
9
Mutation

Faced with the choice between changing one’s mind and proving
that there is no need to do so, almost everyone gets busy on the proof.

John Kenneth Galbraith

The subset of Scheme we have used so far provides no way to change the
value associated with a name. This enables the substitution model of eval-
uation. Since the value associated with a name was always the value it was
defined as, no complex evaluation rules are needed to determine the value
associated with a name.

This chapter introduces special forms known as mutators that allow programs mutators

to change the value in a given place. Introducing mutation does not change
the computations we can express—every computation that can be expressed
using mutation could also be expressed using the only purely functional sub-
set of Scheme from Chapter 3. It does, however, make it possible to express
certain computations more efficiently and clearly than could be done with-
out it. Adding mutation is not free, however; reasoning about the value of
expressions becomes much more complex.

9.1 Assignment

The set! (pronounced “set-bang!”) special form associates a new value with
an already defined name. The exclamation point at the end of set! follows
a naming convention to indicate that an operation may mutate state. A set
expression is also known as an assignment . It assigns a value to a variable. assignment

The grammar rule for assignment is:

Expression ::⇒ Assignment

Assignment ::⇒ (set! Name Expression)

The evaluation rule for an assignment is:

Evaluation Rule 7: Assignment. To evaluate an assignment, eval-
uate the expression, and replace the value associated with the name
with the value of the expression. An assignment has no value.



206 9.1. Assignment

Assignments do not produce output values, but are used for their side effects.
They change the value of some state (namely, the value associated with the
name in the set expression), but do not produce an output.

Here is an example use of set!:

> (define num 200)
> num
200

> (set! num 150)
> (set! num 1120)
> num
1120

Begin expression. Since assignments do not evaluate to a value, they are
often used inside a begin expression. A begin expression is a special form
that evaluates a sequence of expressions in order and evaluates to the value
of the last expression.

The grammar rule for the begin expression is:

Expression ::⇒ BeginExpression

BeginExpression ::⇒ (begin MoreExpressions Expression)

The evaluation rule is:

Evaluation Rule 8: Begin. To evaluate a begin expression,

(begin Expression1 Expression2 . . . Expressionk)

evaluate each subexpression in order from left to right. The value
of the begin expression is the value of the last subexpression, Expressionk.

The values of all the subexpressions except the last one are ignored; these
subexpressions are only evaluated for their side effects.

The begin expression must be a special form. It is not possible to define a
procedure that behaves identically to a begin expression since the applica-
tion rule does not specify the order in which the operand subexpressions are
evaluated.

The definition syntax for procedures includes a hidden begin expression.

(define (Name Parameters) MoreExpressions Expression)

is an abbreviation for:

(define Name

(lambda (Parameters) (begin MoreExpressions Expression)))



Chapter 9. Mutation 207

The let expression introduced in Section 8.1.1 also includes a hidden begin
expression.

(let ((Name1 Expression1) (Name2 Expression2)
⋅ ⋅ ⋅ (Namek Expressionk))

MoreExpressions Expression)

is equivalent to the application expression:

((lambda (Name1 Name2 . . . Namek)
(begin MoreExpressions Expression))

Expression1 Expression2 . . . Expressionk)

9.2 Impact of Mutation

Introducing assignment presents many complications for our programming
model. It invalidates the substitution model of evaluation introduced in Sec-
tion 3.6.2 and found satisfactory until this point. All the procedures we can
define without using mutation behave almost like mathematical functions—
every time they are applied to the same inputs they produce the same out-
put.1 Assignments allow us to define non-functional procedures that produce
different results for different applications even with the same inputs.

Example 9.1: Counter. Consider the update-counter! procedure:

(define (update-counter!)
(set! counter (+ counter 1))
counter)

To use update-counter! , we must first define the counter variable it uses:

(define counter 0)

Every time (update-counter!) is evaluated the value associated with the name
counter is increased by one and the result is the new value of counter. Because
of the hidden begin expression in the definition, the (set! counter (+ counter
1)) is always evaluated first, followed by counter which is the last expression
in the begin expression so its value is the value of the procedure. Thus, the
value of (update-counter!) is 1 the first time it is evaluated, 2 the second time,
and so on.

The substitution model of evaluation doesn’t make any sense for this evalua-
tion: the value of counter changes during the course of the evaluation. Even
though (update-counter!) is the same expression, every time it is evaluated it
evaluates to a different value.

1Observant readers should notice that we have already used a few procedures that are not
functions including the printing procedures from Section 4.5.1, and random and read-char from
the previous chapter.



208 9.2. Impact of Mutation

Mutation also means some expressions have undetermined values. Consider
evaluating the expression (+ counter (update-counter!)). The evaluation rule
for the application expression does not specify the order in which the operand
subexpressions are evaluated. But, the value of the name expression counter
depends on whether it is evaluated before or after the application of update-
counter! is evaluated!

The meaning of the expression is ambiguous: if the second subexpression,
counter , is evaluated before the third subexpression, (update-counter!), the
value of the expression is 1 the first time it is evaluated, and 3 the second time
it is evaluated. Alternately, but still following the evaluation rules, the third
subexpression could be evaluated before the second subexpression. With this
ordering, the value of the expression is 2 the first time it is evaluated, and 4 the
second time it is evaluated.

9.2.1 Names, Places, Frames, and Environments

Because assignments can change the value associated with a name, the order
in which expressions are evaluated now matters. As a result, we need to re-
visit several of our other evaluation rules and change the way we think about
processes.

Since the value associated with a name can now change, instead of associat-
ing a value directly with a name we use a name as a way to identify a place. Aplace

place has a name and holds the value associated with that name. With mu-
tation, we can change the value in a place; this changes the value associated
with the place’s name. A frame is a collection of places.frame

An environment is a pair consisting of a frame and a pointer to a parent envi-environment

ronment. A special environment known as the global environment has no
parent environment. The global environment exists when the interpreter
starts, and is maintained for the lifetime of the interpreter. Initially, the global
environment contains the built-in procedures. Names defined in the inter-
actions buffer are placed in the global environment. Other environments are
created and destroyed as a program is evaluated. Figure 9.1 shows some ex-
ample environments, frames, and places.

Every environment has a parent environment except for the global environ-
ment. All other environments descend from the global environment. Hence,
if we start with any environment, and continue to follow its parent pointers
we always eventually reach the global environment.

The key change to our evaluation model is that whereas before we could eval-
uate expressions without any notion of where they are evaluated, once we
introduce mutation, we need to consider the environment in which an ex-
pression is evaluated. An environment captures the current state of the inter-
preter. The value of an expression depends on both the expression itself, and
on the environment in which it is evaluated.



Chapter 9. Mutation 209

9.2.2 Evaluation Rules with State

Introducing mutation requires us to revise the evaluation rule for names, the
definition rule, and the application rule for constructed procedures. All of
these rules must be adapted to be more precise about how values are associ-
ated with names by using places and environments.

Names. The new evaluation rule for a name expression is:

Stateful Evaluation Rule 2: Names. To evaluate a name expression,
search the evaluation environment’s frame for a place with a name
that matches the name in the expression. If such a place exists, the
value of the name expression is the value in that place. Otherwise,
the value of the name expression is the result of evaluating the name
expression in the parent environment. If the evaluation environment
has no parent, the name is not defined and the name expression eval-
uates to an error.

For example, to evaluate the value of the name expression x in Environment
B in Figure 9.1, we first look in the frame of Environment B for a place named
x. Since there is no place named x in that frame, we follow the parent pointer
to Environment A, and evaluate the value of the name expression in Environ-
ment A. Environment A’s frame contains a place named x that contains the
value 7, so the value of evaluating x in Environment B is 7.

The value of the same expression in the Global Environment is 3 since that is
the value in the place named x in the Global Environment’s frame.

To evaluate the value of y in Environment A, we first look in the frame in En-
vironment A for a place named y. Since no y place exists, evaluation con-

Figure 9.1. Sample environments.
The global environment contains a frame with three names. Each name has an associated place
that contains the value associated with that name. The value associated with counter is the
currently 0. The value associated with set-counter! is the procedure we defined in Example 9.1.
A procedure is characterized by its parameters, body code, and a pointer to the environment in
which it will be evaluated.



210 9.2. Impact of Mutation

tinues by evaluating the expression in the parent environment, which is the
Global Environment. The Global Environments frame does not contain a
place named y, and the global environment has no parent, so the name is
undefined and the evaluation results in an error.

Definition. The revised evaluation rule for a definition is:

Stateful Definition Rule. A definition creates a new place with the
definition’s name in the frame associated with the evaluation envi-
ronment. The value in the place is value of the definition’s expression.
If there is already a place with the name in the current frame, the def-
inition replaces the old place with a new place and value.

The rule for redefinitions means we could use define in some situations to
mean something similar to set!. The meaning is different, though, since an
assignment finds the place associated with the name and puts a new value
in that place. Evaluating an assignment follows the Stateful Evaluation Rule 2
to find the place associated with a name. Hence, (define Name Expression)
has a different meaning from (set! Name Expression) when there is no place
named Name in the current execution environment. To avoid this confusion,
only use define for the first definition of a name and always use set! when the
intent is to change the value associated with a name.

Application. The final rule that must change because of mutation is the
application rule for constructed procedures. Instead of using substitution,
the new application rule creates a new environment with a frame containing
places named for the parameters.

Stateful Application Rule 2: Constructed Procedures. To apply a
constructed procedure:

1. Construct a new environment, whose parent is the environment
of the applied procedure.

2. For each procedure parameter, create a place in the frame of
the new environment with the name of the parameter. Evaluate
each operand expression in the environment or the application
and initialize the value in each place to the value of the corre-
sponding operand expression.

3. Evaluate the body of the procedure in the newly created envi-
ronment. The resulting value is the value of the application.

Consider evaluating the application expression (bigger 3 4) where bigger is
the procedure from Example 3.3: (define (bigger a b) (if (> a b) a b))).

To evaluate an application of bigger follow Stateful Application Rule 2. First,
create a new environment. Since bigger was defined in the global environ-
ment, its environment pointer points to the global environment. Hence, the
parent environment for the new environment is the global environment.



Chapter 9. Mutation 211

Next, create places in the new environment’s frame named for the procedure
parameters, a and b. The value in the place associated with a is 3, the value
of the first operand expression. The value in the place associated with b is
4. Figure 9.2 shows the resulting environment. The final step is to evaluate
the body expression, (if (> a b) a b), in the newly created environment. The
values of a and b are found in the application environment.

Figure 9.2. Environment created to evaluate (bigger 3 4).

The new application rule becomes more interesting when we consider proce-
dures that create new procedures. For example, make-adder takes a number
as input and produces as output a procedure:

(define (make-adder v) (lambda (n) (+ n v)))

The environment that results from evaluating (define inc (make-adder 1)) is
shown in Figure 9.3. The name inc has a value that is the procedure result-
ing from the application of (make-adder 1). To evaluate the application, we
follow the application rule above and create a new environment containing a
frame with the parameter name, inc, and its associated operand value, 1.

The result of the application is the value of evaluating its body in this new
environment. Since the body is a lambda expression, it evaluates to a pro-
cedure. That procedure was created in the execution environment that was

Figure 9.3. Environment after evaluating (define inc (make-adder 1)).



212 9.2. Impact of Mutation

Figure 9.4. Environment for evaluating the body of (inc 149).

created to evaluate the application of make-adder , hence, its environment
pointer points to the application environment which contains a place named
inc holding the value 1.

Next, consider evaluating (inc 149). Figure 9.4 illustrates the environment for
evaluating the body of the inc procedure. The evaluation creates a new envi-
ronment with a frame containing the place n and its associated value 149. We
evaluate the body of the procedure, (+ n v), in that environment. The value
of n is found in the execution environment. The value of v is not found there,
so evaluation continues by looking in the parent environment. It contains a
place v containing the value 1.

Exercise 9.1. Devise a Scheme expression that has four possible values de-
pending on the order in which application subexpressions are evaluated.

Exercise 9.2. Draw the environment that results after evaluating:

> (define alpha 0)
> (define beta 1)
> (define update-beta! (lambda () (set! beta (+ alpha 1)))
> (set! alpha 3)
> (update-beta!)
> (set! alpha 4)

Exercise 9.3. Draw the environment that results after evaluating the follow-
ing expressions, and explain what the value of the final expression is. (Hint:
first, rewrite the let expression as an application.)

> (define (make-applier proc) (lambda (x) (proc x))
> (define p (make-applier (lambda (x) (let ((x 2)) x))))
> (p 4)



Chapter 9. Mutation 213

9.3 Mutable Pairs and Lists

The Pair datatype introduced in Chapter 5 is immutable. This means that immutable

once a Pair is created, the values in its cells cannot be changed.2

The MutablePair datatype is a mutable pair. A MutablePair is constructed us-
ing mcons, which is similar to cons but produces a MutablePair. The parts of
a MutablePair can be extracted using the mcar and mcdr procedures, which
behave analogously to the car and cdr procedures. A MutablePair is a distinct
datatype from a Pair; it is an error to apply car to a MutablePair, or to apply
mcar to an immutable Pair.

The MutablePair datatype also provides two procedures that change the val-
ues in the cells of a MutablePair:

set-mcar! : MutablePair× Value→ Void
Replaces the value in the first cell of the MutablePair with the value of
the second input.

set-mcdr! : MutablePair× Value→ Void
Replaces the value in the second cell of the MutablePair with the value
of the second input.

The Void result type indicates that set-mcar! and set-mcdr! do not output any
value.

Here are some interactions using a MutablePair:

> (define pair (mcons 1 2))
> (set-mcar! pair 3)
> pair
(3 . 2)
> (set-mcdr! pair 4)
> pair
(3 . 4)

The set-mcdr! procedure allows us to create a pair where the second cell of
the pair is itself: (set-mcdr! pair pair). This produces the rather frightening
object shown in Figure 9.5.

Figure 9.5. Mutable pair created by evaluating (set-mcdr! pair pair).

2The mutability of standard Pairs is quite a controversial issue. In most Scheme implemen-
tations and the standard definition of Scheme, a standard cons pair is mutable. But, as we will
see later in the section, mutable pairs cause lots of problems. So, the designers of DrScheme de-
cided for Version 4.0 to make the standard Pair datatype immutable and to provide a MutablePair
datatype for use when mutation is needed.



214 9.3. Mutable Pairs and Lists

Every time we apply mcdr to pair , we get the same pair as the output. Hence,
the value of (mcar (mcdr (mcdr (mcdr pair)))) is 3.

We can also create objects that combine mutable and immutable Pairs. For
example, (define mstruct (cons (mcons 1 2) 3)) defines mstruct as an immutable
Pair containing a MutablePair in its first cell. Since the outer Pair is immutable,
we cannot change the objects in its cells. Thus, the second cell of mstruct al-
ways contains the value 3. We can, however, change the values in the cells of
the mutable pair in its first cell. For example, (set-mcar! (car mstruct) 7) re-
places the value in the first cell of the MutablePair in the first cell of mstruct .

Mutable Lists. As we used immutable Pairs to build immutable Lists, we can
use MutablePairs to construct MutableLists. A MutableList is either null or a
MutablePair whose second cell contains a MutableList.

The MutableList type is defined by a library. To use it, evaluate the following
expression: (require scheme/mpair). All of the examples in this chapter as-
sume this expression has been evaluated. This library defines the mlist pro-
cedure that is similar to the list procedure, but produces a MutableList in-
stead of an immutable List. For example, (mlist 1 2 3) produces the structure
shown in Figure 9.6.

Figure 9.6. MutableList created by evaluating (mlist 1 2 3).

Each node in the list is a MutablePair, so we can use the set-mcar! and set-
mcdr! procedures to change the values in the cells.

> (define m1 (mlist 1 2 3))
> (set-mcar! (mcdr m1) 5)
> (set-mcar! (mcdr (mcdr m1)) 0)
> m1
{1 5 0} ; DrScheme denotes MutableLists using curly brackets.

Many of the list procedures from Chapter 5 can be directly translated to work
on mutable lists. For example, we can define mlist-length as:

(define (mlist-length m)
(if (null? m) 0 (+ 1 (mlist-length (mcdr m)))))

As shown in Exercise 9.4, though, we need to be careful when using mcdr to
recurse through a MutableList since structures created with MutablePairs can
include circular pointers.

Exercise 9.4. What does (mlist-length pair) evaluate to for the pair shown in
Figure 9.5?



Chapter 9. Mutation 215

Exercise 9.5. [★] Define a mpair-circular? procedure that takes a MutablePair
as its input and outputs true when the input contains a cycle and false other-
wise.

9.4 Imperative Programming

Mutation enables a style of programming known as imperative programming . imperative programming

Whereas functional programming is concerned with defining procedures that
can be composed to solve a problem, imperative programming is primarily
concerned with modifying state in ways that lead to a state that provides a
solution to a problem.

The main operation in function programming is application. A functional
program applies a series of procedures, passing the outputs of one applica-
tion as the inputs to the next procedure application. With imperative pro-
gramming, the primary operation is assignment (performed by set!, set-mcar! ,
and set-mcdr! in Scheme; but typically by an assignment operator, often := or
=, in languages designed for imperative programming such as Pascal, Algol60,
Java, and Python).

The next subsection presents imperative-style versions of some of the proce-
dures we have seen in previous chapters for manipulating lists. The following
subsection introduces some imperative control structures.

9.4.1 List Mutators

All the procedures for changing the value of a list in Section 5.4.3 actually do
not change any values; instead they construct new lists. When our goal is only
to change some elements in an existing list, this wastes memory constructing
a new list and may require more running time than a procedure that modi-
fies the input list instead. Here, we revisit some of the procedures from Sec-
tion 5.4.3, but instead of producing new lists with the desired property these
procedures modify the input list.

Example 9.2: Mapping. The list-map procedure (from Example 5.4) pro-
duces a new list that is the result of applying the same procedure to every
element in the input list.

(define (list-map f p)
(if (null? p) null (cons (f (car p)) (list-map f (cdr p)))))

Whereas the functional list-map procedure uses cons to build up the output
list, the imperative mlist-map! procedure uses set-car! to mutate the input
list’s elements:



216 9.4. Imperative Programming

(define (mlist-map! f p)
(if (null? p) (void)

(begin (set-mcar! p (f (mcar p)))
(mlist-map! f (mcdr p)))))

The base case uses (void) to evaluate to no value. Unlike list-map, mlist-map!
produces no output but is used for its side effects.

Assuming the procedure passed as f has constant running time, the running
time of the mlist-map! procedure is in Θ(n) where n is the number of ele-
ments in the input list. There will be n recursive applications of mlist-map!
since each one passes in a list one element shorter than the input list, and
each application requires constant time. This is asymptotically the same as
the list-map procedure, but we would expect the actual running time to be
faster since there is no need to construct a new list.

The memory consumed is asymptotically different. The list-map procedure
allocates n new cons cells, so it requires memory in Θ(n) where n is the num-
ber of elements in the input list. The mlist-map! procedure is tail recursive (so
no stack needs to be maintained) and does not allocate any new cons cells, so
it requires constant memory.

Example 9.3: Filtering. The list-filter procedure takes as inputs a test pro-
cedure and a list and outputs a list containing the elements of the input list for
which applying the test procedure evaluates to a true value. In Example 5.5,
we defined list-filter as:

(define (list-filter test p)
(if (null? p) null

(if (test (car p)) (cons (car p) (list-filter test (cdr p)))
(list-filter test (cdr p)))))

An imperative version of list-filter removes the unsatisfying elements from a
mutable list. We define mlist-filter! using set-mcdr! to skip over elements that
should not be included in the filtered list:

(define (mlist-filter! test p)
(if (null? p) null

(begin (set-mcdr! p (mlist-filter! test (mcdr p)))
(if (test (mcar p)) p (mcdr p)))))

Assuming the test procedure has constant running time, the running time
of the mlist-filter! procedure is linear in the length of the input list. As with
mlist-map! , the space used by mlist-filter! is constant, which is better than
the Θ(n) space used by list-filter .

Unlike mlist-map! , mlist-filter! outputs a value. This is needed when the first
element is not in the list. Consider this example:

> (define a (mlist 1 2 3 1 4))
> (mlist-filter! (lambda (x) (> x 1)) a)



Chapter 9. Mutation 217

{2 3 4}

> a
{1 2 3 4}

The value of a still includes the initial 1. There is no way for mlist-filter! to
remove the first element of the list: the set-mcar! and set-mcdr! procedures
only enable us to change what the mutable pair’s components contain.

To avoid this, mlist-filter! should be used with set! to assign the variable to the
resulting mutable list:

(set! a (mlist-filter! (lambda (x) (> x 1)) a))

Example 9.4: Append. The list-append procedure takes as input two lists
and produces a list consisting of the elements of the first list followed by the
elements of the second list. An imperative version of this procedure instead
mutates the first list to contain the elements of both lists.

(define (mlist-append! p q)
(if (null? p) (error "Cannot append to an empty list")

(if (null? (mcdr p)) (set-mcdr! p q)
(mlist-append! (mcdr p) q))))

The mlist-append! procedure produces an error when the first input is null
— this is necessary since if the input is null there is no pair to modify.3

Like list-append, the running time of the mlist-append! procedure is in Θ(n)
where n is the number of elements in the first input list. The list-append pro-
cedure copies the first input list, so its memory use is in Θ(n) where n is the
number of elements in the first input list. The memory use of mlist-append!
is constant: it does not create any new cons cells to append the lists.

Aliasing. Adding mutation makes it possible to define many procedures more
efficiently and compactly, but introduces many new potential pitfalls in pro-
ducing reliable programs. Since our evaluation model now depends on the
environment in which an expression is evaluated, it becomes much harder to
reason about code by itself.

One challenge introduced by mutation is aliasing . There may be different aliasing

ways to refer to the same object. This was true before mutation also, but didn’t
matter since the value of an object never changed. Once object values can
change, however, aliasing can lead to surprising behaviors. For example,

> (define m1 (mlist 1 2 3))
> (define m2 (mlist 4 5 6))
> (mlist-append! m1 m2)

3The mappend! library procedure in DrScheme takes a different approach: when the first in-
put is null it produces the value of the second list as output in this case. This has unexpected
behavior when an expression like (append! a b) is evaluated where the value of a is null since the
value of a is not modified.



218 9.4. Imperative Programming

> (set! m1 (mlist-filter! (lambda (el) (= (modulo el 2) 0)) m1))

The value of m2 was defined as {4 5 6}, and no expressions since then ex-
plicitly modified m2. But, the value of m2 has still changed! It changed be-
cause after evaluating (mlist-append! m1 m2) the m1 object shares cells with
m2. Thus, when the mlist-filter! application changes the value of m1, it also
changes the value of m2 to {4 6}.

The built-in procedure eq? takes as input any two objects and outputs a Boolean.
The result is true if and only if the inputs are the same object. For example,
(eq? 3 3) evaluates to true but (eq? (mcons 1 2) (mcons 1 2)) evaluates to false.
Even though the input pairs have the same value, they are different objects—
mutating one of the pairs does not effect the value of the other pair.

For the earlier mlist-append! example, (eq? m1 m2) evaluates to false since m1
and m2 do not refer to the same object. But, (eq? (mcdr m1) m2) evaluates to
true since the second cell of m1 points to the same object as m2. Evaluating
(set-mcar! m2 3) changes the value of both m1 and m2 since the modified cell
is common to both structures.

Exercise 9.6. Define an imperative-style procedure, mlist-inc! that takes as
input a MutableList of Numbers and modifies the list by adding one to the
value of each element in the list.

Exercise 9.7. [★] Define a procedure mlist-truncate! that takes as input a Mu-
tableList and modifies the list by removing the last element in the list. Specify
carefully the requirements for the input list to your procedure.

Exercise 9.8. [★] Define a procedure mlist-make-circular! that takes as input
a MutableList and modifies the list to be a circular list containing all the ele-
ments in the original list, repeated indefinitely. For example, (mlist-make-
circular! (mlist 3)) should produce the same structure as the circular pair
shown in Figure 9.5.

Exercise 9.9. [★] Define an imperative-style procedure, mlist-reverse! , that re-
verses the elements of a list. Is it possible to implement a mlist-reverse! pro-
cedure that is asymptotically faster than the list-reverse procedure from Ex-
ample 5.4?

Exercise 9.10. [★★] Define a procedure mlist-aliases? that takes as input two
mutable lists and outputs true if and only if there are any mcons cells shared
between the two lists.

9.4.2 Imperative Control Structures

The imperative style of programming makes progress by using assignments to
manipulate state. In many cases, solving a problem requires repeated opera-



Chapter 9. Mutation 219

tions. With functional programming, this is done using recursive definitions.
We make progress towards a base case by passing in different values for the
operands with each recursive application. With imperative programming, we
can make progress by changing state repeatedly without needing to pass in
different operands.

A common control structure in imperative programming is a while loop. A while loop

while loop has a test condition and a body. The test condition is a predicate.
If it evaluates to true, the while loop body is executed. Then, the test con-
dition is evaluated again. The while loop continues to execute until the test
condition evaluates to false.

We can define while as a procedure that takes as input two procedures, a test
procedure and a body procedure, each of which take no parameters. Even
though the test and body procedures take no parameters, they need to be
procedures instead of expressions, since every iteration of the loop should
re-evaluate the test and body expressions of the passed procedures.

(define (while test body)
(if (test)

(begin (body) (while test body))
(void))) ; no result value

We can use the while procedure to implement Fibonacci similarly to the fast-
fibo procedure:

(define (fibo-while n)
(let ((a 1) (b 1))

(while (lambda () (> n 2))
(lambda () (set! b (+ a b))

(set! a (− b a))
(set! n (− n 1))))

b))

The final value of b is the result of the fibo-while procedure. In each iteration,
the body procedure is applied, updating the values of a and b to the next
Fibonacci numbers.

The value assigned to a is computed as (− b a) instead of b. The reason for
this is the previous assignment expression has already changed the value of
b, by adding a to it. Since the next value of a should be the old value of b,
we can find the necessary value by subtracting a. The fact that the value of
a variable can change depending on when it is used often makes imperative
programming trickier than functional programming.

An alternative approach, which would save the need to do subtraction, is to
store the old value in a temporary value. We could use this as the body proce-
dure instead:



220 9.4. Imperative Programming

(lambda ()
(let ((oldb b))

(set! b (+ a b))
(set! a oldb)
(set! n (− n 1))))

Many programming languages provide control constructs similar to the while
procedure defined above. For example, here is a version of the procedure in
the Python programming language:

def fibonacci (n):
a = 1
b = 1
while n > 2:

a, b = b, a + b
n = n− 1

return b

We use Python starting in Chapter 11, although you can probably guess what
most of this procedure means without knowing Python. The most interesting
statement is the double assignment: a, b = b, a + b. This assigns the new value
of a to the old value of b, and the new value of b to the sum of the old values
of a and b. Without the double assignment operator, it would be necessary
to store the old value of b in a new variable so it can be assigned to a after
updating b to the new value.

Exercise 9.11. Define mlist-map! from the previous section using while.

Exercise 9.12. Another common imperative programming structure is a repeat-
until loop. Define a repeat-until procedure that takes two inputs, a body pro-repeat-until

cedure and a test procedure. The procedure should evaluate the body proce-
dure repeatedly, until the test procedure evaluates to a true value. For exam-
ple, using repeat-until we could define factorial as:

(define (factorial n)
(let ((fact 1))

(repeat-until
(lambda () (set! fact (∗ fact n)) (set! n (− n 1)))
(lambda () (< n 1)))

fact))

Exercise 9.13. [★★] Improve the efficiency of the indexing procedures from
Section 8.2.3 by using mutation. Start by defining a mutable binary tree ab-
straction, and use this and the MutableList data type to implement an im-
perative-style insert-into-index! procedure that mutates the input index by
adding a new word-position pair to it. Then, define an efficient merge-index!
procedure that takes two mutable indexes as its inputs and modifies the first
index to incorporate all word occurrences in the second index. Analyze the
impact of your changes on the asymptotic running time.



Chapter 9. Mutation 221

9.5 Summary

Adding the ability to change the value associated with a name complicates
our evaluation rules, but enables simpler and more efficient solutions to many
problems. Mutation allows us to efficiently manipulate larger data structures
since it is not necessary to copy the data structure to make changes to it.

Once we add assignment to our language, the order in which things happen
affects the value of some expressions. Instead of evaluating expressions using
substitution, we now need to always evaluate an expression in a particular
execution environment.

The problem with mutation is that it makes it much tougher to reason about
the meaning of an expression. In the next chapter, we introduce a new kind
of abstraction that packages procedures with the state they manipulate. This
helps manage some of the complexity resulting from mutation by limiting the
places where data may be accessed and modified.


