
5
Data

From a bit to a few hundred megabytes, from a microsecond to half an hour of computing
confronts us with the completely baffling ratio of 10

9! By evoking the need for deep
conceptual hierarchies, the automatic computer confronts us with a radically new

intellectual challenge that has no precedent in our history.
Edsger Dijkstra

For all the programs so far, we have been limited to simple data such as num-
bers and Booleans. We call this scalar data since it has no structure. As we scalar

saw in Chapter 1, we can represent all discrete data using just (enormously
large) whole numbers. For example, we could represent the text of a book us-
ing only one (very large!) number, and manipulate the characters in the book
by changing the value of that number. But, it would be very difficult to design
and understand computations that use numbers to represent complex data.

We need more complex data structures to better model structured data. We
want to represent data in ways that allow us to think about the problem we
are trying to solve, rather than the low-level details of how data is represented
and manipulated.

This chapter covers techniques for building data structures and for defining
procedures that manipulate structured data, and introduces data abstraction
as a tool for managing program complexity.

5.1 Types

All data in a program has an associated type. Internally, all data is stored
just as a sequence of bits, so the type of the data is important to understand
what it means. We have seen several different types of data already: Numbers,
Booleans, and Procedures (we use initial capital letters to signify a datatype).

A datatype defines a set (often infinite) of possible values. The Boolean datatypedatatype

contains the two Boolean values, true and false. The Number type includes
the infinite set of all whole numbers (it also includes negative numbers and
rational numbers). We think of the set of possible Numbers as infinite, even
though on any particular computer there is some limit to the amount of mem-
ory available, and hence, some largest number that can be represented. On
any real computer, the number of possible values of any data type is always

86 5.1. Types

finite. But, we can imagine a computer large enough to represent any given
number.

The type of a value determines what can be done with it. For example, a Num-
ber can be used as one of the inputs to the primitive procedures +, ∗, and =.
A Boolean can be used as the first subexpression of an if expression and as
the input to the not procedure (—not— can also take a Number as its input,
but for all Number value inputs the output is false), but cannot be used as the
input to +, ∗, or =.1

A Procedure can be the first subexpression in an application expression. There
are infinitely many different types of Procedures, since the type of a Procedure
depends on its input and output types. For example, recall bigger procedure
from Chapter 3:

(define (bigger a b) (if (> a b) a b))

It takes two Numbers as input and produces a Number as output. We denote
this type as:

Number× Number→ Number

The inputs to the procedure are shown on the left side of the arrow. The type
of each input is shown in order, separated by the× symbol.2 The output type
is given on the right side of the arrow.

From its definition, it is clear that the bigger procedure takes two inputs from
its parameter list. How do we know the inputs must be Numbers and the
output is a Number?

The body of the bigger procedure is an if expression with the predicate expres-
sion (> a b). This applies the > primitive procedure to the two inputs. The
type of the > procedure is Number × Number → Boolean. So, for the predi-
cate expression to be valid, its inputs must both be Numbers. This means the
input values to bigger must both be Numbers. We know the output of the big-
ger procedure will be a Number by analyzing the consequent and alternate
subexpressions: each evaluates to one of the input values, which must be a
Number.

Starting with the primitive Boolean, Number, and Procedure types, we can
build arbitrarily complex datatypes. This chapter introduces mechanisms for
building complex datatypes by combining the primitive datatypes.

1The primitive procedure equal? is a more general comparison procedure that can take as
inputs any two values, so could be used to compare Boolean values. For example, (equal? false
false) evaluates to true and (equal? true 3) is a valid expression that evaluates to false.

2The notation using × to separate input types makes sense if you think about the number
of different inputs to a procedure. For example, consider a procedure that takes two Boolean
values as inputs, so its type is Boolean × Boolean → Value. Each Boolean input can be one of
two possible values. If we combined both inputs into one input, there would be 2× 2 different
values needed to represent all possible inputs.

Chapter 5. Data 87

Exercise 5.1. Describe the type of each of these expressions.

a. 17

b. (lambda (a) (> a 0))

c. ((lambda (a) (> a 0)) 3)

d. (lambda (a) (lambda (b) (> a b)))

e. (lambda (a) a)

Exercise 5.2. Define or identify a procedure that has the given type.

a. Number× Number→ Boolean

b. Number→ Number

c. (Number→ Number)× (Number→ Number)
→ (Number→ Number)

d. Number→ (Number→ (Number→ Number))

5.2 Pairs

The simplest structured data construct is a Pair . A Pair packages two values Pair

together. We draw a Pair as two boxes, each containing a value. We call each
box of a Pair a cell. Here is a Pair where the first cell has the value 37 and the
second cell has the value 42:

Scheme provides built-in procedures for constructing a Pair, and for extract-
ing each cell from a Pair:

cons: Value× Value→ Pair
Evaluates to a Pair whose first cell is the first input and second cell is the
second input. The inputs can be of any type.

car : Pair→ Value
Evaluates to the first cell of the input, which must be a Pair.

cdr : Pair→ Value
Evaluates to the second cell of input, which must be a Pair.

These rather unfortunate names come from the original LISP implementa-
tion on the IBM 704. The name cons is short for “construct”. The name
car is short for “Contents of the Address part of the Register” and the name
cdr (pronounced “could-er”) is short for “Contents of the Decrement part

88 5.2. Pairs

of the Register”. The designers of the original LISP implementation picked
the names because of how pairs could be implemented on the IBM 704 us-
ing a single register to store both parts of a pair, but it is a mistake to name
things after details of their implementation (see Section 5.6). Unfortunately,
the names stuck and continue to be used in many LISP-derived languages,
including Scheme.

We can construct the Pair shown in the previous diagram by evaluating (cons
37 42). DrScheme will display a Pair by printing the value of each cell sepa-
rated by a dot: (37 . 42). The interactions below show example uses of cons,
car , and cdr .

> (define mypair (cons 37 42))
> (car mypair)
37

> (cdr mypair)
42

The values in the cells of a Pair can be any type, including other Pairs. This
definition defines a Pair where each cell of the Pair is itself a Pair:

(define doublepair (cons (cons 1 2) (cons 3 4)))

We can use the car and cdr procedures to access components of the double-
pair structure: (car doublepair) evaluates to the Pair (1 . 2), and (cdr double-
pair) evaluates to the Pair (3 . 4).

We can compose multiple car and cdr applications to extract components
from nested pairs:

> (cdr (car doublepair))
2
> (car (cdr doublepair))
3
> ((fcompose cdr cdr) doublepair) fcompose from Section 4.2.1

4

> (car (car (car doublepair)))

car: expects argument of type <pair>; given 1

The last expression produces an error when it is evaluated since car is applied
to the scalar value 1. The car and cdr procedures can only be applied to an
input that is a Pair. Hence, an error results when we attempt to apply car to
a scalar value. This is an important property of data: the type of data (e.g.,
a Pair) defines how it can be used (e.g., passed as the input to car and cdr).
Every procedure expects a certain type of inputs, and typically produces an
error when it is applied to values of the wrong type.

Chapter 5. Data 89

We can draw the value of doublepair by nesting Pairs within cells:

Drawing Pairs within Pairs within Pairs can get quite difficult, however. For
instance, try drawing (cons 1 (cons 2 (cons 3 (cons 4 5)))) this way.

Instead, we us arrows to point to the contents of cells that are not simple val-
ues. This is the structure of doublepair shown using arrows:

Using arrows to point to cell contents allows us to draw arbitrarily compli-
cated data structures such as (cons 1 (cons 2 (cons 3 (cons 4 5)))), keeping the
cells reasonable sizes:

Exercise 5.3. Suppose the following definition has been executed:

(define tpair (cons (cons (cons 1 2) (cons 3 4)) 5))

Draw the structure defined by tpair , and give the value of each of the follow-
ing expressions.

a. (cdr tpair)

b. (car (car (car tpair)))

c. (cdr (cdr (car tpair)))

d. (car (cdr (cdr tpair)))

90 5.2. Pairs

Exercise 5.4. Write expressions that extract each of the four elements from
fstruct defined as:

(define fstruct (cons 1 (cons 2 (cons 3 4))))

Exercise 5.5. What expression produces the structure shown below:

5.2.1 Making Pairs

Although Scheme provides the built-in procedures cons, car , and cdr for cre-
ating Pairs and accessing their cells, there is nothing magical about these pro-
cedures. We can define procedures with the same behavior ourselves using
the subset of Scheme introduced in Chapter 3.

Here is one way to define the pair procedures (we prepend an s to the names
to avoid confusion with the built-in procedures):

(define (scons a b) (lambda (w) (if w a b)))
(define (scar pair) (pair true))
(define (scdr pair) (pair false))

The scons procedure takes the two parts of the Pair as inputs, and produces
as output a procedure. The output procedure takes one input, a selector that
determines which of the two cells of the Pair to output. If the selector is true,
the value of the if expression is the value of the first cell; if the selector is false,
it is the value of the second cell. The scar and scdr procedures apply a proce-
dure constructed by scons to either true (to select the first cell in scar) or false
(to select the second cell in scdr).

Exercise 5.6. Convince yourself the definitions of scons, scar , and scdr above
work as expected by following the evaluation rules to evaluate

(scar (scons 1 2))

Chapter 5. Data 91

Exercise 5.7. Show the corresponding definitions of tcar and tcdr needed to
provide the correct pair selection behavior for a pair created using tcons as
defined below:

(define (tcons a b) (lambda (w) (if w b a)))

5.2.2 Triples to Octuples

Pairs are useful for representing data that is composed of two parts such as a
calendar date (composed of a number and month), or a playing card (com-
posed of a rank and suit). But, what if we want to represent data composed
of more than two parts such as a date (composed of a number, month, and
year) or a poker hand consisting of five playing cards? For more complex data
structures, we need data structures that have more than two components.

A triple has three components. Here is one way to define a triple datatype:

(define (make-triple a b c)
(lambda (w) (if (= w 0) a (if (= w 1) b c))))

(define (triple-first t) (t 0))
(define (triple-second t) (t 1))
(define (triple-third t) (t 2))

Since a triple has three components we need three different selector values.
We use 0, 1, and 2.

Another way to make a triple would be to combine two Pairs. We do this by
making a Pair whose second cell is itself a Pair:

(define (make-triple a b c) (cons a (cons b c)))
(define (triple-first t) (car t))
(define (triple-second t) (car (cdr t)))
(define (triple-third t) (cdr (cdr t)))

Similarly, we can define a quadruple as a Pair whose second cell is a triple:

(define (make-quad a b c d) (cons a (make-triple b c d)))
(define (quad-first q) (car q))
(define (quad-second q) (triple-first (cdr q))
(define (quad-third q) (triple-second (cdr q))
(define (quad-fourth q) (triple-third (cdr q))

We could continue in this manner defining increasingly large tuples.

A triple is a Pair whose second cell is a Pair.

A quadruple is a Pair whose second cell is a triple.

A quintuple is a Pair whose second cell is a quadruple.

92 5.3. Lists

A sextuple is a Pair whose second cell is a quintuple.

A septuple is a Pair whose second cell is a sextuple.

⋅ ⋅ ⋅

An n + 1-uple is a Pair whose second cell is an n-uple.

Building from the simple Pair, we can construct tuples containing any num-
ber of components.

Exercise 5.8. Define a procedure that constructs a quintuple and procedures
for selecting the five elements of a quintuple.

Exercise 5.9. Another way of thinking of a triple is as a Pair where the first
cell is a Pair and the second cell is a scalar. Provide definitions of make-triple,
triple-first , triple-second, and triple-third for this construct.

5.3 Lists

In the previous section, we saw how to construct arbitrarily large tuples from
Pairs. This way of managing data is not very satisfying since it requires defin-
ing different procedures for constructing and accessing elements of every
length tuple. For many applications, we want to be able to manage data of
any length such as all the items in a web store, or all the bids on a given item.
Since the number of components in these objects can change, it would be
very painful to need to define a new tuple type every time an item is added.
We need a data type that can hold any number of items.

This definition almost provides what we need:

An any-uple is a Pair whose second cell is an any-uple.

This seems to allow an any-uple to contain any number of elements. The
problem is we have no stopping point. With only the definition above, there
is no way to construct an any-uple without already having one.

The situation is similar to defining MoreDigits as zero or more digits in Chap-
ter 2, defining MoreExpressions in the Scheme grammar in Chapter 3 as zero
or more Expressions, and recursive composition in Chapter 4.

Recall the grammar rules for MoreExpressions:

MoreExpressions ::⇒ Expression MoreExpressions
MoreExpressions ::⇒ ε

The rule for constructing an any-uple is analogous to the first MoreExpres-
sion replacement rule. To allow an any-uple to be constructed, we also need
a construction rule similar to the second rule, where MoreExpression can be

Chapter 5. Data 93

replaced with nothing. Since it is hard to type and read nothing in a program,
Scheme has a name for this value: null. null

DrScheme will print out the value of null as (). It is also known as the empty
list, since it represents the List containing no elements. The built-in proce-
dure null? takes one input parameter and evaluates to true if and only if the
value of that parameter is null.

Using null, we can now define a List : List

A List is either (1) null or (2) a Pair whose second cell is a List.

Symbolically, we define a List as:

List ::⇒ null

List ::⇒ (cons Value List)

These two rules define a List as a data structure that can contain any number
of elements. Starting from null, we can create Lists of any length:

• null evaluates to a List containing no elements.
• (cons 1 null) evaluates to a List containing one element.
• (cons 1 (cons 2 null)) evaluates to a 2-element List containing two ele-

ments.
• (cons 1 (cons 2 (cons 3 null))) evaluates to a 3-element List.
• . . .

Scheme provides a convenient procedure, list , for constructing a List. The list
procedure takes zero or more inputs, and evaluates to a List containing those
inputs in order. The following expressions are equivalent to the correspond-
ing expressions above: (list), (list 1), (list 1 2), and (list 1 2 3).

Lists are just a collection of Pairs, so we can draw a List using the same box
and arrow notation we used to draw structures created with Pairs. Here is the
structure resulting from (list 1 2 3):

There are three Pairs in the List, the second cell of each Pair is a List. For the
third Pair, the second cell is the List null, which we draw as a slash through
the final cell in the diagram.

Table 5.1 summarizes some of the built-in procedures for manipulating Pairs
and Lists.

94 5.4. List Procedures

Type Output

cons Value× Value→ Pair a Pair consisting of the two inputs

car Pair→ Value the first cell of the input Pair

cdr Pair→ Value the second cell of the input Pair

list zero or more Values→ List a List containing the inputs

null? Value→ Boolean true if the input is null, otherwise false

pair? Value→ Boolean true if the input is a Pair, otherwise false

list? Value→ Boolean true if the input is a List, otherwise false

Table 5.1. Selected Built-In Scheme Procedures for Lists and Pairs.

Exercise 5.10. For each of the following expressions, explain whether or not
the expression evaluates to a List. Check your answers with a Scheme inter-
preter by using the list? procedure.

a. null

b. (cons 1 2)

c. (cons null null)

d. (cons (cons (cons 1 2) 3) null)

e. (cdr (cons 1 (cons 2 (cons null null))))

f. (cons (list 1 2 3) 4)

5.4 List Procedures

Since the List data structure is defined recursively, it is natural to define re-
cursive procedures to examine and manipulate lists. Whereas most recursive
procedures on inputs that are Numbers usually used 0 as the base case, for
lists the most common base case is null. With numbers, we make progress by
subtracting 1; with lists, we make progress by using cdr to reduce the length
of the input List by one element for each recursive application. This means
we often break problems involving Lists into figuring out what to do with the
first element of the List and the result of applying the recursive procedure to
the rest of the List.

We can specialize our general problem solving strategy from Chapter 3 for
procedures involving lists:

1. Be very optimistic! Since lists themselves are recursive data structures,
most problems involving lists can be solved with recursive procedures.

Chapter 5. Data 95

2. Think of the simplest version of the problem, something you can al-
ready solve. This is the base case. For lists, this is usually the empty
list.

3. Consider how you would solve a big version of the problem by using the
result for a slightly smaller version of the problem. This is the recursive
case. For lists, the smaller version of the problem is the rest (cdr) of the
List.

4. Combine the base case and the recursive case to solve the problem.

Next we consider procedures that examine lists by walking through their el-
ements and producing a scalar value. Section 5.4.2 generalizes these proce-
dures. In Section 5.4.3, we explore procedures that output lists.

5.4.1 Procedures that Examine Lists

All of the example procedures in this section take a single List as input and
produce a scalar value that depends on the elements of the List as output.
These procedures have base cases where the List is empty, and recursive cases
that apply the recursive procedure to the cdr of the input List.

Example 5.1: Length. How many elements are in a given List?3

Our standard recursive problem solving technique is to “Think of the simplest
version of the problem, something you can already solve.” For this procedure,
the simplest version of the problem is when the input is the empty list, null.
We know the length of the empty list is 0. So, the base case test is (null? p) and
the output for the base case is 0.

For the recursive case, we need to consider the structure of all lists other than
null. Recall four our definition that a List is either null or (cons Value List).
The base case handles the null list; the recursive case must handle a List that
is a Pair of an element and a List. The length of this List is one more than the
length of the List that is the cdr of the Pair.

(define (list-length p)
(if (null? p)

0

(+ 1 (list-length (cdr p)))))

3Scheme provides a built-in procedure length that takes a List as its input and outputs the
number of elements in the List. Here, we will define our own list-length procedure that does this
(without using the built-in length procedure). As with many other examples and exercises in this
chapter, it is instructive to define our own versions of some of the built-in list procedures.

96 5.4. List Procedures

Here are a few example applications of our list-length procedure:

> (list-length null)
0
> (list-length (cons 0 null))
1
> (list-length (list 1 2 3 4))
4
> (list-length (cons 1 2)) Error since input is not a List.

cdr: expects argument of type <pair>; given 2

Example 5.2: List Sums and Products. First, we define a procedure that
takes a List of numbers as input and produces as output the sum of the num-
bers in the input List. As usual, the base case is when the input is null: the
sum of an empty list is 0. For the recursive case, we need to add the value of
the first number in the List, to the sum of the rest of the numbers in the List.

(define (list-sum p)
(if (null? p)

0

(+ (car p) (list-sum (cdr p)))))

We can define list-product similarly, using ∗ in place of +. The base case
result cannot be 0, though, since then the final result would always be 0 since
any number multiplied by 0 is 0. We follow the mathematical convention that
the product of the empty list is 1.

(define (list-product p)
(if (null? p)

1

(∗ (car p) (list-product (cdr p)))))

Exercise 5.11. Define a procedure is-list? that takes one input and outputs
true if the input is a List, and false otherwise. Your procedure should behave
identically to the built-in list? procedure, but you should not use list? in your
definition.

Exercise 5.12. Define a procedure list-max that takes a List of non-negative
numbers as its input and produces as its result the value of the greatest ele-
ment in the List (or 0 if there are no elements in the input List). For example,
(list-max (list 1 1 2 0)) should evaluate to 2.

5.4.2 Generic Accumulators

The list-length, list-sum, and list-product procedures all have very similar
structures. The base case is when the input is the empty list, and the recur-
sive case involves doing something with the first element of the List and re-
cursively calling the procedure with the rest of the List:

Chapter 5. Data 97

(define (Recursive-Procedure p)
(if (null? p)

Base-Case-Result
(Accumulator-Function (car p) (Recursive-Procedure (cdr p)))))

We can define a generic accumulator procedure for lists by making the base
case result and accumulator function inputs:

(define (list-accumulate f base p)
(if (null? p)

base
(f (car p) (list-accumulate f base (cdr p)))))

We can use list-accumulate to define list-sum and list-product :

(define (list-sum p) (list-accumulate + 0 p))
(define (list-product p) (list-accumulate ∗ 1 p))

Defining the list-length procedure is a bit more complicated.

In our previous definition, the recursive case in the list-length procedure is
(+ 1 (list-length (cdr p))). Unlike the list-sum example, the recursive case for
list-length does not use the value of the first element of the List. The way list-
accumulate is defined, we need a procedure that takes two inputs—the first
input is the first element of the List; the second input is the result of applying
list-accumulate to the rest of the List.

We should follow our usual strategy: be optimistic! Being optimistic as in
recursive definitions, the value of the second input should be the length of
the rest of the List. Hence, we need to pass in a procedure that takes two
inputs, ignores the first input, and outputs one more than the value of the
second input:

(define (list-length p)
(list-accumulate (lambda (el length-rest) (+ 1 length-rest)) 0 p))

Exercise 5.13. Use list-accumulate to define the list-max procedure (from Ex-
ercise 5.12).

Exercise 5.14. [★] Use list-accumulate to define the is-list? procedure (from
Exercise 5.11).

Example 5.3: Accessing List Elements. The built-in car procedure pro-
vides a way to get the first element of a list, but what if we want to get the
third element? We can do this by taking the cdr twice to eliminate the first
two elements, and then using car to get the third: (car (cdr (cdr p))).

We want a more general procedure that can access any selected list element.
It takes two inputs: a List, and an index Number that identifies the element.

98 5.4. List Procedures

If we start counting from 1 (it is often more natural to start from 0), then the
base case is when the index is 1 and the output should be the first element of
the List: (if (= n 1) (car p) . . .).

For the recursive case, we make progress by eliminating the first element of
the list. We also need to adjust the index: since we have removed the first el-
ement of the list, the index should be reduced by one. For example, instead
of wanting the third element of the original list, we now want the second ele-
ment of the cdr of the original list.

(define (list-get-element p n)
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1))))

What happens if we apply list-get-element to an index that is larger than the
size of the input List (for example, (list-get-element (list 1 2) 3))?

The first recursive call is (list-get-element (list 2) 2). The second recursive call
is (list-get-element (list) 1). At this point, n is 1, so the base case is reached
and (car p) is evaluated. But, p is the empty list (which is not a Pair), so an
error results.

A better version of list-get-element would provide a meaningful error mes-
sage when the requested element is out of range. We do this by adding an if
expression that tests if the input List is null:

(define (list-get-element p n)
(if (null? p)

(error "Index out of range")
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1)))))

The built-in procedure error takes a String as input. The String datatype is a
sequence of characters; we can create a String by surrounding characters with
double quotes, as in the example. The error procedure terminates program
execution with a message that displays the input value.

Checking explicitly for invalid inputs is known as defensive programming .defensive programming

Programming defensively helps avoid tricky to debug errors and makes it eas-
ier to understand what went wrong if there is an error.

Exercise 5.15. Define a procedure list-last-element that takes as input a List
and outputs the last element of the input List. If the input List is empty, list-
last-element should produce an error.

Chapter 5. Data 99

Exercise 5.16. Define a procedure list-ordered? that takes two inputs, a test
procedure and a List. It outputs true if all the elements of the List are ordered
according to the test procedure. For example, (list-ordered? < (list 1 2 3))
evaluates to true, and (list-ordered? < (list 1 2 3 2)) evaluates to false. Hint:
think about what the output should be for the empty list.

5.4.3 Procedures that Construct Lists

The procedures in this section take values (including Lists) as input, and pro-
duce a new List as output. As before, the empty list is typically the base case.
Since we are producing a List as output, the result for the base case is also
usually null. The recursive case will use cons to construct a List combining the
first element with the result of the recursive application on the rest of the List.

Example 5.4: Mapping. One common task for manipulating a List is to pro-
duce a new List that is the result of applying some procedure to every element
in the input List.

For the base case, applying any procedure to every element of the empty list
produces the empty list. For the recursive case, we use cons to construct a
List. The first element is the result of applying the mapping procedure to
the first element of the input List. The rest of the output List is the result of
recursively mapping the rest of the input List.

Here is a procedure that constructs a List that contains the square of every
element of the input List:

(define (list-square p)
(if (null? p)

null
(cons (square (car p))

(list-square (cdr p)))))

We generalize this by making the procedure which is applied to each element
an input. The procedure list-map takes a procedure as its first input and a
List as its second input. It outputs a List whose elements are the results of
applying the input procedure to each element of the input List.4

(define (list-map f p)
(if (null? p)

null
(cons (f (car p))

(list-map f (cdr p)))))

We can use list-map to define square-all:

(define (square-all p) (list-map square p))

4Scheme provides a built-in map procedure. It behaves like this one when passed a procedure
and a single List as inputs, but can also work on more than one List input at a time.

100 5.4. List Procedures

Exercise 5.17. Define a procedure list-increment that takes as input a List of
numbers, and produces as output a List containing each element in the input
List incremented by one. For example, (list-increment 1 2) evaluates to (2 3).

Exercise 5.18. Use list-map and list-sum to define list-length:

(define (list-length p) (list-sum (list-map p)))

Example 5.5: Filtering. Consider defining a procedure that takes as input
a List of numbers, and evaluates to a List of all the non-negative numbers in
the input. For example, (list-filter-negative (list 1 −3 −4 5 −2 0)) evaluates to
(1 5 0).

First, consider the base case when the input is the empty list. If we filter the
negative numbers from the empty list, the result is an empty list. So, for the
base case, the result should be null.

In the recursive case, we need to determine whether or not the first element
should be included in the output. If it should be included, we construct a
new List consisting of the first element followed by the result of filtering the
remaining elements in the List. If it should not be included, we skip the first
element and the result is the result of filtering the remaining elements in the
List.

(define (list-filter-negative p)
(if (null? p)

null
(if (>= (car p) 0)

(cons (car p) (list-filter-negative (cdr p)))
(list-filter-negative (cdr p)))))

Similarly to list-map, we can generalize our filter by making the test proce-
dure as an input, so we can use any predicate to determine which elements
to include in the output List.5

(define (list-filter test p)
(if (null? p)

null
(if (test (car p))

(cons (car p) (list-filter test (cdr p)))
(list-filter test (cdr p)))))

Using the list-filter procedure, we can define list-filter-negative as:

(define (list-filter-negative p) (list-filter (lambda (x) (>= x 0)) p))

We could also define the list-filter procedure using the list-accumulate pro-
cedure from Section 5.4.1:

5Scheme provides a built-in function filter that behaves like our list-filter procedure.

Chapter 5. Data 101

(define (list-filter test p)
(list-accumulate

(lambda (el rest) (if (test el) (cons el rest) rest))
null
p))

Exercise 5.19. Define a procedure list-filter-even that takes as input a List of
numbers and produces as output a List consisting of all the even elements of
the input List.

Exercise 5.20. Define a procedure list-remove that takes two inputs: a test
procedure and a List. As output, it produces a List that is a copy of the input
List with all of the elements for which the test procedure evaluates to true
removed. For example, (list-remove (lambda (x) (= x 0)) (list 0 1 2 3)) should
evaluates to the List (1 2 3).

Exercise 5.21. [★★] Define a procedure list-unique-elements that takes as in-
put a List and produces as output a List containing the unique elements of
the input List. The output List should contain the elements in the same order
as the input List, but should only contain the first appearance of each value
in the input List.

Example 5.6: Append. The list-append procedure takes as input two lists
and produces as output a List consisting of the elements of the first List fol-
lowed by the elements of the second List.6 For the base case, when the first
List is empty, the result of appending the lists should just be the second List.
When the first List is non-empty, we can produce the result by cons-ing the
first element of the first List with the result of appending the rest of the first
List and the second List.

(define (list-append p q)
(if (null? p)

q
(cons (car p) (list-append (cdr p) q))))

Example 5.7: Reverse. The list-reverse procedure takes a List as input and
produces as output a List containing the elements of the input List in reverse
order.7 For example, (list-reverse (list 1 2 3)) evaluates to the List (3 2 1). As
usual, we consider the base case where the input List is null first. The reverse
of the empty list is the empty list. To reverse a non-empty List, we should put
the first element of the List at the end of the result of reversing the rest of the
List.

The tricky part is putting the first element at the end, since cons only puts
elements at the beginning of a List. We can use the list-append procedure

6There is a built-in procedure append that does this. The built-in append takes any number
of Lists as inputs, and appends them all into one List.

7The built-in procedure reverse does this.

102 5.4. List Procedures

defined in the previous example to put a List at the end of another List. To
make this work, we need to turn the element at the front of the List into a List
containing just that element. We do this using (list (car p)).

(define (list-reverse p)
(if (null? p)

null
(list-append (list-reverse (cdr p)) (list (car p)))))

Exercise 5.22. Define the list-reverse procedure using list-accumulate.

Example 5.8: Intsto. For our final example, we define the intsto procedure
that constructs a List containing the whole numbers between 1 and the input
parameter value. For example, (intsto 5) evaluates to the List (1 2 3 4 5).

This example combines ideas from the previous chapter on creating recursive
definitions for problems involving numbers, and from this chapter on lists.
Since the input parameter is not a List, the base case is not the usual list base
case when the input is null. Instead, we use the input value 0 as the base
case. The result for input 0 is the empty list. For higher values, the output is
the result of putting the input value at the end of the List of numbers up to
the input value minus one.

A first attempt that doesn’t quite work is:

(define (revintsto n)
(if (= n 0)

null
(cons n (revintsto (− n 1)))))

The problem with this solution is that it is cons-ing the higher number to the
front of the result, instead of at the end. Hence, it produces the List of num-
bers in descending order: (revintsto 5) evaluates to (5 4 3 2 1).

One solution is to reverse the result by composing list-reverse with revintsto:

(define (intsto n) (list-reverse (revintsto n)))

Equivalently, we can use the fcompose procedure from Section 4.2:

(define intsto (fcompose list-reverse revintsto))

Alternatively, we could use list-append to put the high number directly at the
end of the List. Since the second operand to list-append must be a List, we use
(list n) to make a singleton List containing the value as we did for list-reverse.

(define (intsto n)
(if (= n 0)

null
(list-append (intsto (− n 1)) (list n))))

Chapter 5. Data 103

Although all of these procedures are functionally equivalent (for all valid in-
puts, each function produces exactly the same output), the amount of com-
puting work (and hence the time they take to execute) varies across the im-
plementations. We consider the problem of estimating the running-times of
different procedures in Part II.

Exercise 5.23. Define factorial (from Example 4.1) using intsto.

5.5 Lists of Lists

The elements of a List can be any datatype, including, of course, other Lists.
In defining procedures that operate on Lists of Lists, we often use more than
one recursive call when we need to go inside the inner Lists.

Example 5.9: Summing Nested Lists. Consider the problem of summing
all the numbers in a List of Lists. For example, (nested-list-sum (list (list 1

2 3) (list 4 5 6))) should evaluate to 21. We can define nested-list-sum using
list-sum on each List.

(define (nested-list-sum p)
(if (null? p)

0

(+ (list-sum (car p))
(nested-list-sum (cdr p)))))

This works when we know the input is a List of Lists. But, what if the input
can contain arbitrarily deeply nested Lists?

To handle this, we need to recursively sum the inner Lists. Each element in
our deep List is either a List or a Number. If it is a List, we should add the
value of the sum of all elements in the List to the result for the rest of the List.
If it is a Number, we should just add the value of the Number to the result for
the rest of the List. So, our procedure involves two recursive calls: one for the
first element in the List when it is a List, and the other for the rest of the List.

(define (deep-list-sum p)
(if (null? p)

0

(+ (if (list? (car p))
(deep-list-sum (car p))
(car p))

(deep-list-sum (cdr p)))))

Example 5.10: Flattening Lists. Another way to compute the deep list sum
would be to first flatten the List, and then use the list-sum procedure.

Flattening a nested list takes a List of Lists and evaluates to a List containing
the elements of the inner Lists. We can define list-flatten by using list-append

104 5.5. Lists of Lists

to append all the inner Lists together.

(define (list-flatten p)
(if (null? p) null

(list-append (car p) (list-flatten (cdr p)))))

This flattens a List of Lists into a single List. To completely flatten a deeply
nested List, we use multiple recursive calls as we did with deep-list-sum:

(define (deep-list-flatten p)
(if (null? p) null

(list-append (if (list? (car p))
(deep-list-flatten (car p))
(list (car p)))

(deep-list-flatten (cdr p)))))

Now we can define deep-list-sum as:

(define deep-list-sum (fcompose deep-list-flatten list-sum))

Exercise 5.24. [★] Define a procedure deep-list-map that behaves similarly to
list-map but on deeply nested lists. It should take two parameters, a mapping
procedure, and a List (that may contain deeply nested Lists as elements), and
output a List with the same structure as the input List with each value mapped
using the mapping procedure.

Exercise 5.25. [★] Define a procedure deep-list-filter that behaves similarly to
list-filter but on deeply nested lists.

Exploration 5.1: Pascal’s Triangle

This triangle is known as Pascal’s Triangle (named for Blaise Pascal, although
known to many others before him):

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

⋅ ⋅ ⋅

Pascal’s Triangle
Each number in the triangle is the sum of the two numbers immediately above
and to the left and right of it. The numbers in Pascal’s Triangle are the co-
efficients in a binomial expansion. The numbers of the nth row (where the
rows are numbered starting from 0) are the coefficients of the binomial ex-
pansion of (x + y)n. For example, (x + y)2 = x2 + 2xy + y2, so the coeffi-
cients are 1 2 1, matching the third row in the triangle; from the fifth row,
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4. The values in the triangle also match
the number of ways to choose k elements from a set of size n (see Exercise 4.5)

Chapter 5. Data 105

— the kth number on the nth row of the triangle gives the number of ways to
choose k elements from a set of size n. For example, the third number on the
fifth (n = 4) row is 6, so there are 6 ways to choose 3 items from a set of size 4.

The goal of this exploration is to define a procedure, pascals-triangle to pro-
duce Pascal’s Triangle. The input to your procedure should be the number of
rows; the output should be a list, where each element of the list is a list of the
numbers on that row of Pascal’s Triangle. For example, (pascals-triangle 0)
should produce ((1)) (a list containing one element which is a list containing
the number 1), and (pascals-triangle 4) should produce ((1) (1 1) (1 2 1) (1 3 3

1) (1 4 6 4 1)).

Ambitious readers should attempt to define pascals-triangle themselves; the
sub-parts below provide some hints for one way to define it.

a. First, define a procedure expand-row that expands one row in the trian-
gle. It takes a List of numbers as input, and as output produces a List with
one more element than the input list. The first number in the output List
should be the first number in the input List; the last number in the output
List should be the last number in the input List. Every other number in the
output List is the sum of two numbers in the input List. The nth number in
the output List is the sum of the n− 1

th and nth numbers in the input List.
For example, (expand-row (list 1)) evaluates to (1 1); (expand-row (list 1 1))
evaluates to (1 2 1); and (expand-row (list 1 4 6 4 1)) evaluates to (1 5 10 10

5 1). This is trickier than the recursive list procedures we have seen so far
since the base case is not the empty list. It also needs to deal with the first
element specially. To define expand-row, it will be helpful to divide it into
two procedures, one that deals with the first element of the list, and one
that produces the rest of the list:

(define (expand-row p) (cons (car p) (expand-row-rest p)))

b. Define a procedure pascals-triangle-row that takes one input, n, and out-
puts the nth row of Pascal’s Triangle. For example, (pascals-triangle-row 0)
evaluates to (1) and (pascals-triangle-row 3) produces (1 3 3 1).

c. Finally, define pascals-triangle with the behavior described above.

5.6 Data Abstraction

The mechanisms we have for constructing and manipulating complex data
structures are valuable because they enable us to think about programs closer
to the level of the problem we are solving than the low level of how data is
stored and manipulated in the computer. Our goal is to hide unnecessary de-
tails about how data is represented so we can focus on the important aspects
of what the data means and what we need to do with it to solve our problem.
The technique of hiding how data is represented from how it is used is known
as data abstraction. data abstraction

106 5.6. Data Abstraction

The datatypes we have seen so far are not very abstract. We have datatypes
for representing Pairs, triples, and Lists, but we want datatypes for represent-
ing objects closer to the level of the problem we want to solve. A good data
abstraction is abstract enough to be used without worrying about details like
which cell of the Pair contains which datum and how to access the different
elements of a List. Instead, we want to define procedures with meaningful
names that manipulate the relevant parts of our data.

The rest of this section is an extended example that illustrates how to solve
problems by first identifying the objects we need to model the problem, and
then implementing data abstractions that represent those objects. Once the
appropriate data abstractions are designed and implemented, the solution
to the problem often follows readily. This example also uses many of the list
procedures defined earlier in this chapter.

Exploration 5.2: Pegboard Puzzle

For this exploration, we develop a program to solve the infamous pegboard
puzzle, often found tormenting unsuspecting diners at pancake restaurants.
The standard puzzle is a one-player game played on a triangular board with
fifteen holes with pegs in all of the holes except one.

The goal is to remove all but one of the pegs by jumping pegs over one an-
other. A peg may jump over an adjacent peg only when there is a free hole on
the other side of the peg. The jumped peg is removed. The game ends when
there are no possible moves. If there is only one peg remaining, the player
wins (according to the Cracker Barrel version of the game, “Leave only one—
you’re genius”). If more than one peg remains, the player loses (“Leave four
or more’n you’re just plain ‘eg-no-ra-moose’.”).

Pegboard Puzzle

Figure 5.1. Pegboard Puzzle.
The blue peg can jump the red peg as shown, removing the red peg. The resulting posi-
tion is a winning position.

Our goal is to develop a program that finds a winning solution to the pegboard
game from any winnable starting position. We use a brute force approach: trybrute force

all possible moves until we find one that works. Brute force solutions only
work on small-size problems. Because they have to try all possibilities they
are often too slow for solving large problems, even on the most powerful com-
puters imaginable.8

8As we will see in Chapter 13, the generalized pegboard puzzle is an example of a class of prob-

Chapter 5. Data 107

The first thing to think about to solve a complex problem is what datatypes
we need. We want datatypes that represent the things we need to model in
our problem solution. For the pegboard game, we need to model the board
with its pegs. We also need to model actions in the game like a move (jump-
ing over a peg). The important thing about a datatype is what you can do with
it. To design our board datatype we need to think about what we want to do
with a board. In the physical pegboard game, the board holds the pegs. The
important property we need to observe about the board is which holes on the
board contain pegs. For this, we need a way of identifying board positions.
We define a datatype for representing positions first, then a datatype for rep-
resenting moves, and a datatype for representing the board. Finally, we use
these datatypes to define a procedure that finds a winning solution.

Position. We identify the board positions using row and column numbers:

(1 1)
(2 1) (2 2)

(3 1) (3 2) (3 3)
(4 1) (4 2) (4 3) (4 4)

(5 1) (5 2) (5 3) (5 4) (5 5)

A position has a row and a column, so we could just use a Pair to represent a
position. This would work, but we prefer to have a more abstract datatype so
we can think about a position’s row and column, rather than thinking that a
position is a Pair and using the car and cdr procedures to extract the row and
column from the position.

Our Position datatype should provide at least these operations:

make-position: Number× Number→ Position
Creates a Position representing the row and column given by the in-
put numbers.

position-get-row: Position→ Number
Outputs the row number of the input Position.

position-get-column: Position→ Number
Outputs the column number of the input Position.

Since the Position needs to keep track of two numbers, a natural way to imple-
ment the Position datatype is to use a Pair. A more defensive implementation
of the Position datatype uses a tagged list . With a tagged list, the first element tagged list

of the list is a tag denoting the datatype it represents. All operations check the
tag is correct before proceeding. We can use any type to encode the list tag,
but it is most convenient to use the built-in Symbol type. Symbols are a quote
(’) followed by a sequence of characters. The important operation we can do
with a Symbol, is test whether it is an exact match for another symbol using
the eq? procedure.

We define the tagged list datatype, tlist , using the list-get-element procedure
from Example 5.3:

lems known as NP-Complete. This means it is not known whether or not any solution exists that
is substantially better than the brute force solution, but it would be extraordinarily surprising
(and of momentous significance!) to find one.

108 5.6. Data Abstraction

(define (make-tlist tag p) (cons tag p))
(define (tlist-get-tag p) (car p))

(define (tlist-get-element tag p n)
(if (eq? (tlist-get-tag p) tag)

(list-get-element (cdr p) n)
(error (format "Bad tag: ˜a (expected ˜a)"

(tlist-get-tag p) tag))))

The format procedure is a built-in procedure similar to the printf procedure
described in Section 4.5.1. Instead of printing as a side effect, format pro-
duces a String. For example, (format "list: ˜a number: ˜a." (list 1 2 3) 123) evalu-
ates to the String "list: (1 2 3) number: 123.".

This is an example of defensive programming. Using our tagged lists, if we
accidentally attempt to use a value that is not a Position as a position, we
will get a clear error message instead of a hard-to-debug error (or worse, an
unnoticed incorrect result).

Using the tagged list, we define the Position datatype as:

(define (make-position row col) (make-tlist ’Position (list row col)))
(define (position-get-row posn) (tlist-get-element ’Position posn 1))
(define (position-get-column posn) (tlist-get-element ’Position posn 2))

Here are some example interactions with our Position datatype:

> (define pos (make-position 2 1))
> pos
(Position 2 1)
> (get-position-row pos)
2
> (get-position-row (list 1 2))

Bad tag: 1 (expected Position) Error since input is not a Position.

Move. A move involves three positions: where the jumping peg starts, the
position of the peg that is jumped and removed, and the landing position.
One possibility would be to represent a move as a list of the three positions. A
better option is to observe that once any two of the positions are known, the
third position is determined. For example, if we know the starting position
and the landing position, we know the jumped peg is at the position between
them. Hence, we could represent a jump using just the starting and landing
positions.

Another possibility is to represent a jump by storing the starting Position and
the direction. This is also enough to determine the jumped and landing posi-
tions. This approach avoids the difficulty of calculating jumped positions. To
do it, we first design a Direction datatype for representing the possible move
directions. Directions have two components: the change in the column (we
use 1 for right and −1 for left), and the change in the row (1 for down and −1

for up).

Chapter 5. Data 109

We implement the Direction datatype using a tagged list similarly to how we
defined Position:

(define (make-direction right down)
(make-tlist ’Direction (list right down)))

(define (direction-get-horizontal dir) (tlist-get-element ’Direction dir 1))
(define (direction-get-vertical dir) (tlist-get-element ’Direction dir 2))

The Move datatype is defined using the starting position and the jump direc-
tion:

(define (make-move start direction)
(make-tlist ’Move (list start direction)))

(define (move-get-start move) (tlist-get-element ’Move move 1))
(define (move-get-direction move) (tlist-get-element ’Move move 2))

We also define procedures for getting the jumped and landing positions of
a move. The jumped position is the result of moving one step in the move
direction from the starting position. So, it will be useful to define a procedure
that takes a Position and a Direction as input, and outputs a Position that is
one step in the input Direction from the input Position.

(define (direction-step pos dir)
(make-position

(+ (position-get-row pos) (direction-get-vertical dir))
(+ (position-get-column pos) (direction-get-horizontal dir))))

Using direction-step we can implement procedure to get the middle and land-
ing positions.

(define (move-get-jumped move)
(direction-step (move-get-start move) (move-get-direction move)))

(define (move-get-landing move)
(direction-step (move-get-jumped move) (move-get-direction move)))

Board. The board datatype represents the current state of the board. It keeps
track of which holes in the board contain pegs, and provides operations that
model adding and removing pegs from the board:

make-board: Number→ Board
Outputs a board full of pegs with the input number of rows. (The
standard physical board has 5 rows, but our datatype supports any
number of rows.)

board-rows: Board→ Number
Outputs the number of rows in the input board.

board-valid-position?: Board× Position → Boolean
Outputs true if input Position corresponds to a position on the Board;
otherwise, false.

board-is-winning?: Board→ Boolean
Outputs true if the Board represents a winning position (exactly one
peg); otherwise, false.

110 5.6. Data Abstraction

board-contains-peg?: Position→ Boolean
Outputs true if the hole at the input Position contains a peg; other-
wise, false.

board-add-peg : Board× Position→ Board
Output a Board containing all the pegs of the input Board and one
additional peg at the input Position. If the input Board already has a
peg at the input Position, produces an error.

board-remove-peg : Board× Position→ Board
Outputs a Board containing all the pegs of the input Board except for
the peg at the input Position. If the input Board does not have a peg
at the input Position, produces an error.

The procedures for adding and removing pegs change the state of the board
to reflect moves in the game, but nothing we have seen so far, however, pro-
vides a means for changing the state of an existing object.9 So, instead of
defining these operations to change the state of the board, they actually cre-
ate a new board that is different from the input board by the one new peg.
These procedures take a Board and Position as inputs, and produce as output
a Board.

There are lots of different ways we could represent the Board. One possibility
is to keep a List of the Positions of the pegs on the board. Another possi-
bility is to keep a List of the Positions of the empty holes on the board. Yet
another possibility is to keep a List of Lists, where each List corresponds to
one row on the board. The elements in each of the Lists are Booleans repre-
senting whether or not there is a peg at that position. The good thing about
data abstraction is we could pick any of these representations and change
it to a different representation later (for example, if we needed a more effi-
cient board implementation). As long as the procedures for implementing
the Board are updated the work with the new representation, all the code
that uses the board abstraction should continue to work correctly without
any changes.

We choose the third option and represent a Board using a List of Lists where
each element of the inner lists is a Boolean indicating whether or not the cor-
responding position contains a peg. So, make-board evaluates to a List of
Lists, where each element of the List contains the row number of elements
and all the inner elements are true (the initial board is completely full of pegs).
First, we define a procedure make-list-of-constants that takes two inputs, a
Number, n, and a Value, val. The output is a List of length n where each ele-
ment has the value val.

(define (make-list-of-constants n val)
(if (= n 0) null (cons val (make-list-of-constants (− n 1) val))))

To make the initial board, we use make-list-of-constants to make each row
of the board. As usual, a recursive problem solving strategy works well: the
simplest board is a board with zero rows (represented as the empty list); for
each larger board, we add a row with the right number of elements.

9We will introduce mechanisms for changing state in Chapter 9. Allowing state to change
breaks the substitution model of evaluation.

Chapter 5. Data 111

The tricky part is putting the rows in order. This is similar to the problem we
faced with intsto, and a similar solution using append-list works here:

(define (make-board rows)
(if (= rows 0) null

(list-append (make-board (− rows 1))
(list (make-list-of-constants rows true)))))

Evaluating (make-board 3) produces ((true) (true true) (true true true)).

The board-rows procedure takes a Board as input and outputs the number of
rows on the board.

(define (board-rows board) (length board))

The board-valid-position? indicates if a Position is on the board. A position
is valid if its row number is between 1 and the number of rows on the board,
and its column numbers is between 1 and the row number.

(define (board-valid-position? board pos)
(and (>= (position-get-row pos) 1) (>= (position-get-column pos) 1)

(<= (position-get-row pos) (board-rows board))
(<= (position-get-column pos) (position-get-row pos))))

We need a way to check if a Board represents a winning solution (that is, con-
tains only one peg). We implement a more general procedure to count the
number of pegs on a board first. Our board representation used true to rep-
resent a peg. To count the pegs, we first map the Boolean values used to rep-
resent pegs to 1 if there is a peg and 0 if there is no peg. Then, we use sum-list
to count the number of pegs. Since the Board is a List of Lists, we first use
list-flatten to put all the pegs in a single List.

(define (board-number-of-pegs board)
(list-sum
(list-map (lambda (peg) (if peg 1 0)) (list-flatten board))))

A board is a winning board if it contains exactly one peg:

(define (board-is-winning? board)
(= (board-number-of-pegs board) 1))

The board-contains-peg? procedure takes a Board and a Position as input,
and outputs a Boolean indicating whether or not that Position contains a peg.
To implement board-contains-peg? we need to find the appropriate row in
our board representation, and then find the element in its list corresponding
to the position’s column. The list-get-element procedure (from Example 5.3)
does exactly what we need. Since our board is represented as a List of Lists,
we need to use it twice: first to get the row, and then to select the column
within that row:

112 5.6. Data Abstraction

(define (board-contains-peg? board pos)
(list-get-element (list-get-element board (position-get-row pos))

(position-get-column pos)))

Defining procedures for adding and removing pegs from the board is more
complicated. Both of these procedures need to make a board with every row
identical to the input board, except the row where the peg is added or re-
moved. For that row, we need to replace the corresponding value. Hence,
instead of defining separate procedures for adding and removing we first im-
plement a more general board-replace-peg procedure that takes an extra pa-
rameter indicating whether a peg should be added or removed at the selected
position.

First we consider the subproblem of replacing a peg in a row. The procedure
row-replace-peg takes as input a List representing a row on the board and a
Number indicating the column where the peg should be replaced. We can
define row-replace-peg recursively: the base case is when the modified peg is
at the beginning of the row (the column number is 1); in the recursive case,
we copy the first element in the List, and replace the peg in the rest of the list.
The third parameter indicates if we are adding or removing a peg. Since true
values represent holes with pegs, a true value indicates that we are adding a
peg and false means we are removing a peg.

(define (row-replace-peg pegs col val)
(if (= col 1)

(cons val (cdr pegs))
(cons (car pegs) (row-replace-peg (cdr pegs) (− col 1) val))))

To replace the peg on the board, we use row-replace-peg to replace the peg on
the appropriate row, and keep all the other rows the same.

(define (board-replace-peg board row col val)
(if (= row 1)

(cons (row-replace-peg (car board) col val) (cdr board))
(cons (car board) (board-replace-peg (cdr board) (− row 1) col val))))

Both board-add-peg and board-remove-peg can be defined simply using board-
remove-peg . They first check if the operation is valid (adding is valid only if
the selected position does not contain a peg, removing is valid only if the se-
lected position contains a peg), and then use board-replace-peg to produce
the modified board:

(define (board-add-peg board pos)
(if (board-contains-peg? board pos)

(error (format "Board already contains peg at position: ˜a" pos))
(board-replace-peg board (position-get-row pos)

(position-get-column pos) true)))

Chapter 5. Data 113

(define (board-remove-peg board pos)
(if (not (board-contains-peg? board pos))

(error (format "Board does not contain peg at position: ˜a" pos))
(board-replace-peg board (position-get-row pos)

(position-get-column pos) false)))

We can now define a procedure that models making a move on a board. Mak-
ing a move involves removing the jumped peg and moving the peg from the
starting position to the landing position. Moving the peg is equivalent to re-
moving the peg from the starting position and adding a peg to the landing
position, so the procedures we defined for adding and removing pegs can be
composed to model making a move. We add a peg landing position to the
board that results from removing the pegs in the starting and jumped posi-
tions:

(define (board-execute-move board move)
(board-add-peg
(board-remove-peg
(board-remove-peg board (move-get-start move))
(move-get-jumped move))

(move-get-landing move)))

Finding Valid Moves. Now that we can model the board and simulate making
jumps, we are ready to develop the solution. At each step, we try all valid
moves on the board to see if any move leads to a winning position (that is, a
position with only one peg remaining). So, we need a procedure that takes a
Board as its input and outputs a List of all valid moves on the board. We break
this down into the problem of producing a list of all conceivable moves (all
moves in all directions from all starting positions on the board), filtering that
list for moves that stay on the board, and then filtering the resulting list for
moves that are legal (start at a position containing a peg, jump over a position
containing a peg, and land in a position that is an empty hole).

First, we generate all conceivable moves by creating moves starting from each
position on the board and moving in all possible move directions. We break
this down further: the first problem is to produce a List of all positions on the
board. We can generate a list of all row numbers using the intsto procedure
(from Example 5.8). To get a list of all the positions, we need to produce a
list of the positions for each row. We can do this by mapping each row to the
corresponding list:

(define (all-positions-helper board)
(list-map

(lambda (row) (list-map (lambda (col) (make-position row col))
(intsto row)))

(intsto (board-rows board)))

This almost does what we need, except instead of producing one List contain-
ing all the positions, it produces a List of Lists for the positions in each row.
The list-flatten procedure (from Example 5.10) produces a flat list containing

114 5.6. Data Abstraction

all the positions.

(define (all-positions board)
(list-flatten (all-positions-helper board)))

For each Position, we find all possible moves starting from that position. We
can move in six possible directions on the board: left, right, up-left, up-right,
down-left, and down-right.

(define all-directions
(list
(make-direction −1 0) (make-direction 1 0) ; left, right
(make-direction −1 −1) (make-direction 0 −1) ; up-left, up-right
(make-direction 0 1) (make-direction 1 1))) ; down-left, down-right

For each position on the board, we create a list of possible moves starting at
that position and moving in each possible move directions. This produces a
List of Lists, so we use list-flatten to flatten the output of the list-map appli-
cation into a single List of Moves.

(define (all-conceivable-moves board)
(list-flatten

(list-map
(lambda (pos) (list-map (lambda (dir) (make-move pos dir))

all-directions))
(all-positions board))))

The output produced by all-conceivable-moves includes moves that fly off the
board. We use the list-filter procedure to remove those moves, to get the list
of moves that stay on the board:

(define (all-board-moves board)
(list-filter
(lambda (move) (board-valid-position? board (move-get-landing move)))
(all-conceivable-moves board)))

Finally, we need to filter out the moves that are not legal moves. A legal move
must start at a position that contains a peg, jump over a position that contains
a peg, and land in an empty hole. We use list-filter similarly to how we kept
only the moves that stay on the board:

(define (all-legal-moves board)
(list-filter

(lambda (move)
(and
(board-contains-peg? board (move-get-start move))
(board-contains-peg? board (move-get-jumped move))
(not (board-contains-peg? board (move-get-landing move)))))

(all-board-moves board)))

Chapter 5. Data 115

Winning the Game. Our goal is to find a sequence of moves that leads to a
winning position, starting from the current board. If there is a winning se-
quence of moves, we can find it by trying all possible moves on the current
board. Each of these moves leads to a new board. If the original board has
a winning sequence of moves, at least one of the new boards has a winning
sequence of moves. Hence, we can solve the puzzle by recursively trying all
moves until finding a winning position.

(define (solve-pegboard board)
(if (board-is-winning? board)

null ; no moves needed to reach winning position
(try-moves board (all-legal-moves board))))

If there is a sequence of moves that wins the game starting from the input
Board, solve-pegboard outputs a List of Moves representing a winning se-
quence. This could be null, in the case where the input board is already a
winning board. If there is no sequence of moves to win from the input board,
solve-pegboard outputs false.

It remains to define the try-moves procedure. It takes a Board and a List of
Moves as inputs. If there is a sequence of moves that starts with one of the
input moves and leads to a winning position it outputs a List of Moves that
wins; otherwise, it outputs false.

The base case is when there are no moves to try. When the input list is null
it means there are no moves to try. We output false to mean this attempt did
not lead to a winning board. Otherwise, we try the first move. If it leads to a
winning position, try-moves should output the List of Moves that starts with
the first move and is followed by the rest of the moves needed to solve the
board resulting from taking the first move (that is, the result of solve-pegboard
applied to the Board resulting from taking the first move). If the first move
doesn’t lead to a winning board, it tries the rest of the moves by calling try-
moves recursively.

(define (try-moves board moves)
(if (null? moves)

false ; didn’t find a winner
(if (solve-pegboard (board-execute-move board (car moves)))

(cons (car moves)
(solve-pegboard (board-execute-move board (car moves))))

(try-moves board (cdr moves)))))

Evaluating (solve-pegboard (make-board 5)) produces false since there is no
way to win starting from a completely full board. Evaluating (solve-pegboard
(board-remove-peg (make-board 5) (make-position 1 1))) takes about three
minutes to produce this sequence of moves for winning the game starting
from a 5-row board with the top peg removed:

116 5.7. Summary of Part I

((Move (Position 3 1) (Direction 0 −1))
(Move (Position 3 3) (Direction −1 0))
(Move (Position 1 1) (Direction 1 1))
(Move (Position 4 1) (Direction 0 −1))
(Move (Position 4 4) (Direction −1 −1))
(Move (Position 5 2) (Direction 0 −1))
(Move (Position 5 3) (Direction 0 −1))
(Move (Position 2 1) (Direction 1 1))
(Move (Position 2 2) (Direction 1 1))
(Move (Position 5 5) (Direction −1 −1))
(Move (Position 3 3) (Direction 0 1))
(Move (Position 5 4) (Direction −1 0))
(Move (Position 5 1) (Direction 1 1)))

a. [★] Change the implementation to use a different Board representation,
such as keeping a list of the Positions of each hole on the board. Only the
procedures with names starting with board- should need to change when
the Board representation is changed. Compare your implementation to
this one.

b. [★] The standard pegboard puzzle uses a triangular board, but there is no
reason the board has to be a triangle. Define a more general pegboard
puzzle solver that works for a board of any shape.

c. [★★] The described implementation is very inefficient. It does lots of re-
dundant computation. For example, all-possible-moves evaluates to the
same value every time it is applied to a board with the same number of
rows. It is wasteful to recompute this over and over again to solve a given
board. See how much faster you can make the pegboard solver. Can you
make it fast enough to solve the 5-row board in less than half the original
time? Can you make it fast enough to solve a 7-row board?

5.7 Summary of Part I

To conclude Part I, we revisit the three main themes introduced in Section 1.4.

Recursive definitions. We have seen many types of recursive definitions and
used them to solve problems, including the pegboard puzzle. Recursive gram-
mars provide a compact way to define a language; recursive procedure defini-
tions enable us to solve problems by optimistically assuming a smaller prob-
lem instance can be solved and using that solution to solve the problem; re-
cursive data structures such as the list type allow us to define and manipulate
complex data built from simple components. All recursive definitions involve
a base case. For grammars, the base case provides a way to stop the recursive
replacements by produce a terminal (or empty output) directly; for proce-
dures, the base case provides a direct solution to a small problem instance;
for data structures, the base case provides a small instance of the data type

Chapter 5. Data 117

(e.g., null). We will see many more examples of recursive definitions in the
rest of this book.

Universality. All of the programs we have can be created from the simple sub-
set of Scheme introduced in Chapter 3. This subset is a universal program-
ming language: it is powerful enough to describe all possible computations. universal programming language

We can generate all the programs using the simple Scheme grammar, and
interpret their meaning by systematically following the evaluation rules. We
have also seen the universality of code and data. Procedures can take proce-
dures as inputs, and produce procedures as outputs.

Abstraction. Abstraction hides details by giving things names. Procedural ab-
straction defines a procedure; by using inputs, a short procedure definition
can abstract infinitely many different information processes. Data abstrac-
tion hides the details of how data is represented by providing procedures that
abstractly create and manipulate that data. As we develop programs to solve
more complex problems, it is increasingly important to use abstraction well
to manage complexity. We need to break problems down into smaller parts
that can be solved separately. Solutions to complex problems can be devel-
oped by thinking about what objects need to be modeled, and designing data
abstractions the implement those models. Most of the work in solving the
problem is defining the right datatypes; once we have the datatypes we need
to model the problem well, we are usually well along the path to a solution.

With the tools from Part I, you can define a procedure to do any possible com-
putation. In Part II, we examine the costs of executing procedures.

