints-from 1)) never terminates. Every time an appli-
cation of list-length is evaluated, it applies cdr to the input list, which causes
ints-from to evaluate another cons, increasing the length of the list by one.
The actual length of the list is infinite, so the application of list-length does
not terminate.

Lists with delayed evaluation can be used in useful programs. Reconsider the
Fibonacci sequence from Chapter 7. Using lazy evaluation, we can define a
list that is the infinitely long Fibonacci sequence:5

(define fibo-gen (lambda (a b) (cons a (fibo-gen b (+ a b)))))
(define fibos (fibo-gen 0 1))

The nth Fibonacci number is the nth element of fibos:

(define fibo (lambda (n) (list-get-element fibos n)))

where list-get-element is defined as it was defined in Chapter 5.

Another strategy for defining the Fibonacci sequence is to first define a pro-
cedure that merges two (possibly infinite) lists, and then define the Fibonacci
sequence recursively. The merge-lists procedure combines elements in two
lists using an input procedure.

(define merge-lists
(lambda (lst1 lst2 proc)

(if (null? lst1) null
(if (null? lst2) null

(cons (proc (car lst1) (car lst2))
(merge-lists (cdr lst1) (cdr lst2) proc))))))

We can define the Fibonacci sequence as the combination of two sequences,
starting with the 0 and 1 base cases, combined using addition where the sec-
ond sequence is offset by one position:

(define fibos (cons 0 (cons 1 (merge-lists fibos (cdr fibos) +))))

The sequence is defined to start with 0 and 1 as the first two elements. The
following elements are the result of merging fibos and (cdr fibos) using the
+ procedure. This definition relies heavily on lazy evaluation; otherwise, the

5This example is based on Abelson and Sussman, Structure and Interpretation of Computer
Programs, Section 3.5.2, which also presents several other examples of interesting programs con-
structed using delayed evaluation.

Chapter 11. Interpreters 267

evaluation of (merge-lists fibos (cdr fibos) +) would never terminate: the in-
put lists are effectively infinite.

Exercise 11.3. Define the sequence of factorials as an infinite list using de-
layed evaluation.

Exercise 11.4. Describe the infinite list defined by each of the following defi-
nitions. (Check your answers by evaluating the expressions in LazyCharme.)

a. (define p (cons 1 (merge-lists p p +)))

b. (define t (cons 1 (merge-lists t (merge-lists t t +) +)))

c. (define twos (cons 2 twos))

d. (define doubles (merge-lists (ints-from 1) twos ∗))

Exercise 11.5. [★★] A simple procedure known as the Sieve of Eratosthenes for
finding prime numbers was created by Eratosthenes, an ancient Greek math-
ematician and astronomer. The procedure imagines starting with an (infi-
nite) list of all the integers starting from 2. Then, it repeats the following two
steps forever:

1. Circle the first number that is not crossed off; it is prime.
2. Cross off all numbers that are multiples of the circled number.

To carry out the procedure in practice, of course, the initial list of numbers
must be finite, otherwise it would take forever to cross off all the multiples of
2. But, with delayed evaluation, we can implement the Sieve procedure on an
effectively infinite list.

Implement the sieve procedure using lists with lazy evaluation. You may find
the list-filter and merge-lists procedures useful, but will probably find it nec-
essary to define some additional procedures.

Eratosthenes

11.5 Summary

Languages are tools for thinking, as well as means to express executable pro-
grams. A programming language is defined by its grammar and evaluation
rules. To implement a language, we need to implement a parser that carries
out the grammar rules and an evaluator that implements the evaluation rules.

We can produce new languages by changing the evaluation rules of an in-
terpreter. Changing the evaluation rules changes what programs mean, and
enables new approaches to solving problems.

