
4
Problems and Procedures

A great discovery solves a great problem, but there is a grain of discovery in the
solution of any problem. Your problem may be modest, but if it challenges your

curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

George Pólya, How to Solve It

Computers are tools for performing computations to solve problems. In this
chapter, we consider what it means to solve a problem and explore some
strategies for constructing procedures that solve problems.

4.1 Solving Problems

Traditionally, a problem is an obstacle to overcome or some question to an-
swer. Once the question is answered or the obstacle circumvented, the prob-
lem is solved and we can declare victory and move on to the next one.

When we talk about writing programs to solve problems, though, we have a
larger goal. We don’t just want to solve one instance of a problem, we want an
algorithm that can solve all instances of a problem. A problem is defined by problem

its inputs and the desired property of the output. Recall from Chapter 1, that
a procedure is a precise description of a process and a procedure is guaran-
teed to always finish is called an algorithm. The name algorithm is a Latiniza-
tion of the name of the Persian mathematician and scientist, Muhammad ibn
Mūsā al-Khwārizmı̄, who published a book in 825 on calculation with Hindu
numerals. Although the name algorithm was adopted after al-Khwārizmı̄’s
book, algorithms go back much further than that. The ancient Babylonians
had algorithms for finding square roots more than 3500 years ago (see Explo-
ration 4.1).

For example, we don’t just want to find the best route between New York and
Washington, we want an algorithm that takes as inputs the map, start loca-
tion, and end location, and outputs the best route.1 There are infinitely many
possible inputs that each specify different instances of the problem; a general
solution to the problem is a procedure that finds the best route for all possible
inputs.

1Actually finding a general procedure that does this is a challenging and interesting problem,
that we will return to in Chapter 13.



62 4.2. Composing Procedures

To define a procedure that can solve a problem, we need to define a procedure
that takes inputs describing the problem instance and produces a different
information process depending on the actual values of its inputs. A procedure
takes zero or more inputs, and produces one output or no outputs2, as shown
in Figure 4.1.

Figure 4.1. A procedure maps inputs to an output.

Our goal in solving a problem is to devise a procedure that takes inputs that
define a problem instance, and produces as output the solution to that prob-
lem instance. The procedure should be an algorithm — this means every ap-
plication of the procedure must eventually finish evaluating and produce an
output value.

There is no magic wand for solving problems, but at its core most problem
solving involves breaking problems you do not yet know how to solve into
simpler and simpler problems until you find problems simple enough that
you already know how to solve them. The creative challenge is to find the
right subproblems so that they can be combined to solve the original prob-
lem. This approach of solving problems by breaking them into simpler parts
is known as divide-and-conquer .divide-and-conquer

The following sections describe a two key forms of divide-and-conquer prob-
lem solving: composition and recursive problem solving. We will use these
same problem-solving techniques in different forms throughout this book.

4.2 Composing Procedures

One way to divide a problem is to split it into steps where the output of the
first step is the input to the second step, and the output of the second step is
the solution to the problem. Each step can be defined by one procedure, and
the two procedures can be combined to create one procedure that solves the
problem.

Figure 4.2 shows a composition of two functions, f and g . The output of f is
used as the input to g.

We can express this composition with the Scheme expression (g (f x)) where
x is the input. The written order appears to be reversed from the picture in

2Although procedures can produce more than one output, we limit our discussion here to
procedures that produce no more than one output. In the next chapter, we introduce ways to
construct complex data, so any number of output values can be packaged into a single output.



Chapter 4. Problems and Procedures 63

Figure 4.2. Composition.

Figure 4.2. This is because we apply a procedure to the values of its subex-
pressions: the values of the inner subexpressions must be computed first, and
then used as the inputs to the outer applications. So, the inner subexpression
(f x) is evaluated first since the evaluation rule for the outer application ex-
pression is to first evaluate all the subexpressions.

To define a procedure that implements the composed procedure we make x
a parameter:

(define fog (lambda (x) (g (f x))))

This defines fog as a procedure that takes one input and produces as output
the composition of f and g applied to the input parameter. This works for any
two procedures that both take a single input parameter.

For example, we could compose the square and cube procedures from Chap-
ter 3 as:

(define sixth-power (lambda (x) (cube (square x))))

Then, (sixth-power 2) evaluates to 64.

4.2.1 Procedures as Inputs and Outputs

All the procedure inputs and outputs we have seen so far have been numbers.
The subexpressions of an application can be any expression including a pro-
cedure. A higher-order procedure is a procedure that takes other procedures higher-order procedure

as inputs or that produces a procedure as its output. Higher-order proce-
dures give us the ability to write procedures that behave differently based on
the procedures that are passed in as inputs.

For example, we can create a generic composition procedure by making f and
g parameters:

(define fog (lambda (f g x) (g (f x))))

The fog procedure takes three parameters. The first two are both procedures
that take one input. The third parameter is a value that can be the input to
the first procedure.

For example,

> (fog square cube 2)
64



64 4.2. Composing Procedures

> (fog (lambda (x) (+ x 1)) square 2)
9

In the second example the first parameter is the procedure produced by the
lambda expression (lambda (x) (+ x 1)). This procedure takes a number as
input and produces as output that number plus one. We use a definition to
name this procedure inc (short for increment):

(define inc (lambda (x) (+ x 1)))

A more useful composition procedure would separate the input value, x, from
the composition. The fcompose procedure takes two procedures as inputs
and produces as output a procedure that is their composition:3

(define fcompose
(lambda (f g ) (lambda (x) (g (f x)))))

The body of the fcompose procedure is a lambda expression that makes a pro-
cedure. Hence, the result of applying fcompose to two procedures is not a
simple value, but a procedure. The resulting procedure can then be applied
to a value.

Here are some examples using fcompose:

> (fcompose inc inc)
#<procedure>

> ((fcompose inc inc) 1)
3

> ((fcompose inc square) 2)
9

> ((fcompose square inc) 2)
5

Exercise 4.1. For each expression, give the value to which the expression eval-
uates. Assume fcompose and inc are defined as above.

a. (fcompose (lambda (x) (∗ x 2)) (lambda (x) (/ x 2)))

b. ((fcompose (lambda (x) (∗ x 2)) (lambda (x) (/ x 2))) 150)

c. ((fcompose (fcompose inc inc) inc) 2)

3We name our composition procedure fcompose to avoid collision with the built-in compose
procedure that behaves similarly.



Chapter 4. Problems and Procedures 65

Exercise 4.2. Suppose we define self-compose as a procedure that composes
a procedure with itself:

(define (self-compose f ) (fcompose f f ))

Explain how (((fcompose self-compose self-compose) inc) 1) is evaluated.

Exercise 4.3. Define a procedure fcompose3 that takes three procedures as in-
put, and produces as output a procedure that is the composition of the three
input procedures. For example, ((fcompose3 abs inc square) −5) should eval-
uate to 36. Define fcompose3 two different ways: once without using fcom-
pose, and once using fcompose.

Exercise 4.4. The fcompose procedure only works when both input proce-
dures take one input. Define a f2compose procedure that composes two pro-
cedures where the first procedure takes two inputs, and the second procedure
takes one input. For example, ((f2compose add abs) 3 −5) should evaluate to
2.

4.3 Recursive Problem Solving

In the previous section, we used functional composition to break a problem
into two procedures that can be composed to produce the desired output. A
particularly useful variation on this is when we can break a problem into a
smaller version of the original problem.

The goal is to be able to feed the output of one application of the procedure
back into the same procedure as its input for the next application, as shown
in Figure 4.3.

Figure 4.3. Circular Composition.

Here’s a corresponding Scheme procedure:

(define f (lambda (n) (f n)))

Of course, this doesn’t work very well!4 Every application of f results in an-

4Curious readers should try entering this definition into a Scheme interpreter and evaluating



66 4.3. Recursive Problem Solving

other application of f to evaluate. This never stops — no output is ever pro-
duced and the interpreter will keep evaluating applications of f until it is
stopped or runs out of memory.

We need a way to make progress and eventually stop, instead of going around
in circles. To make progress, each subsequent application should have a smaller
input. Then, the applications stop when the input to the procedure is simple
enough that the output is already known. The stopping condition is called the
base case, similarly to the grammar rules in Section 2.4. In our grammar ex-base case

amples, the base case involved replacing the nonterminal with nothing (e.g.,
MoreDigits ::⇒ ε) or with a terminal (e.g., Noun ::⇒ Alice). In recursive pro-
cedures, the base case will provide a solution for some input for which the
problem is so simple we already know the answer. When the input is a num-
ber, this is often (but not necessarily) when the input is 0 or 1.

To define a recursive procedure, we need to use an if expression to test if the
input matches the base case input. If it does, the consequent expression is
the known answer for the base case. Otherwise, we enter the recursive case
and apply the procedure again but with a smaller input. Each time we apply
the procedure we need to make progress towards reaching the base case. This
means, the input has to change in a way that gets closer to the base case input.
If the base case is for 0, and the original input is a positive number, one way
to get closer to the base case input is to subtract 1 from the input value with
each recursive application.

This evaluation spiral is depicted in Figure 4.4. With each subsequent recur-
sive call, the input gets smaller, eventually reaching the base case. For the
base case application, a result is returned to the previous application. This is
passed back up the spiral to produce the final output. Keeping track of where
we are in a recursive evaluation is similar to keeping track of the subnetworks
in an RTN traversal. The evaluator needs to keep track of where to return af-
ter each recursive evaluation completes, similarly to how we needed to keep
track of the stack of subnetworks to know how to proceed in an RTN traversal.

Figure 4.4. Recursive Composition.

Here is the corresponding procedure:

(f 0). If you get tired of waiting for an output, in DrScheme you can click the Stop button in the
upper right corner to interrupt the evaluation.



Chapter 4. Problems and Procedures 67

(define g
(lambda (n)

(if (= n 0) 1 (g (− n 1)))))

Unlike the earlier circular f procedure, if we apply g to any non-negative in-
teger it will eventually produce an output. For example, consider evaluating
(g 2). When we evaluate the first application, the value of the parameter n
is 2, so the predicate expression (= n 0) evaluates to false and the value of
the procedure body is the value of the alternate expression, (g (− n 1)). The
subexpression, (− n 1) evaluates to 1, so the result is the result of applying g to
1. As with the previous application, this leads to the application, (g (− n 1)),
but this time the value of n is 1, so (− n 1) evaluates to 0. The next application
leads to the application, (g 0). This time, the predicate expression evaluates
to true and we have reached the base case. The consequent expression is just
1, so no further applications of g are performed and this is the result of the
application (g 0). This is returned as the result of the (g 1) application in the
previous recursive call, and then as the output of the original (g 2) applica-
tion.

We can think of the recursive evaluation as winding until the base case is
reached, and then unwinding the outputs back to the original application.
For this procedure, the output is not very interesting: no matter what positive
number we apply g to, the eventual result is 1. To solve interesting problems
with recursive procedures, we need to accumulate results as the recursive ap-
plications wind or unwind. Examples 4.1 and 4.2 illustrate recursive proce-
dures that accumulate the result during the unwinding process. Example 4.3
illustrates a recursive procedure that accumulates the result during the wind-
ing process.

Example 4.1: Factorial. How many different arrangements are there of a
deck of 52 playing cards?

The top card in the deck can be any of the 52 cards, so there are 52 possible
choices for the top card. The second card can be any of the cards except for
the card that is the top card, so there are 51 possible choices for the second
card. The third card can be any of the 50 remaining cards, and so on, until the
last card for which there is only one choice remaining.

52 ∗ 51 ∗ 50 ∗ ⋅ ⋅ ⋅ ∗ 2 ∗ 1

This is known as the factorial function (denoted in mathematics using the factorial

exclamation point, e.g., 52!). It can be defined recursively:

0! = 1

n! = n ∗ (n− 1)! for all n > 0

The mathematical definition of factorial is recursive, so it is natural that we
can define a recursive procedure that computes factorials:



68 4.3. Recursive Problem Solving

(define (factorial n)
(if (= n 0)

1

(∗ n (factorial (− n 1)))))

Evaluating (factorial 52) produces the number of arrangements of a 52-card
deck: a sixty-eight digit number starting with an 8.

The factorial procedure has structure very similar to our earlier definition of
the useless recursive g procedure. The only difference is the alternative ex-
pression for the if expression: in g we used (g (− n 1)); in factorial we added
the outer application of ∗: (∗ n (factorial (− n 1))). Instead of just evaluating
to the result of the recursive application, we are now combining the output of
the recursive evaluation with the input n using a multiplication application.

Exercise 4.5. How many different ways are there of choosing an unordered
5-card hand from a 52-card deck?

This is an instance of the “n choose k” problem (also known as the binomial
coefficient): how many different ways are there to choose a set of k items from
n items. There are n ways to choose the first item, n − 1 ways to choose the
second, . . ., and n − k + 1 ways to choose the kth item. But, since the order
does not matter, some of these ways are equivalent. The number of possible
ways to order the k items is k!, so we can compute the number of ways to
choose k items from a set of n items as:

n ∗ (n− 1) ∗ ⋅ ⋅ ⋅ ∗ (n− k + 1)

k!
=

n!

(n− k)!k!

a. Define a procedure choose that takes two inputs, n (the size of the item set)
and k (the number of items to choose), and outputs the number of possible
ways to choose k items from n.

b. Compute the number of possible 5-card hands that can be dealt from a
52-card deck.

c. [★] Compute the likelihood of being dealt a flush (5 cards all of the same
suit). In a standard 52-card deck, there are 13 cards of each of the four
suits. Hint: divide the number of possible flush hands by the number of
possible hands.

Exercise 4.6. Reputedly, when Karl Gauss was in elementary school his
teacher assigned the class the task of summing the integers from 1 to 100 (e.g.,
1 + 2 + 3 + ⋅ ⋅ ⋅+ 100) to keep them busy. Being the (future) “Prince of Math-
ematics”, Gauss developed the formula for calculating this sum, that is now
known as the Gauss sum. Had he been a computer scientist, however, and
had access to a Scheme interpreter in the late 1700s, he might have instead
defined a recursive procedure to solve the problem. Define a recursive proce-
dure, gauss-sum, that takes a number n as its input parameter, and evaluates
to the sum of the integers from 1 to n as its output. For example, (gauss-sum
100) should evaluate to 5050.

Karl Gauss



Chapter 4. Problems and Procedures 69

Exercise 4.7. [★] Define a higher-order procedure, accumulate, that can be
used to make both gauss-sum (from Exercise 4.6) and factorial. The accu-
mulate procedure should take two inputs: the first is the function used for
accumulation (e.g., ∗ for factorial, + for gauss-sum); the second is the base
case value (that is, the value of the function when the input is 0). With your
accumulate procedure, ((accumulate + 0) 100) should evaluate to 5050 and
((accumulate ∗ 1) 3) should evaluate to 6.

Hint: since your procedure should produce a procedure as its output, it could
start like this:

(define (accumulate f base)
(lambda (n)

. . .

Example 4.2: Find Maximum. Consider the problem of defining a proce-
dure that takes as its input a procedure, a low value, and a high value, and
outputs the maximum value the input procedure produces when applied to
an integer value between the low value and high value input. We name the
inputs f , low, and high. To find the maximum, the find-maximum procedure
should evaluate the input procedure f at every integer value between the low
and high, and output the greatest value found.

Here are a few examples:

> (find-maximum (lambda (x) x) 1 20)
20

> (find-maximum (lambda (x) (− 10 x)) 1 20)
9

> (find-maximum (lambda (x) (∗ x (− 10 x))) 1 20)
25

To define the procedure, think about how to combine results from simpler
problems to find the result. For the base case, we need a case so simple we
already know the answer. Consider the case when low and high are equal.
Then, there is only one value to use, and we know the value of the maximum
is (f low). So, the base case is (if (= low high) (f low) . . . ).

How do we make progress towards the base case? Suppose the value of high is
equal to the value of low plus 1. Then, the maximum value is either the value
of (f low) or the value of (f (+ low 1)). We could select it using the bigger
procedure (from Example 3.3): (bigger (f low) (f (+ low 1))). We can extend
this to the case where high is equal to low plus 2:

(bigger (f low) (bigger (f (+ low 1)) (f (+ low 2))))

The second operand for the outer bigger evaluation is the maximum value of
the input procedure between the low value plus one and the high value input.
If we name the procedure we are defining find-maximum, then this second
operand is the result of (find-maximum f (+ low 1) high). This works whether
high is equal to (+ low 1), or (+ low 2), or any other value greater than high.



70 4.3. Recursive Problem Solving

Putting things together, we have our recursive definition of find-maximum:

(define (find-maximum f low high)
(if (= low high)

(f low)
(bigger (f low)

(find-maximum f (+ low 1) high)))))

Exercise 4.8. To find the maximum of a function that takes a real number as
its input, we need to evaluate at all numbers in the range, not just the inte-
gers. There are infinitely many numbers between any two numbers, however,
so this is impossible. We can approximate this, however, by evaluating the
function at many numbers in the range.

Define a procedure find-maximum-epsilon that takes as input a function f , a
low range value low, a high range value high, and an increment epsilon, and
produces as output the maximum value of f in the range between low and
high at interval epsilon. As the value of epsilon decreases, find-maximum-
epsilon should evaluate to a value that approaches the actual maximum value.

For example,

(find-maximum-epsilon (lambda (x) (∗ x (− 5.5 x))) 1 10 1)

evaluates to 7.5. And,

(find-maximum-epsilon (lambda (x) (∗ x (− 5.5 x))) 1 10 0.0001)

evaluates to 7.5625.

Exercise 4.9. The find-maximum procedure we defined evaluates to the max-
imum value of the input function in the range, but does not provide the input
value that produces that maximum output value. Define a procedure that
finds the input in the range that produces the maximum output value.

Exercise 4.10. [★] Define a find-area procedure that takes as input a function
f , a low range value low, a high range value high, and an increment inc, and
produces as output an estimate for the area under the curve produced by the
function f between low and high using the inc value to determine how many
points to evaluate.

Example 4.3: Euclid’s Algorithm. In Book 7 of the Elements, Euclid describes
an algorithm for finding the greatest common divisor of two non-zero inte-
gers. The greatest common divisor is the greatest integer that divides both of
the input numbers without leaving any remainder. For example, the great-
est common divisor of 150 and 200 is 50 since (/ 150 50) evaluates to 3 and (/
200 50) evaluates to 4, and there is no number greater than 50 that can evenly
divide both 150 and 200.



Chapter 4. Problems and Procedures 71

The modulo primitive procedure takes two integers as its inputs and evalu-
ates to the remainder when the first input is divided by the second input. For
example, (modulo 6 3) evaluates to 0 and (modulo 7 3) evaluates to 1.

Euclid’s algorithm stems from two properties of integers:

1. If (modulo a b) evaluates to 0 then b is the greatest common divisor of a
and b.

2. If (modulo a b) evaluates to a non-zero integer r, the greatest common
divisor of a and b is the greatest common divisor of b and r.

We can define a recursive procedure for finding the greatest common divisor
closely following Euclid’s algorithm:

(define (gcd a b)
(if (= (modulo a b) 0)

b
(gcd b (modulo a b))))

The structure of the definition is similar to the factorial definition: the pro-
cedure body is an if expression and the predicate tests for the base case. For
the gcd procedure, the base case corresponds to the first property above. It
occurs when b divides a evenly, and the consequent expression is b. The al-
ternate expression, (gcd b (modulo a b)), is the recursive application.

The gcd procedure differs from the factorial definition in that there is no outer
application expression in the recursive call. We do not need to combine the
result of the recursive application with some other value as was done in the
factorial definition, the result of the recursive application is the final result.
Unlike the factorial and find-maximum examples, the gcd procedure pro-
duces the result in the base case, and no further computation is necessary to
produce the final result. When no further evaluation is necessary to get from
the result of the recursive application to the final result, a recursive definition
is said to be tail recursive. Tail recursive procedures have the advantage that tail recursive

they can be evaluated without needing to keep track of the stack of previous
recursive calls. Since the final call produces the final result, there is no need
for the interpreter to unwind the recursive calls to produce the answer.

Exercise 4.11. Show the structure of the gcd applications used to evaluate
(gcd 6 9).

Exercise 4.12. Provide a convincing argument why the evaluation of (gcd a b)
will always finish when the inputs are both positive integers.

Exercise 4.13. Provide an alternate definition of factorial that is tail recursive.
To be tail recursive, the expression containing the recursive application can-
not be part of another application expression. (Hint: define a factorial-helper
procedure that takes an extra parameter, and then define factorial as (define
(factorial n) (factorial-helper n 1)).)



72 4.3. Recursive Problem Solving

Exercise 4.14. [★] Provide an alternate definition of find-maximum that is tail
recursive.

Exercise 4.15. [★★] Provide a convincing argument why it is always possible
to transform a recursive procedure into an equivalent procedure that is tail
recursive.

Exploration 4.1: Square Roots

One of the earliest known algorithms is a method for computing square roots.
It is known as Heron’s method after the Greek mathematician Heron of Alexan-
dria who lived in the first century AD who described the method, although
it was also known to the Babylonians many centuries earlier. Isaac Newton
developed a more general method for estimating functions based on their
derivatives known as Netwon’s method, of which Heron’s method is a special-
ization.

Square root is a mathematical function that take a number, a, as input and
outputs a value x such that x2 = a. For many numbers (including 2), the
square root is irrational, so the best we can hope for with is a good approxi-
mation. We define a procedure find-sqrt that takes the target number as input
and outputs an approximation for its square root.

Heron’s method works by starting with an arbitrary guess, g0. Then, with each
iteration, compute a new guess (gn is the nth guess) that is a function of the
previous guess (gn−1) and the target number (a):

gn =
gn−1 +

a
gn−1

2

As n increases gn gets closer and closer to the square root of a.

The definition is recursive since we compute gn as a function of gn−1, so we
can define a recursive procedure that computes Heron’s method. First, we
define a procedure for computing the next guess from the previous guess and
the target:

Heron of Alexandria

(define (heron-next-guess a g ) (/ (+ g (/ a g )) 2))

Next, we define a recursive procedure to compute the nth guess using Heron’s
method. It takes three inputs: the target number, a, the number of guesses to
make, n, and the value of the first guess, g.

(define (heron-method a n g )
(if (= n 0)

g
(heron-method a (− n 1) (heron-next-guess a g ))))

To start, we need a value for the first guess. The choice doesn’t really matter
— the method works with any starting guess (but will reach a closer estimate



Chapter 4. Problems and Procedures 73

quicker if the starting guess is good). We will use 1 as our starting guess. So,
we can define a find-sqrt procedure that takes two inputs, the target number
and the number of guesses to make, and outputs an approximation of the
square root of the target number.

(define (find-sqrt a guesses)
(heron-method a guesses 1))

Heron’s method converges to a good estimate very quickly:

> (square (find-sqrt 2 0))
1

> (square (find-sqrt 2 1))
2 1/4

> (square (find-sqrt 2 2))
2 1/144

> (square (find-sqrt 2 3))
2 1/166464

> (square (find-sqrt 2 4))
2 1/221682772224

> (square (find-sqrt 2 5))
2 1/393146012008229658338304

> (exact->inexact (find-sqrt 2 5))
1.4142135623730951

The actual square root of 2 is 1.414213562373095048 . . ., so our estimate is cor-
rect to 16 digits after only five guesses.

Users of square roots don’t really care about the method used to find the
square root (or how many guesses are used). Instead, what is important to
a square root user is how close the estimate is to the actual value. Can we
change our find-sqrt procedure so that instead of taking the number of guesses
to make as its second input it takes a minimum tolerance value?

Since we don’t know the actual square root value (otherwise, of course, we
could just return that), we need to measure tolerance as how close the square
of the approximation is to the target number. Hence, we can stop when the
square of the guess is close enough to the target value.

(define (close-enough? a tolerance g )
(<= (abs (− a (square g ))) tolerance))

The stopping condition for the recursive definition is now when the guess is
close enough. Otherwise, our definitions are the same as before.

(define (heron-method-tolerance a tolerance g )
(if (close-enough? a tolerance g )

g
(heron-method-tolerance a tolerance (heron-next-guess a g ))))



74 4.4. Evaluating Recursive Applications

(define (find-sqrt-approx a tolerance)
(heron-method-tolerance a tolerance 1))

Note that the value passed in as tolerance does not change with each recursive
call. We are making the problem smaller by making each successive guess
closer to the required answer.

Here are some example interactions with find-sqrt-approx:

> (exact->inexact (square (find-sqrt-approx 2 0.01)))
2.0069444444444446

> (exact->inexact (square (find-sqrt-approx 2 0.0000001)))
2.000000000004511

a. How accurate is the built-in sqrt procedure?

b. Can you produce more accurate square roots than the built-in sqrt proce-
dure?

c. Why doesn’t the built-in procedure do better?

4.4 Evaluating Recursive Applications

Evaluating an application of a recursive procedure follows the evaluation rules
just like any other expression evaluation. It may be confusing, however, to
see that this works because of the apparent circularity of the procedure defi-
nition.

Here, we show in detail the evaluation steps for evaluating (factorial 2). The
evaluation and application rules refer to the rules summary in Section 3.8.
We first show the complete evaluation following the substitution model eval-
uation rules in full gory detail, and later review a subset showing the most
revealing steps. Stepping through even a fairly simple evaluation using the
evaluation rules is quite tedious, and not something humans should do very
often (that’s why we have computers!) but instructive to do once to under-
stand exactly how an expression is evaluated.

The evaluation rule for an application expression does not specify the order
in which the subexpressions are evaluated. A Scheme interpreter is free to
evaluate them in any order. Here, we choose to evaluate the subexpressions
in the order that is most readable. The value produced by an evaluation does
not depend on the order in which the subexpressions are evaluated.5

In the evaluation steps, we use typewriter font for uninterpreted Scheme
expressions and sans-serif font to show values. So, 2 represents the Scheme
expression that evaluates to the number 2.

5This is only true for the subset of Scheme we have defined so far. Once we introduce side
effects and mutation, it is no longer the case, and expressions can produce different results de-
pending on the order in which they are evaluated.



Chapter 4. Problems and Procedures 75

(factorial 2) Evaluation Rule 3(a): Application subexpressions1

(factorial 2) Evaluation Rule 2: Name2

((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2)3

Evaluation Rule 4: Lambda

((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2) Evaluation Rule 1: Primitive4

((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2)5

Evaluation Rule 3(b): Application, Application Rule 2

(if (= 2 0) 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 5(a): If predicate6

(if (= 2 0) 1 (* 2 (factorial (- 2 1))))7

Evaluation Rule 3(a): Application subexpressions

(if (= 2 0) 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 1: Primitive8

(if (= 2 0) 1 (* 2 (factorial (- 2 1))))9

Evaluation Rule 3(b): Application, Application Rule 1

(if false 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 5(b): If alternate10

(* 2 (factorial (- 2 1))) Evaluation Rule 3(a): Application subexpressions11

(* 2 (factorial (- 2 1))) Evaluation Rule 1: Primitive12

(* 2 (factorial (- 2 1))) Evaluation Rule 3(a): Application subexpressions13

(* 2 (factorial (- 2 1))) Evaluation Rule 3(a): Application subexpressions14

(* 2 (factorial (- 2 1))) Evaluation Rule 1: Primitive15

(* 2 (factorial (- 2 1))) Evaluation Rule 3(b): Application, Application Rule 116

(* 2 (factorial 1)) Continue Evaluation Rule 3(a); Evaluation Rule 2: Name17

(* 2 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 1))18

Evaluation Rule 4: Lambda

(* 2 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 1))19

Evaluation Rule 3(b): Application, Application Rule 2

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))20

Evaluation Rule 5(a): If predicate

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))21

Evaluation Rule 3(a): Application subexpressions

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))22

Evaluation Rule 1: Primitives

(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))23

Evaluation Rule 3(b): Application Rule 1

(* 2 (if false 1 (* 1 (factorial (- 1 1)))))24

Evaluation Rule 5(b): If alternate

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application25

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 1: Primitives26

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application27

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application28

(* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 1: Primitives29

(* 2 (* 1 (factorial (- 1 1))))30

Evaluation Rule 3(b): Application, Application Rule 1

(* 2 (* 1 (factorial 0))) Evaluation Rule 2: Name31

(* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (fact... )))) 0)))32

Evaluation Rule 4, Lambda

(* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 0)))33

Evaluation Rule 3(b), Application Rule 2

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))34

Evaluation Rule 5(a): If predicate

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))35

Evaluation Rule 3(a): Application subexpressions

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))36

Evaluation Rule 1: Primitives

(* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))37



76 4.4. Evaluating Recursive Applications

Evaluation Rule 3(b): Application, Application Rule 1

(* 2 (* 1 (if true 1 (* 0 (factorial (- 0 1))))))38

Evaluation Rule 5(b): If consequent

(* 2 (* 1 1)) Evaluation Rule 1: Primitives39

(* 2 (* 1 1)) Evaluation Rule 3(b): Application, Application Rule 140

(* 2 1) Evaluation Rule 3(b): Application, Application Rule 141

2 Evaluation finished, no unevaluated expressions remain.42

The key to evaluating recursive procedure applications is if special evaluation
rule. If the if expression were evaluated like a regular application all subex-
pressions would be evaluated, and the alternative expression containing the
recursive call would never finish evaluating! Since the evaluation rule for if
evaluates the predicate expression first and does not evaluate the alternative
expression when the predicate expression is true, the circularity in the defi-
nition ends when the predicate expression evaluates to true. This is the base
case. In the example, this is the base case where (= n 0) evaluates to true and
instead of producing another recursive call it evaluates to 1.

The Evaluation Stack. The structure of the evaluation is clearer from just the
most revealing steps:

(factorial 2)1

(* 2 (factorial 1))17

(* 2 (* 1 (factorial 0)))31

(* 2 (* 1 1))40

(* 2 1)41

242

Step 1 starts evaluating (factorial 2). The result is found in Step 42. To evalu-
ate (factorial 2), we follow the evaluation rules, eventually reaching the body
expression of the if expression in the factorial definition in Step 17. Evaluat-
ing this expression requires evaluating the (factorial 1) subexpression. At Step
17, the first evaluation is in progress, but to complete it we need the value re-
sulting from the second recursive application.

Evaluating the second application results in the body expression, (∗ 1 (fac-
torial 0)), shown for Step 31. At this point, the evaluation of (factorial 2) is
stuck in Evaluation Rule 3, waiting for the value of (factorial 1) subexpres-
sion. The evaluation of the (factorial 1) application leads to the (factorial 0)
subexpression, which must be evaluated before the (factorial 1) evaluation
can complete.

In Step 40, the (factorial 0) subexpression evaluation has completed and pro-
duced the value 1. Now, the (factorial 1) evaluation can complete, producing
1 as shown in Step 41. Once the (factorial 1) evaluation completes, all the
subexpressions needed to evaluate the expression in Step 17 are now evalu-
ated, and the evaluation completes in Step 42.

Each recursive application can be tracked using a stack, similarly to how we
processed RTN subnetworks in Section 2.3. A stack has the property that the
first item pushed on the stack will be the last item removed—all the items
pushed on top of this one must be removed before this item can be removed.
For application evaluations, the elements on the stack are expressions to eval-



Chapter 4. Problems and Procedures 77

uate. To finish evaluating the first expression, all of its component subexpres-
sions must be evaluated. Hence, the first application evaluation started is the
last one to finish.

Exercise 4.16. These exercises test your understanding of the (factorial 2)
evaluation.

a. In step 5, the second part of the application evaluation rule, Rule 3(b), is
used. In which step does this evaluation rule complete?

b. In step 11, the first part of the application evaluation rule, Rule 3(a), is
used. In which step is the following use of Rule 3(b) started?

c. In step 25, the first part of the application evaluation rule, Rule 3(a), is
used. In which step is the following use of Rule 3(b) started?

d. To evaluate (factorial 3), how many times would Evaluation Rule 2 be used
to evaluate the name factorial?

e. [★] To evaluate (factorial n) for any positive integer n, how many times
would Evaluation Rule 2 be used to evaluate the name factorial?

Exercise 4.17. For which input values n will an evaluation of (factorial n)
eventually reach a value? For values where the evaluation is guaranteed to
finish, make a convincing argument why it must finish. For values where the
evaluation would not finish, explain why.

4.5 Developing Complex Programs

To develop and use more complex procedures it will be useful to learn some
helpful techniques for understanding what is going on when procedures are
evaluated. It is very rare for a first version of a program to be completely cor-
rect, even for an expert programmer. Wise programmers build programs in-
crementally, by writing and testing small components one at a time.

The process of fixing broken programs is known as debugging . The key to debugging

debugging effectively is to be systematic and thoughtful. It is a good idea to
take notes to keep track of what you have learned and what you have tried.
Thoughtless debugging can be very frustrating, and is unlikely to lead to a
correct program.

A good strategy for debugging is to:

1. Ensure you understand the intended behavior of your procedure. Think
of a few representative inputs, and what the expected output should be.

2. Do experiments to observe the actual behavior of your procedure. Try
your program on simple inputs first. What is the relationship between
the actual outputs and the desired outputs? Does it work correctly for
some inputs but not others?



78 4.5. Developing Complex Programs

3. Make changes to your procedure and retest it. If you are not sure what
to do, make changes in small steps and carefully observe the impact of
each change.

For more complex programs, follow this strategy at the level of sub-compo-
nents. For example, you can try debugging at the level of one expression be-
fore trying the whole procedure. Break your program into several procedures
so you can test and debug each procedure independently. The smaller the
unit you test at one time, the easier it is to understand and fix problems.

DrScheme provides many useful and powerful features to aid debugging, but
the most important tool for debugging is using your brain to think carefully
about what your program should be doing and how its observed behavior dif-
fers from the desired behavior. Next, we describe two simple ways to observe
program behavior.

First actual bug

From Grace Hopper’s notebook, 1947

4.5.1 Printing

One useful procedure built-in to DrScheme is the display procedure. It takes
one input, and produces no output. Instead of producing an output, it prints
out the value of the input (it will appear in purple in the Interactions window).
We can use display to observe what a procedure is doing as it is evaluated.

For example, if we add a (display n) expression at the beginning of our fac-
torial procedure we can see all the intermediate calls. To make each printed
value appear on a separate line, we use the newline procedure. The newline
procedure prints a new line; it takes no inputs and produces no output.

(define (factorial n)
(display "Enter factorial: ") (display n) (newline)
(if (= n 0) 1 (∗ n (factorial (− n 1)))))

Evaluating (factorial 2) produces:

Enter factorial: 2
Enter factorial: 1
Enter factorial: 0
2

The built-in printf procedure makes it easier to print out many values at
once. It takes one or more inputs. The first input is a string (a sequence
of characters enclosed in double quotes). The string can include special ˜a
markers that print out values of objects inside the string. Each ˜a marker is
matched with a corresponding input, and the value of that input is printed in
place of the ˜a in the string. Another special marker, ˜n, prints out a new line
inside the string.

Using printf , we can define our factorial procedure with printing as:



Chapter 4. Problems and Procedures 79

(define (factorial n)
(printf "Enter factorial: ˜a˜n" n)
(if (= n 0) 1 (∗ n (factorial (− n 1)))))

The display, printf , and newline procedures do not produce output values.
Instead, they are applied to produce side effects. A side effect is something side effects

that changes the state of a computation. In this case, the side effect is printing
in the Interactions window. Side effects make reasoning about what programs
do much more complicated since the order in which events happen now mat-
ters. We will mostly avoid using procedures with side effects until Chapter 9,
but printing procedures are so useful that we introduce them here.

4.5.2 Tracing

DrScheme provides a more automated way to observe applications of pro-
cedures. We can use tracing to observe the start of a procedure evaluation
(including the procedure inputs) and the completion of the evaluation (in-
cluding the output). To use tracing, it is necessary to first load the tracing
library by evaluating this expression:

(require (lib "trace.ss"))

This defines the trace procedure that takes one input, a constructed proce-
dure (trace does not work for primitive procedures). After evaluating (trace
proc), the interpreter will print out the procedure name and its inputs at the
beginning of every application of proc and the value of the output at the end
of the application evaluation. If there are other applications before the first
application finishes evaluating, these will be printed indented so it is possi-
ble to match up the beginning and end of each application evaluation. For
example (the trace outputs are shown in typewriter font),

> (trace factorial)
> (factorial 2)
(factorial 2)

|(factorial 1)

| (factorial 0)

| 1

|1

2

2

The trace shows that (factorial 2) is evaluated first; within its evaluation, (fac-
torial 1) and then (factorial 0) are evaluated. The outputs of each of these
applications is lined up vertically below the application entry trace.



80 4.5. Developing Complex Programs

Exploration 4.2: Recipes for π

The value π is the defined as the ratio between the circumference of a cir-
cle and its diameter. One way to calculate the approximate value of π is the
Gregory-Leibniz series (which was actually discovered by the Indian mathe-
matician Mādhava in the 14

th century):

π =
4

1
−

4

3
+

4

5
−

4

7
+

4

9
− ⋅ ⋅ ⋅

This summation converges to π. The more terms that are included, the closer
the computed value will be to the actual value of π.

a. [★] Define a procedure compute-pi that takes as input n, the number of
terms to include and outputs an approximation of π computed using the
first n terms of the Gregory-Leibniz series. (compute-pi 1) should evalu-
ate to 4 and (compute-pi 2) should evaluate to 2 2/3. For higher terms, use
the built-in procedure exact->inexact to see the decimal value. For exam-
ple, (exact->inexact (compute-pi 10000)) evaluates (after a long wait!) to
3.1414926535900434.

The Gregory-Leibniz series is fairly simple, but it takes an awful long time to
converge to a good approximation for π — only one digit is correct after 10
terms, and after summing 10000 terms only the first four digits are correct.

Mādhava discovered another series for computing the value of π that con-
verges much more quickly:

π =
√

12 ∗ (1−
1

3 ∗ 3
+

1

5 ∗ 32
−

1

7 ∗ 33
+

1

9 ∗ 34
− . . .)

Mādhava computed the first 21 terms of this series, finding an approximation
of π that is correct for the first 12 digits: 3.14159265359.

b. [★★] Define a procedure cherry-pi that takes as input n, the number of
terms to include and outputs an approximation of π computed using the
first n terms of the Mādhava series. (Continue reading for hints.)

To define faster-pi, first define two helper functions: faster-pi-helper , that
takes one input, n, and computes the sum of the first n terms in the series
without the

√
12 factor, and faster-pi-term that takes one input n and com-

putes the value of the nth term in the series (without alternating the adding
and subtracting). (faster-pi-term 1) should evaluate to 1 and (faster-pi-term
2) should evaluate to 1/9. Then, define faster-pi as:

(define (faster-pi terms) (∗ (sqrt 12) (faster-pi-helper terms)))

This uses the built-in sqrt procedure that takes one input and produces as
output an approximation of its square root. The accuracy of the sqrt proce-
dure6 limits the number of digits of π that can be correctly computed using

6To test its accuracy, try evaluating (square (sqrt 12)).



Chapter 4. Problems and Procedures 81

this method (see Exploration 4.1 for ways to compute a more accurate ap-
proximation for the square root of 12). You should be able to get a few more
correct digits than Mādhava was able to get without a computer 600 years ago,
but to get more digits would need a more accurate sqrt procedure or another
method for computing π.

The built-in expt procedure takes two inputs, a and b, and produces ab as
its output. You could also define your own procedure to compute ab for any
integer inputs a and b.

c. [★ ★ ★] Find a procedure for computing enough digits of π to find the Feyn-
man point where there are six consecutive 9 digits. This point is named
for Richard Feynman, who quipped that he wanted to memorize π to that
point so he could recite it as “. . . nine, nine, nine, nine, nine, nine, and so
on”.

Exploration 4.3: Recursive Definitions and Games

Many games can be analyzed by thinking recursively. For this exploration, we
consider how to develop a winning strategy for some two-player games. In
all the games, we assume player 1 moves first, and the two players take turns
until the game ends. The game ends when the player who’s turn it is cannot
move; the other player wins. A strategy is a winning strategy if it provides a
way to always select a move that wins the game, regardless of what the other
player does.

One approach for developing a winning strategy is to work backwards from
the winning position. This position corresponds to the base case in a re-
cursive definition. If the game reaches a winning position for player 1, then
player 1 wins. Moving back one move, if the game reaches a position where
it is player 2’s move, but all possible moves lead to a winning position for
player 1, then player 1 is guaranteed to win. Continuing backwards, if the
game reaches a position where it is player 1’s move, and there is a move that
leads to a position where all possible moves for player 2 lead to a winning
position for player 1, then player 1 is guaranteed to win.

The first game we will consider is called Nim. Variants on Nim have been
played widely over many centuries, but no one is quite sure where the name
comes from. We’ll start with a simple variation on the game that was called
Thai 21 when it was used as an Immunity Challenge on Survivor.

In this version of Nim, the game starts with a pile of 21 stones. One each turn,
a player removes one, two, or three stones. The player who removes the last
stone wins, since the other player cannot make a valid move on the following
turn.

a. What should the player who moves first do to ensure she can always win
the game? (Hint: start with the base case, and work backwards. Think
about a game starting with 5 stones first, before trying 21.)

b. Suppose instead of being able to take 1 to 3 stones with each turn, you can
take 1 to n stones where n is some number greater than or equal to 1. For



82 4.5. Developing Complex Programs

what values of n should the first player always win (when the game starts
with 21 stones)?

A standard Nim game starts with three heaps. At each turn, a player removes
any number of stones from any one heap (but may not remove stones from
more than one heap). We can describe the state of a 3-heap game of Nim
using three numbers, representing the number of stones in each heap. For
example, the Thai 21 game starts with the state (21 0 0) (one heap with 21
stones, and two empty heaps).7

c. What should the first player do to win if the starting state is (2 1 0)?

d. Which player should win if the starting state is (2 2 2)?

e. [★] Which player should win if the starting state is (5 6 7)?

f. [★★] Describe a strategy for always winning a winnable game of Nim start-
ing from any position.8

The final game we consider is the “Corner the Queen” game invented by Ru-
fus Isaacs.9 The game is played using a single Queen on a arbitrarily large
chessboard as shown in Figure 4.5.

Figure 4.5. Cornering the Queen.

On each turn, a player moves the Queen one or more squares in either the
left, down, or diagonally down-left direction (unlike a standard chess Queen,
in this game the queen may not move right, up or up-right). As with the other
games, the last player to make a legal move wins. For this game, once the

7With the standard Nim rules, this would not be an interesting game since the first player can
simply win by removing all 21 stones from the first heap.

8If you get stuck, you’ll find many resources about Nim on the Internet; but, you’ll get a lot
more out of this if you solve it yourself.

9Described in Martin Gardner, Penrose Tiles to Trapdoor Ciphers. . .And the Return of Dr Ma-
trix, The Mathematical Association of America, 1997.



Chapter 4. Problems and Procedures 83

Queen reaches the bottom left square marked with the ★, there are no moves
possible. Hence, the player who moves the Queen onto the ★ wins the game.
We name the squares using the numbers on the sides of the chessboard with
the column number first. So, the Queen in the picture is on square (4 7).

g. Identify all the starting squares for which the first played to move can win
right away. (Your answer should generalize to any size square chessboard.)

h. Suppose the Queen is on square (2 1) and it is your move. Explain why
there is no way you can avoid losing the game.

i. Given the shown starting position (with the Queen at (4 7), would you
rather be the first or second player?

j. [★] Describe a strategy for winning the game (when possible). Explain
from which starting positions it is not possible to win (assuming the other
player always makes the right move).

k. [★] Define a variant of Nim that is essentially the same as the “Corner the
Queen” game. (This game is known as “Wythoff’s Nim”.)

Developing winning strategies for these types of games is similar to defining
a recursive procedure that solves a problem. We need to identify a base case
from which it is obvious how to win, and a way to make progress fro m a large
input towards that base case.

4.6 Summary

By breaking problems down into simpler problems we can develop solutions
to complex problems. Many problems can be solved by combining instances
of the same problem on simpler inputs. When we define a procedure to solve
a problem this way, it needs to have a predicate expression to determine when
the base case has been reached, a consequent expression that provides the
value for the base case, and an alternate expression that defines the solution
to the given input as an expression using a solution to a smaller input.

Our general recursive problem solving strategy is:

1. Be optimistic! Assume you can solve it.

2. Think of the simplest version of the problem, something you can al-
ready solve. This is the base case.

3. Consider how you would solve a big version of the problem by using the
result for a slightly smaller version of the problem. This is the recursive
case.

4. Combine the base case and the recursive case to solve the problem.

I’d rather be an optimist and a fool
than a pessimist and right.
Albert Einstein

For problems involving numbers, the base case is often when the input value



84 4.6. Summary

is zero. The problem size is usually reduced is by subtracting 1 from one of
the inputs.

In the next chapter, we introduce more complex data structures. For prob-
lems involving complex data, the same strategy will work but with different
base cases and ways to shrink the problem size.


