
2
Language

Belittle! What an expression! It may be an elegant one in Virginia, and even
perfectly intelligible; but for our part, all we can do is to guess at its meaning.
For shame, Mr. Jefferson!
European Magazine and London Review, 1787, commenting on Thomas
Jefferson’s Notes on the State of Virginia

Dictionaries are but the depositories of words already legitimated by usage. Society is
the workshop in which new ones are elaborated. When an individual uses a new

word, if ill formed, it is rejected; if well formed, adopted, and after due time, laid up
in the depository of dictionaries.

Thomas Jefferson, letter to John Adams, 1820

The most powerful tool we have for communication is language. This is true
whether we are considering communication between two humans, between
a human programmer and a computer, or between a network of computers.
In computing, we use language to describe procedures and use tools to turn
descriptions of procedures into executing processes. This chapter considers
what a language is, how language works, and introduces the techniques we
will use to define languages.

2.1 Surface Forms and Meanings

A language is a set of surface forms, s, meanings, m, and a mapping between language

the surface forms in s and their associated meanings.In the earliest human
languages, the surface forms were sounds but they can be anything that can
be perceived by the communicating parties. We focus on languages where
the surface forms are text.

A natural language is a language spoken by humans, such as English or Swahili. natural language

Natural languages are very complex since they have evolved over many thou-
sands years of individual and cultural interaction. We focus on designed lan-
guages that are created by humans for some a specific purpose such as for
expressing procedures to be executed by computers.

A simple communication system can be described using a table of surface
forms and their associated meanings. For example, this table describes a
communication system between traffic lights and drivers:



24 2.2. Language Construction

Surface Form Meaning

Green Go
Yellow Caution

Red Stop

Communication systems involving humans are notoriously imprecise and
subjective. A driver and a police officer may disagree on the actual mean-
ing of the Yellow symbol, and may even disagree on which symbol is being
transmitted by the traffic light at a particular time. Communication systems
for computers demand precision: we want to know what our programs will
do, so it is important that every step they make is understood precisely and
unambiguously.

Rotary traffic signal
The method of defining a communication system by listing a table of

< Symbol, Meaning >

pairs can work adequately only for trivial communication systems. The num-
ber of possible meanings that can be expressed is limited by the number of
entries in the table. It is impossible to express any new meaning since all
meanings must already be listed in the table!

Languages and Infinity. A real language must be able to express infinitely
many different meanings. If the meaning of each surface form is unambigu-
ous, this means the language must contain infinitely many different surface
forms. Hence, there must be a system for generating new surface forms and a
way to infer the meaning of each generated surface form. No finite represen-
tation such as a printed table can contain all the surface forms and meanings
in an infinite language.

One way to generate infinitely large sets is to use repeating patterns. For ex-
ample, most humans would interpret the notation: “1, 2, 3, . . . ” as the set of
all natural numbers. We interpret the “. . . ” as meaning keep doing the same
thing for ever. In this case, it means keep adding one to the preceding num-
ber. Thus, with only a few numbers and symbols we can describe a set con-
taining infinitely many numbers. As discussed in Section 1.2.1, the language
of the natural numbers is enough to encode all meanings in any countable
set (including the set of all possible procedures, as we will see more clearly in
Chater 12). But, finding a sensible mapping between a procedure and a num-
ber is impossible. The surface forms do not correspond closely enough to the
ideas we want to express to be a useful language.

2.2 Language Construction

To define more expressive infinite languages, we need a richer system for con-
structing new surface forms and associated meanings. We need ways to de-
scribe languages that allow us to define an infinitely large set of surface forms
and meanings with a compact notation. The approach we use is to define a



Chapter 2. Language 25

language by defining a set of rules that produce exactly the set of strings in
the language.

Components of Language. A language is composed of:

• primitives — the smallest units of meaning.
• means of combination — rules for building new language elements by

combining simpler ones.

The primitives are the smallest meaningful units (in natural languages these
are known as morphemes). A primitive cannot be broken into smaller parts
whose meanings can be combined to produce the meaning of the unit. The
means of combination are rules for building words from primitives, and for
building phrases and sentences from words.

Since we have rules for producing new words not all words are primitives. For
example, we can create a new word by adding anti- in front of an existing
word. The meaning of the new word can be inferred as “against the meaning
of the original word”. Rules like this one mean anyone can invent a new word,
and use it in communication in ways that will probably be understood by
listeners who have never heard the word before.

For example, the verb freeze means to pass from a liquid state to a solid state;
antifreeze is a substance designed to prevent freezing. English speakers who
know the meaning of freeze and anti- could roughly guess the meaning of
antifreeze even if they have never heard the word before.1

Primitives are the smallest units of meaning, not based on the surface forms.
Both anti and freeze are primitive; they cannot be broken into smaller parts
with meaning. We can break anti- into two syllables, or four letters, but those
sub-components do not have meanings that could be combined to produce
the meaning of the primitive.

Means of Abstraction. In addition to primitives and means of combination,
powerful languages have an additional type of component that enables eco-
nomic communication: means of abstraction.

Means of abstraction allow us to give a simple name to a complex entity. In
English, the means of abstraction are pronouns like “she”, “it”, and “they”. The
meaning of a pronoun depends on the context in which it is used. It abstracts
a complex meaning with a simple word. For example, the it in the previous
sentence abstracts “the meaning of a pronoun”, but the it in the sentence
before that one abstracts “a pronoun”.

In natural languages, means of abstraction tend to be limited (e.g., English
has she and he, but no gender-neutral pronoun for a person), and confusing
(it is often unclear what a particular it is abstracting). Languages for pro-
gramming computers need powerful and clear means of abstraction.

1Guessing that it is a verb meaning to pass from the solid to liquid state would also be reason-
able. This shows how imprecise and ambiguous natural languages are; for programming com-
puters, we need the meanings of constructs to be clearly determined.



26 2.3. Recursive Transition Networks

Exercise 2.1. Merriam-Webster’s word for the year for 2006 was truthiness,
a word invented and popularized by Stephen Colbert. Its definition is, “truth
that comes from the gut, not books”. Identify the morphemes that are used
to build truthiness, and explain, based on its composition, what truthiness
should mean.

Exercise 2.2. According to the Guinness Book of World Records, the longest
word in the English language is floccinaucinihilipilification, meaning “The
act or habit of describing or regarding something as worthless”. This word was
reputedly invented by a non-hippopotomonstrosesquipedaliophobic stu-
dent at Eton who combined four words in his Latin textbook. Prove Guinness
wrong by finding a longer English word. An English speaker (familiar with
floccinaucinihilipilification and the morphemes you use) should be able to
deduce the meaning of your word.

Exercise 2.3. Embiggening your vocabulary with anticromulent words that
ecdysiasts can grok.

a. Invent a new English word by combining common morphemes.

b. Get someone else to use the word you invented.

c. [★★] Convince Merriam-Webster to add your word to their dictionary.

Exercise 2.4. According to the Oxford English Dictionary, Thomas Jefferson
is the first person to use more than 60 words in the dictionary (see http:

//etext.virginia.edu/jefferson/oed/ for a full list). Jeffersonian words include: (a)
authentication, (b) belittle, (c) indecipherable, (d) inheritability, (e) odome-
ter, (f) sanction, and (g) vomit-grass. For each Jeffersonian word, guess its
derivation and explain whether or not its meaning could be inferred from its
components.

2.3 Recursive Transition Networks

This section describes a more powerful technique for defining languages. We
focus on languages where the surface forms can easily be written down as lin-
ear sequences of characters. A character is a symbol selected from a finite set
of symbols known as an alphabet . A typical alphabet comprises the letters,alphabet

numerals, and punctuation symbols used in English. We refer to a sequence
of zero or more characters as a string . Hence, the surface forms of a textualstring

language are defined by a set of strings. To define a language, we need to de-
fine a system that produces all strings in the language and no other strings.
The problem of associating meanings with those strings is more difficult; we
consider it in later chapters.

A recursive transition network is defined by a graph of nodes and edges. Therecursive transition network

edges are labeled with output symbols—these are the primitives in the lan-



Chapter 2. Language 27

guage. The nodes and edge structure are the means of combination.

One of the nodes is designated the start node (indicated by an arrow pointing
into that node). One or more of the nodes may be designated as final nodes
(indicated by an inner circle). A string is in the language if there exists some
path from the start node to a final node in the graph where the output sym-
bols along the path edges produce the string.

For example, Figure 2.1 shows a simple recursive transition network with three
nodes and four edges that can produce four different sentences. Starting in
the node marked Noun, we have two possible edges to follow; each edge out-
puts a different symbol, and leads to the node marked Verb. From that node,
we have two possible edges, each leading to the final node marked S. Since
there are no edges out of S, this ends the string. Hence, we can produce four
strings corresponding to the four different paths from the start to final node:
“Alice jumps”, “Alice runs”, “Bob jumps”, and “Bob runs”.

Figure 2.1. Simple recursive transition network.

Recursive transition networks are more efficient than listing the strings in a
language, since the number of possible strings increases with the number of
possible paths through the graph. For example, adding one more edge from
Noun to Verb with label “Colleen” adds two new strings to the language.

The expressive power of recursive transition networks increases dramatically
once we add edges that form cycles in the graph. This is where the recursive
in the name comes from. Once a graph has a cycle, there are infinitely many
possible paths through the graph, since we can always go around the cycle
one more time.

Consider what happens when we add a single edge to the previous network
to produce the network shown in Figure 2.2.

Now, we can produce infinitely many different strings! We can follow the
“and” edge back to the Noun node to produce strings like “Alice runs and Bob
jumps and Alice jumps” with as many conjuncts as we want.

Exercise 2.5. Draw a recursive transition network that defines the language of
the whole numbers: 0, 1, 2, . . .



28 2.3. Recursive Transition Networks

Figure 2.2. RTN with a cycle.

Exercise 2.6. How many different strings can be produced by the RTN shown
in Figure 2.3?

Figure 2.3. RTN for Exercise 2.6.

Exercise 2.7. Recursive transition networks.

a. How many edges are needed for a recursive transition network that can
produce exactly 8 strings?

b. How many nodes are needed for a recursive transition network that can
produce exactly 8 strings?

c. [★] Given a whole number n, how many edges are needed for a recursive
transition network that can produce exactly n strings?

Subnetworks. In the RTNs we have seen so far, the labels on the output edges
are direct outputs known as terminals: following an edge just produces the
symbol on that edge. We can make more expressive RTNs by allowing edge
labels to also name subnetworks. A subnetwork is identified by the name
of its starting node. When an edge labeled with a subnetwork is followed,
the network traversal jumps to the subnetwork node. Then, it can follow any
path from that node to a final node. Upon reaching a final node, the network
traversal jumps back to complete the edge.

For example, consider the network shown in Figure 2.4. It describes the same
language as the RTN in Figure 2.1, but uses subnetworks for Noun and Verb.
To produce a string, we start in the Sentence node. The only edge out from



Chapter 2. Language 29

Sentence is labeled Noun. To follow the edge, we jump to the Noun node,
which is a separate subnetwork. Now, we can follow any path from Noun to a
final node (in this cases, outputting either “Alice” or “Bob” on the path toward
EndNoun.

Figure 2.4. Recursive transition network with subnetworks.

Suppose we replace the Noun subnetwork with the more interesting version
shown in Figure 2.5.This subnetwork includes an edge from Noun to N1 la-
beled Noun. Following this edge involves following a path through the Noun
subnetwork. Starting from Noun, we can generate complex phrases like “Alice
and Bob” or “Alice and Bob and Alice” (find the two different paths through
the network that generate this phrase).

To keep track of paths through RTNs without subnetworks, a single marker
suffices. We can start with the marker on the start node, and move it along
the path through each node to the final node. Keeping track of paths on an
RTN with subnetworks is more complicated. We need to keep track of where
we are in the current network, and also where to continue to when a final
node of the current subnetwork is reached. Since we can enter subnetworks
within subnetworks, we need a way to keep track of arbitrarily many jump
points.

A stack is a useful way to keep track of the subnetworks. We can think of a stack

stack like a stack of trays in a cafeteria. At any point in time, only the top tray

Figure 2.5. Alternate Noun subnetwork.



30 2.3. Recursive Transition Networks

on the stack can be reached. We can pop the top tray off the stack, after which
the next tray is now on top. We can push a new tray on top of the stack, which
makes the old top of the stack now one below the top.

We use a stack of nodes to keep track of the subnetworks as they are entered.
The top of the stack represents the next node to process. At each step, we pop
the node off the stack and follow a transition from that node. Using a stack,
we can derive a path through an RTN using this procedure:

1. Initially, push the starting node on the stack.
2. If the stack is empty, stop. Otherwise, pop a node, N, off the stack.
3. If the popped node, N, is a final node return to step 2.2

4. Select an edge from the RTN that starts from node N. Use D to denote
the destination of that edge, and s to denote the output symbol on the
edge.

5. Push D on the stack.
6. If s is a subnetwork, push the node s on the stack. Otherwise, output s,

which is a terminal.
7. Go back to step 2.

Consider generating the string “Alice runs” using the RTN in Figure 2.4. We
start following step 1 by pushing Sentence on the stack. In step 2, we pop the
stack, so the current node, N, is Sentence. Since it is not a final node, we do
nothing for step 3. In step 4, we choose an edge starting from Sentence. There
is only one edge to choose, and it leads to the node labeled S1. In step 5, we
push S1 on the stack. The label on the edge is Noun, which is a node, so we
push Noun on the stack. The stack now contains two items: [Noun, S1]. Since
Noun is on top, this means we will first traverse the Noun subnetwork, and
then continue from S1.

As directed by step 7, we go back to step 2 and continue by popping the top
node, Noun, off the stack. It is not a final node, so we continue to step 4, and
select the edge labeled “Alice” from Noun to EndNoun. We push EndNoun
on the stack, which now contains: [EndNoun, S1]. The label on the edge is
the terminal, “Alice”, so we output “Alice” following step 6. We continue in the
same manner, following the steps in the procedure as we keep track of a path
through the network. The full processing steps are shown in Figure 2.6.

Exercise 2.8. Show the sequence of stacks used in generating the string “Alice
and Bob and Alice runs” using the network in Figure 2.4 with the alternate
Noun subnetwork from Figure 2.5.

Exercise 2.9. Identify a string that cannot be produced using the RTN from
Figure 2.4 with the alternate Noun subnetwork from Figure 2.5 without the
stack growing to contain five elements.

2For simplicity, this procedure assumes we always stop when a final node is reached. RTNs
can have edges out of final nodes (as in Figure 2.2) where it is possible to either stop or continue
from a final node.



Chapter 2. Language 31

Figure 2.6. RTN generating “Alice runs”.

Exercise 2.10. The procedure given for traversing RTNs assumes that a sub-
network path always stops when a final node is reached. Hence, it cannot
follow all possible paths for an RTN where there are edges out of a final node.
Describe a procedure that can follow all possible paths, even for RTNs that
include edges from final nodes.

2.4 Replacement Grammars

Another way to define a language is to use a grammar. This is the most com-
mon way languages are defined by computer scientists today, and the way we
will use for the rest of this book.

A grammar is a set of rules for generating all strings in the language. We use
the Backus-Naur Form (BNF) notation to define a grammar. BNF grammars
are exactly as powerful as recursive transition networks (Exploration 2.1 ex-
plains what this means and why it is the case), but easier to write down.

BNF was invented by John Backus in the late 1950s. Backus led efforts at
IBM to define and implement Fortran, the first widely used programming
language. Fortran enabled computer programs to be written in a language

John Backusmore like familiar algebraic formulas than low-level machine instructions,
enabling programs to be written more quickly. In defining the Fortran lan-
guage, Backus and his team used ad hoc English descriptions to define the
language. These ad hoc descriptions were often misinterpreted, motivating
the need for a more precise way of defining a language.

Rules in a Backus-Naur Form grammar have the form:

nonterminal ::⇒ replacement

The left side of a rule is always a single symbol, known as a nonterminal since



32 2.4. Replacement Grammars

it can never appear in the final generated string. The right side of a rule con-
tains one or more symbols. These symbols may include both nonterminals,
which will be replaced using replacement rules before generating the final
string, and terminals, which are output symbols that never appear as the left
side of a rule. We use italics to represent nonterminal symbols, and bold to
represent terminal symbols. The terminals are the primitives in the language;
the grammar rules are its means of combination.I flunked out every year. I never

studied. I hated studying. I was
just goofing around. It had the

delightful consequence that every
year I went to summer school in

New Hampshire where I spent the
summer sailing and
having a nice time.

John Backus

We generate a string in the language described by a replacement grammar
by starting from a designated start symbol (e.g., sentence). At each step, we
select a nonterminal in the working string and replace it with the right side
of a replacement rule whose left side matches the nonterminal. A string is
generated once there are no nonterminals remaining.

Here is an example BNF grammar (that describes the same language as the
RTN in Figure 2.1):

1. Sentence ::⇒ Noun Verb
2. Noun ::⇒ Alice
3. Noun ::⇒ Bob
4. Verb ::⇒ jumps
5. Verb ::⇒ runs

Starting from Sentence, the grammar can generate four sentences: “Alice jumps”,
“Alice runs”, “Bob jumps”, and “Bob runs”.

A derivation shows how a grammar generates a given string. Here is the deriva-derivation

tion of “Alice runs”:

Sentence ::⇒Noun Verb using Rule 1
::⇒Alice Verb replacing Noun using Rule 2
::⇒Alice runs replacing Verb using Rule 5

We can represent a grammar derivation as a tree, where the root of the tree is
the starting nonterminal (Sentence in this case), and the leaves are the termi-
nals that form the derived sentence. Such a tree is known as a parse tree.parse tree

Here is the parse tree for the derivation of “Alice runs”:

Sentence

qqqqqqq

MMMMMMM

Noun Verb

Alice runs

From this example, we can see that BNF notation offers some compression



Chapter 2. Language 33

over just listing all strings in the language, since a grammar can have multiple
replacement rules for each nonterminal. Adding the rule,

6. Noun ::⇒ Colleen

to the grammar adds two new strings (“Colleen runs” and “Colleen jumps”)
to the language.

Recursive Grammars. The real power of BNF as a compact notation for de-
scribing languages, though, comes once we start adding recursive rules to our
grammar. A grammar is recursive if the grammar contains a nonterminal that
can produce a production that contains itself.

Suppose we add the rule,

6. Sentence ::⇒ Sentence and Sentence

to our example grammar. Now, how many sentences can we generate?

Infinitely many! This grammar describes the same language as the RTN in
Figure 2.2. It can generate “Alice runs and Bob jumps” and “Alice runs and
Bob jumps and Alice runs” and sentences with any number of repetitions of
“Alice runs”. This is very powerful: by using recursive rules a compact gram-
mar can be used to define a language containing infinitely many strings.

Example 2.1: Whole Numbers. Here is a grammar that defines the language
of the whole numbers (0, 1, . . .):

Number ::⇒ Digit MoreDigits
MoreDigits ::⇒
MoreDigits ::⇒ Number
Digit ::⇒ 0
Digit ::⇒ 1
Digit ::⇒ 2
Digit ::⇒ 3
Digit ::⇒ 4

Digit ::⇒ 5
Digit ::⇒ 6
Digit ::⇒ 7
Digit ::⇒ 8
Digit ::⇒ 9

Figure 2.7 shows a parse tree for the derivation of 37 from Number.

Circular vs. Recursive Definitions. The second rule means we can replace
MoreDigits with nothing. This is sometimes written as ε to make it clear that
the replacement is empty:

MoreDigits ::⇒ ε

This is a very important rule in the grammar—without it no strings could be
generated; with it infinitely many strings can be generated. The key is that



34 2.4. Replacement Grammars

Number

qqqqqqq

MMMMMMM

Digit MoreDigits

3 Number

qqqqqqq

MMMMMMM

Digit MoreDigits

7 ε

Figure 2.7. Derivation of 37 from Number.

we can only produce a string when all nonterminals in the string have been
replaced with terminals. Without the MoreDigits ::⇒ ε rule, the only rule we
would have with MoreDigits on the left side is the third rule:

MoreDigits ::⇒ Number

The only rule we have with Number on the left side is the first rule, which
replaces Number with Digit MoreDigits. Every time we follow this rule, we
replace MoreDigits with Digit MoreDigits. We can produce as many Digits as
we want, but without the MoreDigits ::⇒ ε rule we can never stop.

This is the difference between a circular definition, and a recursive defini-
tion. Without the stopping rule, MoreDigits would be defined circularly since
there would be no way to start with MoreDigits and generate a production
that does not contain MoreDigits or a nonterminal that eventually must pro-
duce MoreDigits. With the MoreDigits ::⇒ ε rule, however, we have a way to
produce something terminal from MoreDigits. This is known as a base case —base case

a rule that turns an otherwise circular definition into a meaningful, recursive
definition.

Condensed Notation. It is common to have many grammar rules with the
same left side nonterminal. For example, the whole numbers grammar has
ten rules with Digit on the left side to produce the ten terminal digits. Each
of these is an alternative rule that can be used when the production string
contains the nonterminal Digit. A compact notation for these types of rules is
to use the vertical bar (∣) to separate alternative replacements. For example,
we could write the ten Digit rules compactly as:

Digit ::⇒ 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

This means exactly the same thing as listing the ten digit rules separately as
in the original example.



Chapter 2. Language 35

Exercise 2.11. Suppose we replaced the first rule (Number ::⇒ Digit
MoreDigits) in the whole numbers grammar with this rule:

Number ::⇒ MoreDigits Digit

a. How does this change the parse tree for the derivation of 37 from Number?
Draw the parse tree that results from the new grammar.

b. Does this change the language? Either show some string that is in the lan-
guage defined by the modified grammar but not in the original language
(or vice versa), or argue that both grammars can generate exactly the same
sets of strings.

Exercise 2.12. The grammar for whole numbers we defined allows strings
with non-standard leading zeros such as “000” and “00005”. Devise a gram-
mar that produces all whole numbers (including “0”), but no strings with un-
necessary leading zeros.

Exercise 2.13. Define a BNF grammar that describes the language of decimal
numbers (e.g., the language should contain 3.14159 and 1120 but not 1.2.3).

Exercise 2.14. The BNF grammar below (extracted from P. Mockapetris, Do-
main Names - Implementation and Specification, IETF RFC 1035) describes
the language of domain names on the Internet.

Domain ::⇒ SubDomainList
SubDomainList ::⇒ Label
SubDomainList ::⇒ SubDomainList . Label
Label ::⇒ Letter MoreLetters
MoreLetters ::⇒ LetterHyphens LetterDigit ∣ ε

LetterHyphens ::⇒ LetterDigitHyphen
LetterHyphens ::⇒ LetterDigitHyphen LetterHyphens
LetterHyphens ::⇒ ε

LetterDigit ::⇒ Letter ∣ Digit
Letter ::⇒ A ∣ B ∣ . . . ∣ Z ∣ a ∣ b ∣ . . . ∣ z
Digit ::⇒ 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

a. Show a derivation for www.virginia.edu in the grammar.

b. According to the grammar, which of the following are valid domain names:
(1) tj, (2) a.-b.c, (3) a-a.b-b.c-c, (4) a.g.r.e.a.t.d.o.m.a.i.n-.



36 2.4. Replacement Grammars

Exploration 2.1: Power of Language Systems

Section 2.4 claimed that recursive transition networks and BNF grammars are
equally powerful. Here, we explain more precisely what that means and prove
that the two systems are, in fact, equivalent in power. What does it mean to
say two systems are equally powerful?

A language description mechanism is used to define a set of strings compris-
ing a language. Hence, the power of a language description mechanism is
determined by the set of languages it can define.

One possible way to measure the power of a language description mecha-
nism would be to count the number of languages that it can define. Even the
simplest mechanisms can define infinitely many languages, however, so just
counting the number of languages does not distinguish well between the dif-
ferent language description mechanisms. Both RTNs and BNFs can describe
infinitely many different languages. We can always add a new edge to an RTN
to increase the number of strings in the language, or add a new replacement
rule to a BNF that replaces a nonterminal with a new terminal symbol.

Instead, we need to consider the set of languages that each mechanism can
define. A system A is more powerful that another system B if we can use A to
define every language that can be defined by B, and there is some language
L that can be defined using A that cannot be defined using B. This matches
our intuitive interpretation of more powerful — A is more powerful than B if
it can do everything B can do and more. The set diagrams in Figure 2.8 depict
three possible scenarios.

Figure 2.8. System power relationships.

In the leftmost picture, the set of languages that can be defined by B is a
proper subset of the set of languages that can be defined by A. Hence, A
is more powerful than B. In the center picture, the sets are equal. This means
every language that can be defined by A can also be defined by B, and every
language that can be defined by B can also be defined by A, and the systems
are equally powerful. In the rightmost picture, there are some elements of A
that are not elements of B, but there are also some elements of B that are not
elements of A. This means we cannot say either one is more powerful; A can
do some things B cannot do, and B can do some things A cannot do.

So, to determine the relationship between RTNs and BNFs, we need to un-



Chapter 2. Language 37

derstand if there are languages that can be defined by a BNF that cannot be
defined by a RTN and if there are languages that can be defined by a RTN that
cannot be defined by an BNF. We will show only the first part of the proof here,
and leave the second part as an exercise.

For the first part, we prove that there are no languages that can be defined by
a BNF that cannot be defined by an RTN. Equivalently, every language that
can be defined by a BNF grammar has a corresponding RTN. Since there are
infinitely many languages that can be defined by BNF grammars, we obvi-
ously cannot prove this by enumerating each language and showing the cor-
responding RTN. Instead, we use a proof technique commonly used in com-
puter science: proof by construction. We show that given any BNF grammar it proof by construction

is possible to construct a corresponding RTN by providing an algorithm that
takes as input a BNF grammar and produces as output an RTN that defines
the same language as the input BNF grammar.

Our strategy is to construct a subnetwork corresponding to each nontermi-
nal. For each rule where the nonterminal is on the left side, the right hand
side is converted to a path through that node’s subnetwork.

Before presenting the general construction algorithm, we illustrate the ap-
proach with the example BNF grammar from Example 2.1:

Number ::⇒ Digit MoreDigits
MoreDigits ::⇒ ε

MoreDigits ::⇒ Number
Digit ::⇒ 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

The grammar has three nonterminals: Number, Digit, and MoreDigits. For
each nonterminal, we construct a subnetwork by first creating two nodes cor-
responding to the start and end of the subnetwork for the nonterminal. We
make StartNumber the start node for the RTN since Number is the starting
nonterminal for the grammar.

Next, we add edges to the RTN corresponding to the production rules in the
grammar. The first rule indicates that Number can be replaced by Digit MoreDig-
its. To make the corresponding RTN, we introduce an intermediate node
since each RTN edge can only contain one label. We need to traverse two
edges, with labels StartDigit and StartMoreDigits between the StartNumber
and EndNumber nodes. The resulting partial RTN is shown in Figure 2.9.

Figure 2.9. Converting the Number productions to an RTN.

For the MoreDigits nonterminal there are two productions. The first means



38 2.4. Replacement Grammars

MoreDigits can be replaced with nothing. In an RTN, we cannot have edges
with unlabeled outputs. So, the equivalent of outputting nothing is to turn
StartMoreDigits into a final node. The second production replaces MoreDig-
its with Number. We do this in the RTN by adding an edge between Start-
MoreDigits and EndMoreDigits labeled with Number.

Figure 2.10. Converting the MoreDigits productions to an RTN.

Finally, we convert the ten Digit productions. For each rule, we add an edge
between StartDigit and EndDigit labeled with the digit terminal.

Figure 2.11. Converting the Digit productions to an RTN.

This example illustrates that it is possible to convert a particular grammar to
an RTN. For a general proof, we present a general an algorithm that can be
used to do the same conversion for any BNF:

1. For each nonterminal X in the grammar, construct two nodes, StartX
and EndX, where EndX is a final node. Make the node StartS the start
node of the RTN, where S is the start nonterminal of the grammar.

2. For each rule in the grammar, add a corresponding path through the
RTN. All BNF rules have the form X ::⇒ replacement where X is a non-
terminal in the grammar and replacement is a sequence of zero or more
terminals and nonterminals: [R0, R1, . . . , Rn].

(a) If the replacement is empty, make StartX a final node.

(b) If the replacement has just one element, R0, add an edge from StartX
to EndX with edge label R0.

(c) Otherwise:

i. Add an edge from StartX to a new node labeled Xi,0 (where i
identifies the grammar rule), with edge label R0.

ii. For each remaining element Rj in the replacement add an edge
from Xi,j−1 to a new node labeled Xi,j with edge label Rj. (For
example, for element R1, a new node Xi,1 is added, and an edge
from Xi,0 to Xi,1 with edge label R1.)

iii. Add an edge from Xi,n−1 to EndX with edge label Rn.



Chapter 2. Language 39

Following this procedure, we can convert any BNF grammar into an RTN that
defines the same language. Hence, we have proved that RTNs are at least as
powerful as BNF grammars.

To complete the proof that BNF grammars and RTNs are equally powerful
ways of defining languages, we also need to show that a BNF can define every
language that can be defined using an RTN. This part of the proof can be done
using a similar strategy in reverse: by showing a procedure that can be used
to construct a BNF equivalent to any input RTN. We leave the details as an
exercise for especially ambitious readers.

Exercise 2.15. Convert the BNF grammar from Exercise 2.14 into an equiva-
lent RTN.

Exercise 2.16. [★] Prove that BNF grammars are as powerful as RTNs by de-
vising a procedure that can construct a BNF grammar that defines the same
language as any input RTN.

2.5 Summary

Languages define a set of surface forms and associated meanings. Since use-
ful language must be able to express infinitely many things, we need tools for
defining infinite sets of surface forms using compact and precise notations.
The tool we will use for the remainder of this book is the BNF replacement
grammar which precisely defines a language using replacement rules. This
system can describe infinite languages with small representations because of
the power of recursive rules. In the next chapter, we introduce the Scheme
programming language that we will use to describe procedures.


