Introduction to Computing Explorations in Language, Logic, and Machines

David Evans University of Virginia May 2009

Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License

ii

Contents

Con	iputing	1
1.1	Processes, Procedures, and Computers	2
1.2	Measuring Computing Power	4
	1.2.1 Information	4
	1.2.2 Representing Data	10
	1.2.3 Growth of Computing Power	15
1.3	Science, Engineering, and Liberal Art	16
1.4	Summary and Roadmap	20
	1.1 1.2 1.3	1.2.2 Representing Data

Part I Defining Procedures

2	Lan	guage	25
	2.1	Surface Forms and Meanings	25
	2.2	Language Construction	27
	2.3	Production Systems	30
	2.4	Recursive Transition Networks	31
		2.4.1 Subnetworks	33
	2.5	Replacement Grammars	36
3	Prog	gramming	45
	3.1	Problems with Natural Languages	46
	3.2	Programming Languages	48
	3.3	Scheme	50
	3.4	Expressions	51
		3.4.1 Primitives	51
		3.4.2 Application Expressions	54
	3.5	Definitions	57
	3.6	Procedures	58
		3.6.1 Making Procedures	58
		3.6.2 Substitution Model of Evaluation	59
	3.7	Decisions	62
	3.8	Summary	65
4	Ducl	blome and Drocodures	60

4 **Problems and Procedures**

69

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

	4.1	Solving Problems	69
	4.2	Composing Procedures	71
		4.2.1 Procedures as Inputs and Outputs	72
	4.3	Recursive Problem Solving	74
	4.4	Evaluating Recursive Applications	84
		4.4.1 The Evaluation Stack	87
	4.5	Developing Complex Programs	88
		4.5.1 Printing	89
		4.5.2 Tracing	90
	4.6	Summary	96
5	Data	a	99
	5.1	Types	99
	5.2	Pairs	101
		5.2.1 Making Pairs	105
		5.2.2 Triples to Octuples	106
	5.3	· ·	107
	5.4	List Procedures	110
		5.4.1 Procedures that Examine Lists	110
		5.4.2 Generic Accumulators	112
			115
	5.5		120
	5.6		123
	5.7	Summary	137
		-	

Part II Analyzing Procedures

6	Mac	hines	141
	6.1	History of Computing Machines	142
	6.2	Mechanizing Logic	146
		6.2.1 Implementing Logic	146
		6.2.2 Composing Operations	149
		6.2.3 Arithmetic	154
	6.3	Modeling Computing	157
	6.4	Summary	166
	_		
7	Cos	t	169
	7.1	Measuring Cost	170
	7.2	Orders of Growth	175
		7.2.1 Big <i>O</i>	176
		7.2.2 Omega	181
		7.2.3 Theta	183
	7.3	Summary	185

8	Tim	e		187
	8.1	Measu	uring Running Time	187
		8.1.1	Input Size	187
		8.1.2	Running Time	189
		8.1.3	Worst Case Input	190
	8.2	Grow	th Rates	191
		8.2.1	No Growth: Constant Time	192
		8.2.2	Linear Growth	193
		8.2.3	Quadratic Growth	200
		8.2.4	Polynomial Growth	202
		8.2.5	Exponential Growth	205
		8.2.6	Faster than Exponential Growth	207
		8.2.7	Non-terminating Procedures	207
	8.3	Sumn	nary	209
9	Sort	ing an	d Searching	211
9	Sort 9.1	0	d Searching	211 211
9		0	g	
9		Sortin	g	211
9		Sortin 9.1.1	g · · · · · · · · · · · · · · · · · · ·	211 212
9		Sortin 9.1.1 9.1.2	g Best-First Sort Insertion Sort Quicker Sorting	211 212 217
9		Sortin 9.1.1 9.1.2 9.1.3	Best-First Sort	211 212 217 218
9		Sortin 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	g Best-First Sort Insertion Sort Quicker Sorting Binary Trees	211 212 217 218 222
9	9.1	Sortin 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	g Best-First Sort Insertion Sort Quicker Sorting Binary Trees Quicksort	211 212 217 218 222 228
9	9.1	Sortin 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Search	g Best-First Sort Insertion Sort Quicker Sorting Binary Trees Quicksort	211 212 217 218 222 228 230
9	9.1	Sortin 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Search 9.2.1	g Best-First Sort Insertion Sort Quicker Sorting Binary Trees Quicksort Ding Unstructured Searching	211 212 217 218 222 228 230 230 231

Part III Improving Expressiveness

10	Mutation	251
	10.1 Assignment	251
	10.2 Impact of Mutation	253
	10.2.1 Names, Places, Frames, and Environments	255
	10.2.2 Evaluation Rules with State	256
	10.3 Mutable Pairs and Lists	260
	10.4 Imperative Programming	263
	10.4.1 List Mutators	263
	10.4.2 Aliasing	266
	10.4.3 Imperative Control Structures	268
	10.5 Summary	270
	-	

	11.1	Packaging Procedures and State	272
		0.0	272
		-	274
			278
	11 2) 82	279
	11.4		281
			284
	11 3		288
			200 291
	11.7		271
12	Inte	rpreters	293
	12.1	Building Languages	293
			294
		12.2.1 Python Programs	296
		12.2.2 Data Types	300
			303
		12.2.4 Control Statements	304
	12.3	Parser	307
	12.4	Evaluator	309
		12.4.1 Primitives	310
		12.4.2 If Expressions	312
		-	313
		12.4.4 Procedures	315
		12.4.5 Application	316
			317
	12.5		318
13	Lazi		319
		5	319
		5 6	321
		, , , , , , , , , , , , , , , , , , , ,	324
	13.4	Summary	327
14	Type	e Checking	329
		0	330
			331
			333
		1 0 11	336
			339
			345
		,	

Part IV The Limits of Computing

15	Computability	349
	15.1 Mechanizing Reasoning	349
	15.1.1 Russell's Paradox	351
	15.1.2 Gödel's Incompleteness Theorem	353
	15.2 The Halting Problem	354
	15.3 Universality	
	15.4 Proving Non-Computability	
	15.5 Summary	
16	Intractability	367
17	Alternative Computing Models	369
Pa	rt V Programming the Web	
18	Networks	373
19	The World Wide Web	375
20	Web Applications	377
21	Distributed Computing	379

Computing

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

Edsger Dijkstra, 1972 Turing Award Lecture

The first million years of hominid tool development focused on developing tools to amplify, and later mechanize, our physical abilities to enable us to move faster, reach higher, and hit harder. We have developed tools that amplify physical force by the trillions and increase the speeds and distances we can travel by the thousands.

Tools that amplify intellectual abilities are much rarer. While many animals have developed tools to amplify their physical abilities, only humans have developed tools to substantially amplify our intellectual abilities, and it is those advances that have enabled humans to dominate the planet. The first key intellect amplifier was language. Language provided the ability to transmit our thoughts to others, as well as to use our own minds more effectively. The next key intellect amplifier was writing, which enabled the storage and transmission of thoughts over time and distance.

Computing is the ultimate mental amplifier—computers can mechanize any intellectual activity we can imagine. Automatic computing radically changes how humans solve problems, and even the kinds of problems we can imagine solving. Computing has changed the world more than any other invention of the past hundred years, and the power of automatic computing has come to pervade nearly all human endeavors. Yet, we are just at the beginning of the computing revolution; today's computing offers just a glimpse of the potential impact of computing.

There are two reasons why everyone should study computing:

- 1. Nearly all of the most exciting and important technologies of today and tomorrow are driven by computing.
- 2. Understanding computing illuminates deep insights and questions into the nature of our minds, our culture, and our universe.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

Anyone who has submitted a query to Google, watched *Toy Story*, had LASIK eye surgery, made a cell phone call, seen a Cirque Du Soleil show, shopped with a credit card, or microwaved a pizza should be convinced of the first reason. None of these would be possible without the tremendous advances in computing over the past half century.

Although this book will touch on on some exciting applications of computing, our primary focus is on the second reason, which may seem more surprising. Computing changes how we think about problems and how we understand the world. The goal of this book is to teach you that new way of thinking.

1.1 Processes, Procedures, and Computers

information processes Computer science is the study of *information processes*. A process is a sequence of steps. Each step changes the state of the world in some small way, and the result of all the steps produces some goal state. For example, baking a cake, mailing a letter, and planting a tree are all processes. Because they involve physical things like sugar and dirt, however, they are not pure information processes. Computer science focuses on processes that involve abstract information rather than physical things.

> The boundaries between the physical world and pure information processes, however, are often fuzzy. Real computers operate in the physical world: they obtain input through physical means (e.g., a user pressing a key on a keyboard that produces an electrical impulse), and produce physical outputs (e.g., an image displayed on a screen). By focusing on abstract information, instead of the physical ways of representing and manipulating information, we simplify computation to its essence to better enable understanding and reasoning.

procedure A *procedure* is a description of a process. A simple process can be described just by listing the steps. The list of steps is the procedure; the act of following them is the process. If the description can be followed without any thought, we call it a *mechanical procedure*.

For example, here is a procedure for making coffee, adapted from the actual directions that come with a major coffeemaker:

A mathematician is a machine for turning coffee into theorems. Attributed to Paul Erdös

- 1. Lift and open the coffeemaker lid.
- 2. Place a basket-type filter into the filter basket.
- 3. Add the desired amount of coffee and gently shake to level the coffee.
- 4. Fill the decanter with cold, fresh water to the desired capacity.
- 5. Pour the water into the water reservoir.

It may be true that you have to be able to read in order to fill out forms at the DMV, but that's not why we teach children to read. We teach them to read for the higher purpose of allowing them access to beautiful and meaningful ideas. Paul Lockhart, Lockhart's Lament

- 6. Close the lid.
- 7. Place the empty decanter on the warming plate.
- 8. Press the ON button.

Describing processes by just listing steps like this has many limitations. First, natural languages are very imprecise and ambiguous. The steps described rely on the operator knowing lots of unstated assumptions. For example, step three assumes the reader understands the difference between coffee grounds and drinkable coffee, and can correctly infer that this use of "coffee" refers to coffee grounds. Other steps assume the coffeemaker is plugged in to a power outlet and sitting on a flat surface.

One could, of course, add lots more details to our procedure and make the language more precise than this. Even when a lot of effort is put into writing precisely and clearly, however, natural languages such as English are inherently ambiguous. This is why the United States tax code is 3.4 million words long, but lawyers can still spend years arguing over what it really means.

Another problem with this way of describing a procedure is that the size of the description is proportional to the number of steps in the process. This is fine for simple processes that can be executed by humans in a reasonable amount of time, but the processes we want to execute on computers involve trillions of steps. This means we need more efficient ways to describe them than just listing each step one-by-one. The languages we use to program computers provide ways to define long and complex processes with short procedures.

To program computers, we need tools that allow us to describe processes precisely and succinctly. Since the procedures are carried out by a machine, every step needs to be described; we cannot rely on the operator having "common sense" (for example, to know how to fill the coffeemaker with water without explaining that water comes from a faucet, and how to turn the faucet on). Instead, we need mechanical procedures that can be followed without any thinking.

A *computer* is a machine that can:

- 1. Accept input. Input could be entered by a human typing at a keyboard, received over a network, or provided automatically by sensors attached to the computer.
- 2. Execute a mechanical procedure, that is, a procedure where each step can be executed without any thought.
- 3. Produce output. Output could be printed data displayed to a human, but it could also be anything that effects the world outside the computer such as electrical signals that control how a device operates.

If you steal property, you must report its fair market value in your income in the year you steal it unless in the same year, you return it to its rightful owner. Your Federal Income Tax, IRS Publication 17, p. 90.

computer

Computers exist in a wide range of forms, and thousands of computers are hidden in devices we use everyday but don't think of as computers such as cars, phones, TVs, microwave ovens, and access cards. Our primary focus in this book is on *universal computers*, which are computers that can perform *all* possible mechanical computations on discrete inputs except for practical limits on space and time. The next section explains what it discrete inputs means; Chapter 15 explores more precisely what it means for a computer to be universal.

1.2 Measuring Computing Power

For physical machines, we can compare the power of different machines by measuring the amount of mechanical work they can perform within a given amount of time. This power can be captured with units like *horsepower* and *watt*. Physical power is not a very useful measure of computing power, though, since the amount of computing achieved for the same amount of energy varies greatly. Energy is consumed when a computer operates, but consuming energy is not the purpose of using a computer.

The two main properties we can measure about the power of a computing machine are:

- 1. *How much information* it can process?
- 2. *How fast* can it process?

We will defer considering the second property until later (starting with Chapter 7), but consider the first question here.

1.2.1 Information

information Informally, we use *information* to mean knowledge. But to understand information quantitatively, as something we can measure, we need a more precise way to think about information.

The way computer scientists measure information is based on how what is known changes as a result of obtaining the information. The primary unit

bit of information is a *bit*. *One bit* of information *halves* the amount of uncertainty. It is equivalent to answering a "yes" or "no" question, where either answer is equally likely beforehand. Before learning the answer, there were two possibilities; after learning the answer, there is one.

binary question We call a question with two possible answers a *binary question*. Since a bit

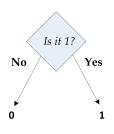
4

universal computers

can have two possible values, we often represent the values as **0** and **1**.

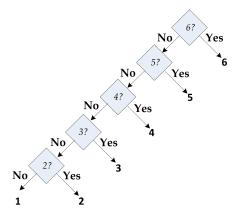
For example, suppose we perform a fair coin toss but do not reveal the result. Half of the time, the coin will land "heads", and the other half of the time the coin will land "tails". Without knowing any more information, our chances of guessing the correct answer are $\frac{1}{2}$. One bit of information would be enough to convey either "heads" or "tails"; we can use **0** to represent "heads" and **1** to represent "tails". So, the amount of information in a coin toss is one bit.

Similarly, one bit of information distinguishes between the values 0 and 1:



Example 1.1: Dice. How many bits of information are there in the outcome of tossing a fair six-sided die?

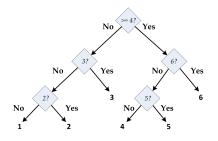
There are six equally likely possible outcomes, so without any more information we have a one in six chance of guessing the correct value. One bit is not enough to identify the actual number, since one bit can only distinguish between two possible values. We could use five binary questions like this:



This is quite inefficient, though, since we need up to five questions to identify the value (and on average, expect to need $3\frac{1}{3}$ questions.

Can we identify the value with fewer than 5 questions?

Our goal is to identify questions where the "yes" and "no" answers are equally likely—that way, each answer provides the most information possible. This is not the case if we start with, "Is the value 6?", since that answer is expected to be "yes" only one time in six. Instead, we should start with a question like, "Is the value at least 4?". Here, we expect the answer to be "yes" one half of the time, and the "yes" and "no" answers are equally likely. If the answer is "yes", we know the result is 4, 5, or 6. With two more bits, we can distinguish between these three values (note that two bits is actually enough to distinguish among *four* different values, so some information is wasted here). Similarly, if the answer to the first question is no, we know the result is 1, 2, or 3. We need two more bits to distinguish which of the three values it is. Thus, with three bits, we can distinguish all six possible outcomes.



Three bits can convey more information that just six possible outcomes, however. In the binary question tree, there are some questions where the answer is not equally likely to be "yes" and "no" (for example, we expect the answer to "Is the value 3?" to be "yes" only one out of three times). Hence, we are not obtaining a full bit of information with each question.

Each bit doubles the number of possibilities we can distinguish, so with three bits we can distinguish between 2 * 2 * 2 = 8 possibilities. In general, with *n* bits, we can distinguish between 2^n possibilities. Conversely, distinguishing among *k* possible values requires $\log_2 k$ bits. The *logarithm* is defined such that if $a = b^c$ then $\log_b a = c$. Since each bit has two possibilities, we use the logarithm base 2 to determine the number of bits needed to distinguish among a set of distinct possibilities. For our six-sided die, $\log_2 6 \approx 2.58$, so we need ≈ 2.58 binary questions. But, questions are discrete: we don't know how to ask $\frac{58}{100}$ th s of a question, so we need to use three binary questions.

Trees. Figure 1.1 depicts a structure of binary questions for distinguishing *binary tree* among eight values. We call this structure a *binary tree*. We will see many useful applications of tree-like structures in this book.

Computer scientists draw trees upside down. The *root* is the top of the tree,

and the *leaves* are the numbers at the bottom (0, 1, 2, ..., 7). There is a unique path from the root of the tree to each leaf. Thus, we can describe each of the eight possible values using the answers to the questions down the tree. For example, if the answers are "No", "No", and "No", we reach the leaf 0; if the answers are "Yes", "No", "Yes", we reach the leaf 5.

We can describe any non-negative integer using bits in this way, by just adding additional levels to the tree. For example, if we wanted to distinguish between 16 possible numbers, we would add a new question, "Is is >= 8?" to the top of the tree. If the answer is "No", we use the tree in Figure 1.1 to distinguish numbers between 0 and 7. If the answer is "Yes", we use a tree similar to the one in Figure 1.1, but add 8 to each of the numbers in the questions and the leaves.

The *depth* of a tree is the length of the longest path from the root to any leaf. *depth* The example tree has depth three. A binary tree of depth d can distinguish up to 2^d different values.

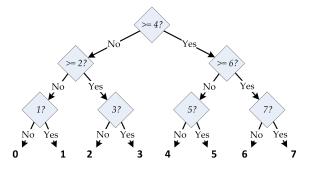


Figure 1.1. Using three bits to distinguish eight possible values.

Units of Information. One *byte* is defined as eight bits. Hence, one byte of information corresponds to eight binary questions, and can distinguish among 2^8 (256) different values. For larger amounts of information, we use metric prefixes, but instead of scaling by factors of 1000 they scale by factors of 2^{10} (1024). Hence, one *kilobyte* is 1024 bytes; one *megabyte* is 2^{20} (approximately one million) bytes; one *gigabyte* is 2^{30} (approximately one billion) bytes; and one *terabyte* is 2^{40} (approximately one trillion) bytes.

Exercise 1.1. Draw a binary tree for distinguishing among the sixteen numbers 0, 1, 2, ..., 15 with the minimum possible depth.

Exercise 1.2. Draw a binary tree for distinguishing among the twelve months of the year with the minimum possible depth.

Exercise 1.3. How many bits are needed:

- a. To uniquely identify any currently living human?
- b. To uniquely identify any human who ever lived?
- c. To identify any location on Earth within one square centimeter?
- **d.** To uniquely identify any atom in the observable universe?

Exercise 1.4. The examples all use binary questions for which there are two possible answers. Suppose instead of basing our decisions on bits, we based it on *trits* where one trit can distinguish between three equally likely values. For each trit, we can ask a ternary question (a question with three possible answers).

- a. [*] How many trits are needed to distinguish among eight possible values? (A convincing answer would show a ternary tree with the questions and answers for each node, and argue why it is not possible to distinguish all the values with a tree of lesser depth.)
- **b.** [*] Devise a general formula for converting between bits and trits. That is, how many trits does it require to describe *b* bits of information?

Exploration 1.1: Guessing Numbers

The guess-a-number game starts with one player (the *chooser*) picking a number between 1 and 100 (inclusive) and secretly writing it down. The other player (the *guesser*) attempts to guess the number. After each guess, the chooser responds with "correct" (the guesser guessed the number and the game is over), "higher" (the actual number is higher than the guess), or "lower" (the actual number is lower than the guess).

- **a.** Explain why the guesser can receive slightly more than one bit of information for each response.
- **b.** Assuming the chooser picks the number randomly (that is, all values between 1 and 100 are equally likely), what are the best first guesses? Explain why these guesses are better than any other guess. (Hint: there are two equally good first guesses.)
- **c.** [★] What is the maximum number of guesses the second player should need to always find the number?
- **d.** [*] What is the average number of guesses needed (assuming the chooser picks the number randomly as before)?
- e. * Suppose instead of picking randomly, the chooser picks the number

with the goal of maximizing the number of guesses the second player will need. What number should she pick?

- f. [**] How should the guesser adjust her strategy if she knows the chooser is picking adversarially?
- **g.** [******] What are the best strategies for both players in the adversarial guessa-number game where chooser's goal is to pick a starting number that maximizes the number of guesses the guesser needs, and the guesser's goal is to guess the number using as few guesses as possible.

Exploration 1.2: Twenty Questions

The two-player game *twenty questions* starts with the first player (the *answerer*) thinking of an object, and declaring if the object is an animal, vegetable, or mineral (meant to include all non-living things). After this, the second player (the *questioner*), asks binary questions to try and guess the object the first player thought of. The first player answers each question "yes" or "no". The website http://www.20q.net/ offers a web-based twenty questions game where a human acts as the answerer and the computer as the questioner. The game is also sold as a \$10 stand-alone toy (shown in the picture).

- **a.** How many different objects can be distinguished by a perfect questioner for the standard twenty questions game?
- **b.** What does it mean for the questioner to play perfectly?
- **c.** Try playing the 20Q game at http://www.20q.net. Did the computer guess your item?
- **d.** Instead of just "yes" and "no", the 20Q game offers four different answers: "Yes", "No", "Sometimes", and "Unknown". (The website version of the game also has "Probably", "Irrelevant", and "Doubtful".) If all four answers were equally likely (and meaningful), how many items could be distinguished in 20 questions?
- e. For an Animal, the first question 20Q asks is "Does it jump?" (note that 20Q will select randomly among a few different first questions). Is this a good first question?
- **f.** [*] How many items do you think 20Q has data for?
- **g.** $[\star\star]$ Speculate on how 20Q could build up its database.

20Q Game Image from ThinkGeek

1.2.2 Representing Data

We can use sequences of bits to represent many kinds of data. All we need to do is think of the right binary questions for which the bits give answers that allow us to represent each possible value. Next, we provide examples showing how bits can be used to represent numbers, poems, and pictures.

Numbers. In the previous section, we saw how to distinguish a set of items using a tree where each node asks a binary question, and the branches correspond to the "Yes" and "No" answers. A more compact way of writing down our decisions following the tree is to use 0 to encode a "No" answer, and 1 to encode a "Yes" answer.

We can describe a path to a leaf by a sequence of 0s and 1s—the "No", "No", "No" path to 0 is encoded as 000, and the "Yes", "No", "Yes" path to 5 is encoded as 101. This is known as the *binary number system*. Whereas the decimal number system uses ten as its base (there are ten decimal digits, and the positional values increase as powers of ten), the binary system uses two as its base (there are two binary digits, and the positional values increase as powers of two).

For example, the binary number 10010110 represents the decimal value 150. As in the decimal number system, the value of each binary digit depends on its position:

Binary:	1	0	0	1	0	1	1	0
Value:	27	26	25	24	2 ³	2 ²	2 ¹	20
Decimal Value:	128	64	32	16	8	4	2	1

There are only 10 types of people in the world: those who understand binary, and those who don't. Infamous T-Shirt

uderstand binary, those who don't. By using more bits, we can represent larger numbers. With enough bits, we can represent any natural number this way. The more bits we have, the larger the set of possible numbers we can represent. As we saw with the binary decision trees, n bits can be used to represent 2^n different numbers.

Discrete Values. We can use a finite sequence of bits to describe *any* value that is selected from a *countable* set of possible values. A set is *countable* if there is a way to assign a unique natural number to each element of the set. All finite sets are countable. Some, but not all, infinite sets are countable. For example, there appear to be more integers than there are natural numbers since for each natural number, *n*, there are two corresponding integers, *n* and -n. But, the integers are in fact countable. We can enumerate the integers as: $0, 1, -1, 2, -2, 3, -3, 4, -4, \ldots$ and assign a unique natural number to each integer in turn.

Other sets, such as the real numbers, are uncountable. Georg Cantor proved *diagonalization* this using a technique known as *diagonalization*. Suppose the real numbers

are enumerable. This means we could list all the real numbers in order, so we could assign a unique integer to each number. For example, considering just the real numbers between 0 and 1, our enumeration might be:

1 .0000000000000... 2 .2500000000000... 3 .33333333333... 4 .666666666666666... 57236 .141592653589793...

Cantor proved by contradiction that there is no way to enumerate all the real numbers. The trick is to produce a new real number that is not part of the enumeration. We can do this by constructing a number whose first digit is different from the first digit of the first number, whose second digit is different from the second digit of the second number, etc. For the example enumeration above, we might choose .1468....

The k^{th} digit of the constructed number is different from the k^{th} digit of the number k in the enumeration. Since the constructed number differs in at least one digit from every enumerated number, it does not match any of the enumerated numbers exactly. Thus, there is a real number that is not included in the enumeration list, and it is impossible to enumerate all the real numbers.

The property that there are more real numbers than natural numbers has important implications for what can and cannot be computed, which we return to in Chapter 15. For now, the important point is that computers can operate on any inputs that are discrete values. Continuous values, such as real numbers, can only be approximated by computers. Next, we consider how two types of data, text and images, can be represented by computers. The first type, text, is discrete and can be represented exactly; images are continuous, and can only be represented approximately.

Text. The set of all possible sequences of characters is countable. One way to see this is to observe that we could give each possible text fragment a unique number, and then use that number to identify the item. For example we could enumerate all texts alphabetically by length (here, we limit the characters to lowercase letters):

a, b, c, ..., z, aa, ab, ..., az, ba, ..., zz, aaa, ...

Since we have seen that we can represent all the natural numbers with a sequence of bits, so once we have the mapping between each item in the set and a unique natural number, we can represent all of the items in the

set. For the representation to be useful, though, we usually need a way to construct the corresponding number for any item directly.

So, instead of enumerating a mapping between all possible character sequences and the natural numbers, we need a process for converting any text to a unique number that represents that text. Suppose we limit our text to characters in the standard English alphabet. If we include lower-case letters (26), upper-case letters (26), and punctuation (space, comma, period, newline, semi-colon), we have 57 different symbols to represent. We can assign a unique number to each symbol, and encode the corresponding number with six bits (this leaves seven values unused since six bits can distinguish 64 values). For example, we could encode the alphabet as:

а	000000	G	100000
b	000001	Н	100001
c	000010		
d	000011	Z	110011
		space	110100
p	001111	,	110101
q	010000	•	110110
		newline	110111
z	011001	;	111000
A	011010	unused	111001
		•••	
F	011111	unused	111111

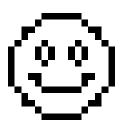
Table 1.1. Encoding characters using bits.

This encoding is not the one typically used by computers. One commonly used encoding known as ASCII (the American Standard Code for Information Interchange) uses seven bits so that 128 different symbols can be encoded. The extra symbols are used to encode more special characters.

With the encoding in Table 1.1, the first bit answers the question, "Is it an uppercase letter after **F** or a special character?". When the first bit is 0, the second bit answers the question, "Is it after **p**?".

Once we have a way of mapping each individual letter to a fixed-length bit sequence, we could write down any poem by just concatenating the bits encoding each letter. So, text that begins "The" would be encoded as 101101000111000100. We could write down text of length *n* that is written in the 57-symbol alphabet using this encoding using 6*n* bits. To convert the number back into text, we just need to invert the mapping, replacing each group of six bits with the corresponding letter.

Rich Data. We can use bit sequences to represent complex data like pictures, movies, and audio recordings too. First, let's consider a simple black and white picture:



Since the picture is divided into discrete squares known as *pixels*, we could *pixel* encode this as a sequence of bits by using one bit to encode the color of each pixel (for example, using 1 to represent black, and 0 to represent white). This image is 16x16, so has 256 pixels total. We could represent the image using a sequence of 256 bits (starting from the top left corner):

What about complex pictures that are not divided into discrete squares or a fixed number of colors, like Van Gogh's *Starry Night*?

Different wavelengths of electromagnetic radiation have different colors. For example, light with wavelengths between 625 and 730 nanometers appears red. But, each wavelength of light has a slightly different color; for example, light with wavelength 650 nanometers would be a different color (albeit imperceptible to humans) from light of wavelength 650.0000001 nanometers. There are arguably infinitely many different colors, corresponding to different wavelengths of visible light.¹ Since the colors are continuous and not discrete, there is no way to map each color to a unique, finite bit sequence.

On the other hand, the human eye and brain have limits. We cannot actually perceive infinitely many different colors; at some point the wavelengths are close enough that we cannot distinguish them. Ability to distinguish colors varies, but most humans can perceive only a few million different colors. The set of colors that can be distinguished by a typical human is finite; any finite set is countable, so we can map each distinguishable color to a unique bit sequence.

A common way to represent color is to break it into its three primary components (red, green, and blue), and record the intensity of each component. The more bits available to represent a color, the more different colors that can be represented.

Thus, we can represent a picture by recording the approximate color at each point. If space in the universe is continuous, there are infinitely many points. But, as with color, once the points get smaller than a certain size they are imperceptible. We can approximate the picture by dividing the canvas into small regions and sampling the average color of each region. The smaller the sample regions, the more bits we will have and the more detail that will be visible in the image. With enough bits to represent color, and enough sample points, we can represent any image as a sequence of bits.

Summary. We can use sequences of bits to represent any natural number exactly, and hence, represent any member of a countable set using a sequence of bits. The more bits we use the more different values that can be represented; with *n* bits we can represent 2^n different values.

We can also use sequences of bits to represent rich data like images, audio, and video. Since the world we are trying to represent is continuous there are infinitely many possible values, and we cannot represent these objects exactly with any finite sequence of bits. However, since human perception is limited, with enough bits we can represent any of these adequately well. Finding ways to represent data that are both efficient and easy to ma-

¹Whether there are actually infinitely many different colors comes down to the question of whether the space-time of the universe is continuous or discrete. Certainly in our common perception it seems to be continuous—we can imagine dividing any length into two shorter lengths. In reality, this may not be the case at extremely tiny scales. It is not known if time can continue to be subdivided below 10^{-40} of a second.

nipulate and interpret is a constant challenge in computing. Manipulating sequences of bits is awkward, so we need ways of thinking about bit-level representations of data at higher levels of abstraction. Chapter 5 focuses on ways to manage complex data.

1.2.3 Growth of Computing Power

The number of bits a computer can store gives an upper limit on the amount of information it can process. Looking at the number of bits different computers can store over time gives us a rough indication of how computing power has increased. Here, we consider two machines: the Apollo Guidance Computer and a modern laptop.

The Apollo Guidance Computer was developed in the early 1960s to control the flight systems of the Apollo spacecraft. It might be considered the first *personal computer*, since it was designed to be used in real-time by a single operator (an astronaut in the Apollo capsule). Most earlier computers required a full room, and were far too expensive to be devoted to a single user; instead, they processed jobs submitted by many users in turn. Since the Apollo Guidance Computer was designed to fit in the Apollo capsule, it needed to be small and light. Its volume was about a cubic foot and it weighed 70 pounds. The AGC was the first computer built using integrated circuits, miniature electronic circuits that can perform simple logical operations such as performing the logical *and* of two values. The AGC used about 4000 integrated circuits, each one being able to perform a single logical operation and costing \$1000. The AGC consumed a significant fraction of all integrated circuits produced in the mid-1960s, and the project spurred the growth of the integrated circuit industry.

The AGC had 552 960 bits of memory (of which only 61 440 bits were modifiable, the rest were fixed). The smallest USB flash memory you can buy today (from SanDisk in December 2008) is the 1 gigabyte Cruzer for \$9.99; 1 gigabyte (GB) is 2³⁰ bytes or approximately 8.6 billion bits, about 140 000 times the amount of memory in the AGC (and all of the Cruzer memory is modifiable). A typical low-end laptop today has 2 gigabytes of RAM (fast memory close to the processor that loses its state when the machine is turned off) and 250 gigabytes of hard disk memory (slow memory that persists when the machine is turned off); for under \$600 today we get a computer with over 4 million times the amount of memory the AGC had.

Improving by a factor of 4 million corresponds to doubling 22 times ($2^22 = 4, 194, 304$). So, the amount of computing power approximately doubled every two years between the AGC in the early 1960s and a modern laptop today (2009). This property of exponential improvement in comput-

Apollo Guidance Computer

AGC User Interface

Murphy's law. Everything gets better and better. Gordon Moore

Moore's law is a violation of ing power is known as Moore's Law. One of the pioneers in integrated circuit technology, Gordon Moore, who co-founded Intel, observed in 1965 than the number of components that can be built in integrated circuits for the same cost was approximately doubling every year (various revisions to Moore's observation have put the doubling rate at approximately 18 months instead of one year). This growth has been driven by the growth of the computing industry, increasing the resources available for designing integrated circuits. Another driver is that today's technology is used to design the next technology generation. Improvement in computing power has followed this exponential growth remarkably closely over the past 40 years, although there is no law, of course, that this growth can continue forever.

> Although our comparison between the AGC and a modern laptop shows an impressive factor of 4 million improvement, it is much slower than Moore's law would suggest. Instead of 22 doublings in power since 1963, there should have been 30 doublings (using the 18 month doubling rate). This would produce an improvement of one billion times instead of just 4 million. The reason is our comparison is very unequal relative to cost: the AGC was the world's most expensive small computer of its time, reflecting many millions of dollars of government funding. Computing power available for similar funding today is well over a billion times more powerful than the AGC.

Science, Engineering, and Liberal Art 1.3

Much ink and many bits have been spent on debating whether computer science is an art, an engineering discipline, or a science. The confusion stems from the nature of computing as a new field that does not fit well into existing silos. In fact, computer science fits well into all three categories, and it is useful to approach computing from all three perspectives.

Science. Traditional science is about understanding nature through observation. The goal of science is to develop general and predictive theories that is, theories that allow us to understand aspects of nature deeply enough to make accurate quantitative predications about them. For example, Newton's law of universal gravitation makes predictions about how masses will move. The more general a theory is the better; a key, as yet unachieved, goal of science is to find a universal law that can describe all physical behavior at scales from the smallest particle to the largest galaxy clusters, and all the bosons, muons, dark matter, and black holes in between. Science deals with real things (like bowling balls, planets, and electrons) and attempts to make progress towards theories that predict how these real things will

behave in different situations.

Computer science typically focuses on artificial things like numbers, graphs, functions, and lists. Instead of dealing with physical things in the real world, most of computer science concerns abstract things in a virtual world. The numbers we use in computations, of course, can represent properties of physical things in the real world, and with enough bits we can model real things with arbitrary precision. But, since our focus is on the abstract, artificial things rather than the real, physical things, computer science is traditionally not a natural science but a more abstract field like mathematics. Like mathematics, computing is an essential tool for modern science, but when we study computing on artificial things it is not a natural science itself.

On the other hand, computing exists all over nature. A long term goal of computer science is to develop theories that allow us to better understand how nature computes. One direct example of computing in nature comes from biology. Complex life exists because nature can perform sophisticated computing. Sometimes people analogize DNA as a "blueprint", but it is really much better thought of as a program. Whereas a blueprint describes what a building should be when it is finished, giving the dimensions of walls and how they fit together, the DNA of an organism needs to encode a process for making that organism. This can be seen most clearly by looking at embryology. In the steps from a single cell to a human baby, the embryo goes through forms that seem to resemble our evolutionary ancestors (see Neil Shubin's *Your Inner Fish* for a wonderful exposition on this).

Surely this is not the most sensible "make-a-human" process if one were designing it from scratch. Thus, the human genome is not a blueprint that describes the body plan of a human, it is a program that turns a single cell into a complex human. The process of evolution (which itself is an information process) produces new programs, and hence new species, through the process of natural selection on mutated DNA sequences. Understanding how both these processes work is one of the most interesting and important open scientific questions, and it involves deep questions in computer science, as well as biology, chemistry, and physics.

The scientific questions we consider in this book focus on the question of what can and cannot be computed. This is both a theoretical question (what can be computed by a given theoretical model of a computer), and a pragmatic one (what can be computed by physical things in our universe). Answering the second question requires deeper understanding of our physical universe (in particular, quantum physics) than is currently known, as well as advances in computer science.

Scientists study the world as it is; engineers create the world that never has been. Theodore von Kármán

Engineering. Engineering is about making useful things. Engineering is that never has been.

often distinguished from crafts in that engineers use scientific principles to create their designs, and focus on designing under practical constraints. As William Wulf (University of Virginia professor and President of the National Academy of Engineering) and George Fisher (CEO of Kodak) wrote:²

Whereas science is analytic in that it strives to understand nature, or what is, engineering is synthetic in that it strives to create. Our own favorite description of what engineers do is "design under constraint". Engineering is creativity constrained by nature, by cost, by concerns of safety, environmental impact, ergonomics, reliability, manufacturability, maintainability—the whole long list of such "ilities". To be sure, the realities of nature is one of the constraint sets we work under, but it is far from the only one, it is seldom the hardest one, and almost never the limiting one.

Computer scientists do not typically face the main constraints faced by civil and mechanical engineers—computer programs are massless, odorless, and tasteless, so the kinds of physical constraints like gravity and tensile strength that impose limits on bridge designs are not relevant to most computer scientists. As we saw from the Apollo Guidance Computer comparison, what practical constraints there are on computing power change rapidly — the one billion times improvement in computing power is unlike any change in physical materials (for example, the highest strength density material available today, carbon nanotubes, are perhaps 300 times stronger than the best material available 50 years ago). Although we may need to worry about manufacturability and maintainability of storage media (such as the disk we use to store a program), our primary focus as computer scientists is on the abstract bits themselves, not how they are stored.

There are, however, many constraints that computer scientists face. A primary constraint is the capacity of the human mind—there is a limit to how much information a human can keep in mind at one time. As computing systems get more complex, there is no way for a human to understand the entire system at once. To build complex systems, we need techniques for managing complexity. The primary tool computer scientists use to manage complexity is *abstraction*. Abstraction is a way of giving a name to something in a way that allows us to hide unnecessary details. By using carefully designed abstractions, we can construct complex systems with reliable properties while limiting the amount of information a human designer needs to keep in mind at any one time.

Liberal Art. The notion of the *liberal arts* emerged during the middle

²William Wulf and George Fisher, A Makeover for Engineering Education, *Issues in Science and Technology*, Spring 2002 (http://www.issues.org/18.3/p_wulf.html).

ages to distinguish education for the purpose of expanding the intellects of free people from the *illiberal arts* such as medicine and carpentry that were pursued for economic purposes. The liberal arts were intended for people who did not need to learn an art to make a living, but instead had the luxury to pursue purely intellectual activities for their own sake. The traditional seven liberal arts started with the *Trivium* (three roads), focused on language (the quotes defining each liberal art are from Sister Miriam Joseph³)

- Grammar "the art of inventing symbols and combining them to express thought"
- Rhetoric "the art of communicating thought from one mind to another, the adaptation of language to circumstance"
- Logic "the art of thinking"

The Trivium was followed by the *Quadrivium* (four roads), focused on numbers:

- Arithmetic "theory of number"
- Geometry "theory of space"
- Music "application of the theory of number"
- Astronomy "application of the theory of space"

All of these have strong connections to computer science, and we will touch on each of them to some degree in this book. Language is essential to computing since we use the tools of language to describe information processes. In Chapter 2, we investigate the structure of language and throughout this book we consider how to efficiently use and combine symbols to express meanings. Rhetoric encompasses communicating thoughts between minds. In computing, we are not typically communicating between minds, but we see many forms of communication between entities - interfaces between components of a program, as well as protocols used to enable multiple computing systems to communicate (for example, the HTTP protocol defines how a web browser and web server interact), and communication between computer programs and humans through their user interfaces. The primary tool for understanding what computer programs mean, and hence, for constructing programs with particular meanings, is logic. Hence, the traditional trivium liberal arts of language and logic permeate computer science.

The connections between computing and the quadrivium arts are also pervasive. We have already seen how computing uses sequences of bits to

Herrad von Landsberg, Septem Artes Liberales

³Miriam Joseph (edited by Marguerite McGlinn), *The Trivium: The Liberal Arts of Logic, Grammar, and Rhetoric,* Paul Dry Books, 2002.

represent numbers, and computing requires fast algorithms for performing arithmetic. In Chapter 6 we cover how machines can perform basic arithmetic operations, and in Chapter 17 we see how numbers can be represented using even more fundamental building blocks and arithmetical primitives can be defined. Geometry is essential for computer graphics, and graph theory is also important for computer networking. The harmonic structures in music have strong connections to the recursive definitions we will see in Chapter 4 and later chapters (see Hofstadter's *Gödel*, *Escher, Bach* for lots of interesting examples of connections between computing and music). Unlike the other six liberal arts, astronomy is not directly connected to computing, but computing is an essential tool for doing modern astronomy.

Hence, although learning about computing qualifies as an illiberal art (that is, it has substantial economic benefits for those who learn it well), computer science also covers at least six of the traditional seven liberal arts.

1.4 Summary and Roadmap

Computer scientists think about problems differently. When confronted with a problem, a computer scientist does not just attempt to solve it. Instead, computer scientists think about a problem as a mapping between its inputs and desired outputs, develop a systematic sequence of steps for solving the problem for any possible input, and consider how the number of steps required to solve the problem scales as the input size increases.

The nature of the computer forces solutions to be expressed precisely in a language the computer can interpret. This means a computer scientist needs to understand how languages work, and exactly what they mean. The next chapter focuses on language. Natural languages like English are too complex and inexact for this, so we need to invent and use new languages that are simpler, more structured, and less ambiguously defined than natural languages.

The computer frees the human from having to actually carry out the steps needed to solve the problem. Without complaint, boredom, or rebellion, it dutifully executes the exact steps the program specifies. And it executes them at a remarkable rate - billions of simple steps in each second on a typical laptop. This changes not just the time it takes to solve a problem, but qualitatively changes the kinds of problems we can solve, and the kinds of solutions worth considering. Problems like sequencing the human genome, simulating the global climate, and making a photomosaic not only could not have been solved without computing, but perhaps could also not have even been envisioned.

The rest of this book presents a whirlwind introduction to computer science. We do not cover any topics in great depth, but rather provide a broad picture of what computer science is, how to think like a computer scientist, and how to solve problems. Much of the book will revolve around three very powerful ideas that are prevalent throughout computing:

Recursive definitions. A recursive definition defines something in terms of smaller instances of itself. This is a powerful way of solving problems by breaking a problem into solving a simple instance of the problem, and showing how to solve a larger instance of the problem by using a solution to a smaller instance. We introduce recursive definitions in how they are used to define infinite languages in Chapter 2, show how they can be used to solve problems in Chapter 4, illustrate how complex data structures can be built from recursive definitions in Chapter 5, and in later chapters see how language interpreters themselves can be defined recursively.

Higher order procedures. Computers are distinguished from other machines in that their behavior can be changed by a program. Programs themselves are just bits though, so we can write programs to generate other programs. With higher order procedures, we treat procedures just like any other data. Procedures can be passed as inputs and generated as outputs. Considering procedures as data is both a powerful problem solving tool, and a useful way of thinking about the power and fundamental limits of computing. We introduce the use of procedures as inputs and outputs in Chapter 4, see how generated procedures can be packaged with state to model objects in Chapter 11, and use procedures at data to reason about the fundamental limits of computing in Chapter 15.

Abstraction. Abstraction is a way of hiding details by giving things names. We use abstraction to manage complexity and to enable things to be reused. Good abstractions hide unnecessary details so they can be used to build complex systems without needing to understand all the details of the abstraction at once. We introduce procedural abstraction in Chapter 4, data abstraction in Chapter 5, abstraction using objects in Chapter 11, and many other examples of abstraction throughout this book.

These themes will recur throughout the rest of the book, as we explore the art and science of how to instruct computing machines to perform useful tasks, reasoning about the resources needed to execute a particular procedure, and understanding the fundamental and practical limits on what computers can do.

Part I

Defining Procedures

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

2 Language

"When I use a word," Humpty Dumpty said, in a rather scornful tone, "it means just what I choose it to mean - nothing more nor less." "The question is," said Alice, "whether you can make words mean so many different things."

Lewis Carroll, Through the Looking Glass

The most powerful tool we have for communication is language. This is true whether we are considering communication between two humans, communication between a human programmer and a computer, or communication between multiple computers. In computing, we use language to describe procedures and use tools to turn descriptions of procedures in language that are easy for humans to read and write into executing processes. This chapter considers what a language is, how language works, and introduces the techniques we will use to define languages.

2.1 Surface Forms and Meanings

A *language* is a set of surface forms, *s*, meanings, *m*, and a mapping between the surface forms in *s* and their associated meanings.¹ In the earliest human languages, the surface forms were sounds. But, the surface forms can be anything that can be perceived by the communicating parties. We will focus on languages where the surface forms are text.

A *natural language* is a language spoken by humans, such as English. Natural languages are very complex since they have evolved over many thousands years of individual and cultural interaction. We will be primarily concerned with designed languages that are created by humans for some deliberate purpose (in particular, languages created for expressing procedures to be executed by computers).

A simple communication system could be described by just listing a table of surface forms and their associated meanings. For example, this table

¹Thanks to Charles Yang for this definition.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

describes a communication system between traffic lights and drivers:

Surface Form	Meaning
Green	Go
Yellow	Caution
Red	Stop

Communication systems involving humans are notoriously imprecise and subjective. A driver and a police officer may disagree on the actual meaning of the *Yellow* symbol, and may even disagree on which symbol is being transmitted by the traffic light at a particular time. Communication systems for computers demand precision: we want to know what our programs will do, so it is important that every step they make is understood precisely and unambiguously. The method of defining a communication system by listing a table of

< Symbol, Meaning >

pairs can work adequately only for trivial communication systems. The number of possible meanings that can be expressed is limited by the number of entries in the table. It is impossible to express any *new* meaning using the communication system: all meanings must already be listed in the table!

Languages and A real language must be able to express *infinitely* many different meanings. *Infinity* This means it must provide infinitely many surface forms; hence, there must be a system for generating new surface forms and a way of inferring the meaning of each generated surface form. No finite representation such as a printed table can contain all the surface forms and meanings in an infinite language.

> One way humans can generate infinitely large sets is to use repeating patterns. For example, most humans would recognize the notation:

1, 2, 3, ...

as the set of all natural numbers. We interpret the "..." as meaning keep doing the same thing for ever. In this case, it means keep adding one to the preceding number. Thus, with only a few numbers and symbols we can describe a set containing infinitely many numbers.

The repeating pattern technique might be sufficient to describe some languages with infinitely many meanings. For example, this table defines an infinite language:

Rotary traffic signal

Surface Form	Meaning
I will run today.	Today, I will run.
I will run the day after today.	One day after today, I will run.
I will run the day after the day after today.	Two days after today, I will run.

Although we can describe some infinite languages in this way, it is entirely unsatisfactory.² The set of surface forms must be produced by simple repetition. Although we can express new meanings using this type of language (for example, we can always add one more "the day after" to the longest previously produced surface form), the new surface forms and associated meanings are very similar to previously known ones.

2.2 Language Construction

To define more expressive infinite languages, we need a richer system for constructing new surface forms and associated meanings. We need ways of describing languages that allow us to describe an infinitely large set of surface forms and meanings with a compact notation. The approach we will use is to define a language by defining a set of rules that produce all strings in the language (and no strings that are not in the language).

A language is composed of:

Components of Language

- *primitives* the smallest units of meaning. A primitive cannot be broken into smaller parts that have relevant meanings.
- *means of combination* rules for building new language elements by combining simpler ones.

In English, the primitives are the smallest meaningful units, known as *morphemes*. The means of combination are rules for building words from morphemes, and for building phrases and sentences from words.

Since we have rules for producing new words not all words are primitives. For example, we can create a new word by adding *anti*- in front of an existing word. The meaning of the new word is (approximately) "against the meaning of the original word".

²Languages that can be defined using simple repeating patterns in this way are known as *regular languages*.

For example, the verb *freeze* means to pass from a liquid state to a solid state; antifreeze is a substance designed to prevent freezing. English speakers who know the meaning of *freeze* and *anti*- could roughly guess the meaning of antifreeze even if they have never heard the word before.³

Note that the primitives are defined as the smallest units of *meaning*, not based on the surface forms. Both *anti* and *freeze* are morphemes; they cannot be broken into smaller parts with meaning. We can break anti- into two syllables, or four letters, but those sub-components do not have meanings that could be combined to produce the meaning of the morpheme.

This property of English means anyone can invent a new word, and use it in communication in ways that will probably be understood by listeners who have never heard the word before. There can be no longest English word, since for whatever word you claim to be the longest, I can create a longer one (for example, by adding *anti*- to the beginning of your word).

Means of In addition to primitives and means of combination, powerful languages Abstraction have an additional type of component that enables economic communication: means of abstraction.

> Means of abstraction allow us to give a simple name to a complex entity. In English, the means of abstraction are *pronouns* like "she", "it", and "they". The meaning of a pronoun depends on the context in which it is used. It abstracts a complex meaning with a simple word. For example, the *it* in the previous sentence abstracts "the meaning of a pronoun", but the *it* in the sentence before that one abstracts "a pronoun". In natural languages, means of abstraction tend to be awkward (English has she and he, but no gender-neutral pronoun for abstracting a person), and confusing (it is often unclear what a particular *it* is abstracting). Languages for programming computers need to have powerful and clear means of abstraction.

> The next three sections introduce three different ways to define languages. The first system, *production systems*, is very powerful⁴ but not widely used for defining languages today because it is too difficult (meaning it can be impossible) to determine if a given string is in the language. The next two, recursive transition networks and replacement grammars are less powerful than production systems, but more useful because they are simpler to reason about.

> We focus on languages where the surface forms can easily be written down

³Guessing that it is a verb meaning to pass from the solid to liquid state would also be reasonable. This shows how imprecise and ambiguous natural languages are; for programming computers, we need the meanings of constructs to be clearly determined.

⁴In fact, it is exactly as powerful as a Turing machine (which we introduce in Chapter 6 and show is equivalent to a different model of computation in Chapter 17).

and interpreted linearly. This means the surface forms will be sequences of characters. A character is a symbol selected from a finite set of symbols known as an *alphabet*. A typical alphabet comprises the letters, numerals, and punctuation symbols used in English. We will refer to a sequence of zero or more characters as a *string*. Hence, our goal in defining the surface forms of a textual language is to define the set of strings in the language. To define a language, we need to define a system that produces all strings in the language, and no other strings. The problem of associating meanings with those strings is much more difficult; we consider it in various ways in later chapters.

Exercise 2.1. $[\star]$ Merriam-Webster's word for the year for 2006 was *truthiness*, a word invented and popularized by Stephen Colbert. Its definition is, "truth that comes from the gut, not books". Identify the morphemes that are used to build *truthiness*, and explain, based on its composition, what *truthiness* should mean.

Exercise 2.2. According to the Guinness Book of World Records, the longest word in the English language is *floccinaucinihilipilification*, meaning "The act or habit of describing or regarding something as worthless".

- **a.** [*] Break *floccinaucinihilipilification* into its morphemes. Show that a speaker familiar with the morphemes could understand the word.
- **b.** [*] Prove Guinness wrong by demonstrating a longer English word. An English speaker (familiar with the morphemes) should be able to deduce the meaning of your word.

Exploration 2.1: Wordsmithing

Embiggening your vocabulary with anticromulent words that ecdysiasts can grok.

- **a.** [*] Invent a new English word by combining common morphemes.
- **b.** [*] Get someone else to use the word you invented.
- **c.** $[\star \star \star]$ Get Merriam-Webster to add your word to their dictionary.

2.3 **Production Systems**

Rule I: $xI ::\Rightarrow xIU$

Production systems were invented by Emil Post, an American logician in the 1920's. A *Post production system* consists of a set of production rules. Each production rule consists of a pattern to match on the left side, and a replacement on the right side. From an initial string, rules that match are applied to produce new strings.

For example, Douglas Hofstadter describes the following Post production system known as the *MIU-system* in *Gödel*, *Escher*, *Bach* (each rule is described first formally, and the quoted text below is paraphrased from the *As for any claims I might make* description from *GEB*):

perhaps the best I can say is that I would have proved Gödel's Theorem in 1921 had I been Gödel. Emil Post, from postcard to Gödel, October 1938.

```
"If you possess a string whose last letter is I, you may produce the string with U added at the end."
Rule II: Mx ::⇒Mxx
"If you have Mx, you may produce Mxx."
Rule III: xIIIy ::⇒xUy
"If III occurs in one of the strings in your collection, you may produce a new string with U in place of III."
Rule IV: xUUy ::⇒xy
"If UU occurs inside your string, you can produce a string with it removed."
```

The rules use the variables x and y to match any sequence of symbols. On the left side of a rule, x means match a sequence of zero or more symbols. On the right side of a rule, x means produce whatever x matched on the left side of the rule. We refer to this process as *binding*. The variable xis initially unbound — it may match any sequence of symbols. Once it is matched, though, it is *bound* and refers to the sequence of symbols that were matched.

For example, consider applying Rule II to MUM. To match Rule II, the first M matches the M at the beginning of the left side of the rule. After that the rule uses x, which is currently unbound. We can bind x to UM to match the rule. The right side of the rule produces Mxx. Since x is bound to UM, the result is MUMUM.

Given these four rules, we can start from a given string and apply the rules to produce new strings. For example, starting from MI we can apply the rules to produce MUIUIU:

1. MI Initial String

- MII 2. Apply Rule II with *x* bound to I
- 3. MIIII Apply Rule II with *x* bound to II
- MIIIIII 4. Apply Rule II with *x* bound to IIII
- 5. MUIIII Apply Rule III with *x* bound to M and *y* bound to IIII
- MUIIIIU Apply Rule I with *x* bound to MUIIII 6.
- 7. MUIUIU Apply Rule III with *x* bound to MUI and *y* bound to IU

At some steps we have many choices about which rule to apply, and what bindings to use when we apply the rule. For example, at step 5 we could have instead bound *x* to MUII and *y* to the empty string to produce MUIIU.

Exercise 2.3. MIU-system productions.

- **a.** \star Using the *MIU-system*, show how M can be derived starting from MI?
- **b.** [*] Using the *MIU-system*, how many different strings can be derived starting from UMI?
- **c.** [*] Using the *MIU-system*, how many different strings can be derived starting from MI?
- **d.** [*] (Based on *GEB*) Using the *MIU-system*, is it possible to produce MU starting from MI?

Exercise 2.4. $[\star]$ Devise a Post production system that can produce all the surface forms in the { "I will run today.", "I will run the day after today.", "I will run the day after the day after today.", ... } language.

Recursive Transition Networks 2.4

Although Post production systems are powerful enough to generate complex languages, they are more awkward to use than we would like. In particular, applying a rule requires making decisions about binding variables in the left side of a rule. This makes it hard to reason about the strings in a language, and hard to determine whether or not a given string is in the language (see Exercise 3). Recursive transition networks (RTNs) are a less Recursive transition networks powerful⁵ way of defining a language, but provide a clearer way of under-

⁵We mean less powerful in a formal sense: there are languages that can be described by a Post production system that cannot be defined by any recursive transition network. Exploration 2.2 discusses the relative power of different language definition mechanisms.

standing the set of strings in a defined language.

A recursive transition network is defined by a graph of nodes and edges. The edges are labeled with output symbols. One of the nodes is designated the start node (indicated by an arrow pointing into that node). One or more of the nodes may be designated as final nodes (indicated by an inner circle). A string is in the language if there exists some path from the start node to a final node in the graph where the output symbols along the path edges produce the string.

For example, Figure 2.1 shows a simple recursive transition network with three nodes and four edges.

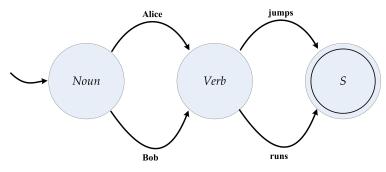


Figure 2.1. Simple recursive transition network.

This network can produce four different sentences. Starting in the node marked *Noun*, we have two possible edges to follow; each edge outputs a different symbol, and leads to the node marked *Verb*. From that node, we have two possible edges, each leading to the node marked *S*, which is a final node. Since there are no edges out of *S*, this ends the string. Hence, we can produce four strings corresponding to the four different paths from the start to final node: "Alice jumps", "Alice runs", "Bob jumps", and "Bob runs".

This way of defining a language is more efficient than just listing all strings in a table, since the number of possible strings increases with the number of possible paths in the graph. For example, adding one more edge from *Noun* to *Verb* with label "Colleen", would add two new strings to the language.

The expressive power of recursive transition networks really increases once we add edges that form cycles in the graph. This is where the *recursive* in the name comes from. Once a graph has a cycle, there are *infinitely* many possible paths through the graph, since we can always go around the cycle one more time. Consider what happens when we add a single edge to the previous network:

32

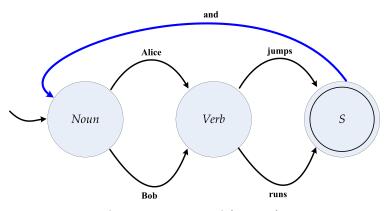


Figure 2.2. RTN with a cycle.

Now, we can produce infinitely many different strings! We can follow the "and" edge back to the *Noun* node, to produce strings like "Alice runs and Bob jumps and Alice jumps and Alice runs" with as many conjuncts as we want.

Exercise 2.5. [*] Draw a recursive transition network that defines the language of the whole numbers: 0, 1, 2,

Exercise 2.6. Recursive transition networks.

- **a.** [*] What is the smallest number of edges needed for a recursive transition network that can produce exactly 8 strings?
- **b.** [*] What is the smallest number of nodes needed for a recursive transition network that can produce exactly 8 strings?
- **c.** [*] What is the smallest number of edges needed for a recursive transition network that can produce exactly *n* strings?

Exercise 2.7. $[\star\star]$ Is it possible to define the language of the *MIU-system* using a recursive transition network? Either draw a network that matches the language produced by the *MIU-system*, or explain what it is impossible to do so.

2.4.1 Subnetworks

In the RTNs we have seen so far, the labels on the output edges are direct outputs known as *terminals*: following an edge just produces the symbol on that edge. We can make more expressive RTNs by allowing edge labels to also name *subnetworks*. A subnetwork is identified by the name of its starting node. When an edge with a subnetwork label is followed, instead of outputting one symbol, the network traversal jumps to the subnetwork node. Then, it can follow any path from that node to a final node. Upon reaching a final node, the network traversal jumps back to complete the edge.

For example, consider the network shown in Figure 2.3. It describes the same language as the RTN in Figure 2.1, but uses subnetworks for *Noun* and *Verb*. To produce a string, we start in the *Sentence* node. The only edge out from *Sentence* is labeled *Noun*. To follow the edge, we jump to the *Noun* node, which is a separate subnetwork. Now, we can follow any path from *Noun* to a final node (in this cases, outputting either "Alice" or "Bob" on the path toward *EndNoun*.

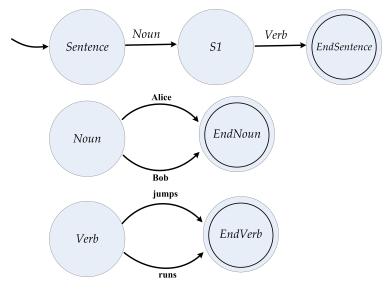


Figure 2.3. Recursive transition network with subnetworks.

Suppose we replace the *Noun* subnetwork with the more interesting version shown in Figure 2.4.

The new subnetwork includes an edge from *Noun* to *N1* labeled with *Noun*. So, if we follow this edge, control jumps back into the *Noun* node, for another path through the *Noun* subnetwork. Starting from *Noun*, we can generate complex phrases like "Alice and Bob" or "Alice and Bob and Alice" (note there are two different paths that generate this phrase).

To keep track of paths through RTNs without subnetworks, a single marker suffices. We can start with the marker on the start node, and move it along the path through each node to the final node. To keep track of paths on

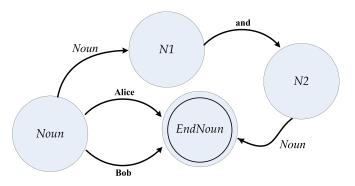


Figure 2.4. Alternate Noun subnetwork.

an RTN with subnetworks, though, is more complicated. We need to keep track of the where we are in the current network, but also where we need to jump to when a final node is reached. Since we can enter subnetworks within subnetworks, we need a way to keep track of arbitrarily many jump points.

A data structure for keeping track of this is known as a *stack*. We can think *stack* of a stack like a stack of trays in a cafeteria. At any point in time, only the *top* tray on the stack can be reached. We can take the top tray off the stack, after which the next tray is now on top. This operation is called *popping* the stack. We can push a new tray on top of the stack, which makes the old top of the stack now one below the new top. This operation is called *pushing*.

Using a stack, we can follow a path through an RTN using this procedure:⁶

- 1. Initially, push the starting node on the stack.
- 2. Pop a node, *N*, off the stack.
- 3. If *N* is a final node, check if the stack is empty. If the stack is empty, **stop**. Otherwise, go back to step 2.
- 4. Select an edge from the RTN that starts from node *N*. Use *D* to represent the destination of that edge, and *s* to output symbol on the edge.
- 5. Push *D* on the stack.
- 6. If *s* is a node (that is, the name of a subnetwork), push *s* on the stack. Otherwise, output *s*.
- 7. Go back to step 2.

For the example, we start by pushing *Sentence* on the stack. In step 2, we pop the stack, so the current node, *N*, is *Sentence*. Since it is not a final node, we do nothing for step 3. In step 4, we choose an edge starting from *Sentence*. There is only one edge to choose, and it leads to the node labeled

⁶For simplicity, this procedure assumes we always stop when a final node is reached. RTNs can have edges out of final nodes (as in Figure 2.2) where it is possible to either stop or continue from a final node.

S1. In step 5, we push *S1* on the stack. The label on the edge is *Noun*, which is a node, so we push *Noun* on the stack. The stack now contains two items: [*Noun*, *S1*]. As directed by step 7, we go back to step 2 and continue by popping the top node, *Noun*, off the stack. It is not a final node, so we continue to step 4, and select the edge from *Noun* to *N1*. Since *N1* is not a final node, we continue to step 5 and push *N1* on the stack. The label on the edge is *Noun*, which is a node, so we push *Noun* on the stack in step 6. At this point, the stack contains three nodes: [*Noun*, *N1*, *S1*].

We continue in the same manner, following the steps in the procedure as we keep track of a path through the network. Next, we pop *Noun*, and select the edge labeled "Alice", pushing *EndNoun* on the stack. Returning to step 2, we pop the *EndNoun*, which is a final node. Now, we are at the point to jump back to where we entered the subnetwork. This is the *N1* node, which is now on top of the stack. Continuing in step 2, we pop *N1*, and follow the edge labeled "and", continuing to node *N2*. This leads to another pass through the *Noun* subnetwork, after which we reach the *EndNoun* node. After continuing to step 3, the stack now contains just [*S1*]. In this manner, we can follow a path through the network, using the stack to keep track of the nodes to return to after finishing each subnetwork.

Exercise 2.8. Traversing RTNs.

- **a.** [★] Show the sequence of stack values used in generating the string "Alice and Bob and Alice runs".
- **b.** [*] Identify a string that cannot be produced with a stack that can hold no more than four elements.

Exercise 2.9. $[\star]$ The procedure given for traversing RTNs assumes that a subnetwork path always stops when a final node is reached. Hence, it cannot follow all possible paths for an RTN where there are edges out of a final node. Describe a procedure that can follow all possible paths, even for RTNs that include edges from final nodes.

2.5 Replacement Grammars

Another way to define a language is to use a grammar.⁷ This is the most common way languages are defined by computer scientists today, and the

⁷You are probably already somewhat familiar with grammars from your time in what was previously known as "grammar school"!

way we will use for the rest of this book.

A *grammar* is a set of rules for generating all strings in the language. The grammars we will use are a simple notation known as *Backus-Naur Form* (BNF). BNF was invented by John Backus in the late 1950s. Backus led efforts at IBM to define and implement Fortran, the first widely used high-level programming language. Fortran enabled computer programs to be written in a language more like familiar algebraic formulas than low-level machine instructions, enabling programs to be written more quickly and reliably (in the next chapter, we describe programming languages and how they are implemented). In defining the Fortran language, Backus and his team used ad hoc English descriptions to define the language. Backus developed the replacement grammar notation to precisely describe the language of a later programming language, Algol (1958). Peter Naur adapted the notation for the report describing the Algol language, and it was subsequently known as Backus-Naur Form at the suggestion of Donald Knuth to recognize both Backus' and Naur's contributions.

Rules in a Backus-Naur Form grammar are of the form:

nonterminal :: \Rightarrow replacement

These rules are similar to Post production rules, except that the left side John Backus of a rule is always a single symbol, known as a *nonterminal* since it can never appear in the final generated string. Whenever we can match the nonterminal on the left side of a rule, we can replace it with what appears on the right side of the matching rule. This method of defining languages is exactly as powerful as recursive transition networks (the follow subsection considers why), but easier to write down.

The right side of a rule contains one or more symbols. These symbols may include nonterminals, which will be replaced using replacement rules before generating the final string. They may also be *terminals*, which are symbols that never appear as the left side of a rule. When we describe grammars, we use *italics* to represent nonterminal symbols, and **bold** to represent terminal symbols. Once a terminal is reached, no more replacements can be done on it.

We can generate a string in the language described by a replacement grammar by starting from a designated start symbol (e.g., *sentence*), and at each step selecting a nonterminal in the working string, and replacing it with the right side of a replacement rule whose left side matches the nonterminal. Unlike Post production systems, there are no variables to bind in BNF grammar rules. We simply look for a nonterminal that matches the left side of a rule.

John Backus

I flunked out every year. I never studied. I hated studying. I was just goofing around. It had the delightful consequence that every year I went to summer school in New Hampshire where I spent the summer sailing and having a nice time. John Backus Here is an example BNF grammar:

1.	Sentenc	$e ::\Rightarrow$	Noun Verb
2.	Noun	$::\Rightarrow$	Alice
3.	Noun	$::\Rightarrow$	Bob
4.	Verb	$::\Rightarrow$	jumps
5.	Verb	::⇒	runs

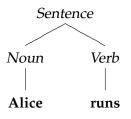
Starting from *Sentence*, we can generate four different sentences using the replacement rules: "Alice jumps", "Alice runs", "Bob jumps", and "Bob runs".

Derivation A *derivation* shows how a grammar generates a given string. Here is the derivation of "Alice runs":

Sentence ::⇒ <u>Noun</u> Verb	using Rule 1
::⇒Alice <u>Verb</u>	replacing Noun using Rule 2
::⇒Alice runs	replacing Verb using Rule 5

Parse Tree We can represent a grammar derivation as a tree, where the root of the tree is the starting nonterminal (*Sentence* in this case), and the leaves of the tree are the terminals that form the derived sentence. Such a tree is known as a *parse tree*.

Here is the parse tree for the derivation of "Alice runs":



From this example, we can see that BNF notation offers some compression over just listing all strings in the language, since a grammar can have multiple replacement rules for each nonterminal. Adding another rule like,

6. Noun $::\Rightarrow$ Colleen

to the grammar would add two new strings ("Colleen runs" and "Colleen jumps") to the language.

The real power of BNF as a compact notation for describing languages, *Recursive Grammars* though, comes once we start adding *recursive* rules to our grammar. A grammar is recursive if there is a way to start from a given nonterminal, and follow a sequence of one or more replacement rules to generate a production that contains the same nonterminal.

Suppose we add the rule,

7. Sentence $::\Rightarrow$ Sentence and Sentence

to our example grammar. Now, how many sentences can we generate?

Infinitely many! For example, we can generate "Alice runs and Bob jumps" and "Alice runs and Bob jumps and Colleen runs". We can also generate "Alice runs and Alice runs and Alice runs", with as many repetitions of "Alice runs" as we want. This is very powerful: it means a compact grammar can be used to define a language containing infinitely many strings.

Example 2.1: Whole Numbers. Here is a grammar that defines the language of the whole numbers (0, 1, ...):

Number	$::\Rightarrow$	Digit MoreDigits
MoreDigits	$::\Rightarrow$	
MoreDigits	$::\Rightarrow$	Number
Digit	$::\Rightarrow$	0
Digit	$::\Rightarrow$	1
Digit	$::\Rightarrow$	2
Digit	$::\Rightarrow$	3
Digit	$::\Rightarrow$	4
Digit	$::\Rightarrow$	5
Digit	$::\Rightarrow$	6
Digit	$::\Rightarrow$	7
Digit	$::\Rightarrow$	8
Digit	$::\Rightarrow$	9

Note that the second rule says we can replace *MoreDigits* with nothing. This is sometimes written as ϵ to make it clear that the replacement is empty:

MoreDigits :: $\Rightarrow \epsilon$

This is a very important rule in the grammar—without it *no* strings could be generated; with it *infinitely* many strings can be generated. The key is that we can only produce a string when all nonterminals in the string have been replaced with terminals. Without the *MoreDigits* :: $\Rightarrow \epsilon$ rule, the only rule we would have with *MoreDigits* on the left side is the third rule:

MoreDigits :: \Rightarrow *Number*

The only rule we have with *Number* on the left side is the first rule, which replaces *Number* with *Digit MoreDigits*. Every time we go through this replacement cycle, we replace *MoreDigits* with *Digit MoreDigits*. We can produce as many *Digits* as we want, but without the *MoreDigits* :: $\Rightarrow \epsilon$ rule we can never stop.

Circular vs. Recursive This is the difference between a *circular* definition, and a *recursive* definition. Without the stopping rule, *MoreDigits* would be defined in a circular way. There is no way to start with *MoreDigits* and generate a production that does not contain *MoreDigits* (or a nonterminal that eventually must produce *MoreDigits*). With the *MoreDigits* ::=> ϵ rule, however, we have a way to produce something terminal from *MoreDigits*. This is known as a *base case* — a rule that turns an otherwise circular definition into a meaningful, recursive definition.

Figure 2.5 shows a parse tree for the derivation of **150** from *Number*.

It is common to have many grammar rules with the same left side nonterminal. For example, the whole numbers grammar has ten rules with *Digit* on the left side to produce the ten terminal digits. Each of these is an alternative rule that can be used when the production string contains the nonterminal *Digit*. A compact notation for these types of rules is to use the vertical bar (|) to separate alternative replacements. For example, we could write the ten *Digit* rules compactly as:

 $Digit :: \Rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

Exercise 2.10. $[\star]$ The grammar for whole numbers is complicated because we do not want to include the empty string in our language. Devise a simpler grammar that defines the language of the whole numbers including the empty string.

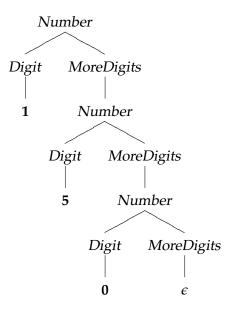


Figure 2.5. Deriviation of 150 from Number.

Exercise 2.11. Suppose we replaced the first rule (*Number* :: \Rightarrow *Digit MoreDigits*) in the whole numbers grammar with this rule:

Number :: \Rightarrow MoreDigits Digit

- **a.** [*] How does this change the parse tree for the derivation of 150 from *Number*? Draw the parse tree that results from the new grammar.
- **b.** [★] Does this change the language? Either show some string that is in the language defined by the modified grammar but not in the original language (or vice versa), or argue that both grammars can generate exactly the same sets of strings.

Exercise 2.12. $[\star]$ The grammar for whole numbers we defined allows strings with non-standard leading zeros such as "000" and "00005". Devise a grammar that produces all whole numbers (including "0"), but no strings with unnecessary leading zeros.

Exercise 2.13. $[\star\star]$ Devise a grammar that defines the language of valid dates (e.g., "December 7, 1941"). Your language should include all valid dates, but no invalid dates (that is, "September 29, 2007" and "February 29, 2008" are in the language, but "February 29, 2009" is not).

Exploration 2.2: Power of Language Systems

We claimed that recursive transition networks and BNF replacement grammars are *equally* powerful. Here, we explain more precisely what that means and prove that the two systems are, in fact, equivalent in power.

First, what does it mean to say two systems are equally powerful? The purpose of a language description mechanism is to define a set of strings comprising a language. Hence, the power of a language description mechanism is determined by the set of languages (that is, a set of sets of strings) it can define.

One approach to consider is counting the number of languages that can be defined. Even the simplest mechanisms can define infinitely many languages, however, so just counting the number of languages does not distinguish well between the different language description mechanisms. For example, even with the table listing all surface forms in the language (as introduced in Section 2.1) we can define infinitely many different languages. There is no limit on the number of entries in the table, so we can always add one more entry containing a new surface form to define a new language. Similarly, we can argue that both RTNs and BNFs can describe infinitely many different languages. We can always add a new edge to an RTN to increase the number of strings in the language, or add a new replacement rule to a BNF that replaces a nonterminal with a new terminal symbol.

Instead, we need to consider the particular languages that each mechanism can define. A system *A* is more powerful that another system *B* if we can use *A* to define every language that can be defined by *B*, and there is some language *L* that can be defined using *A* that cannot be defined using *B*. This matches our intuitive interpretation of *more powerful* — *A* is more powerful than *B* if it can do everything *B* can do and more. The set diagrams in Figure 2.6 depict three possible scenarios.

In the leftmost picture, the set of languages that can be defined by B is a proper subset of the set of languages that can be defined by A. Hence, A is more powerful than B. In the center picture, the sets are equal. This means every language that can be defined by A can also be defined by B, and every language that can be defined by B can also be defined by A, and the systems are equally powerful. In the rightmost picture, there are some elements of A that are not elements of B, but there are also some elements of B that are not elements of A. This means we cannot say either one is

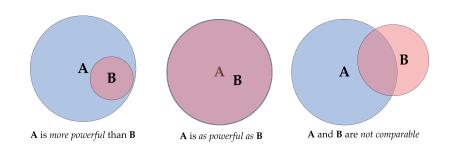


Figure 2.6. System power relationships.

more powerful; *A* can do some things *B* cannot do, and *B* can do some things *A* cannot do.

So, to determine the relationship between RTNs and BNFs, we need to understand if there are languages that can be defined by an RTN that cannot be defined by a BNF and if there are languages that can be defined by a BNF that cannot be defined by an RTN.

First, we will prove that there are no languages that can be defined by a BNF that cannot be defined by an RTN. This is equivalent to showing that *every* language that can be defined by a BNF grammar has a corresponding RTN. Since there are infinitely many languages that can be defined by BNF grammars, we obviously cannot prove this by enumerating each language and showing the corresponding RTN. Instead, we use a proof technique commonly used in computer science: *proof by construction*. We show that given any BNF grammar we can construct a corresponding RTN. That is, define an algorithm that takes as input a BNF grammar, and produces as output an RTN that defines the same language as the input BNF grammar.

Our general strategy is to construct a subnetwork corresponding to each nonterminal. For each rule where the nonterminal is on the left side, the right hand side is converted to a path through that node's subnetwork. Here is our algorithm for converting a BNF grammar to an equivalent RTN:

- 1. For each nonterminal *X* in the grammar, construct two nodes, *StartX* and *EndX*, where *EndX* is a final node. Make the node *StartS* the start node of the RTN, where *S* is the start nonterminal of the grammar.
- 2. For each rule in the grammar, add a corresponding path through the RTN. All BNF rules have the form $X ::\Rightarrow$ *replacement* where X is a nonterminal in the grammar and *replacement* is a sequence of zero or more terminals and nonterminals: $[R_0, R_1, ..., R_n]$.
 - (a) If the replacement is empty, make *StartX* a final node.
 - (b) If the replacement has just one element, R₀, add an edge from *StartX* to *EndX* with edge label R₀.

- (c) Otherwise:
 - i. Add an edge from *StartX* to a new node labeled *X*_{*i*,0} (where *i* identifies the grammar rule), with edge label *R*₀.
 - ii. For each remaining element R_j in the replacement add an edge from $X_{i,j-1}$ to a new node labeled $X_{i,j}$ with edge label R_j . (For example, for element R_1 , a new node $X_{i,1}$ is added, and an edge from $X_{i,0}$ to $X_{i,1}$ with edge label R_1 .)
 - iii. Add an edge from $X_{i,n-1}$ to EndX with edge label R_n .

Following this procedure, we can convert any BNF grammar into an RTN that defines the same language. Hence, we have proved that RTNs are at least as powerful as BNF grammars.

To complete the proof that BNF grammars and RTNs are equally powerful ways of defining languages, we also need to show that a BNF can define every language that can be defined using an RTN. This part of the proof can be done using a similar strategy: by showing a procedure that can be used to construct a BNF equivalent to any input RTN. We leave the details as an exercise for especially ambitious readers.

- **a.** [*] Prove that BNF grammars are not more powerful than Post production systems.
- b. [★] Prove that BNF grammars are as powerful as RTNs by devising a procedure that can construct a BNF grammar that defines the same language as any input RTN.

B Programming

The Analytical Engine has no pretensions whatever to originate any thing. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths. Its province is to assist us in making available what we are already acquainted with.

Augusta Ada, Countess of Lovelace, in *Notes on the Analytical Engine*, 1843

What distinguishes a computer from other tools is its *programmability*. Without a program, a computer is an overpriced and not very effective door stopper. With the right program, though, a computer can be a tool for communicating across the continent, discovering a new molecule that can cure cancer, writing and recording a symphony, or managing the logistics of a retail empire.

Programming is the act of writing instructions that make the computer do something useful. It is an intensely creative activity, involving aspects of art, engineering, and science. Good programs are written to be executed efficiently by computers, but also to be read and understood by humans. The best programs are delightful in ways similar to the best architecture, elegant in both form and function.

The ideal programmer would have the vision of Isaac Newton, the intellect of Albert Einstein, the memory of Joshua Foer, the courage of Amelia Earhart, the determination of Michael Jordan, the pragmatism of Abraham Lincoln, the creativity of Miles Davis, the aesthetic sense of Maya Lin, the wisdom of Benjamin Franklin, the foresight of Garry Kasparov, the hindsight of Edward Gibbon, the writing talents of William Shakespeare, the oratorical skills of Martin Luther King, the audacity of John Roebling, the humility of Socrates, and the self-confidence of Grace Hopper.

Fortunately, it is not necessary to possess all of those rare qualities to be a good programmer! Indeed, anyone who is able to master the intellectual challenge of learning a language (which, presumably, anyone who has gotten this far has done at least for English) can become a good programmer. Since programming is a new way of thinking, many people find it challenging and even frustrating at first. Because the computer does exactly what

Golden Gate Bridge

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

it is told, any small mistake in a program may prevent it from working as intended. With a bit of patience and persistence, however, the tedious parts of programming become easier, and you will be able to focus your energies on the fun and creative problem solving parts.

In the previous chapter, we explored the components of language and mechanisms for defining languages. In this chapter, we explain why natural languages are not a satisfactory way for defining procedures and introduce languages for programming computers and how they are used to define procedures.

3.1 **Problems with Natural Languages**

Natural languages, such as English, work adequately (most, but certainly not all, of the time) for human-human communication, but are not wellsuited for human-computer or computer-computer communication. Why can't we use natural languages to program computers?

Next, we survey several of the reasons for this, focusing on specifics from English, although all natural languages suffer from all of these problems to varying degrees.

Complexity. Although English may seem simple to you now, it took many years of intense effort (most of it subconscious) for you to learn it. Despite using it for most of your waking hours for many years (assuming you are a native English speaker), you only know a small fraction of the entire language. The Oxford English Dictionary contains 615,000 words, of which a typical native English speaker knows about 40,000.

Ambiguity. Not only do natural languages have huge numbers of words, most words have many different meanings. To understand which meaning is intended requires knowing the context, and sometimes pure guesswork.

For example, what does it mean to be paid *biweekly*? According to the American Heritage Dictionary¹, *biweekly* has two definitions:

- 1. Happening every two weeks.
- 2. Happening twice a week; semiweekly.

Merriam-Webster's Dictionary² takes the opposite approach:

¹American Heritage, *Dictionary of the English Language* (Fourth Edition), Houghton Mifflin Company, 2007 (http://www.answers.com/biweekly).

²*Merriam-Webster Online*, Merriam-Webster, 2008 (http://www.merriam-webster.com/ dictionary/biweekly).

- 1. occurring twice a week
- 2. occurring every two weeks : fortnightly

So, depending on which definition is intended, someone who is paid biweekly could either be paid once or four times every two weeks! One would not want the correct behavior of a payroll management program to depend on how biweekly is interpreted.

Even if we can agree on the definition of every word, the meaning of a sentence is often ambiguous. Here is one of my favorite examples, taken from the instructions with a shipment of ballistic missiles from the British Admiralty:³

It is necessary for technical reasons that these warheads be stored upside down, that is, with the top at the bottom and the bottom at the top. In order that there be no doubt as to which is the bottom and which is the top, for storage purposes, it will be seen that the bottom of each warhead has been labeled 'TOP'.

Irregularity. Because natural languages evolve over time as different cultures interact and speakers misspeak and listeners mishear, natural languages end up a morass of irregularity. Nearly all grammar rules have exceptions. For example, English has a rule that we can make a word plural by appending an *s*. The new word means "more than one of the original word's meaning". This rule works for most words: *word* \mapsto *words*, *language* \mapsto *languages*, *person* \mapsto *persons*.⁴ It does not work for *all* words, however. The plural of *goose* is *geese* (and *gooses* is not an English word), the plural of *deer* is *deer* (and *deers* is not an English word), and the plural of *beer* is controversial (and may depend on whether you speak American English or Canadian English). These irregularities can be charming for a natural language, but they are a constant source of difficulty for non-native speakers attempting to learn a language. There is no sure way to predict when the rule can be applied, and it is necessary to memorize each of the irregular forms.

Uneconomic. It requires a lot of space to express a complex idea in a natural language. Many superfluous words are needed for grammatical correctness, even though they do not contribute to the desired meaning. Since natural languages evolved for everyday communication, they are not well suited to describing the precise steps and decisions needed in a computer program.

I have made this [letter] longer than usual, only because I have not had the time to make it shorter. Blaise Pascal

³Caren Park, Abandon hope, all ye who enter here..., *The Hummus Report*, May 1988 (http://www.textfiles.com/magazines/HUMUS/humus.005).

⁴Or is it *people*? What is the singular of *people*? What about *peeps*? Can you only have ^{Blaise Pascal} one *peep*?

As an example, consider a procedure for finding the maximum of two numbers. In English, we could describe it like this:

To find the maximum of two numbers, compare them. If the first number is greater than the second number, the maximum is the first number. Otherwise, the maximum is the second number.

Perhaps shorter descriptions are possible, but any much shorter description probably assumes the reader already knows a lot. By contrast, we can express the same steps in the Scheme programming language in very concise way: (**define** (*bigger a b*) (**if** (> a b) a b)). (Don't worry if this doesn't make sense yet—it should by the end of this chapter.)

Limited means of abstraction. Natural languages provide small, fixed sets of pronouns to use as means of abstraction, and the rules for binding pronouns to meanings are often unclear. As discussed in Section 2.2, the means of abstraction available in English are particularly poor. Since programming often involves using simple names to refer to complex things, we need more powerful means of abstraction than natural languages provide.

3.2 Programming Languages

For programming computers, we want languages that are simple, unambiguous, regular, economical, and that provide more powerful means of abstraction. A *programming language* is a language that is designed to be read and written by humans to create programs that can be executed by computers.

Programming languages come in many flavors. It is difficult to simultaneously satisfy all the goals, in particular simplicity is often at odds with economy and powerful means of abstraction. Every feature that is added to a language to increase its expressiveness incurs a cost in reducing simplicity and regularity.

Another reason there are many different programming languages is that they are at different *levels of abstraction*. Some languages provide programmers with detailed control over machine resources, such as selecting a particular location in memory where a value is stored. Other languages hide most of the details of the machine operation from the programmer, allowing them to focus on higher-level actions.

Ultimately, we want a program the computer can execute. This means at the lowest level we need languages the computer can understand directly. At this level, the program is just a sequence of bits encoding machine instructions. Code at this level is not easy for humans to understand or write, but it is easy for a processor to execute quickly. The machine code encodes instructions that direct the processor to take simple actions like moving data from one place to another, performing simple arithmetic, and jumping around to find the next instruction to execute.

For example, the bit sequence 111010111111110 encodes an instruction in the Intel x86 instruction set (used on most PCs) that tells the processor to jump backwards two locations. Since two locations is the amount of space needed to hold this instruction, jumping back two locations actually jumps back to the beginning of this instruction. Hence, it gets stuck running forever without making any progress. The computer's processor is designed to execute very simple instructions like this one. This means each instruction can be executed very quickly. A typical modern processor can execute *billions* of instructions in a single second.⁵

Until the early 1950s, all programming was done at the level of simple instructions. The problem with instructions at this level is that they are not easy for humans to write and understand, and you need many simple instructions before you have a useful program.

In the early 1950s, Admiral Grace Hopper developed the first compilers. A *compiler* is a computer program that generates other programs. It can translate an input program written in a high-level language that is easier for humans to create into a program in a machine-level language that is easier for a computer to execute.

An alternative to a compiler is an interpreter. An *interpreter* is a tool that translates between a higher-level language and a lower-level language, but where a compiler translates an entire program at once and produces a machine language program that can be executed directly, an interpreter interprets the program a small piece at a time while it is running. This has the advantage that we do not have to run a separate tool to compile a program before running it; we can simply enter our program into the interpreter and run it right away. This makes it easy to make small changes to a program and try it again, and to observe the state of our program as it is running.

A disadvantage of using an interpreter instead of a compiler is that because the translation is happening while the program is running, the program may execute much slower than a similar compiled program would. Another advantage of compilers over interpreters is that since the compiler translates the entire program it can also analyze the program for consistency and detect certain types of programming mistakes automatically instead of encountering them when the program is running (or worse, not

Grace Hopper, 1952
Image courtesy Computer History Museum

Nobody believed that I had a running compiler and nobody would touch it. They told me computers could only do arithmetic. Grace Hopper

⁵When a computer is marketed as a "2GHz processor" that means the processor executes 2 billion cycles per second. This does not map directly to the number of instructions it can execute in a second, though, since some instructions take several cycles to execute.

detecting them at all and producing unintended results). This is especially important when writing large, critical programs such as flight control software — we want to detect as many problems as possible in the flight control software before the plane is flying!

3.3 Scheme

For now, we are more concerned with interactive exploration than with performance and detecting errors early, so we use an interpreter instead of a compiler. The programming system we use for the first part of this book is depicted in Figure 3.1.

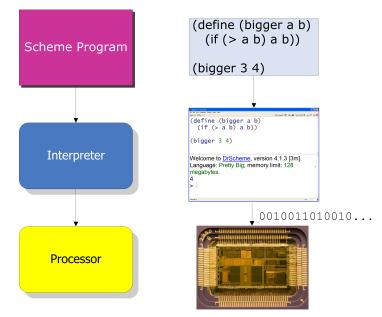


Figure 3.1. Running a Scheme program.

The input to our programming system is a program written in a programming language named *Scheme*.⁶ Scheme was developed at MIT in the 1970s by Guy Steele and Gerald Sussman, based on the LISP programming language that was developed by John McCarthy in the 1950s. A Scheme interpreter interprets a Scheme program and executes it on the machine processor.

Although Scheme is not widely used in industry, it is a great language for learning about computing and programming. The primary advantage of

⁶Originally, it was named "Schemer", but the machine used to develop it only supported 6-letter file names, so the name was shortened to "Scheme".

using Scheme to learn about computing is its simplicity and elegance. The language is simple enough that you will learn nearly the entire language by the end of this chapter (we defer describing a few aspects until Chapter 10), and by the end of this book you will know enough to implement your own Scheme interpreter. By contrast, some programming languages that are widely used in industrial programming such as C++ and Java require thousands of pages to describe, and even the world's experts in those languages do not agree on exactly what all programs mean.

Although almost everything we describe should work in all Scheme interpreters, for the examples in this book we assume the DrScheme programming environment which is freely available from http://www.drscheme.org/. DrScheme includes interpreters for many different languages, so you must select the desired language using the Language menu. The selected language defines the grammar and evaluation rules that will be used to interpret your program. For all the examples in this book, we use the language named Pretty Big.

3.4 Expressions

Scheme programs are composed of expressions and definitions (Section 3.5). An *expression* is a syntactic element that has a *value*. The act of determining the value associated with an expression is called *evaluation*. A Scheme interpreter, such as the one provided in DrScheme, is a machine for evaluating Scheme expressions. If you enter an expression to a Scheme interpreter, it responds by displaying the value of that expression.

Expressions may be primitives. Scheme also provides means of combination for producing complex expressions from simple expressions. The next subsections describe primitive expressions and application expressions. Section 3.6 describes expressions for making procedures and Section 3.7 describes expressions that can be used to make decisions.

3.4.1 Primitives

An expression can be replaced with a primitive:

Expression ::⇒ *PrimitiveExpression*

As with natural languages, primitives are the smallest units of meaning. Hence, the value of a primitive is its pre-defined meaning. Scheme provides many different primitives. Three useful types of primitives are described next: numbers, Booleans, and primitive procedures.

Numbers. Numbers represent numerical values. Scheme provides all the kinds of numbers you are familiar with, and they mean almost exactly what you think they mean.⁷

Example numbers include:

150 0 -12 3.14159 3/4 999999999999999999999

Numbers evaluate to their value. For example, the value of the primitive expression 150 is 150.

Booleans. Booleans represent truth values. There are two primitives for representing true and false:

```
PrimitiveExpression ::\Rightarrow true | false
```

Unsurprisingly, the meaning of *true* is true, and the meaning of *false* is false.⁸

Primitive Procedures. Scheme provides primitive procedures correspond*function* ing to many common functions. Mathematically, a *function* is a mapping from inputs to outputs. A function has a *domain*, the set of all inputs that it accepts. For each input in the domain, there is exactly one associated output. For example, + is a procedure that takes zero or more inputs, each of which must be a number. The output it produces is the sum of the values of the inputs. (We cover how to apply a function in the next subsection.)

Table 3.1 describes some of the primitive procedures.

⁷The details of managing numbers on computers are complex, and we do not consider them here.

⁸In the DrScheme interpreter, #t and #f are used as the primitive truth values; they mean the same thing as *true* and *false*. So, when you evaluate something that evaluates to true, it will appear as #t in the interactions window.

Symbol	Description	Inputs	Output
+	add	zero or more numbers	sum of the input numbers (0 if there are no inputs)
*	multiply	zero or more numbers	product of the input numbers (1 if there are no inputs)
_	subtract	two numbers	the value of the first number minus the value the second number
/	divide	two numbers	the value of the first number divided by the value of the second number
zero?	is zero?	one number	true if the input value is 0, otherwise false
=	is equal to?	two numbers	true if the input values have the same value, otherwise false
<	is less than?	two numbers	true if the first input value has lesser value than the second input value, otherwise false
>	is greater than?	two numbers	true if the first input value has greater value than the second input value, otherwise false
<=	is less than or equal to?	two numbers	true if the first input value is not greater than the second input value, otherwise false
>=	is greater than or equal to?	two numbers	true if the first input value is not less than the second input value, otherwise false

Table 3.1. Selected Scheme Primitive Procedures. All of these primitive procedures operate on numbers. The first four are the basic arithmetic operators; the rest are comparison procedures. Some of these procedures are defined for more inputs than just the ones shown here. For example, the subtract procedure also works on one number, producing its negation.

3.4.2 Application Expressions

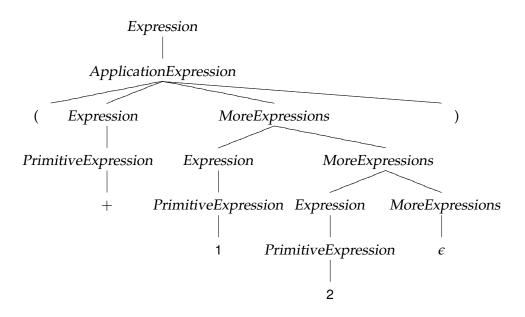
Most of the actual work done by a Scheme program is done by application expressions. The grammar rule for application is:

Expression	$::\Rightarrow$	ApplicationExpression
ApplicationExpression	∷⇒	(Expression MoreExpressions)
MoreExpressions	$::\Rightarrow$	$\epsilon \mid Expression MoreExpressions$

This rule generates a list of one or more expressions surrounded by parentheses. The value of the first expression should be a procedure. All of the primitive procedures are procedures; in Section 3.6, we will see how to create new procedures. The remaining expressions are the inputs to the procedure.

For example, the expression (+12) is an *ApplicationExpression*, consisting of three subexpressions. Although this example is probably simple enough that you can probably guess that it evaluates to 3, we will demonstrate in detail how it is evaluated by breaking down into its subexpressions using the grammar rules. The same process will allow us to understand how *any* expression is evaluated.

Here is a parse tree for the expression (+12):

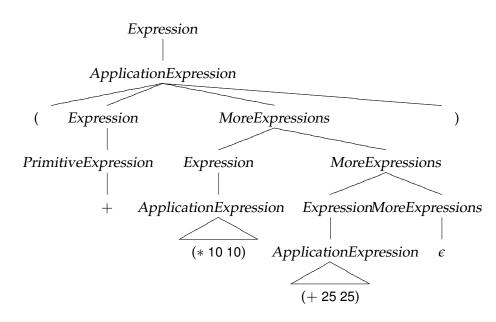


Following the grammar rules, we replace *Expression* with *ApplicationExpression* at the top of the parse tree. Then, we replace *ApplicationExpres-*

sion with (*Expression MoreExpressions*). The *Expression* term is replaced *PrimitiveExpression*, and finally, the primitive addition procedure +. This is the first subexpression of the application, so it is the procedure to be applied. The *MoreExpressions* term produces the two operand expressions: 1 and 2, both of which are primitives that evaluate to their own values. The application expression is evaluated by applying the value of the first expression (the primitive procedure +) to the inputs given by the values of the other expressions. Following the meaning of the primitive procedure, (+ 1 2) evaluates to 3 as expected.

As with any nonterminal, the *Expression* nonterminals in the application expression can be replaced with anything that appears on the right side of an expression rule, including the application expression rule. Hence, we can build up complex expressions like $(+ (* 10 \ 10) \ (+ 25 \ 25))$.

The parse tree is:



This tree is similar to the previous tree, except instead of the subexpressions of the first application expression being simple primitive expressions, they are now application expressions. (Instead of showing the complete parse tree for the nested application expressions, we use triangles.)

To evaluate the output application, we need to evaluate all the subexpressions. The first subexpression, +, evaluates to the primitive procedure. The second subexpression, (* 10 10), evaluates to 100, and the third expression, (+ 25 25), evaluates to 50. Now, we can evaluate the original expression using the values for its three component subexpressions: (+ 100 50) evaluates to 150.

Exercise 3.1. Draw a parse tree for the Scheme expression

$$(+100 (*5 (+55)))$$

and show how it would be evaluated.

Exercise 3.2. Predict how each of the following Scheme expressions is evaluated. After making your prediction, try evaluating the expression in DrScheme. If the result is different from your prediction, explain why the Scheme interpreter evaluates the expression as it does.

a. 150
b. (+ 150)
c. (+ (+ 100 50) (* 2 0))
d. (= (+ 100 50) (* 15 (+ 5 5)))
e. (zero? (- 150 (+ 50 50 (+ 25 25))))
f. +
g. [*] (+ + <)

Exercise 3.3. For each problem, construct a Scheme expression that calculates the result and try evaluating it in DrScheme.

- **a.** How many seconds are there in a year?
- **b.** For how many seconds have you been alive?
- c. For what fraction of your life have you been in school?

Exercise 3.4. Construct a Scheme expression to calculate the distance in inches that light travels during the time it takes the processor in your computer to execute one cycle. Hint: A meter is defined as the distance light travels in 1/299792458th of a second in a vacuum. One meter is 100 centimeters, and one inch is defined as 2.54 centimeters. Your processor speed is probably given in *gigahertz* (GHz), which are 1,000,000,000 hertz. One hertz means once per second, so 1GHz means the processor executes 1,000,000,000 cycles per second. On a Windows machine, you can find the speed of your processor by opening the Control Panel (select it from the Start menu) and selecting System. Note that Scheme performs calculations exactly, so the result will be displayed as a fraction. To see a more useful answer, use (*exact->inexact Expression*) to convert the value of the expression to a decimal representation.

3.5 Definitions

Scheme provides a simple, yet powerful, mechanism for abstraction. We can introduce a new name using a definition:

Definition ::⇒ (**define** *Name Expression*)

After a definition, the name in the definition is now associated with the value of the expression in the definition.⁹ A definition is not an expression since it does not evaluate to a value.

A name can be any sequence of letters, digits, and special characters (such as -, >, ?, and !) that starts with a letter or special character. Examples of valid names include *a*, *Ada*, *Augusta-Ada*, *gold49*, *!yuck*, and *yikes!*\%@\#. We don't recommend using some of these names in your programs, however! A good programmer will pick names that are easy to read, pronounce, and remember, and that are not easily confused with other names.

After a name has been bound to a value by a definition, that name may be used in an expression:

Expression ::⇒ NameExpression NameExpression ::⇒ Name

The value of a *NameExpression* is the value associated with the name.

For example, below we define *speed-of-light* to be the speed of light in meters per second, define *seconds-per-hour* to be the number of seconds in an hour, and use them to calculate the speed of light in kilometers per hour:

> (define speed-of-light 299792458)
> speed-of-light
299792458
> (define seconds-per-hour (* 60 60))
> (/ (* speed-of-light seconds-per-hour) 1000)
1079252848 4/5

⁹Alert readers should be worried that we need a more precise definition of the meaning of definitions to know what it means for a value to be associated with a name. This one will serve us well for now, but we will provide a more precise explanation of the meaning of a definition in Chapter 10.

3.6 Procedures

In Chapter 1 we defined a procedure as a description of a process. Scheme provides a way to define procedures that take inputs, carry out a sequence of actions, and produce an output. In Section 3.4.1, we saw that Scheme provides some primitive procedures. To construct complex programs, however, we need to be able to create our own procedures.

Procedures are similar to mathematical functions in that they provide a mapping between inputs and outputs, but they are different from mathematical functions in two key ways:

- State in addition to producing an output, a procedure may access and modify state. This means that even when the same procedure is applied to the same inputs, the output produced may vary. Because mathematical functions do not have external state, when the same function is applied to the same inputs it always produces the same result. State makes procedures much harder to reason about. In particular, it breaks the substitution model of evaluation we introduce in the next section. We will ignore this issue until Chapter 10, and focus until then only on procedures that do not involve any state.
- Resources unlike an ideal mathematical function, which provides an instantaneous and free mapping between inputs and outputs, a procedure requires resources to execute before the output is produced. The most important resources are *space* (memory) and *time*. A procedure may need space to keep track of intermediate results while it is executing. Each step of a procedure requires some time to execute. Predicting how long a procedure will take to execute, and finding the fastest procedure possible for solving some problem, are core problems in computer science. We will consider this throughout this book, and in particular in Chapter 8. Even knowing if a procedure will finish (that is, ever produce an output) is a challenging problem. In Chapter 15 we will see that it is impossible to solve in general.

For the rest of this chapter, however, we will view procedures as idealized mathematical functions: we will consider only procedures that involve no state, and we will not worry about the resources our procedures require.

3.6.1 Making Procedures

Scheme provides a general mechanism for making a procedure:

Expression	$::\Rightarrow$	ProcedureExpression
ProcedureExpression	$::\Rightarrow$	(lambda (Parameters) Expression)
Parameters	$::\Rightarrow$	$\epsilon \mid$ <i>Name Parameters</i>

Evaluating a *ProcedureExpression* produces a procedure that takes as inputs the *Parameters* following the **lambda**.¹⁰ You can think of **lambda** as meaning "make a procedure". The body of the procedure is the *Expression*, which is not evaluated until the procedure is applied.

Note that a *ProcedureExpression* can replace an *Expression*. This means anywhere an *Expression* is used we can create a new procedure. This is very powerful since it means we can use procedures as inputs to other procedures and create procedures that return new procedures as their output!

Here are some example procedures:

- (**lambda** (*x*) (* *x x*)) a procedure that takes one input, and produces the square of the input value as its output.
- (**lambda** (*a b*) (+ *a b*)) a procedure that takes two inputs, and produces the sum of the input values as its output.
- (**lambda** () 0) a procedure that takes no inputs, and produces 0 as its output.
- (lambda (a) (lambda (b) (+ a b))) a procedure that takes one input (a), and produces as its output a procedure that takes one input and produces the sum of that input at *a* as its output. We can think of this procedure as a procedure that makes an adding procedure.

3.6.2 Substitution Model of Evaluation

For a procedure to be useful, we need to apply it. In Section 3.4.2, we saw the syntax and evaluation rule for an *ApplicationExpression* when the procedure to be applied is a primitive procedure. The syntax for applying a constructed procedure is identical to the syntax for applying a primitive procedure:

Expression	$::\Rightarrow$	ApplicationExpression
ApplicationExpression	$::\Rightarrow$	(Expression MoreExpressions)
MoreExpressions	$::\Rightarrow$	$\epsilon \mid Expression MoreExpressions$

¹⁰Scheme uses **lambda** to make a procedure because it is based on LISP which is based on Lambda Calculus (see Chapter 17).

To understand how constructed procedures are evaluated, we need a new evaluation rule. In this case, the first *Expression* evaluates to a procedure that was created using a *ProcedureExpression*, so we can think of the *ApplicationExpression* as:

ApplicationExpression ::⇒ ((lambda (Parameters)Expression) MoreExpressions)

(The underlined part is the replacement for the ProcedureExpression.)

To evaluate the application, we evaluate the *MoreExpressions* in the application expression. These expressions are known as the *operands* of the application. The resulting values are the input to the procedure. There must be exactly one expression in the *MoreExpressions* corresponding to each name in the parameters list. Next, evaluate the expression that is the body of the procedure. Whenever any parameter name is used inside the body expression, the name evaluates to the value of the corresponding input. This is similar to the way binding worked in Post production systems (Section 2.3). When a value is matched with a procedure parameter, that parameter is bound to the value. When the parameter name is evaluated, the result is the bound value.

Example 3.1: Square. Consider evaluating the following expression, which apples the squaring procedure to 2:

((lambda (x) (* x x)) 2)

It is an *ApplicationExpression* where the first sub-expression is the *ProcedureExpression*, (**lambda** (x) (* x x)). To evaluate the application, we evaluate all the subeexpressions and apply the value of the first subexpression to the values of the remaining subexpressions. The first subexpression evaluates to a procedure that takes one parameter named x and has the expression body (* x x). There is one operand expression, the primitive 2, that evaluates to 2.

To evaluate the application we bind the first parameter, x, to the value of the first operand, 2, and evaluate the procedure body, (* x x). After substituting the parameter values, we have (* 2 2). This is an application of the primitive multiplication procedure. Evaluating the application results in the value 4.

The procedure in our example, (lambda (x) (* x x)), is a procedure that takes a number as input and as output produces the square of that number. We can use the definition mechanism (from Section 3.5) to give this procedure a name so we can reuse it:

```
(define square (lambda (x) (* x x)))
```

This defines the name *square* as the procedure. After this, we can use *square* to produce the square of any number:

```
> (square 2)
4
> (square 1/4)
1/16
> (square (square 2))
16
```

Example 3.2: Make adder. For the make an adding procedure example,

```
((lambda (a) (lambda (b) (+ a b))) 3)
```

produces a procedure that adds 3 to its input. Applying that procedure,

```
(((lambda (a) (lambda (b) (+ a b))) 3) 4)
```

evaluates to 7. By using **define**, we can give these procedures sensible names:

(define make-adder (lambda (a) (lambda (b) (+ a b))))

Then,

```
(define add-three (make-adder 3))
```

defines *add-three* as a procedure that takes one parameter and outputs the value of that parameter plus 3.

Abbreviated Procedure Definitions. Since we commonly need to define new procedures, Scheme provides a condensed notation for defining a procedure¹¹:

Definition ::⇒ (define (*Name Parameters*) Expression)

¹¹The condensed notation also includes a begin expression, which is a special form. We will not need the begin expression until we start dealing with procedures that have side-effects. We describe the **begin** special form in Chapter 10.

This incorporates the **lambda** invisibly into the definition, but means exactly the same thing. For example,

(define square (lambda (x) (* x x)))

can be written equivalently as:

(**define** (square x) (* x x))

The two definitions mean exactly the same thing.

Exercise 3.5. Define a procedure, *cube*, that takes one number as input and produces as output the cube of that number.

Exercise 3.6. Define a procedure, *compute-cost*, that takes as input two numbers, the first represents that price of an item, and the second represents the sales tax rate. The output should be the total cost, which is computed as the price of the item plus the sales tax on the item, which is its price times the sales tax rate. For example, (*compute-cost* 13 0.05) should evaluate to 13.65.

3.7 Decisions

We would like to be able to make procedures where the actions taken depend on the input values. For example, we may want a procedure that takes two numbers as inputs and evaluates to the maximum value of the two inputs. To define such a procedure we need a way of making a decision. A *predicate* is a test expression that is used to determine which actions to take next. Scheme provides the **if** expression for determining actions based on a predicate.

The *IfExpression* replacement has three *Expression* terms. For clarity, we give each of them names as denoted by the subscripts:

 $\begin{array}{ll} \textit{Expression} & :: \Rightarrow & \textit{IfExpression} \\ \textit{IfExpression} :: \Rightarrow & (\textbf{if } \textit{Expression}_{\textit{Predicate}} \\ & & \textit{Expression}_{\textit{Consequent}} \\ & & & \textit{Expression}_{\textit{Alternate}}) \end{array}$

The evaluation rule for an *IfExpression* is to first evaluate *Expression*_{Predicate}, the predicate expression. If it evaluates to any non-false value, the value of

the *IfExpression* is the value of *Expression*_{Consequent}, the consequent expression, and the alternate expression is not evaluated at all. If the predicate expression evaluates to false, the value of the *IfExpression* is the value of *Expression*_{Alternate}, the alternate expression, and the consequent expression is not evaluated at all. The predicate expression determines which of the two following expressions is evaluated to produce the value of the *IfExpression*.

Note that if the value of the predicate is *anything* other than false, the consequent expression is used. For example, if the predicate evaluates to true, to a number, or to a procedure the consequent expression is evaluated.

The if-expression is a *special form*. This means that although it looks syntactically identical to an application (that is, it could be an application of a procedure named **if**), it is not evaluated as a normal application would be. Instead, we have a special evaluation rule for if-expressions. The reason a special rule is needed is because we do not want all the subexpressions to be evaluated. With the normal application rule, all the subexpressions are evaluated, and then the procedure resulting from the first subexpression is applied to the values resulting from the others. With the if special form evaluation rule, the predicate expression is always evaluated, but only one of the following subexpressions is evaluated depending on the result of evaluating the predicate expression.

This means an if-expression can evaluate to a value even if evaluating one of its subexpressions would produce an error. For example,

(if (> 3 4) (* + +) 7)

evaluates to 7 even though evaluating the subexpression (* + +) would produce an error. Because of the special evaluation rule for if-expressions, the consequent expression is never evaluated.

Example 3.3: Bigger. Now that we have procedures, decisions, and definitions, we can understand the *bigger* procedure from the beginning of the chapter. The definition,

(**define** (*bigger a b*) (**if** (> *a b*) *a b*))

is a condensed procedure definition. It is equivalent to:

(define *bigger* (lambda (a b) (if (> a b) a b)))

This defines the name *bigger* as the value of evaluating the procedure expression (**lambda** (a b) (**if** (> a b) a b)). This is a procedure that takes two

inputs, named *a* and *b*. Its body is an if-expression with predicate expression (> *a b*). The predicate expression compares the value that is bound to the first parameter, *a*, with the value that is bound to the second parameter, *b*, and evaluates to true if the value of the first parameter is greater, and false otherwise. According to the evaluation rule for an if-expression, if the predicate evaluates to any non-false value (in this case, true), the value of the if-expression is the value of the consequent expression, *a*. If the predicate evaluates to false, the value of the if-expression is the value of the alternate expression, *b*. Hence, our *bigger* procedure takes two numbers as inputs and produces as output the greater of the two inputs.

Exercise 3.7. Follow the evaluation and application rules to evaluate the following Scheme expression:

(bigger 3 4)

where *bigger* is the maximum procedure defined as,

(define *bigger* (lambda (a b) (if (> a b) a b)))

It is very tedious to follow all of the steps (that's why we normally rely on computers to do it!), but worth doing once to make sure you understand the evaluation rules.

Exercise 3.8. Define a procedure, *xor*, that implements the logical exclusive-or operation. The *xor* function takes two inputs, and outputs true if exactly one of those outputs has a true value. Otherwise, it outputs false. For example, (*xor true true*) should evaluate to false and (*xor* (< 3 5) (= 8 8)) should evaluate to true.

Exercise 3.9. Define a procedure, *abs*, that takes a number as input and produces the absolute value of that number as its output. For example, (*abs* 3) should evaluate to 3, (*abs* -150) should evaluate to 150, and (*abs* 0) should evaluate to 0.

Exercise 3.10. [*] Define a procedure, *bigger-magnitude*, that takes two inputs, and produces as output the value of the input with the maximum magnitude (that is, absolute distance from zero). For example,

(bigger-magnitude 5-7)

should evaluate to -7, and

(bigger-magnitude **9** – **3***)*

should evaluate to 9.

Exercise 3.11. [*] Define a procedure, *biggest*, that takes three inputs, and produces as output the maximum value of the three inputs. For example,

(*biggest* **5 7 3**)

should evaluate to 7. Try to find at least two different ways to define *biggest*, one using *bigger*, and one without using it.

3.8 Summary

At this point, we have covered enough of Scheme to write useful programs (even if the programs we have seen so far seem rather dull). In fact (as we will see in Chapter 15), we have covered enough to express *every* possible computation! We just need to combine the constructs we know in more complex ways to perform more interesting computations. The next chapter, and much of the rest of this book, focuses on ways to combine the constructs for making procedures, making decisions, and applying procedures in more powerful ways.

Here we summarize the grammar rules and evaluation rules. Each grammar rule has an associated evaluation rule. This means that any Scheme fragment that can be described by the grammar also has an associated meaning that can be produced by combining the evaluation rules corresponding to the grammar rules.

Program	$::\Rightarrow$	$\epsilon \mid$ ProgramElement Program
ProgramElement	$::\Rightarrow$	Expression Definition

A program is a sequence of expressions and definitions.

Definition $::\Rightarrow$ (define	e Name Expression)
------------------------------------	--------------------

A definition evaluates the expression, and associates the value of the expression with the name.

Definition	::⇒ ((define (Name P	arameters)	Ex	pression))

Abbreviation for (**define** *Name* (**lambda** *Parameters*) *Expression*)

Expression::⇒PrimitiveExpression | NameExpression |ApplicationExpression |ProcedureExpression |ProcedureExpression | IfExpression

The value of the expression is the value of the replacement expression.

PrimitiveExpression $::\Rightarrow$ *Number* | *true* | *false* | *primitive procedure*

Evaluation Rule 1: Primitives. A primitive expression evaluates to its pre-defined value.

NameExpression $::\Rightarrow$ Name

Evaluation Rule 2: Names. A name evaluates to the value associated with that name.

ApplicationExpression :: \Rightarrow (Expression MoreExpressions)

Evaluation Rule 3: Application. To evaluate an application expression:

- a. Evaluate all the subexpressions;
- **b.** Then, **apply** the value of the first subexpression to the values of the remaining subexpressions.

MoreExpressions	$::\Rightarrow$	$\epsilon \mid Expression MoreExpressions$
ProcedureExpression	$::\Rightarrow$	(lambda (Parameters) Expression)

Evaluation Rule 4: Lambda. Lambda expressions evaluate to a procedure that takes the given parameters and has the expression as its body.

Parameters $::\Rightarrow \epsilon \mid Name Parameters$

IfExpression	$::\Rightarrow$	(if Expression _{Predicate}
		Expression _{Consequent} Expression _{Alternate})

Evaluation Rule 5: If. To evaluate an if-expression, (a) evaluate the predicate expression; then, (b) if the value of the predicate expression is a false value then the value of the if-expression is the value of the alternate expression; otherwise, the value of the if-expression is the value of the consequent expression.

The evaluation rule for an application (Rule 3b) uses **apply** to perform the application. We define **apply** using the two application rules:

- **Application Rule 1: Primitives.** If the procedure to apply is a primitive procedure, just do it.
- Application Rule 2: Constructed Procedures. If the procedure to apply is a constructed procedure, evaluate the body of the procedure with each parameter name bound to the corresponding input expression value.

Note that **evaluate** in the Application Rule 2 means use the evaluation rules above to evaluate the expression. Thus, the evaluation rules are defined using the application rules, which are defined using the evaluation rules! This appears to be a circular definition, but as with the grammar examples, it has a base case. There are some expressions we can evaluate without using the application rules (e.g., primitive expressions, name expressions), and some applications we can evaluate without using the evaluation rules (when the procedure to apply is a primitive). Hence, the process of evaluating an expression will sometimes finish and when it does we end with the value of the expression.¹²

¹²This does not guarantee it will *always* finish, however! We will see in some examples in the next chapter where evaluation never finishes.

Problems and Procedures

4

A great discovery solves a great problem, but there is a grain of discovery in the solution of any problem. Your problem may be modest, but if it challenges your curiosity and brings into play your inventive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery. George Pólya, How to Solve It

Computers are tools for performing computations to solve problems. In this chapter, we consider what it means to solve a problem and explore some strategies for constructing procedures that solve problems.

4.1 Solving Problems

Traditionally, a problem is an obstacle to overcome or some question to answer. Once the question is answered or the obstacle circumvented, the problem is solved and we can declare victory and move on to the next one.

When we talk about writing programs to solve problems, though, we usually have a larger goal. We don't just want to solve *one* instance of a problem, we want a procedure that can solve *all* instances of a problem. For example, we don't just want to find the best route between Charlottesville and Washington, we want to find a procedure that can find the best route between any two locations on a map. The inputs to the procedure are the map, the start location, and the end location, and the procedure should generate the best route as its output.¹ There are infinitely many possible inputs that each specify different instances of the problem of finding the best route between two locations on a map; a general solution to the problem is a procedure that can always find the best route for any possible inputs.

A *problem* is defined by its inputs and the desired property of the output. *problem* Recall from Chapter 1 that a procedure is a precise description of a process. To define a procedure that can solve a problem, we need to define a pro-

¹Actually finding a general procedure that does this is a challenging and interesting problem, that we will return to in Chapter 16.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

cedure that takes inputs describing the problem instance and produces a different information process depending on the actual values of its inputs.

A procedure takes zero or more inputs, and produces one output or no outputs², as shown in Figure 4.1.

Figure 4.1. A procedure maps inputs to an output.

Our goal in solving a problem is to devise a procedure that takes inputs that define a problem instance, and produces as output the solution to the problem. This means every application of the procedure must eventually finish evaluating and produce an output value.

algorithm A procedure is guaranteed to always finish is called an *algorithm*. The name algorithm is a Latinization of the name of the Persian mathematician and scientist, Muhammad ibn Mūsā al-Khwārizmī, who published a book in 825 on calculation with Hindu numerals. Al-Khwārizmī was also the responsible for defining algebra.

> Although the name algorithm was not adopted until after al-Khwārizmī's book, algorithms go back much further than that. The ancient Babylonians had algorithms for finding square roots more than 3500 years ago (see Exploration 4.1).

al-Khwārizmī

There is no magic wand for solving all problems, but at its core most problem solving involves breaking problems you do not yet know how to solve into simpler and simpler problems until you find problems simple enough that you already know how to solve them. The trick is to find the right subproblems so that they can be combined to solve the original problem. This approach of solving problems by breaking them into simpler parts is *divide and conquer* known as *divide and conquer*.

> The following sections describe a few techniques for solving problems, and illustrate them with some simple examples. We will use these same problem-solving techniques over and over throughout this book. In these

²Although procedures can produce more than one output, we limit our discussion here to procedures that produce no more than one output. In the next chapter, we introduce ways to construct complex data, so any number of output values can be packaged into a single output.

examples, we limit ourselves to simple data: all of the problems have one or more numbers as their input, and produce one number as output. In the next chapter, we introduce structured data and revisit these problem solving techniques.

4.2 Composing Procedures

One way to divide a problem is to split it into steps where the output of the first step is the input to the second step, and the output of the second step is the solution to the problem. Each step can be defined by one procedure, and the two procedures can be combined to create one procedure that solves the problem.

Figure 4.2 shows a composition of two functions, f and g. The output of f is used as the input to g.

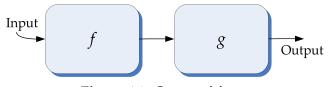


Figure 4.2. Composition.

We can express this composition with the Scheme expression (g (f x)) where x is the input. The written order appears to be reversed from the picture in Figure 4.2. This is because we apply a procedure to the values of its subexpressions: the values of the inner subexpressions must be computed first, and then used as the inputs to the outer applications. So, although f appears to the right of g in the expression, the subexpression (f x) is evaluated first since the evaluation rule for the outer application expression is to first evaluate all the subexpressions.

We can define a procedure that implements the composed procedure by making *x* a parameter:

(define fog (lambda (x) (g (f x))))

This defines *fog* as a procedure that takes one input and produces as output the composition of f and g applied to the input parameter. The works for any two procedures, as long as both procedures take a single input parameter.

For example, we could compose the *square* and *cube* procedures from Chapter 3 as:

(**define** *sixth-power* (**lambda** (*x*) (*cube* (*square x*))))

Then, (*sixth-power* 2) evaluates to 64.

4.2.1 **Procedures as Inputs and Outputs**

So far, all the procedure inputs and outputs we have seen have been numbers. But, the subexpressions of an application can be any expression in*higher-order procedure* is a procedure that takes other procedures as inputs or that produces a procedure as its output. Higherorder procedures give us the ability to write procedures that behave differently based on the procedures that are passed in as inputs.

For example, we can create a generic composition procedure by making *f* and *g* parameters:

(define fog (lambda (f g x) (g (f x))))

The *fog* procedure takes three parameters. The first two are both procedures that take one input. The third parameter is a value that can be the input to the first procedure.

For example,

> (fog square cube 2)
64
> (fog (lambda (x) (+ x 1)) square 2)
9

In the second example the first parameter is the procedure produced by the lambda-expression (**lambda** (x) (+ x 1)). This procedure takes a number as input and produces as output that number plus one. We define *inc* (short for increment) as this procedure:

(define *inc* (lambda (x) (+ x 1)))

A more useful composition procedure would separate the input value, x, from the composition. The *fcompose* procedure takes two procedures as inputs and produces as output a procedure that is their composition:³

³We name our composition procedure *fcompose* to avoid collision with the built-in *compose* procedure that behaves similarly.

(**define** *fcompose* (**lambda** (*f g*) (**lambda** (*x*) (*g* (*f x*)))))

The body of the *fcompose* procedure is a lambda expression that makes a procedure! Hence, the result of applying *fcompose* to two procedures is not a simple value, but a procedure. The resulting procedure can then be applied to a value.

Here are some examples using *fcompose*:

```
> (fcompose inc inc)
#<procedure>
> ((fcompose inc inc) 1)
3
> (define sixth-power (fcompose square cube))
> (sixth-power 3)
729
> (((fcompose inc square) 2)
9
> ((fcompose square inc) 2)
5
```

Note that the order in which procedures are composed matters. For example, (((*fcompose inc square*) 2)) evaluates to 9 since the input is incremented first, then squared; but, ((*fcompose square inc*) 2) evaluates to 5.

Exercise 4.1. Evaluating procedures. For each expression, give the value to which the expression evaluates. Assume *fcompose* and *inc* are defined as above.

- **a.** (*fcompose* (lambda (*x*) (* *x* 2)) (lambda (*x*) (/ *x* 2)))
- **b.** ((*fcompose* (**lambda** (*x*) (* *x* 2)) (**lambda** (*x*) (/ *x* 2))) 150)
- **c.** ((fcompose (fcompose inc inc) inc) 2)

Exercise 4.2. Suppose we define *self-compose* as a procedure that composes a procedure with itself:

(**define** (*self-compose* f) (*fcompose* f f))

Explain how (((fcompose self-compose self-compose) inc) 1) is evaluated.

Exercise 4.3. Define a procedure *fcompose3* that takes three procedures as input, and produces as output a procedure that is the composition of the three input procedures. For example, ((*fcompose3 abs inc square*) –5) should evaluate to 36. Try to define *fcompose3* two different ways: once without using *fcompose*, and once using *fcompose*.

Exercise 4.4. The *fcompose* procedure only works when both input procedure take one input. Define a *f2compose* procedure that composes two procedures where the first procedure takes two inputs, and the second procedure takes one input. For example, ((*f2compose add abs*) 3-5) should evaluate to 2.

4.3 **Recursive Problem Solving**

In the previous section, we used functional composition to break a problem into two procedures that can be composed to produce the desired output. A particularly useful variation on this is when we can break a problem into a smaller version of the original problem.

The goal is to be able to feed the output of one application of the procedure back into the same procedure as its input for the next application, as shown in Figure 4.3.

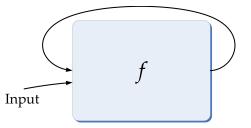


Figure 4.3. Circular Composition.

Here's a corresponding Scheme procedure:

 $(\mathbf{define} f (\mathbf{lambda} (n) (f n)))$

Of course, this doesn't work very well!⁴ Every time an application of f is evaluated, it results in another application of f to evaluate. This never

⁴Curious readers should try entering this definition into a Scheme interpreter and evaluating (f **0**). If you get tired of waiting for an output, in DrScheme you can click the **Stop** button in the upper right corner to interrupt the evaluation.

stops, so no output is ever produced and the interpreter will keep evaluating applications of *f* until it is stopper or runs out of memory.

What we need is a way of making progress and eventually stopping, instead of going around in circles. To make progress, each subsequent application should have a smaller input. Then, the applications can stop when the input to the procedure is simple enough that we know the output directly. This is called the base case, similarly to the grammar rules in Sec- base case tion 2.5. In our grammar examples, the base case involved replacing the nonterminal with nothing (e.g., *MoreDigits* :: $\Rightarrow \epsilon$) or with a terminal (e.g., *Noun* :: \Rightarrow **Alice**). In recursive procedures, the base case will provide a solution for some input for which the problem is so simple we already know the answer. When the input is a number, this is often (but not necessarily) when the input is zero or one.

To define a recursive procedure, we need to use an if-expression to test if the input matches the base case input. If it does, the consequent expression is the known answer for the base case. Otherwise, we enter the recursive case and apply the procedure again but with a different input. Each time we apply the procedure we need to make progress towards reaching the base case. This means, the input has to change in a way that gets closer to the base case input. If the base case is for 0, and the original input is a positive number, one way to get closer to the base case input is to subtract 1 from the input value with each recursive application.

This evaluation spiral is depicted in Figure 4.4. With each subsequent recursive call, the input gets smaller, eventually reaching the base case. For the base case application, a result is returned to the previous application. This is passed back up the spiral to produce the final output.

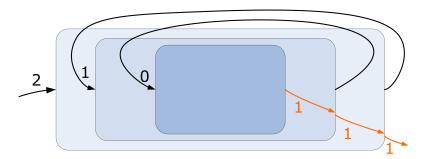


Figure 4.4. Recursive Composition.

Here is the corresponding procedure:

(define *g* (lambda (*n*) (if (= *n* 0) 1 (*g* (- *n* 1)))))

Unlike the earlier circular f procedure, if we apply g to any non-negative integer it will eventually produce an output. For example, consider evaluating (g 2). When we evaluate the first application, the value of the parameter n is 2, so the predicate expression (= n 0) evaluates to false and the value of the procedure body is the value of the alternate expression, (g (- n 1)). The subexpression, (- n 1) evaluates to 1, so the result is the result of applying g to 1. As with the previous application, this leads to the application, (g (- n 1)), but this time the value of n is 1, so (- n 1) evaluates to 0. The next application leads to the application, (g 0). This time, the predicate expression evaluates to true and we have reached the base case. The consequent expression is just 1, so no further applications of g are performed and this is the result of the application (g 0). This is returned as the result of the (g 1) application in the previous recursive call, and then as the output of the original (g 2) application.

We can think of the recursive evaluation as winding until the base case is reached, and then unwinding the outputs back to the original application. For this procedure, the output is not very interesting: no matter what positive number we apply g to, the eventual result is 1. To solve interesting problems with recursive procedures, we need to accumulate results as the recursive applications wind or unwind. Examples 1 and 2 illustrate recursive procedures that accumulate the result during the unwinding process. Example 3 illustrates a recursive procedure that accumulates the result during the winding process.

Example 4.1: Factorial. How many different arrangements are there of a deck of 52 playing cards? The top card in the deck can be any of the 52 cards, so there are 52 possible choices for the top card. The second card can be any of the cards except for the card that is the top card, so there are 51 possible choices for the second card. The third card can be any of the 50 remaining cards, and so on, until the last card for which there is only one choice remaining. To determine the total number of possible arrangements we need to multiply the number of choices for each card:

$$52 * 51 * 50 * \cdots * 2 * 1$$

This is known as the *factorial* function (denoted in mathematics using the exclamation point, e.g., 52!). It is defined as:

$$n! = \begin{cases} 1 & : n = 0\\ n * (n-1)! & : n > 0 \end{cases}$$

The mathematical definition of factorial is recursive, so it is natural that we can define a recursive procedure that computes factorials:

(**define** (*factorial* n) (**if** (= n 0) 1 (* n (*factorial* (- n 1)))))

We can now determine the number of deck arrangements by evaluating *(factorial* 52) to get a sixty-eight digit number starting with an 8.

The *factorial* procedure has structure very similar to our earlier definition of the useless recursive *g* procedure. The only difference is the alternative expression for the if-expression: in *g* we used (g(-n 1)); in *factorial* we added the outer application of *: (* n (factorial (-n 1))). Instead of just evaluating to the result of the recursive application, we are now combining the output of the recursive evaluation with the input *n* using a multiplication application.

Exercise 4.5. How many different ways are there of choosing an unordered 5-card hand from a 52-card deck?

This is an instance of the "*n* choose *k*" problem (also known as the binomial coefficient): how many different ways are there to choose a set of *k* items from *n* items. There are *n* ways to choose the first item, n - 1 ways to choose the second, . . . , and n - k + 1 ways to choose the k^{th} item. But, since the order does not matter, some of these ways are equivalent. The number of possible ways to order the *k* items is *k*!, so we can compute the number of ways to choose *k* items from a set of *n* items as:

$$\frac{n*(n-1)*\cdots*(n-k+1)}{k!} = \frac{n!}{(n-k)!k!}$$
(4.1)

- **a.** [★] Define a procedure *choose* that takes two inputs, *n* (the size of the item set) and *k* (the number of items to choose), and outputs the number of possible ways to choose *k* items from *n*.
- **b.** [*] Compute the number of possible 5-card hands that can be dealt from a 52-card deck.
- c. [*] Compute the likelihood of being dealt a flush (5 cards all of the same suit). In a standard 52-card deck, there are 13 cards of each of the four suits. Hint: divide the number of possible flush hands by the number of possible hands.

Exercise 4.6. When Karl Gauss was in elementary school, his teacher assigned the class the task of summing the integers from 1 to 100 (e.g.,

 $1 + 2 + 3 + \cdots + 100$) to keep them busy. Being the (future) "Prince of Mathematics", Gauss developed the formula for calculating this sum, that is now known as the *Gauss sum*. Had he been a computer scientist, however, and had access to a Scheme interpreter in the late 1700s, he might have instead defined a recursive procedure to solve the problem.

- **a.** [★] Define a recursive procedure, *gauss-sum*, that takes a number *n* as its input parameter, and evaluates to the sum of the integers from 1 to *n* as its output. For example, (*gauss-sum* 100) should evaluate to 5050.
- b. [★] Define a higher-order procedure, *accumulate*, that can be used to make both *gauss-sum* and *factorial*. The *accumulate* procedure should take two inputs: the first is the function used for accumulation (e.g., * for *factorial*, + for *gauss-sum*); the second is the base case value (that is, the value of the function when the input is 0). With your *accumulate* procedure, ((*accumulate* + 0) 100) should evaluate to 5050 and ((*accumulate* * 1) 3) should evaluate to 6.

Hint: since your procedure should produce a procedure as its output, it could start like this:

(define (accumulate f base) (lambda (n)

Example 4.2: Maximum. In Chapter 3, we saw a procedure, *max*, that takes two inputs and evaluates to the greater input. Here, we consider the problem of defining a procedure that takes as its input a procedure, a low value, and a high value, and outputs the maximum value the input procedure produces when applied to an integer value between the low value and high value input. We will name the inputs f, *low*, and *high*. To find the maximum, the *find-maximum* procedure should evaluate the input procedure f at every integer value between the *low* and *high*, and produce as output the greatest value found.

To define the procedure, we need to think about this in a way that allows us to combine results from simpler problems to find the result. For the base case, we need to identify a case so simple we already know the answer. Consider the case when *low* and *high* are equal. Then, there is only one value to use, and we know the value of the maximum is (*f low*). So, the base case is (**if** (= *low high*) (*f low*) ...).

How do we make progress towards the base case? Suppose the value of *high* is equal to the value of *low* plus 1. Then, the maximum value is either the value of (*f low*) or the value of (*f* (+ *low* 1)). We could select it using the *max* procedure:

(max (f low) (f (+ low 1)))

Of course, we can extend this to the case where *high* is equal to the value of *low* plus 2:

(max (f low) (max (f (+ low 1)) (f (+ low 2))))

The second operand for the outer *max* evaluation is the maximum value of the input procedure between the low value plus one and the high value input. If we name the procedure we are defining *find-maximum*, then this is the result of (*find-maximum* f (+ *low* 1) *high*). This works whether *high* is equal to (+ *low* 1), or (+ *low* 2), or any other value greater than *high*! Putting things together, we have our recursive definition of *find-maximum*:

(define (find-maximum f low high) (if (= low high) (f low) (max (f low) (find-maximum f (+ low 1) high)))))

Here are a few examples:

> (find-maximum (lambda (x) x) 1 20)
20
> (find-maximum (lambda (x) (- 10 x)) 1 20)
9
> (find-maximum (lambda (x) (* x (- 10 x))) 1 20)
25

Exercise 4.7. $[\star]$ To find the maximum of a continuous function, we need to evaluate at all numbers in the range, not just the integers. There are infinitely many numbers between any two numbers, however, so this is impossible. We can approximate this, however, by evaluating the function at many numbers in the range.

Define a procedure *find-maximum-continuous* that takes as input a function f, a low range value *low*, a high range value *high*, and an increment *inc*, and produces as output the maximum value of f in the range between *low* and *high* where f is evaluated at *low*, (+ *low inc*), (+ *low inc inc*), ..., *high*.

As the value of increment decreases, we expect to find a more accurate maximum value. For example,

(find-maximum-continuous (lambda (x) (* x (- 5.5 x))) 1 10 1)

should evaluate to 7.5. And,

(*find-maximum-continuous* (**lambda** (*x*) (* *x* (- 5.5 *x*))) 1 10 0.0001)

should evaluate to 7.5625.

Exercise 4.8. $[\star]$ The *find-maximum* procedure we defined evaluates to the maximum value of the input function in the range, but does not provide the input value that produces that maximum output value. Define a procedure that finds the input in the range that produces the maximum output value.

Exercise 4.9. [\star] Define a *find-area* procedure that takes as input a function f, a low range value *low*, a high range value *high*, and an increment *inc*, and produces as output an estimate for the area under the curve produced by the function f between *low* and *high* using the *inc* value to determine how many points to evaluate.

Example 4.3: Euclid's Algorithm. In Book 7 of the *Elements*, Euclid describes an algorithm for finding the greatest common divisor of two nonzero integers. The greatest common divisor is the greatest integer that divides both of the input numbers without leaving any remainder. For example, the greatest common divisor of 150 and 200 is 50 since (/ 150 50) evaluates to 3 and (/ 200 50) evaluates to 4, and there is no number greater than 50 which can divide both 150 and 200 without leaving a remainder.

The *modulo* primitive procedure takes two integers as its inputs and evaluates to the remainder when the first input is divided by the second input. For example, (*modulo* 6 3) evaluates to 0 and (*modulo* 7 3) evaluates to 1.

Euclid's algorithm stems from two properties of integers:

- 1. If (*modulo a b*) evaluates to 0 then *b* is the greatest common divisor of *a* and *b*.
- 2. If (*modulo a b*) evaluates to a non-zero integer *r*, then the greatest common divisor of *a* and *b* is the greatest common divisor of *b* and *r*.

We can define a recursive procedure for finding the greatest common divisor closely following Euclid's algorithm:

```
(define (gcd a b))(if (= (modulo a b) 0)b(gcd b (modulo a b))))
```

The structure of the definition is similar to the *factorial* definition: the procedure body is an if-expression and the predicate tests for the base case. For the *gcd* procedure, the base case corresponds to the first property above. It occurs when *b* divides *a* evenly, and the consequent expression is *b*. The alternate expression, (*gcd b* (*modulo a b*)), is the recursive application.

It differs from the alternate expression in the *factorial* definition in that there is no outer application expression (the * application). We do not need to combine the result of the recursive application with some other value as was done in the *factorial* definition, the result of the recursive application is the final result. Unlike the *factorial* and *find-maximum* examples, the *gcd* procedure produces the result in the base case, and no further computation is necessary to produce the final result. When no further evaluation is necessary to get from the result of the recursive application to the final result, a recursive definition is said to be *tail recursive*.

tail recursive

Exercise 4.10. Show the structure of the applications of *gcd* in evaluating (*gcd* 6 9).

Exercise 4.11. $[\star]$ Provide a convincing argument why the evaluation of (*gcd a b*) will always finish when the inputs are both positive integers.

Exercise 4.12. $[\star]$ Provide an alternate definition of *factorial* that is tail recursive. To be tail recursive, the expression containing the recursive application cannot be part of another application expression.

Hint: define a *factorial-helper* procedure that takes an extra parameter, and then define *factorial* as:

(**define** (*factorial n*) (*factorial-helper n* 1))

Exercise 4.13. [*] Provide an alternate definition of *find-maximum* that is tail recursive.

Exercise 4.14. [******] Provide a convincing argument why it is always possible to transform a recursive procedure into an equivalent procedure that is tail recursive.

Exploration 4.1: Square Roots

One of the earliest known algorithms is a method for computing square roots. It is known as Heron's method after the Greek mathematician Heron of Alexandria who lived in the first century AD who described the method, although it was also known to the Babylonians many centuries earlier. Isaac Newton developed a more general method for estimating functions based on their derivatives known as Netwon's method, of which Heron's method is a specialization.

Square root is a mathematical function that take a number, a, as input and outputs a value x such that $x^2 = a$. For many numbers (for example, 2), the square root is irrational, so the best we can hope for with is a good approximation. In this example, we will define a procedure *find-sqrt* that takes the target number as input and outputs an approximation for its square root.

Heron's method works by starting with an arbitrary guess, g_0 . Then, with each iteration, compute a new guess (g_n is the n^{th} guess) that is a function of the previous guess (g_{n-1}) and the target number (a):

$$g_n = \frac{g_{n-1} + \frac{a}{g_{n-1}}}{2}$$

As *n* increases, g_n will get closer and closer to the square root of *a*.

The definition is recursive since we compute g_n as a function of g_{n-1} , so we can define a recursive procedure that computes Heron's method. First, we define a procedure for computing the next guess from the previous guess and the target:

(**define** (*heron-next-guess a g*) (/ (+ g (/ a g)) 2))

Next, we define a recursive procedure to compute the n^{th} guess using Heron's method. It takes three inputs: the target number, *a*, the number of guesses to make, *n*, and the value of the first guess, *g*.

(define (heron-method a n g) (if (= $n \ 0$) g (heron-method a (- $n \ 1$) (heron-next-guess a g))))

To start, we need a value for the first guess. The choice doesn't really matter — the method works with any starting guess (but will reach a closer estimate quicker if the starting guess is good). We will use 1 as our starting guess. So, we can define a *find-sqrt* procedure that takes two inputs, the target number and the number of guesses to make, and outputs an approximation of the square root of the target number.

(**define** (*find-sqrt a guesses*) (*heron-method a guesses* 1))

Heron of Alexandria

Heron's method converges to a good estimate very quickly. For example,

> (square (find-sqrt 2 0))
1
> (square (find-sqrt 2 1))
2 1/4
> (square (find-sqrt 2 2))
2 1/144
> (square (find-sqrt 2 3))
2 1/166464
> (square (find-sqrt 2 4))
2 1/221682772224
> (square (find-sqrt 2 5))
2 1/393146012008229658338304
> (exact->inexact (find-sqrt 2 5))
1.4142135623730951

The actual square root of 2 is 1.414213562373095048... so our estimate is correct to 16 digits after only five guesses.

Users of square roots don't really care about the method used to find the square root (or how many guesses are used). Instead, what is important to a square root user is how accurate the estimate is. Can we change our *find-sqrt* procedure so that instead of taking the number of guesses to make as its second input it takes a minimum tolerance value?

Since we don't know the actual square root value (otherwise, of course, we could just return that), we need to measure tolerance as how close the square of the approximation is to the target number. Hence, we can stop when the square of the guess is close enough to the target value.

(**define** (*close-enough*? *a tolerance g*) (<= (*abs* (- *a* (*square g*))) *tolerance*))

The stopping condition for the recursive definition is now when the guess is close enough. Otherwise, our definitions are the same as before.

(**define** (*heron-method-tolerance a tolerance g*) (**if** (*close-enough*? *a tolerance g*) *g* (*heron-method-tolerance a tolerance* (*heron-next-guess a g*))))

(**define** (*find-sqrt-approx a tolerance*) (*heron-method-tolerance a tolerance* 1)) Note that the value passed in as *tolerance* does not change with each recursive call. We are making the problem smaller by making each successive guess closer to the required answer.

Here are some example interactions with *find-sqrt-approx*:

```
> (exact->inexact (square (find-sqrt-approx 2 0.01)))
2.006944444444446
> (exact->inexact (square (find-sqrt-approx 2 0.0000001)))
2.00000000004511
```

- **a.** How accurate is the built-in *sqrt* procedure?
- **b.** Can you produce more accurate square roots than the built-in *sqrt* procedure?
- **c.** Why doesn't the built-in procedure do better?

4.4 Evaluating Recursive Applications

Evaluating an application of a recursive procedure follows the evaluation rules just like any other expression evaluation. It may be confusing, however, to see that this works because of the apparent circularity of the procedure definition. Here, we show in detail the evaluation steps for evaluating (*factorial* 2). The evaluation and application rules refer to the rules summary in Section 3.8. We first show the complete evaluation following the substitution model evaluation rules in full gory detail, and later consider a subset containing the most revealing steps. Stepping through even a fairly simple evaluation using the evaluation rules is quite tedious, and not something humans should do very often (that's what we have computers for!) but instructive to do once to understand exactly how an expression is evaluated.

The evaluation rule for an application expression does not specify the order in which the subexpressions are evaluated. A Scheme interpreter is free to evaluate them in any order. Here, we choose to evaluate the subexpressions in the order that is most readable. As long as none of the expressions have side effects, the value produced by an evaluation does not depend on the order in which the subexpressions are evaluated.

In the evaluation steps, we use typewriter font for uninterpreted Scheme expressions and sans-serif font to show values. So, 2 represents the Scheme expression that evaluates to the number 2.

1.	(factorial 2) Evaluation Rule 3(a): Application subexpressions
2.	(<u>factorial</u> 2) Evaluation Rule 2: Name
3.	(<u>(lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))</u> 2) Evaluation Rule 4: Lambda
4.	((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2) Evaluation Rule 1: Primitive
5.	((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2) Evaluation Rule 3(b): Application, Application Rule 2
6.	(if <u>(= 2 0)</u> 1 (* 2 (factorial (- 2 1))))
7.	Evaluation Rule 5(a): If predicate (if (= 2 0) 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 2(a): Application subexpressions
8.	Evaluation Rule 3(a): Application subexpressions (if $(= 2 0) 1 (* 2 (factorial (- 2 1)))$
9.	Evaluation Rule 1: Primitive (if $(= 2 \ 0)$ 1 (* 2 (factorial (- 2 1))))
10.	Evaluation Rule 3(b): Application, Application Rule 1 (if false 1 (* 2 (factorial (- 2 1)))) Evaluation Rule 5(b): If alternate
11.	$\frac{(* \ 2 \ (factorial \ (- \ 2 \ 1)))}{Evaluation Rule 3(a): Application subexpressions}$
12.	$(\underline{*} \ 2 \ (factorial \ (-2 \ 1)))$ Evaluation Rule 1: Primitive
13.	(* 2 <u>(factorial (- 2 1))</u>) Evaluation Rule 3(a): Application subexpressions
14.	(* 2 (factorial $(-2 1)$) Evaluation Rule 3(a): Application subexpressions
15.	(* 2 (factorial (<u>2 1</u>))) Evaluation Rule 1: Primitive
16.	(* 2 (factorial (- 2 1))) Evaluation Rule 3(b): Application, Application Rule 1
17.	(* 2 (<u>factorial</u> 1)) Continuing Evaluation Rule 3(a); Evaluation Rule 2: Name
18.	(* 2 ($(lambda (n) (if (= n 0) 1 (* n (factorial (- n 1)))))$ 1)) Evaluation Rule 4: Lambda
19.	(* 2 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 1)) Evaluation Rule 3(b): Application, Application Rule 2
20.	(* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1))))
21.	Evaluation Rule 5(a): If predicate (* 2 (if $(= 1 \ 0) \ 1 \ (* 1 \ (factorial \ (- 1 \ 1)))))$
22.	Evaluation Rule 3(a): Application subexpressions (* 2 (if $(= 1 0) 1 (* 1 (factorial (- 1 1))))$

Evaluation Rule 1: Primitives 23. (* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(b): Application Rule 1 24. (* 2 (if false 1 (* 1 (factorial (- 1 1))))) Evaluation Rule 5(b): If alternate 25. (* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application 26. (* 2 (* 1 (factorial (- 1 1)))) **Evaluation Rule 1: Primitives** 27. (* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application 28. (* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(a): Application 29. (* 2 (* 1 (factorial (<u>- 1 1)))</u>) **Evaluation Rule 1: Primitives** 30. (* 2 (* 1 (factorial (- 1 1)))) Evaluation Rule 3(b): Application, Application Rule 1 31. (* 2 (* 1 (<u>factorial</u> 0))) **Evaluation Rule 2: Name** 32. (* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 0))) Evaluation Rule 4, Lambda 33. (* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 0))) Evaluation Rule 3(b), Application Rule 2 34. (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))) Evaluation Rule 5(a): If predicate 35. (* 2 (* 1 (if $(= 0 \ 0) \ 1 \ (* \ 0 \ (factorial \ (- \ 0 \ 1))))))$ Evaluation Rule 3(a): Application subexpressions 36. (* 2 (* 1 (if $(= 0 \ 0) \ 1 \ (* 0 \ (factorial (- 0 \ 1))))))$ **Evaluation Rule 1: Primitives** 37. (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))) Evaluation Rule 3(b): Application, Application Rule 1 38. (* 2 (* 1 (if true 1 (* 0 (factorial (- 0 1))))) Evaluation Rule 5(b): If consequent **39.** (* **2** (* **1** 1)) **Evaluation Rule 1: Primitives** 40. (* 2 (* 1 1)) Evaluation Rule 3(b): Application, Application Rule 1 41. (* 2 1) Evaluation Rule 3(b): Application, Application Rule 1 42. **2** Evaluation finished, no unevaluated expressions remain.

The key to evaluating applications of recursive procedures is the evaluation rule for the if special form. If the if-expression were evaluated like a regular application all subexpressions would be evaluated, and the alternative expression with the recursive call would never finish evaluating! Since the evaluation rule for if requires that the predicate expression is evaluated and the alternative expression is *not* evaluated when the predicate expression is true, the circularity in the definition ends when the predicate expression evaluates to true. This is the base case of the recursion, when (= n 0) evaluates to true. This occurs when (*factorial* 0) is evaluated, and instead of producing another recursive call it evaluates to the value of the consequent expression, 1.

Exercise 4.15. These exercises test your understanding of the (*factorial* 2) evaluation. Try to answer them yourself before reading the remainder of this section.

- **a.** In step 5, the second part of the application evaluation rule, Rule 3(b), is used. In which step does this evaluation rule complete?
- **b.** In step 11, the first part of the application evaluation rule, Rule 3(a), is used. In which step is the following use of Rule 3(b) started?
- **c.** In step 25, the first part of the application evaluation rule, Rule 3(a), is used. In which step is the following use of Rule 3(b) started?
- d. How many times is Evaluation Rule 5 (If) used?
- **e.** [★] In order to evaluate (*factorial* 3) how many times would Evaluation Rule 2 be used to evaluate the name *factorial*?

Exercise 4.16. For which input values *n* will an evaluation of (*factorial n*) eventually reach a value? For values where the evaluation is guaranteed to finish, make a convincing argument why it must finish. For values where the evaluation does not finish, explain why.

4.4.1 The Evaluation Stack

We can see the structure of the evaluation process better if we focus just on the most revealing stems. Here are the evaluation steps that involve applications of the *factorial* procedure extracted from the full evaluation and indented to line up the steps from each application evaluation:

```
1. (factorial 2)
17. (* 2 (factorial 1))
```

```
31. (* 2 (* 1 (factorial 0)))
40. (* 2 (* 1 1))
41. (* 2 1)
42. 2
```

In Step 1, we start to evaluate (*factorial* 2). The final result of this evaluation is found in Step 42. To evaluate (*factorial* 2), we follow the evaluation rules, eventually reaching the body expression of the if-expression in the factorial definition. This is Step 17: (* 2 (*factorial* 1)). To evaluate this expression, we need to evaluate the (*factorial* 1) subexpression.

We can think of each of these application evaluations as a stack, similarly to how we processed RTN subnetworks in Section 2.4.1. A stack has the property that the first item pushed on the stack will be the last item removed all the items pushed on top of this one must be removed before this item can be removed. For application evaluations, the elements on the stack are expressions to evaluate. To finish evaluating the first expression, all of its component subexpressions must be evaluated. Hence, the first application evaluation started will be the last one to finish.

At Step 17, the first evaluation is in progress, but to complete it we need the value resulting from the second evaluation. The second evaluation results in the body expression, (* 1 (*factorial* 0)), shown for Step 31. At this point, the evaluation of (*factorial* 2) is stuck in Evaluation Rule 3, waiting for the value of (*factorial* 1) subexpression. The evaluation of the (*factorial* 1) application leads to the (*factorial* 0) subexpression, which must be evaluated before the (*factorial* 1) evaluation can complete. In Step 40, the (*factorial* 0) subexpression evaluation has completed and produced the value 1. Now, the (*factorial* 1) evaluation can complete, producing 1 as shown in Step 41. Once the (*factorial* 1) evaluation completes, all the subexpressions needed to evaluate the expression in Step 17 are now evaluated, and the evaluation completes in Step 42.

4.5 Developing Complex Programs

To develop and use more complex procedures it will be useful to learn a few techniques that will help you understand what is going on when your procedures are evaluated (and fix problems when things are not working as intended). It is very rare for a first attempt to create a program to be completely correct, even for an expert programmer. Instead, it is best to build programs incrementally, by building and testing small components one at a time. The process of fixing broken programs is known as *debugging*. The name *debugging* comes from the early days of computing when real bugs in the machine could cause problems. The key to debugging effectively is to be systematic and thoughtful. It is a good idea to take notes to keep track of what you have learned and what you have tried. Thoughtless debugging can be very frustrating, and is unlikely to lead to a correct program.

A good strategy for debugging is to:

- 1. First, make sure you understand the intended behavior of your procedure. Think of a few representative inputs, and what the expected output should be.
- 2. Then, do experiments to observe the actual behavior of your procedure. Does it work correctly for some inputs but not others? What is the relationship between the actual outputs and the desired outputs?
- 3. Next, make changes to your procedure and retest it. If you are not sure what to do, make changes in small steps and carefully observe the impact of each change.

As your programs get more complex, you'll want to follow this strategy but at the level of sub-components. For example, you can try debugging at the level of one expression before trying the whole procedure. If you break your program down into several procedures, you can test and debug each procedure independently. The smaller the unit you are considering at one time, the easier it will be to understand what the problem is and how to fix it.

DrScheme provides many useful and powerful features to aid debugging, although the most useful tool there is for debugging is using your brain to think carefully about what your program should be doing and how its observed behavior differs from the desired behavior. Next, we describe two simple techniques that are helpful for observing program behavior.

4.5.1 Printing

One useful procedure built-in to DrScheme is the *display* procedure. It takes one input, and produces no output. Instead of producing an output, it prints out the value of the input (it will appear in purple in the Interactions window). We can use *display* to observe what a procedure is doing before it produces an output. For example, if we add a (*display n*) expression at the beginning of our *factorial* procedure we can see all the intermediate calls. To make each printed value appear on a separate line, we use the *newline* procedure. The *newline* procedure takes not inputs and produces no output, but prints out a new line.

Moth from Grace Hopper's notebook, 1947

(**define** (factorial n) (display "Enter factorial: ") (display n) (newline) (if (= n 0))1 (* n (factorial (- n 1)))))

Now, evaluating (*factorial* 3) produces:

Enter factorial: 3 Enter factorial: 2 Enter factorial: 1 Enter factorial: 0 6

For printing out lots of strings and values, the built-in *printf* procedure is more useful. The *printf* procedure takes one or more inputs. The first input is a string (a sequence of characters enclosed in double quotes). The string can include special ~a markers that print out values of objects inside the string. Each ~a marker is matched with a corresponding input, and the value of that input is printed in place of the ~a in the string. Another special marker, ~n, prints out a new line inside the string. Using *printf*, we can define our *factorial* procedure with printing as:

(**define** (*factorial n*) (*printf* "Enter factorial: ~a~n" n) (if (= n 0))1 (* n (factorial (- n 1)))))

Note that *display*, *printf*, and *newline* do not produce output values. Inside effects stead, they are applied to produce side effects. A side effect is something that changes the state of a computation. In this case, the side effect is printing in the Interactions window. Side effects make reasoning about what programs do much more complicated since the order in which events happen now matters. We will mostly avoid using procedures with side effects until Chapter 10, but printing procedures are so useful that we introduce them here.

4.5.2 Tracing

DrScheme provides a more automated way to observe applications of procedures. We can use tracing to observe the start of a procedure evaluation (including the procedure inputs) and the completion of the evaluation (including the output). To use tracing, it is necessary to first load the tracing library by evaluating this expression:

(require (lib "trace.ss"))

This defines the *trace* procedure that takes one input, a compound procedure (trace does not work for primitive procedures). After evaluating (*trace proc*), every time an application of *proc* is evaluated the tracing will print out the procedure name and its inputs at the beginning of the application evaluation, and the value of the output at the end of the application evaluation. If there are other applications before the first application finishes evaluating, these will be printed too, but indented so it is possible to match up the beginning and end of each application evaluation. For example (the trace outputs are shown in typewriter font),

```
> (trace factorial)
> (factorial 3)
| (factorial 3)
| (factorial 2)
| | (factorial 1)
| | (factorial 0)
| | 1
| |1
| 2
|6
6
```

From the trace, one can see that (*factorial* 3) is evaluated first; within its evaluation, (*factorial* 2), then (*factorial* 1), and (*factorial* 0) are evaluated. The outputs of each of these applications is lined up vertically below the application entry trace.

Exploration 4.2: Recipes for π

The value π is the defined as the ratio between the circumference of a circle and its diameter. One way to calculate the value of π is the Gregory-Leibniz series (which was actually discovered by the Indian mathematician Mādhava in the 14th century):

$$\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \cdots$$

This summation converges to π . The more terms that are included, the closer the computed value will be to the actual value of π .

a. [★] Define a procedure *compute-pi* that takes as input *n*, the number of terms to include and outputs an approximation of π computed using the first *n* terms of the Gregory-Leibniz series. For example, (*compute-pi* 1) should evaluate to 4 and (*compute-pi* 2) should evaluate to 2 2/3 (= 4/1 - 4/3). For higher terms, use the built-in procedure *exact->inexact* to see the decimal value. For example (*exact->inexact* (*compute-pi* 10)) should evaluate to 3.0418396189294024 and (*exact->inexact* (*compute-pi* 10)) should evaluates (after a long wait!) to 3.1414926535900434.

The Gregory-Leibniz series is fairly simple, but it takes an awful long time to converge to a good approximation for π — only the first digit is correct after 10 terms, and after summing 10000 terms only the first four digits are correct.

Mādhava discovered another series for computing the value of π that converges much more quickly:

$$\pi = \sqrt{12} * \left(1 - \frac{1}{3 * 3} + \frac{1}{5 * 3^2} - \frac{1}{7 * 3^3} + \frac{1}{9 * 3^4} - \dots\right)$$

Mādhava computed the first 21 terms of this series, finding an approximation of π that is correct for the first 12 digits: 3.14159265359.

b. $[\star\star]$ Define a procedure *cherry-pi* that takes as input *n*, the number of terms to include and outputs an approximation of π computed using the first *n* terms of the faster Madhava series. (Continue reading for hints.)

To define *cherry-pi*, you will first want to define two helper functions: *cherry-pi-filling*, that takes one input, *n*, and computes the sum of the first *n* terms in the series without the $\sqrt{12}$ factor, and *cherry-pi-term* that takes one input *n* and computes the value of the *n*th term in the series (without alternating the adding and subtracting). For example, (*cherry-pi-term* 1) should evaluate to 1 and (*cherry-pi-term* 2) should evaluate to 1/9. Then, you can define *cherry-pi* as:

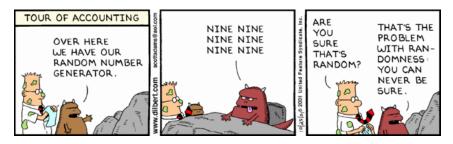
Here, we use the built-in *sqrt* procedure that takes one input and produces as output an approximation of its square root. The accuracy of the *sqrt* procedure⁵ limits the number of digits of π that can be correctly computed using this method (see Exploration 4.1 for ways to compute a more accurate

⁵To test its accuracy, try evaluating (*square* (*sqrt* **12**)).

approximation for the square root of 12). You should be able to get a few more correct digits than Mādhava was able to get without a computer 600 years ago, but to get more digits would need a more accurate *sqrt* procedure or another method for computing π .

To compute the powers $(3^1, 3^2, 3^3, ...)$, you can use the built-in *expt* procedure (which takes two inputs, *a* and *b*, and produces a^b as its output), but you should also be able to figure out a way to define your own procedure to compute a^b for any integer inputs *a* and *b*.

c. $[\star \star \star]$ Find a procedure for computing enough digits of π to find the *Feynman point* where there are six consecutive 9 digits. This point is name for Richard Feynman, who quipped that he wanted to memorize π to that point so he could recite it as "... nine, nine,



Producing good random numbers is an important and interesting problem, as is the question of determining whether a given sequence of numbers is random. We consider it in Chapter 17.

Exploration 4.3: Recursive Definitions and Games

Many games can be analyzed by thinking recursively. For this exploration, we consider how to develop a winning strategy for some two-player games. In all the games, we assume player 1 moves first, and the two players take turns until the game ends. The game ends when the player who's turn it is cannot move; the other player wins.

A strategy is a *winning strategy* if it provides a way to always select a move that wins the game, regardless of what the other player does. A good approach for thinking about these games is to work backwards from the winning position (which corresponds to the base case in a recursive definition). If the game reaches a winning position for player 1, then player 1 is guaranteed to win. Moving back one move, if the game reaches a position where it is player 2's move, but all possible moves lead to a winning position for player 1, then player 1 is guaranteed to win. Continuing backwards, if the game reaches a position where it is player 1's move, and there is a move that leads to a position where all possible moves for player 2 lead to a winning position for player 1, then player 1 is guaranteed to win.

The first game we will consider is called *Nim*. Variants on Nim have been played widely over many centuries, and no one is quite sure where the name comes from.

We'll start with a simple variation on the game that was called *Thai 21* when it was used as an Immunity Challenge on *Survivor*. In this version of Nim, the game starts with a pile of 21 stones. One each turn, a player removes one, two, or three stones. The player who removes the last stone wins, since the other player cannot make a valid move on the following turn.

- a. [*] What should the player who moves first do to ensure she can always win the game? (Hint: start with the base case, and work backwards. Think about a game starting with 5 stones first, before trying 21.)
- **b.** [★] Suppose instead of being able to take 1–3 stones with each turn, you can take 1–*n* stones where *n* is some number greater than or equal to 1. For what values of *n* should the first player always win (when the game starts with 21 stones)?
- **c.** [★] Define a procedure that plays a winning game of *Thai* 21. Your procedure should take one input, representing the number of stones left, and produce as output a number indicating the number of sticks to take. If there is no winning strategy from the given input number of sticks, your procedure should output 0.
- d. [*] Generalize your procedure to support the version of the game where the maximum number of stones that can be removed is a parameter. The new procedure should take two inputs, the first is the number of stones left, and the second is the maximum number of stones that can be removed on each turn, and produce as output the number of stones to remove.

In the standard Nim, instead of just having one heap of stones, the game starts with three heaps. At each turn, a player removes any number of stones from any one heap (but may not remove stones from different heaps). We can describe the state of a 3-heap game of Nim using three numbers, representing the number of stones in each heap. For example, the *Thai 21* game starts with the state (21 0 0) (one heap with 21 stones, and two empty heaps). (With the standard Nim rules, this would not be an interesting game since the first player can simply win by removing all 21 stones from the first heap.) (If you get stuck, you'll find many resources about Nim on the Internet; but, you'll get a lot more out of this if you try and solve it yourself.)

- **e.** What should the first player do to win if the starting state is (2 1 0)?
- f. Which player should win if the starting state is (2 2 1)?
- g. Which player should win if the starting state is (2 2 2)?
- **h.** $[\star]$ Which player should win if the starting state is (5 6 7)?
- i. [**] Describe a strategy for always winning a game of Nim starting from any position.

The final game we consider is the "Corner the Queen" game invented by Rufus Isaacs.⁶ The game is played using a single Queen on a arbitrarily large chessboard as shown in Figure 4.5.

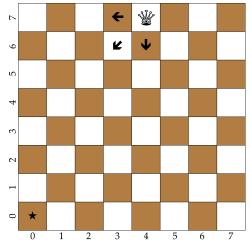


Figure 4.5. Cornering the Queen.

On each turn, a player moves the Queen one or more squares in either the left, down, or diagonally down-left direction (unlike a standard chess Queen, in this game the queen may not move right, up or up-right). As with the other games, the last player to make a legal move wins. For this game, once the Queen reaches the bottom left square marked with the \star , there are no moves possible. Hence, the player who moves the Queen onto the \star wins the game. We name the squares using the numbers on the sides of the chessboard with the column number first. So, the Queen in the picture is on square (4 7).

j. Identify all the starting squares for which the first played to move can win right away. (Your answer should generalize to any size square chessboard.)

⁶Described in Martin Gardner, *Penrose Tiles to Trapdoor Ciphers...And the Return of Dr Matrix*, The Mathematical Association of America, 1997.

- **k.** Suppose the Queen is on square (2 1) and it is your move. Explain why there is no way you can avoid losing the game.
- **1.** If the Queen is on square (5 6) and it is your move, how should you move to guarantee you will win the game?
- **m.** [*] Given the shown starting position (with the Queen at (4 7), would you rather be the first or second player?
- **n.** [★] Describe a strategy for winning the game (when possible). Explain from which starting positions it is not possible to win (assuming the other player always makes the right move).
- **o.** [★] Define a variant of Nim that is essentially the same as the "Corner the Queen" game. (The game is known as Wythoff's Nim.)

4.6 Summary

By breaking problems down into simpler problems we can develop solutions to complex problems. Many problems can be solved by combining instances of the same problem on simpler inputs. When we define a procedure to solve a problem this way, it needs to have a predicate expression to determine when the base case has been reached, a consequent expression that provides the value for the base case, and an alternate expression that defines the solution to the given input as an expression using a solution to a slightly smaller input.

Our general problem solving strategy is:

- 1. Be optimistic! Assume you can solve it.
- 2. Think of the simplest version of the problem, something you can already solve. This is the base case.
- 3. Consider how you would solve a big version of the problem by using the result for a slightly smaller version of the problem. This is the recursive case.
- 4. Combine the base case and the recursive case to solve the problem.

For problems involving numbers, the base case will often be when the input value is zero (but not always, as we saw in the *find-maximum* value, where the base case is reached when the difference between two of the input values is zero). The way the problem size is reduced is by subtracting some value (usually 1) from one of the inputs. In the next chapter, we introduce more complex data structures. For problems involving complex data, the same strategy will often work, but we will use other ways to identify a base case and to shrink the problem size.

5 Data

From a bit to a few hundred megabytes, from a microsecond to half an hour of computing confronts us with the completely baffling ratio of 10⁹! By evoking the need for deep conceptual hierarchies, the automatic computer confronts us with a radically new intellectual challenge that has no precedent in our history. Edsger Dijkstra

For all the programs so far, we have been limited to simple data such as numbers and Booleans. We call this *scalar* data since it has no structure. As we saw in Chapter 1, we can represent all discrete data using just (enormously large) whole numbers. For example, we could represent the text of a book using only one (very large!) number, and manipulate the characters in the book by changing the value of that number. But, it would be very difficult to design and understand computations if we only use numbers to represent data.

Instead, we need more complex data structures that allow us to model the structured data our problem concerns with structures our programs can more directly manipulate. We want to represent data in ways that allow us to think about the problem we are trying to solve, rather than the low-level details of how data is represented and manipulated.

In this chapter, we develop techniques for building complex data structures and for defining procedures that manipulate structured data, and introduce data abstraction as a tool for managing program complexity.

5.1 Types

All data in a program has an associated type. Internally, all data is stored just as a sequence of bits, so the type of the data is important to understand what it means. We have seen several different types of data already: Numbers, Booleans, and Procedures (we use initial capital letters to signify a datatype).

A datatype defines a set (often infinite) of possible values. The Boolean

datatype contains the two Boolean values, *true* and *false*. The Number type includes the infinite set of all whole numbers (it also includes negative numbers and rational numbers). We think of the set of possible Numbers as infinite, even though on any particular computer there is some limit to the amount of memory available, and hence, some largest number that can be represented. On any real computer, the number of possible values of any data type is always finite. But, we can imagine a computer large enough to represent any given number.

The type of data determines what can be done with it. For example, a Number can be used as one of the inputs to the primitive procedures +, *, and =. A Boolean can be used as the first sub-expression of an if-expression and as the input to the *not* procedure (note that the way *not* is defined, it can also take a Number as its input, but for all Number value inputs the output is false), but cannot be used as the input to +, *, or =.¹

A Procedure can be the first sub-expression in an application expression, and can be passed as an input to the *fcompose* procedure (defined in the previous chapter). There are infinitely many different types of Procedures, since the type of a Procedure depends on its input and output types. For example, recall *bigger* procedure from Chapter 3:

(**define** (*bigger a b*) (**if** (> *a b*) *a b*))

It takes two Numbers as input and produces a Number as output. We denote this type as:

Number
$$\times$$
 Number \rightarrow Number

The inputs to the procedure are shown on the left side of the arrow. The type of each input is shown in order, separated by the \times symbol.² The output type is given on the right side of the arrow.

From its definition, we know the *bigger* procedure takes two inputs. But how do we know the inputs must be Numbers and the output is a Number?

The body of the *bigger* procedure is an if-expression with the predicate expression (> a b). This applies the > primitive procedure to the two inputs.

¹The primitive procedure *equal*? is a more general comparison procedure that can take as inputs any two values, so could be used to compare Boolean values. For example, (*equal*? *false false*) evaluates to **true** and (*equal*? *true* **3**) is a valid expression that evaluates to *false*.

²The notation using × to separate input types makes sense if you think about the number of different inputs to a procedure. For example, consider a procedure that takes two Boolean values as inputs, so its type is Boolean × Boolean \rightarrow Value. Each Boolean input can be one of two possible values. If we combined both inputs into one input, there would be 2 × 2 different values needed to represent all possible inputs.

The type of the > procedure is Number \times Number \rightarrow Boolean. So, for the predicate expression to be valid, its inputs must both be Numbers. This means the input values to *bigger* must both be Numbers. We know the output of the *bigger* procedure will be a Number by analyzing the consequence and alternate sub-expressions: each evaluates to one of the input values, which must be a Number.

Starting with the primitive Boolean, Number, and Procedure types, we can build arbitrarily complex datatypes. In this chapter, we will introduce mechanisms for building complex datatypes by combining the primitive datatypes.

Exercise 5.1. Describe the type of each of these expressions.

- **a.** 17
- **b.** (lambda (*a*) (> *a* 0))
- c. ((lambda (a) (> a 0)) 3)
- **d.** (lambda (*a*) (lambda (*b*) (> *a b*)))
- **e.** (lambda (*a*) *a*)

Exercise 5.2. For each part, define or identify a procedure that has the given type.

- **a.** Number \times Number \rightarrow Boolean
- **b.** Number \rightarrow Number
- **c.** (Number \rightarrow Number) \times (Number \rightarrow Number) \rightarrow (Number \rightarrow Number)
- **d.** Number \rightarrow (Number \rightarrow (Number \rightarrow Number))

5.2 Pairs

The simplest structured data construct is a *Pair*. A Pair packages two values *Pair* together. We draw a Pair as two boxes, each containing a value. We call each box of a Pair a *cell*. Here is a Pair where the first cell has the value 35 and the second cell has the value 42:

Scheme provides built-in procedures for constructing a Pair, and for extracting each cell from a Pair:

- *cons*: Value × Value → Pair evaluates to a Pair where the first cell is the first input value and the second cell is the second input value. The Value inputs can be of any type.
- *car*: Pair → Value evaluates to the first cell of the input, which must be a Pair.
- *cdr*: Pair → Value evaluates to the second cell of input, which must be a Pair.

These rather unfortunate names come from the original LISP implementation on the IBM 704. The name *cons* is short for "construct". The name *car* is short for "Contents of the Address part of the Register" and the name *cdr* (pronounced "could-er") is short for "Contents of the Decrement part of the Register". The designers of the original LISP implementation picked the names because of how pairs could be implemented on the IBM 704 using a single register to store both parts of a pair, but it is a mistake to name things after details of their implementation (see Section 5.6). Unfortunately, the names stuck and continue to be used in many LISP-derived languages, including Scheme.

We can construct the Pair shown in the previous diagram by evaluating (*cons* 35 42). DrScheme will display a Pair by printing the value of each cell separated by a dot: (35 . 42). The interactions below show some example uses of *cons*, *car*, and *cdr*.

```
> (define mypair (cons 35 42))
> mypair
(35 . 42)
> (car mypair)
35
> (cdr mypair)
42
```

The values in the cells of a Pair can be any values, including other Pairs!

For example,

(**define** *doublepair* (*cons* (*cons* 1 2) (*cons* 3 4)))

defines a Pair where each cell of the Pair is itself a Pair.

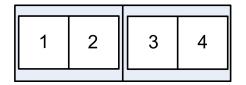
We can use the *car* and *cdr* procedures to access components of our nested *doublepair* structure: (*car doublepair*) evaluates to the Pair (1 . 2), and (*cdr doublepair*) evaluates to the Pair (3 . 4).

We can compose multiple *car* and *cdr* applications to extract components from the nested pairs:

```
> (cdr (car doublepair))
2
> (car (cdr doublepair))
3
> ((fcompose cdr cdr) doublepair)
4
> (car (car (car doublepair)))
Se car: expects argument of type <pair>; given 1
```

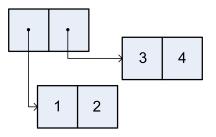
The last expression produces an error when it is evaluated since *car* is applied to the scalar value 1. The *car* and *cdr* procedures can only be applied to an input that is a Pair. Hence, an error results when we attempt to apply *car* to a scalar value. This is an important property of data: the type of data (e.g., a Pair) defines how it can be used (e.g., passed as the input to *car* and *cdr*). Every procedure expects a certain type of inputs, and typically produces an error when it is applied to values of the wrong type.

We can draw the value of *doublepair* by nesting Pairs within cells:

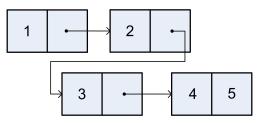


Drawing Pairs within Pairs within Pairs can get quite difficult, however. For example, try drawing (*cons* 1 (*cons* 2 (*cons* 3 (*cons* 4 5)))) this way.

Instead, we us arrows to point to the contents of cells that are not simple values. This is the structure of *doublepair* shown using arrows:



Using arrows to point to cell contents allows us to draw arbitrarily complicated data structures, keeping the cells reasonable sizes. For example, here is one way to draw (*cons* 1 (*cons* 2 (*cons* 3 (*cons* 4 5)))):



Exercise 5.3. Suppose the following definition has been executed:

```
(define tpair
(cons (cons (cons 1 2) (cons 3 4))
5))
```

Draw the structure defined by *tpair*, and give the value of each of the following expressions.

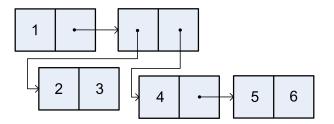
- **a.** (*cdr tpair*)
- **b.** (car (car (car tpair)))
- **c.** (*cdr* (*cdr* (*car tpair*)))
- **d.** (*car* (*cdr* (*cdr tpair*)))

Exercise 5.4. Suppose the following definition has been executed:

(define *fstruct* (cons 1 (cons 2 (cons 3 4))))

Write expressions that extract each of the four elements from *fstruct*.

Exercise 5.5. What expression procedures the structure shown below:



5.2.1 Making Pairs

Although Scheme provides the built-in procedures *cons*, *car*, and *cdr* for creating Pairs and accessing their cells, there is nothing magic about these procedures. We could define procedures with the same behavior ourselves using only the subset of Scheme introduced in Chapter 3. For example, here is one way to define the pair procedures (we prepend an *s* to the names to avoid confusion with the built-in procedures):

(**define** (*scons a b*) (**lambda** (*w*) (**if** *w a b*))) (**define** (*scar pair*) (*pair true*)) (**define** (*scdr pair*) (*pair false*))

The *scons* procedure takes the two parts of the Pair as inputs, and produces as output a procedure. The output procedure takes one input, a selector that determines which of the two cells of the Pair to output. If the selector is true, the value of the if-expression is the value of the first cell; if false, it is the value of the second cell. The *scar* and *scdr* procedures apply a procedure constructed by *scons* to either *true* (to select the first cell in *scar*) or *false* (to select the second cell in *scdr*).

Exercise 5.6. Convince yourself the definitions of *scons*, *scar*, and *scdr* above work as expected by following the evaluation rules to evaluate

(*scar* (*scons* 1 2))

Exercise 5.7. Suppose we define *tcons* as:

```
(define (tcons \ a \ b) (lambda (w) (if w \ b \ a)))
```

Show the corresponding definitions of *tcar* and *tcdr* needed to provide the correct pair selection behavior for a pair created using *tcons*.

5.2.2 Triples to Octuples

Pairs are useful for representing data that is composed of two parts such as a calendar date (composed of a number and month), or a playing card (composed of a rank and suit). But, what if we want to represent data composed of more than two parts such as a date (composed of a number, month, and year) or a poker hand consisting of five playing cards? For more complex data structures, we want to construct data structures that have more than two components.

A *triple* has three components. Here is one way to define a triple datatype and its accessors:

(**define** (*make-triple a b c*) (**lambda** (*w*) (**if** (= *w* 0) *a* (**if** (= *w* 1) *b c*))))

(define (triple-first t) (t 0)) (define (triple-second t) (t 1)) (define (triple-third t) (t 2))

Since a triple has three components we need three different selector values; we use 0, 1, and 2.

A simpler way to make a triple would be to combine two Pairs. We do this by making a Pair whose second cell is itself a Pair:

(**define** (*make-triple a b c*) (*cons a* (*cons b c*)))

Then, we can use the *car* and *cdr* procedures to define procedures for selecting elements of the triple:

(**define** (*triple-first t*) (*car t*)) (**define** (*triple-second t*) (*car* (*cdr t*))) (**define** (*triple-third t*) (*cdr* (*cdr t*))) Similarly, we can define a *quadruple* as a Pair whose second cell is a triple:

```
(define (make-quad a b c d) (cons a (make-triple b c d)))
(define (quad-first q) (car q))
(define (quad-second q) (triple-first (cdr q))
(define (quad-third q) (triple-second (cdr q))
(define (quad-fourth q) (triple-third (cdr q))
```

We could continue in this manner defining increasingly large tuples:

- A *triple* is a Pair whose second cell is a Pair.
- A *quadruple* is a Pair whose second cell is a *triple*.
- A *quintuple* is a Pair whose second cell is a *quadruple*.
- A *sextuple* is a Pair whose second cell is a *quintuple*.
- A *septuple* is a Pair whose second cell is a *sextuple*.
- • •
- A (+ *n* 1)-*uple* is a Pair whose second cell is an *n*-*uple*.

Hence, building from the simple Pair, we can construct tuples containing any number of components.

Exercise 5.8. Define a procedure that constructs a quintuple and procedures for selecting the five elements of a quintuple.

Exercise 5.9. Another way of thinking of a triple is as a Pair where the first cell is a Pair and the second cell is a scalar. Provide definitions of *make-triple*, *triple-first*, *triple-second*, and *triple-third* for this alternate triple definition.

5.3 Lists

In the previous section, we saw how to construct arbitrarily large tuples building from Pairs. This way of managing data is not very satisfying, however. It requires defining different procedures for constructing and accessing elements of every length tuple. For many applications, we want to be able to manage data of any length such as all the items in a web store, or all the bids on a given item. Since the number of components in these objects can change, it would be very painful to need to define a new tuple type every time an item is added. Hence, we need a data type that can hold any number of items, and a way to define procedures that work on any length tuple. What we want is a way to construct and manipulate tuples that works for tuples containing *any* number of elements. This definition of an *any-uple* almost provides what we need:

An *any-uple* is a Pair whose second cell is an *any-uple*.

This seems to allow an *any-uple* to contain any number of elements. The problem is we have no stopping point. With only the definition above, there is no way to construct an *any-uple* without already having one.

The situation is similar to defining *MoreDigits* as zero or more digits in Chapter 2, defining *MoreExpressions* in the Scheme grammar in Chapter 3 as zero or more *Expressions*, and recursive composition in Chapter 4.

Recall the grammar rules for *MoreExpressions*:

MoreExpressions :: \Rightarrow Expression MoreExpressions MoreExpressions :: $\Rightarrow \epsilon$

The rule for constructing an *any-uple* above corresponds to the first *MoreExpression* replacement rule. To allow an *any-uple* to be constructed, we also need a construction rule similar to the second rule, where *MoreExpression* can be replaced with nothing. Since it is hard to type and read nothing in a *null* program, Scheme has a name for this value: *null*.

DrScheme will print out the value of *null* as (). It is also known as the *empty list*, since it represents the List containing no elements. The built-in procedure *null*? takes one input parameter and evaluates to true if and only if the value of that parameter is null.

List Using null, we can now define a *List*:

A *List* is either (1) null or (2) a Pair whose second cell is a *List*.

Symbolically, we can define a List as:

List :: \Rightarrow null *List* :: \Rightarrow (cons Value List)

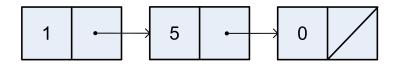
These two rules define a List as a data structure that can contain any number of elements. Starting from null, we can create Lists of any length. For example:

• *null* evaluates to a List containing no elements.

- (cons 1 null) evaluates to containing one element.
- (cons 1 (cons 5 null)) evaluates to a List containing two elements.
- (*cons* 1 (*cons* 5 (*cons* 0 *null*))) evaluates to a List containing three elements.

Scheme provides a convenient procedure, *list*, for constructing a List. The *list* procedure takes zero or more inputs, and evaluates to a List containing those inputs in order. The following expressions are equivalent to the corresponding expressions above: (*list*), (*list* 1), (*list* 1 5), and (*list* 1 5 0).

Lists are just a collection of Pairs, so we can draw a List using the same box and arrow notation we used to draw structures created with Pairs. Here is the structure resulting from (*list* 1 5 0):



There are three Pairs in the List, the second cell of each Pair is a List. For the third Pair, the second cell is the List *null*, which we draw as a slash through the final cell in the diagram.

Table 5.1 summarizes some of the built-in procedures for manipulating Pairs and Lists.

Procedure	Туре	Output
cons	$Value \times Value \rightarrow Pair$	a Pair consisting of the two inputs
car	$Pair \rightarrow Value$	the first cell of the input Pair
cdr	$Pair \rightarrow Value$	the second cell of the input Pair
list	zero or more Values \rightarrow List	a List containing the inputs
null?	$Value \rightarrow Boolean$	true if the input is null, otherwise false
pair?	$Value \rightarrow Boolean$	true if the input is a Pair, otherwise false
list?	$Value \rightarrow Boolean$	true if the input is a List, otherwise false

Table 5.1. Selected Built-In Scheme Procedures for Lists and Pairs.

Exercise 5.10. For each of the following expressions, explain whether or not the expression evaluates to a List. You can check your answers with a Scheme interpreter by using the *list*? procedure that takes one input and evaluates to true if the value of that input is a List, and false otherwise.

- a. null
- **b.** (*cons* 1 2)
- **c.** (*cons* 1 *null*)
- d. (cons null null)
- e. (cons (cons (cons 1 2) 3) null)
- **f.** (cons 1 (cons 2 (cons 3 (cons 4 null))))
- **g.** (*cdr* (*cons* 1 (*cons* 2 (*cons null null*))))
- **h.** (*cons* (*list* 1 2 3) 4)

5.4 List Procedures

Since the List data structure is defined recursively, it is natural to define recursive procedures to examine and manipulate lists. Whereas most recursive procedures on inputs that are Numbers usually used zero as the base case, for lists the most common base case is the empty list. With numbers, we make progress by subtracting one to produce the input for the recursive application; with lists, we make progress by using *cdr* to reduce the length of the input List by one element for each recursive application. This means we often break problems involving Lists into figuring out what to do with the first element of the List and the result of applying the recursive procedure to the rest of the List.

Next we consider procedures that examine lists by walking through their elements and producing a scalar value. Section 5.4.2 generalizes these procedures. In Section 5.4.3, we explore procedures that produce lists as their output.

5.4.1 Procedures that Examine Lists

Here we explore procedures that take a single List as input and produce a scalar value that depends on the elements of the List as output. All of the examples in this section involve base cases where the List is empty, and recursive cases that apply the recursive procedure to the *cdr* of the input List.

Example 5.1: Length. How many elements are in a given List?³

Our standard recursive problem solving technique is to "Think of the simplest version of the problem, something you can already solve." For this procedure, the simplest version of the problem is when the input is the empty list (*null*). We already know the length of the empty list is 0. So, the base case test is (*null*? *p*) and the output for the base case is 0.

For the recursive case, we need to consider the structure of all lists other than *null*. Recall our definition of a List: either *null* or (*cons Value List*). The base case handles the *null* list; the recursive case must handle a List that is a Pair of an element and a List. The length of this List is one more than the length of the List that is the *cdr* of the Pair.

(**define** (*list-length* p) (**if** (*null*? p) 0 (+ 1 (*list-length* (*cdr* p)))))

Here are a few example applications of our *list-length* procedure:

```
> (list-length null)
0
> (list-length (cons 0 null))
1
> (list-length (list 1 2 3 4))
4
> (list-length (cons 1 2))
Sectr: expects argument of type <pair>; given 2
```

The last evaluation produces and error, since we are applying *list-length* to an input that is not a List.

Example 5.2: List Sums and Products. First, we define a procedure that takes a List of numbers as input and produces as output the sum of the numbers in the input List. As usual, the base case is when the input is *null*: the sum of an empty list is 0. For the recursive case, we need to add the value of the first number in the List, to the sum of the rest of the numbers in the List.

³Scheme provides a built-in procedure *length* that takes a List as its input and outputs the number of elements in the List. Here, we will define our own *list-length* procedure that does this (without using the built-in *length* procedure). As with many other examples and exercises in this chapter, it is instructive to define our own versions of some of the built-in list procedures.

```
(define (list-sum p)
(if (null? p)
0
(+ (car p) (list-sum (cdr p)))))
```

We can define *list-product* similarly, except here we multiply the numbers in the List. The base case result cannot be 0, though, since then the final result would always be 0 since any number multiplied by zero is zero. We follow the mathematical convention that the product of the empty list is 1.

(**define** (*list-product p*) (**if** (*null*? *p*) 1 (* (car p) (list-product (cdr *p*)))))

Exercise 5.11. [*] Define a procedure *is-list?* that takes one input and produces true if the input is a List, and false otherwise. (Scheme provides a built-in *list?* procedure with this behavior, but you should not use it in your definition.) Hint: recall the definition of a List in Section 5.3.

Exercise 5.12. $[\star]$ Define a procedure *list-max* that takes a List of non-negative numbers as its input and produces as its result the value of the greatest element in the List (or 0 if there are no elements in the input List). For example, (*list-max* (*list* 1 5 0)) should evaluate to 5.

5.4.2 Generic Accumulators

The *list-length*, *list-sum*, and *list-product* procedures all have very similar structures. They all have a structure where the base case is when the input is the empty list, and the recursive case involves doing something with the first element of the List and recursively calling the procedure with the rest of the List:

```
(define (Recursive-Procedure p)
  (if (null? p)
     Base-Case-Result
     (Accumulator-Function (car p) (Recursive-Procedure (cdr p)))))
```

We can define a generic accumulator procedure for lists by making the base case result and accumulator function inputs:

(**define** (*list-accumulate f base p*) (**if** (*null? p*) *base* (f (car p) (list-accumulate f base (cdr p)))))

Then, we can define the *list-sum* and *list-product* procedures using *list-accumulate*:

(define (list-sum p) (list-accumulate + 0 p))
(define (list-product p) (list-accumulate * 1 p))

Defining the *list-length* procedure is a bit more complicated.

In our previous definition, the recursive case in the *list-length* procedure is (+ 1 (*list-length* (*cdr p*))). Unlike the *list-sum* example, the recursive case for *list-length* does not use the value of the first element of the List. The way *list-accumulate* is defined, we need a procedure that takes two inputs—the first input is the first element of the List; the second input is the result of applying *list-accumulate* to the rest of the List.

We should follow our usual strategy: be optimistic! Being optimistic as in recursive definitions, the value of the second input should be the length of the rest of the List. Hence, we need to pass in a procedure that takes two inputs, ignores the first input, and outputs one more than the value of the second input. We can make this procedure using (**lambda** (a b) (+ 1 b)). In the definition, we give the parameters more meaningful names:

(define (list-length p)
 (list-accumulate (lambda (el length-rest) (+ 1 length-rest)) 0 p))

Exercise 5.13. Define the *list-max* procedure (from Exercise 12) using *list-accumulate*.

Exercise 5.14. [*] Define the *list?* procedure (from Exercise 11) using *list-accumulate*.

Example 5.3: Accessing List Elements. The built-in *car* procedure provides a way to get the first element of a list, but what if we want to get the third element? We can do this by taking the *cdr* twice to eliminate the first two elements, and then using *car* to get the third: (*car* (*cdr* (*cdr p*))) evaluates to the third element of the List *p*.

We want a more general procedure that can access any selected list element. Hence, the procedure needs two inputs: a List, and an index Number that identifies the element. If we start counting from 1, then the base case is when the index is 1 and the output should be the first element of the List: (if (= n 1) (car p) ...).

For the recursive case, we make progress by eliminating the first element of the list. But, we also need to adjust the index. Since we have removed the first element of the list, the index should be reduced by one. For example, instead of wanting the third element of the original list, we now want the second element of the *cdr* of the original list.

(define (list-get-element p n) (if (= n 1) (car p) (list-get-element (cdr p) (- n 1))))

What happens if we apply *list-get-element* with an index that is larger than the size of the input List (for example, (*list-get-element* (*list* 1 2) 3))?

The first recursive call will be (*list-get-element* (*list* 2) 2). The second recursive call will be (*list-get-element* (*list*) 1). At this point, n is 1, so the base case is reached and (*car* p) is evaluated. But, p is the empty list (which is not a Pair), so an error results.

A better version of *list-get-element* would provide a meaningful error message when the requested element is out of range. We can do this by adding an if-expression that tests if the input List is *null*:

```
(define (list-get-element p n)
  (if (null? p)
      (error "Index out of range")
      (if (= n 1)
          (car p)
          (list-get-element (cdr p) (- n 1)))))
```

The built-in procedure *error* takes a String as input. The String datatype is a sequence of characters; we can create a String by surrounding characters with double quotes, as in the example. The *error* procedure terminates program execution with a message that displays the input value.

defensive programming Checking explicitly for invalid inputs is known as *defensive programming*. As your programs get more complex, programming defensively will help you avoid tricky to debug errors and will make it easier to understand and remember what your code is doing.

Exercise 5.15. [*] Define a procedure *list-last-element* that takes as input a List and outputs the last element of the input List. It is an error to apply *list-last-element* to the empty list.

114

Exercise 5.16. [\star] The error message produced by our *list-get-element* is not very helpful. A more helpful message would print out the original input list and index. This is not possible to add with the provided implementation, since by the time the error is reached several elements of the list may have been eliminated and the index reduced through the recursive calls. Define a version of *list-get-element* that behaves identically for normal inputs, but produces more helpful error messages when the input index is out of range. A built-in procedure that will be useful for this is the *format* procedure. It is similar to the *printf* procedure described in Section 4.5.1, but instead of printing it returns a String. For example, (*format* "The list \tilde{a} is different from the number \tilde{a} ." (*list* 1 5 0) 150) evaluates to the String "The list (1 5 0) is different from the number 150.".

Exercise 5.17. $[\star]$ Define a procedure *list-ordered*? that takes two inputs, a test procedure and a List. It evaluates to true if all the elements of the List are ordered according to the test procedure. For example, (*list-ordered*? < (*list* 1 2 3)) should evaluate to true, and (*list-ordered*? > (*list* 4 3 3 2)) should evaluate to false.

5.4.3 Procedures that Construct Lists

The procedures in this section take values (including lists) as input, and produce a new List as output. As before, the empty list is typically the base case. Since we are producing a List as output, the result for the base case is also usually null. The recursive case will use *cons* to construct a List combining the first element with the result of the recursive application on the rest of the List.

Example 5.4: Mapping. One common task for manipulating a List is to produce a new List that is the result of applying the same procedure to every element in the input List.

For the base case, applying a procedure to every element of the empty list produces the empty list. For the recursive case, we use *cons* to construct a List consisting of the procedure applied to the first element of the List and the result of applying the procedure to every element in the rest of the List.

For example, here is a procedure that constructs a List that contains the square of every element of the input List:

(**define** (*list-square p*) (**if** (*null*? *p*) *null* (cons (square (car p)) (*list-square* (cdr p))))))

We can generalize this by making the procedure which is mapping each List element an input. The procedure *list-map* takes a procedure as its first input and a List as its second input. It outputs a List whose elements are the results of applying the input procedure to each element of the input List.⁴

(**define** (*list-map f p*) (**if** (*null*? *p*) *null* (*cons* (*f* (*car p*)) (*list-map f* (*cdr p*)))))

Then, square-all could be defined as:

(**define** (*square-all p*) (*list-map square p*))

Exercise 5.18. Define a procedure *list-increment* that takes as input a List of numbers, and produces as output the input List with each value incremented by one. For example, (*list-increment* 1 5 0) should evaluate to the List (2 6 1).

Exercise 5.19. Use *list-map* and *list-sum* to define *list-length*:

(**define** (*list-length p*) (*list-sum* (*list-map* _____ *p*)))

Example 5.5: Filtering. Consider defining a procedure that takes as input a List of numbers, and evaluates to a List of all the non-negative numbers in the input. For example, (*list-filter-negative* (*list* 1 - 3 - 45 - 20)) should evaluate to the List (150).

First, consider the base case when the input List is empty. If we filter the negative numbers from the empty list, the result is an empty list. So, for the base case, the result should be null.

⁴Scheme provides a built-in *map* procedure. It behaves like this one when passed a procedure and a single List as inputs, but can also work on more than one List input at a time.

In the recursive case, we need to determine if the first element should be included in the output List or not. If it should be included, we construct a new List consisting of the first element followed by the result of filtering the remaining elements in the List. If it should not be included, we do not include the first element, and the result is the result of filtering the remaining elements in the List.

(define (list-filter-negative p)
 (if (null? p)
 null
 (if (>= (car p) 0)
 (cons (car p) (list-filter-negative (cdr p)))
 (list-filter-negative (cdr p))))))

Similarly to *list-map*, we can generalize our filter by making the test procedure as an input, so we can use any predicate to determine which elements to include in the output List.⁵

Using the *list-filter* procedure, we can define *list-filter-negative* as:

(**define** (*list-filter-negative* p) (*list-filter* (**lambda** (x) (>= x 0)) p))

We could also define the *list-filter* procedure using the *list-accumulate* procedure from Section 5.4.1:

```
(define (list-filter test p)
  (list-accumulate
      (lambda (el rest) (if (test el) (cons el rest) rest))
      null
      p))
```

Exercise 5.20. Define a procedure *list-filter-even* that takes as input a List of numbers and produces as output a List consisting of all the even elements of the input List.

⁵Scheme provides a built-in function *filter* that behaves like our *list-filter* procedure.

Exercise 5.21. $[\star]$ Define a procedure *list-remove* that takes two inputs: a test procedure and a List. As output, it produces a List that is a copy of the input List with all of the elements for which the test procedure evaluates to true removed. For example, (*list-remove* (**lambda** (x) (= x 0)) (*list* 0 1 2 3)) should evaluates to the List (1 2 3).

Exercise 5.22. $[\star\star]$ Define a procedure *list-unique-elements* that takes as input a List and produces as output a List containing the unique elements of the input List. The output List should contain the elements in the same order as the input List, keeping the first appearance of each duplicate value.

Example 5.6: Append. The *list-append* procedure takes as input two lists and produces as output a List consisting of the elements of the first List followed by the elements of the second List.⁶ For the base case, when the first List is empty, the result of appending the lists should just be the second List. When the first List is non-empty, we can produce the result by *cons*ing the first element of the first List with the result of appending the rest of the first List and the second List.

(**define** (*list-append p q*) (**if** (*null*? *p*) *q* (cons (car p) (*list-append* (cdr p) *q*))))

Example 5.7: Reverse. The *list-reverse* procedure takes a List as input and produces as output a List containing the elements of the input List in reverse order.⁷ For example, (*list-reverse* (*list* 1 2 3)) should evaluate to the List (3 2 1). As usual, we consider the base case where the input List is null first. The reverse of the empty list is the empty list. To reverse a non-empty List, we should put the first element of the List at the end of the result of reversing the rest of the List. The tricky part is putting the first element at the end, since *cons* only puts elements at the beginning of a List. We can use the *list-append* procedure defined in the previous example to put a List at the end of another List. To make this work, we need to turn the element at the front of the List into a List containing just that element. We do this using (*list* (*car p*)).

⁶There is a built-in procedure *append* that does this. The built-in *append* takes any number of Lists as inputs, and appends them all into one List.

⁷The built-in procedure *reverse* does this.

```
(define (list-reverse p)
  (if (null? p)
      null
      (list-append (list-reverse (cdr p)) (list (car p)))))
```

Exercise 5.23. [*] Define the *list-reverse* procedure using *list-accumulate*.

Example 5.8: Intsto. For our final example, we consider the problem of constructing a List containing the whole numbers between 1 and the input parameter value. For example, (*intsto* 5) should evaluate to the List (1 2 3 4 5).

Here, we combine some of the ideas from the previous chapter on creating recursive definitions for problems involving numbers, and from this chapter on lists. Since the input parameter is not a List, the base case is not the usual base case when the input is *null*. Instead, we use the input value 0 as the base case. The result for input 0 is the empty list. For higher values, the output is the result of putting the input value at the end of the List of numbers up to the input value minus one.

A first attempt that doesn't quite work is:

(**define** (*revintsto n*) (**if** (= *n* 0) *null* (*cons n* (*revintsto* (- *n* 1)))))

The problem with this solution is that it is *cons*-ing the higher number to the front of the result, instead of at the end. Hence, it produces the List of numbers in descending order: (*revintsto* 5) evaluates to the List (5 4 3 2 1).

One solution is to reverse the result by composing *list-reverse* with *revintsto*:

(**define** (*intsto n*) (*list-reverse* (*revintsto n*)))

Equivalently, we can use the *fcompose* procedure from Section 4.2:

(**define** *intsto* (*fcompose list-reverse revintsto*))

Alternatively, we could use *list-append* to put the high number directly at the end of the List. Since the second operand to *list-append* must be a List, we use (*list n*) to make a singleton List containing the value as we did for *list-reverse*.

(**define** (*intsto* n) (**if** (= n 0) *null* (*list-append* (*intsto* (- n 1)) (*list* n))))

Although all of these procedures are functionally equivalent (for all valid inputs, each function produces exactly the same output), the amount of computing work (and hence the time they take to execute) varies substantially across the implementations. In Chapter 7, we introduce techniques for understanding the cost of evaluating a procedure and we consider the costs of the different *intsto* implementations.

Exercise 5.24. Define the *factorial* procedure (from Example 1) using *intsto*.

5.5 Lists of Lists

The elements of a List can be any datatype, including, of course, other Lists. In defining procedures that operate on Lists of Lists, we often use more than one recursive call when we need to go inside the inner Lists.

Example 5.9: Summing Nested Lists. Consider the problem of summing all the numbers in a List of Lists. For example, (*nested-list-sum* (*list* (*list* 1 2 3) (*list* 4 5 6))) should evaluate to 21. We can define *nested-list-sum* using *list-sum* on each List.

(**define** (*nested-list-sum* p) (**if** (*null*? p) 0 (+ (*list-sum* (*car* p)) (*nested-list-sum* (*cdr* p))))))

This works when we know the input is a List of Lists. But, what if the input can contain arbitrarily deeply nested Lists?

To handle this, we need to recursively sum the inner Lists. Each element in our deep List is either a List or a Number. If it is a List, we should add the value of the sum of all elements in the List to the result for the rest of the List. If it is a Number, we should just add the value of the Number to the result for the rest of the List. So, our procedure involves two recursive calls: one for the first element in the List when it is a List, and the other for the rest of the List. (define (deep-list-sum p) (if (null? p) 0 (+ (if (list? (car p)) (deep-list-sum (car p)) (car p)) (deep-list-sum (cdr p)))))

Example 5.10: Flattening Lists. Another way to compute the deep list sum would be to first flatten the List, and then use the *list-sum* procedure.

Flattening a nested list takes a List of Lists and evaluates to a List containing the elements of the inner Lists. We can define *list-flatten* by using *list-append* to append all the inner Lists together.

(**define** (*list-flatten* p) (**if** (*null*? p) *null* (*list-append* (*car* p) (*list-flatten* (*cdr* p)))))

This flattens a List of Lists into a single List. If we want to completely flatten a deeply nested List, we need to use multiple recursive calls as we did with *deep-list-sum*.

Now we can define *deep-list-sum* as

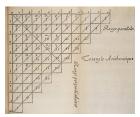
(**define** *deep-list-sum* (*fcompose deep-list-flatten list-sum*))

Exercise 5.25. Define a procedure *deep-list-map* that behaves similarly to *list-map* but on deeply nested lists. It should take two parameters, a mapping procedure, and a List (that may contain deeply nested Lists as elements), and output a List with the same structure as the input List with each value mapped using the mapping procedure.

Exercise 5.26. Define a procedure *deep-list-filter* that behaves similarly to *list-filter* but on deeply nested lists.

Exploration 5.1: Pascal's Triangle

This triangle is known as Pascal's Triangle (named for Blaise Pascal, although known to many others before him):



Pascal's Triangle

Each number in the triangle is the sum of the two numbers immediately above and to the left and right of it. The numbers in Pascal's Triangle are the coefficients in a binomial expansion. The numbers of the n^{th} row (where the rows are numbered starting from 0) are the coefficients of the binomial expansion of $(x + y)^n$. For example, $(x + y)^2 = x^2 + 2xy + y^2$, so the coefficients are 1 2 1, matching the third row in the triangle; from the fifth row, $(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$. The values in the triangle also match the number of ways to choose *k* elements from a set of size *n* (see Exercise 5) — the k^{th} number on the n^{th} row of the triangle gives the number of ways to choose *k* elements from a set of size *n*. For example, the third number on the fifth (n = 4) row is 6, so there are 6 ways to choose 3 items from a set of size 4.

The goal of this exploration is to define a procedure, *pascals-triangle* to produce Pascal's Triangle. The input to your procedure should be the number of rows; the output should be a list, where each element of the list is a list of the numbers on that row of Pascal's Triangle. For example, *(pascals-triangle 0)* should produce () (the empty list), *(pascals-triangle 0)* should produce ((1)) (a list containing one element which is a list containing the number 1), and *(pascals-triangle 4)* should produce ((1) (1 2 1) (1 2 3 1) (1 4 6 4 1)).

Very ambitious readers will attempt to define *pascals-triangle* themselves; the sub-parts below provide some hints for one way to define it.

a. First, define a procedure *expand-row* that expands one row in the triangle. It takes a List of numbers as input, and as output produces a List with one more element than the input list. The first number in the output List should be the first number in the input List; the last number in the output List should be the last number in the input List. Every other number in the output List is the sum of two numbers in the input List. The *n*th number in the output List is the sum of the n - 1th and *n*th num-

bers in the input List. For example, (*expand-row* (*list* 1)) should evaluate to the List (1 1); (*expand-row* (*list* 1 1)) should evaluate to the List (1 2 1); and (*expand-row* (*list* 1 4 6 4 1)) should evaluate to the List (1 5 10 10 5 1). This is trickier than the recursive list procedures we have seen so far since the base case is not the empty list (it is okay if your *expand-row* procedure produces an error when the input is an empty list). It also needs to deal with the first element specially. So, to define *expand-row*, it will be helpful to divide it into two procedures, one that deals with the first element of the list, and one that produces the rest of the list:

(define (expand-row p)
 (cons (car p) (expand-row-rest p)))

- **b.** Next, define a procedure *pascals-triangle-row* that takes one input, *n*, and outputs the *n*th row of Pascal's Triangle. For example, (*pascals-triangle-row* 0) should evaluate to the List (1) and (*pascals-triangle-row* 4) should produce (1 4 6 4 1).
- **c.** Finally, define *pascals-triangle* with the behavior described above. (If you have a hard time getting the rows of the triangle to appear in the right order, look at the *intsto* example.)

5.6 Data Abstraction

The mechanisms we have for constructing and deconstructing complex data structures are valuable because they enable us to think about programs closer to the level of the problem we are solving than the low level of how data is stored and manipulated in the computer. Our goal is to hide unnecessary details about how data is represented so we can focus on the important aspects of what the data means and what we need to do with it to solve our problem. The technique of hiding how data is represented from how it is used is known as *data abstraction*.

data abstraction

The datatypes we have seen so far are not very abstract. We have datatypes for representing Pairs, triples, and Lists, but we want datatypes for representing objects closer to the level of the problem we want to solve. A good data abstraction is abstract enough to be used without worrying about details like which cell of the Pair contains which data and how to access the different elements of a List. Instead, we want to define procedures with meaningful names that extract or manipulate the relevant parts of our data.

The rest of this section is an extended example that illustrates how we can solve problems by first identifying the objects we need to model to model the problem, and then implementing data abstractions that represent those objects. Once the appropriate data abstractions are designed and implemented, the solution to the problem often follows readily. This example also uses many of the list procedures defined earlier in this chapter.

Example 5.11: Pegboard Puzzle. For this example, we develop a program to solve the infamous pegboard puzzle, often found tormenting unsuspecting diners at pancake restaurants. The standard puzzle is a one-player game played on a triangular-shaped board with fifteen holes, initially with a peg in each hole. The game begins by removing one of the pegs. Then, the goal is to remove all but one of the pegs by jumping pegs over one another. A peg may jump over an adjacent peg only when there is a free hole on the other side of the peg. The jumped peg is removed. The game ends when there are no possible moves. If there is only one peg remaining, the player wins (according to the Cracker Barrel version of the game, "Leave only one—you're genius"). If more than one peg remains, the player loses ("Leave four or more'n you're just plain 'eg-no-ra-moose'.").

Our goal is to develop a program that provides a winning solution to the pegboard game, regardless of the starting position (which hole is initially brute force empty). We will use a brute force approach: try all possible moves until we find one that works. Brute force solutions work well when problems are fairly small. Because they have to try all possibilities, however, they are often too slow for solving large problems (even on the most powerful computers).⁸

> The first thing to think about to solve a complex problem is what datatypes we need. We want datatypes that represent the things we need to model in our problem solution. For the pegboard game, one thing we need to model is the board. The important thing about a datatype is what you can do with it. So, to design our board datatype we need to think about what we want to do with a board. In the physical pegboard game, the board holds the pegs. The important property we need to observe about the board is which holes on the board contain pegs. For this, we need a way of identifying board positions.

Pegboard Puzzle

⁸As we will see in Chapter 16, the generalized pegboard puzzle is an example of a class of problems known as NP-Complete. This means it is not known whether or not any solution exists that is substantially better than the brute force solution, but it would be extraordinarily surprising (and have momentous impact) to find one.

We can identify the board positions using row and column numbers:

So, we will make a Position datatype to represent a position on the board. A position has a row and a column, so we could just use a Pair to represent a position. This would work, but we prefer to have a more abstract datatype so we can think about a position's row and column, rather than thinking that a position is a Pair and using the *car* and *cdr* procedures to extract the row and column from the position.

Our Position datatype should provide at least these operations:

- *make-position*: Number \times Number \rightarrow Position create a Position representing the row and column given by the inputs
- *position-get-row*: Position \rightarrow Number gets the row number of the input Position
- *position-get-column*: Position \rightarrow Number gets the column number of the input Position

Since the Position needs to keep track of two numbers, a natural way to implement the Position datatype is to use a Pair:

(**define** (*make-position row col*) (*cons row col*)) (**define** (*position-get-row posn*) (*car posn*)) (**define** (*position-get-column posn*) (*cdr posn*))

A more defensive way to implement the Position datatype is to use a *tagged list*. We can use a symbol to identify the type of data, and the remaining ele- tagged list ments in the list as the data. Symbols are a quote (') followed by a sequence of characters. The important operation we can do with a Symbol, is test whether it is an exact match for another symbol using the *eq*? procedure. So, we first define the Tagged-List datatype (we use the *list-get-element* procedure from Example 3, and the built-in *format* procedure introduced in Exercise 16):

(**define** (make-taggedlist tag p) (cons tag p)) (**define** (*taggedlist-get-tag p*) (*car p*))

This is an example of defensive programming. Using our tagged lists, if we accidentally attempt to use a value that is not a Position as a position, we will get an easy to understand error message instead of a hard-to-debug error (or worse, an unnoticed incorrect result).

Using the tagged list, we define the Position datatype as:

(**define** (*make-position row col*) (*make-taggedlist* 'Position (*list row col*)))

These procedures provide ways to extract the row and column from a Position, and to determine if two Positions are the same place:

(**define** (*position-get-row posn*) (*taggedlist-get-element* 'Position *posn* 1))

(**define** (*position-get-column posn*) (*taggedlist-get-element* 'Position *posn* 2))

Here are some example interactions with our Position datatype:

```
> (define pos (make-position 2 1))
> pos
(Position 2 1)
> (get-position-row pos)
2
> (get-position-row (list 1 2))
Bad list tag: 1 (expected Position)
```

The last evaluation produces an error, since we are attempting to apply a procedure that expects a Position as its input to a value that is not a Position.

Now we have a way of identifying positions, we can make progress on the board datatype. It should provide at least these two procedures:

 make-board: Number → Board — create a board full of pegs with the input number of rows. (In the physical board, the board is always the same size with 5 rows, but we define our Board datatype to support any number of rows.) *board-contains-peg*?: Position → Boolean — evaluates to *true* if and only if the hold at the input Position contains a peg.

We also need to be able to change the state of the board to reflect moves in the game. This means the board data type should have operations for removing and adding pegs to the board. Nothing we have seen so far, however, provides a means for changing the state of an existing object.⁹ So, instead of thinking of these operations as changing the state of the board, what they really do is create a new board that is different from the input board by the one new peg. Hence, these procedures will take a Board and Position as inputs, and produce as output a Board.

- *board-add-peg*: Board × Position → Board the output is a Board containing all the pegs of the input Board and one additional peg at the input Position. If the input Board already has a peg at the input Position, produces an error.
- *board-remove-peg*: Board × Position → Board the output is a Board containing all the pegs of the input Board except for the peg at the input Position. If the input Board does not have a peg at the input Position, produces an error.

There are lots of different ways we could represent the Board. One possibility is to keep a List of the Positions of the pegs on the board. Another possibility is to keep a List of the Positions of the empty holes on the board. Yet another possibility is to keep a List of Lists, where each List corresponds to one row on the board. The elements in each of the Lists are Booleans representing whether or not there is a peg at that position. The good thing about data abstraction is we could pick any of these representations and change it to a different representation later (for example, if we needed a more efficient board implementation). As long as the procedures for implementing the Board are updated the work with the new representation, all of the other code should continue to work correctly without any changes.

We choose the third option, to represent a Board using a List of Lists, where each element of the inner lists is a Boolean indicating whether or not the corresponding position contains a peg. So, our *make-board* procedure should evaluate to a List of Lists, where each element of the List contains the row number of elements and all the inner elements are true (the initial board is completely full of pegs). First, we define a procedure *make-list-of-constants*

⁹We will introduce mechanisms for changing state in Chapter 10. Allowing state to change leads to lots of complexities including breaking our substitution model of evaluation.

that takes two inputs, a Number, *n*, and a Value, *val*. The output is a List of length *n* where each element has the value *val*.

(define (make-list-of-constants n val)
 (if (= n 0)
 null
 (cons val (make-list-of-constants (- n 1) val))))

To make the initial board, we can use *make-list-of-constants* to make each row of the board. As usual, a recursive problem solving strategy works well: the simplest board is a board with zero rows (which should be represented as the empty list); for each larger board, we need to add a row with the right number of elements.

The tricky part is getting the rows to be in order. This is similar to the problem we faced with *intsto*, and a similar solution using *append-list* works here.

For example, (make-board 5) evaluates to the List of Lists:

((true) (true true) (true true true) (true true true true) (true true true true true))

The *board-rows* procedure takes a Board as input and outputs the number of rows on the board.

(define (board-rows board) (length board))

Now that we have defined our board datatype, we can implement the procedures for observing and manipulating the board. The *board-contains-peg*? procedure takes a Board and a Position as input, and should output a Boolean indicating whether or not that Position contains a peg. To implement *board-contains-peg*? we need to find the appropriate row in our board representation, and then find the element in its list corresponding to the Position's column. The *list-get-element* procedure (from Example 3) does exactly what we need. Since our board is represented as a List of Lists,

we need to use it twice: first to get the row, and then to select the column within that row:

(**define** (board-contains-peg? board pos) (list-get-element (list-get-element board (position-get-row pos)) (position-get-column pos)))

Defining the procedures for adding and removing pegs from the board is a bit more complicated. We need to make a board with every row identical to the input board, except the row where the peg is added or removed. For that row, we need to replace the corresponding value. First we implement the *board-add-peg* procedure. After implementing this, we will see that removing is very similar, so both adding and removing can be done with a more general procedure that takes an extra input.

To implement *board-add-peg*, we first consider the subproblem of adding a peg to a row. The procedure *row-add-peg* takes as input a List representing a row on the board and a Number indicating the column where the peg should be added. We can define *row-add-peg* recursively: the base case is when the new peg belongs at the beginning of the row (the column number is 1); in the recursive case, we copy the first element in the List, and add the peg to the rest of the list.

(define (row-add-peg pegs col)
 (if (= col 1)
 (cons true (cdr pegs))
 (cons (car pegs) (row-add-peg (cdr pegs) (- col 1)))))

To add the peg to the board, we can use *row-add-peg* to add the peg to the appropriate row, and keep all the other rows the same. We divide the problem into a procedure that checks the add is valid (the selected position does not already contain a peg), and a helper procedure that produces the new board.

(define (board-add-peg-helper board row col)
 (if (= row 1) ; this row
 (cons (row-add-peg (car board) col)
 (cdr board))
 (cons (car board)
 (board-add-peg-helper (cdr board) (- row 1) col))))

To define *board-replace-peg* we would need to do essentially the same thing, but instead of making the value at the selected position *true* to represent a peg, we need to make it *false* to indicate an empty hole. One might be tempted to "cut-and-paste" to define *board-remove-peg* using the adding procedures already defined, but this makes the code nearly twice as long as it needs to be. It is much better to instead write a more general procedure that can be used to define both *board-add-peg* and *board-remove-peg*. We do this by defining the *board-replace-peg* procedure that takes an extra parameter (*true* for adding, *false* for replacing).

Then, both *board-add-peg* and *board-remove-peg* can be defined simply using *board-remove-peg*.

(**define** (board-remove-peg board pos)

(**if** (not (board-contains-peg? board pos))

(error (format "Board does not contain peg at position: ~a" pos)) (board-replace-peg board (position-get-row pos)

(position-get-column pos) false)))

Now we have datatypes for representing a Position and the Board.

The next datatype we want is a way to represent a move. A move involves three positions: the position where the jumping peg starts, the position of the peg that is jumped and removed, and the landing position. One possibility would be to represent a move as a list of the three positions. A better option is to observe that once any two of the positions are known, the third position is determined. For example, if we know the starting position and the landing position, we know the jumped peg is at the position between them. So, we could represent a jump using a List containing the starting and landing positions and find the jumped position as needed from those.

Another possibility is to represent a jump by storing the starting Position and the direction. This is also enough to determine the jumpee and landing positions. This approach seems most natural, and avoids the difficulty of calculating jumpee positions. To do it, we first design a Direction datatype for representing the possible move directions. Directions have two components: the change in the row (we use 1 for down and -1 for up), and the change in the column (1 for right and -1 for left). We can move directly up, down, left, and right. Because of the triangular shape of the board, only two of the diagonal directions make sense: up-left and down-right (upright does not make sense since moving up normally is actually moving up and right on the triangular board).

We implement the Direction datatype using a similar tagged list datatype to how we defined Position.

(**define** (*make-direction down right*) (*make-taggedlist* 'Direction (*list down right*)))

(**define** (*direction-get-vertical dir*) (*taggedlist-get-element* 'Direction *dir* 1))

(**define** (*direction-get-horizontal dir*) (*taggedlist-get-element* 'Direction *dir* 2))

We also define names representing the six possible move directions, and a list of all move directions. This will be useful when we consider all possible moves.

(**define** *direction-up* (*make-direction* -1 0)) (**define** *direction-down* (*make-direction* 1 0)) (**define** *direction-left* (*make-direction* 0 -1)) (**define** *direction-right* (*make-direction* 0 1)) (**define** *direction-up-left* (*make-direction* -1 -1)) (**define** *direction-down-right* (*make-direction* 1 1)) (**define** *all*-*directions*

(*list direction-up direction-down direction-left direction-right direction-up-left direction-down-right*))

Now, we can define the Move datatype using the starting position and the jump direction.

(**define** (*make-move start direction*) (*make-taggedlist* 'Move (*list start direction*)))

(**define** (move-get-start move) (taggedlist-get-element 'Move move 1))

(**define** (move-get-direction move) (taggedlist-get-element 'Move move 2))

We also need to define procedures for getting the jumpee and landing positions of a move. The jumpee position is the result of moving one step in the move direction from the starting position. So, it will be useful to define a procedure that takes a Position and a Direction as input, and outputs a Position that is one step in the input Direction from the input Position.

(**define** (direction-step pos dir) (make-position (+ (position-get-row pos) (direction-get-vertical dir)) (+ (position-get-column pos) (direction-get-horizontal dir))))

Using *direction-step* we can implement procedure to get the middle and landing positions.

(**define** (move-get-jumpee move) (direction-step (move-get-start move) (move-get-direction move)))

(**define** (move-get-landing move) (direction-step (move-get-jumpee move) (move-get-direction move)))

With our Board, Move, and Position datatypes, we can now implement a procedure that models making a move on a board. To make a move we remove the jumped peg, and move the peg at the move starting position to the landing position. We can consider moving the peg as removing the peg from the starting position and adding a peg to the landing position.

(**define** (execute-move board move) (board-add-peg (board-remove-peg (board-remove-peg board (move-get-start move)) (move-get-jumpee move)) (move-get-landing move)))

Now that we have datatypes for modeling positions, moves, and the board, and a way to make moves on the board, we are ready to develop the solution. At each step, we need to try all valid moves on the board to see if any move leads to a winning position (that is, a position with only one peg remaining). So, we need a procedure that takes a Board as its input and outputs a List of all valid moves on the board. We break this down into the problem of producing a list of all conceivable moves (all moves in all directions from all starting positions on the board), filtering that list for moves that stay on the board, and then filtering the resulting list for moves that are legal (start at a position containing a peg, jump over a position containing a peg, and land in a position that is an empty hole).

First, we generate all conceivable moves by creating moves starting from each position on the board and moving in all possible move directions. We break this down further: the first problem is to produce a List of all positions on the board. We can generate a list of all row numbers using the *intsto* procedure (from Example 8): (*intsto* (*board-rows board*)). To get a list of all the positions, we need to produce a list of the positions for each row. We can do this by mapping each row to the corresponding list:

(list-map (lambda (row) (list-map (lambda (col) (make-position row col)) (intsto row))) (intsto (board-rows board)))

This almost does what we need, except instead of producing one List containing all the positions, it produces a List of Lists for the positions in each row. The *list-flatten* procedure (from Example 10) produces a flat list containing all the positions.

```
(define (all-positions board)
(list-flatten
(list-map
(lambda (row)
(list-map
(lambda (col) (make-position row col))
(intsto row)))
(intsto (board-rows board)))))
```

Now, for each Position, we need to consider all possible moves. Again, *list-map* is useful. For each Position we create a list of moves where each move is that Position as the starting position and the Direction is one of the possible move directions. This produces a List of Lists, so we use *list-flatten* to flatten the output of the *list-map* application into a single List of Moves.

```
(define (all-conceivable-moves board)
 (list-flatten
      (list-map
      (lambda (pos)
            (list-map
                (lambda (dir) (make-move pos dir))
                      all-directions))
            (all-positions board)))))
```

The List of Moves produced by *all-conceivable-moves* includes moves that fly off the board. We use the *list-filter* procedure to remove those moves, to get the list of possible moves. For the filter procedure, we need a procedure that determines if a Position is on the board. A position is valid if its row number is between 1 and the number of rows on the board, and its column numbers is between 1 and the row number.

```
(define (valid-position? board pos)
  (and
   (>= (position-get-row pos) 1)
   (>= (position-get-column pos) 1)
   (<= (position-get-row pos) (board-rows board))
   (<= (position-get-column pos) (position-get-row pos)))))</pre>
```

Hence, we can define *all-possible-moves* as:

```
(define (all-possible-moves board)
 (list-filter
      (lambda (move)
           (valid-position? board (move-get-landing move)))
        (all-conceivable-moves board)))
```

Finally, we need to filter out the moves that are not legal moves. A legal move must start at a position that contains a peg, jump over a position that contains a peg, and land in an empty hole. We can use *list-filter* to keep only the legal moves similarly to how we kept only the moves that stay on the board.

To find a solution, we will need a way to know when we have found a winning board. This is a board with only one peg. We implement a more general procedure to count the number of pegs on a board first. Our board representation used *true* to represent a peg. To count the pegs, we first map the Boolean values used to represent pegs to 1 if there is a peg and 0 if there is no peg. Then, we can use *sum-list* to count the number of pegs. Since the Board is a List of Lists, we first need to use *list-flatten* to put all the pegs in a single List.

(**define** (board-number-of-pegs board) (list-sum (list-map (**lambda** (peg) (**if** peg 1 0)) (list-flatten board))))

Then, we can determine if a board represents a winning position by checking if it contains one peg.

(**define** (*is-winning-board*? *board*) (= (*board-number-of-pegs board*) 1))

Note that our *board-number-of-pegs* procedure depends on the way we choose to represent the Board data type (this is why we give it a name that begins with *board-*). Unlike the other procedures we have written for solving the game, this procedure would need to be reconsidered if we change the way the Board type is represented.

Our goal is to find a sequence of moves that leads to a winning position, starting from the current board. If there is a winning sequence of moves, we can find it by trying all possible moves on the current board. Each of these moves leads to a new board. If the original board has a winning sequence of moves, at least one of the new boards has a winning sequence of moves. Hence, we can solve the puzzle by recursively trying all moves until finding a winning position.

(define (solve-pegboard board)
 (if (is-winning-board? board)
 null ; no moves needed to reach winning position
 (try-moves board (all-legal-moves board))))

The *solve-pegboard* procedure evaluates to a List of Moves, if there is a sequence of moves that wins the game starting from the input Board. This could be null, in the case where the input board is already a winning board. If there is no sequence of moves to win from the input board, it outputs false.

It remains to define the *try-moves* procedure. It takes a Board and a List of Moves as inputs, and outputs either false if there is no sequence of moves that wins from the input Board starting with one of the Moves in the input List, or a List of Moves that wins.

The base case is when there are no moves to try. When the input list is *null* it means there are no moves to try. We will use the output *false* to mean this attempt did not lead to a winning board. Otherwise, we should try the first move. If it leads to a winning position, we should evaluate to the List of Moves that starts with the first move, and is followed by the rest of the moves needed to solve the board resulting from taking the first move (that is, the result of *solve-pegboard* applied to the Board resulting from taking the first move). If the first move doesn't lead to a winning board, we should try the rest of the moves (by calling *try-moves* recursively).

Evaluating (*solve-pegboard* (*make-board* 5)) produces false since there is no way to win starting from a completely full board. Evaluating (*solve-pegboard* (*board-remove-peg* (*make-board* 5) (*make-position* 1 1))) takes about three minutes to produce a result:

((Move (Position 3 1) (Direction -1 0)) (Move (Position 3 3) (Direction 0 -1)) (Move (Position 1 1) (Direction 1 1)) (Move (Position 4 1) (Direction -1 0)) (Move (Position 5 2) (Direction -1 -1)) (Move (Position 5 2) (Direction -1 0)) (Move (Position 5 3) (Direction -1 0)) (Move (Position 2 1) (Direction 1 1)) (Move (Position 2 2) (Direction 1 1)) (Move (Position 5 5) (Direction -1 -1)) (Move (Position 3 3) (Direction 1 0)) (Move (Position 5 4) (Direction 0 -1)) (Move (Position 5 1) (Direction 0 1)))

This is a sequence of moves for winning the game starting from a 5-row board with the top peg removed.

Exercise 5.27. [*] Change the implementation to use a different Board representation, such as keeping a list of the Positions of each hole on the board. Only the procedures with names starting with *board*- should need to change when the Board representation is changed. Compare your implementation to the one described here. Which representation is better?

Exercise 5.28. $[\star\star]$ The described implementation is very inefficient. It does lots of redundant computation. For example, *all-possible-moves* evaluates to the same value every time it is applied to a board with the same number of rows. It is wasteful to recompute this over and over again to solve a given board. See how much faster you can make the pegboard solver. Can you make it fast enough to solve the 5-row board in less than half the original time? Can you make it fast enough to solve a 6-row board?

Exercise 5.29. [*] The standard pegboard puzzle uses a triangular board, but there is no reason the board has to be a triangle. Define a more general pegboard puzzle solver that works for a board of any shape.

5.7 Summary

Building from the simple pair, we can create complex data structures including lists. A List is either *null*, or a Pair whose second cell is a List. Since the List data structure is itself defined recursively, it is not surprising that many procedures that involve lists can be defined recursively. We can specialize our general problem solving strategy from Chapter 3 for procedures involving lists:

- 1. Be *very* optimistic! Since lists themselves are recursive data structures, most problems involving lists can be solved with recursive procedures.
- 2. Think of the simplest version of the problem, something you can already solve. This is the base case. For lists, this is usually the empty list.
- 3. Consider how you would solve a big version of the problem by using the result for a slightly smaller version of the problem. This is the recursive case. For lists, the smaller version of the problem is the rest (*cdr*) of the List.
- 4. Combine the base case and the recursive case to solve the problem.

As we develop programs to solve more complex problems, it is increasingly important to find ways to manage complexity. We need to break problems down into smaller parts that can be solved separately. Data abstraction hides the details of how data is represented from what you can do with it. Solutions to complex problems can be developed by thinking about what objects need to be modeled, and designing data abstractions the implement those models. Most of the work in solving the problem is defining the right datatypes; once we have the datatypes we need to model the problem well, we are usually well along the path to a solution.

One limitation of lists is that the only structure they provide is a linear sequence of elements; for some problems, it will be convenient to have richer structures such as trees (structures where each element can have more than one successor) and graphs (structures where elements can be connected in arbitrary ways). All of these structures can be built using just the Pair structure introduced in this chapter. In later chapters, we will explore these more complex data structures. Most of the concepts needed to construct and manipulate them follow directly from our simple List structure. Another problem with lists is that because of their sequential structure, many tasks cannot be efficiently performed on lists that could be performed efficiently on other data structures. In the following chapters, we consider the resources required to execute a procedure.

Part II

Analyzing Procedures

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

It is unworthy of excellent people to lose hours like slaves in the labor of calculation which could safely be relegated to anyone else if machines were used. Gottfried Wilhelm von Leibniz, 1685

Well let's be clear right from the start, I never have been interested in computing, and I'm still not interested in computing. What I'm interested in is computers. I'm an engineer, I define the computer right from square one as a device which was designed to facilitate the performance of mathematics, the greater part of which would be very much better not done. F. C. Williams, engineer of the first stored-program computer

The first five chapters focused on ways to use language to describe procedures. Although finding ways to describe procedures succinctly and precisely would be useful even if we did not have machines to carry out those procedures, the tremendous practical value we gain from being able to describe procedures comes from the ability of computers to carry out those procedures astoundingly quickly, reliably, and inexpensively. As a very rough approximation, having a modern laptop gives an individual computing power roughly equivalent to having every living human on the planet working for you without ever making a mistake or needing a break.

In this chapter, we introduce computing machines. Computers are different from other machines in two key ways:

- 1. Whereas other machines amplify or extend our *physical* abilities, computers amplify and extend our *mental* abilities.
- 2. Whereas other machines are designed for a small set of tasks, computers can be *programmed* to perform many tasks. In fact, the simple computer model we present in this chapter is sufficient to perform *all* possible computations.

The next section gives a brief history of computing machines, from prehistoric calculating aids to the design of the first universal computers. Section 6.2 explains how machines can implement logic. Section 6.3 introduces a simple abstract model of a computing machine that is powerful enough to carry out any algorithm.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

We provide only a very shallow introduction to how machines can implement computations. Our primary goal is not to convey the details of how to design and build an efficient computing machine (although that is certainly a worthy goal that is pursued in other computing courses), but to gain sufficient understanding of the properties nearly all conceivable computing machines share to be able to predict properties about the costs involved in carrying out a particular procedure. The following chapters use this to reason about the costs of various procedures. In later chapters, we use it to reason about the range of problems that can and cannot be solved by an mechanical computing machine (Chapter 15), and the set of problems that can be solved by conceivable computing machines in a reasonable amount of time (Chapter 16).

6.1 History of Computing Machines

The goal of early machines was to carry out some physical process with less effort than would be required by a human. These machines took physical things as inputs, performed physical actions on those things, and produced some physical output. For example, a cotton gin takes as input raw cotton, mechanically separates the cotton seed and lint, and produces the separated products as output.

The first big leap toward computing machines was the invention of machines whose purpose is abstract rather than physical. Instead of producing physical things, these machines used physical things to *represent* information. The valuable output of the machine is not its physical effect, but how its physical output can be interpreted as information.

Our first example is not a machine, but using fingers to count. The base ten number system used by most human cultures reflecting our ten fingers for counting.¹ Successful shepherds needed to find ways to count higher than ten. Early shepherds did this by using stones to represent numbers, making the cognitive leap of using a physical stone to represent some quantity of sheep. A shepherd would count sheep by holding stones in his hand that represent the number of sheep.

Inca Khipu

More complex societies required more counting and more advanced calculating. For example, the Inca civilization in Peru used knots in collections of strings known as *khipu* to keep track of thousands of items for a hierarchical system of taxation. By tying different kinds of knots on different

¹Not all human cultures use base ten number systems. For example, many cultures including the Maya and Basque adopted base twenty systems counting both fingers and toes. This was natural in warm areas, where typical footwear left the toes uncovered.

strings and at different positions on the strings, the Inca accountants could represent thousands of different numbers.

Other societies developed machines for computing mathematical operations beyond just counting. An *abacus* is a device for performing calculations by moving beads on rods. Many cultures have developed forms of abaci, including the ancient Mesopotamians and Romans. The Chinese *suan pan* ("calculating plate") is an abacus with a beam subdividing the rods, typically with two beads above the bar (each representing 5), and five beads below the beam (each representing 1). An operator can compute addition, subtraction, multiplication, and division by following mechanical processes using an abacus.

All of the machines described so far require humans to move parts to perform calculations. As machine technology improved, automatic calculating machines could be built where the operator only needed to set up the inputs (and then turn a crack, push a lever, or use some external power source). The first known automatic calculating machine was built in Germany by Wilhelm Schickard in 1623, and could perform addition and subtraction mechanically, and multiplication and division with assistance from the operator. Other than as a historical artifact, however, Schickard's machine had little impact and the only machine burned in 1624.

The first automatic calculating machine to be widely demonstrated was the *Pascaline*, built by then nineteen-year old French mathematician Blaise Pascal (also responsible for Pascal's triangle from Exploration 5.1) to replace the tedious calculations he had to do to manage his father's accounts. The Pascaline had five wheels, each representing one digit of a number, linked by gears to perform addition with carries. The first machine capable of performing all four basic arithmetic operations (addition, subtraction, multiplication, and division) fully mechanically was built by Gottfried Wilhelm von Leibniz in 1694.

Over the following centuries, smaller, more reliable, and more complex mechanical calculating machines were developed. These machines could perform calculations on large numbers, but they could only perform one operation at a time. Hence, performing a series of calculations was a tedious and error-prone process in which a human operator had to set up the machine for each arithmetic operation, record the result, and reset the machine for the next calculation.

The big breakthrough was the conceptual leap of programmability. A machine is *programmable* if its inputs not only control the values it operates on, but the operations it performs. Babbage was born in London in 1791 and studied mathematics at Cambridge. In the 1800s, calculations were done by looking up values in large books of mathematical and astronomical tables.

Suan Pan

Charles Babbage

These tables were computed by hand, and often contained errors. Babbage and astronomer John Herschel examined one set of tables in 1821 and found it contained thousands of errors. The calculations were especially important for astronomical navigation, and when the values were incorrect a ship would miscalculate its position at sea (sometimes with tragic

Babbage sought to develop a machine to mechanize the calculations needed to compute these tables. Starting in 1822, he designed a steam-powered machine known as the Difference Engine to compute polynomials needed for astronomical calculations using Newton's method of successive differences (a generalization of Heron's method from Exploration 4.1). The Difference Engine was never fully completed, and despite receiving funding from the Royal Astronomical Society responsible for producing the astronomical navigation tables, Babbage endured repeated difficulty securing

Parliament, "Pray, Mr. As Babbage gained experience with increasingly precise machining, he envisioned a more general calculating machine that could be programmed to perform any calculation. This new machine, the Analytical Engine, designed between 1833 and 1844, was the first general-purpose computer envisioned. One breakthrough in Babbage's design was to feed the machine's outputs back into its inputs. This meant the engine could perform calculations with an arbitrary number of steps by cycling outputs back through the machine.

continued funding from the government.

The Analytical Engine could be programmed using punch cards, based on the cards that were used by Jacquard looms. Each card could describe an instruction such as loading a number into a variable in the store, moving values, performing arithmetic operations on the values in the store, and, most interestingly, jumping forward and backwards in the instruction cards. The Analytical Engine supported conditional jumps where the jump would be taken depending on the state of a lever in the machine (this is essentially a simple form of the if-expression).

In 1842, Babbage visited Italy and described the Analytical Engine to Federico Luigi Conte di Menabrea, an Italian engineer, military officer, statesman, and mathematician who would later become Prime Minister of Italy. Menabrea published a description of the Analytical Engine in French. Ada Augusta Byron King (also known as Ada, Countess of Lovelace) translated the article into English. In writing the translation, she also added a series of notes to the article (that contained more text than the original article).

In the notes, Ada presented the first detailed program for the Analytical Engine, describing a program to compute Bernoulli numbers. Ada was the first to realize the importance and interest in creating the programs them-

We got nothing for our £17,000 consequences). but Mr. Babbage's grumblings. We should at least have had a clever toy for our money. Richard Sheepshanks, Letter to the Board of Visitors of the Greenwich Royal Observatory, 1854

On two occasions I have been asked by members of Babbage, if you put into the machine wrong figures, will the right answers come out?" I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question. Charles Babbage

Analytical Engine Mill Science Museum, London

selves, and envisioned how programs could be used to do much more than just calculate mathematical functions. This was the first computer program ever described, and Ada is recognized as the first computer programmer.

Despite Babbage's design, and Ada's vision, the Analytical Engine was never completed. It is unclear whether the main reason for the failure to build a working Analytical Engine was due to limitations of the mechanical components available at the time, or due to Babbage's inability to work with his engineer collaborator or to secure continued funding.

At any rate, the first working programmable computers would not appear for nearly a hundred years. Advances in electronics enables more reliable and faster components than the mechanical components used by Babbage, and the desperation brought on by World War II spurred the funding and efforts that led to working general-purpose computing machines.

The remaining conceptual leap was treating the program itself as data, analogous to how we use procedures as inputs and outputs in Chapter 4. In Babbage's Analytical Engine, the program was the stack of cards and the data was the numbers stored in the machine. Thus, there was a big separation between programs and data, and no way for the machine to alter its program.

The idea of treating the program as just another kind of data the machine can process was developed in theory by Alan Turing in the 1930s (Section 6.3 of this chapter describes his model of computing), and first implemented by the Manchester Small-Scale Experimental Machine (built by a team at Victoria University in Manchester) in 1948. With this computer, and all general-purpose computers in use today, the program itself is stored in the machine's memory. Hence, the computer can modify and create new programs by writing into its own memory. It it this power to change its own program that makes stored-program computers so versatile.

Exercise 6.1. Babbage's design for the Analytical Engine called for a store holding 1000 variables, each of which is a 50-digit (decimal) number.

- a. How many bits could the store of Babbage's Analytical Engine hold?
- **b.** How does this compare to the Apollo Guidance Computer and to a modern cell phone?

Ada Augusta Byron King

next step was to build a computer around it. Tom Kilburn and I knew nothing about computers, but a lot about circuits. Professor Newman and Mr A. M. Turing knew a lot about computers and substantially nothing about electronics. They took us by the hand and explained how numbers could live in houses with addresses and how if they did they could be kept track of during a calculation. F. C. Williams, engineer of the Manchester Small-Scale **Experimental Machine**

6.2 Mechanizing Logic

In this section, we give some insight into how machines can compute, starting with simple logical operations.

We use *Boolean logic*, in which there are two possible values: *true* (often denoted as 1), and *false* (often denoted as 0). Boolean logic is named for George Boole (1815-1864), a self-taught British mathematician who published *An investigation into the Laws of Thought, on Which are founded the Mathematical Theories of Logic and Probabilities* in 1854. Before Boole's work, logic was treated as part of philosophy, focused on natural language discourse. Boole's advance was to make logic a formal language, to which the tools of mathematics could be applied. The Boolean datatype in Scheme is based on Boolean logic and can represent the two Boolean values.

Our goal is to show how logical functions can be implemented mechanically. Modern computers use electrons to compute because they are small (more than a billion billion (10^{31}) electrons fit within the volume of a grain of sand), fast (approaching the speed of light), and cheap (more than a billion billion (10^{22}) electrons come out of a power outlet for less than a cent). They are also invisible and behave in somewhat mysterious ways, however, so we will instead consider how to compute with wine (or your favorite colored liquid). The basic notions of mechanical computation don't depend on the medium we use to compute, only on our ability to use it to represent values and to perform simple logical operations.

To implement logic using a machine, we need physical ways of representing the two possible values. One representation is to use a full bottle of wine to represent *true*, and an empty bottle of wine to represent *false*. So, to represent an input with value *true*, we will pour a bottle of wine in the input nozzle, and to represent an input with value *false*, we will pour an empty bottle of wine in the input (or equivalently, do nothing). Similarly, electronic computers typically use presence of voltage to represent *true*, and absence of voltage to represent *false*.

6.2.1 Implementing Logic

First, let's consider how to build an *and* function that performs logical conjunction. A logical *and* function takes two inputs, and produces one output. The output is *true* if both of the inputs are *true*; otherwise the output is *false*.

Using Scheme notation, we can write this as (and A B) where and is the func-

George Boole

tion being applied to the two inputs, A and B^2 . We could define a Scheme procedure that performs logical conjunction using an if-expression:

(**define** (*logical-and a b*) (if a b false))

To design a mechanical implementation of the logical *and* function, we want a simpler definition that does not involve implementing something as complex as the Scheme if-expression. A different way to define a function is by using a table to show the corresponding output value for each possible pair of input values. This way of defining a function is limited to functions with a small number of possible inputs; we could not define addition on arbitrarily-large integers this way, since there are infinitely many possible different numbers that could be used as inputs. For functions in Boolean logic, there are only two possible values for each input (*true* and *false*) so it is reasonable to list the outputs for all possible inputs.

We call a table defining a Boolean function a *truth table*. If there is one input, *truth table* the table needs two entries, showing the output value for each possible input. When there are two inputs, the table needs four entries, showing the output value for all possible combinations of the input values. The truth table for the logical and function is:

Inp	outs	Output		
Α	В	(and A B)		
false	false	false		
true	false	false		
false	true	false		
true	true	true		

Our goal is to design a machine that implements the function described by the truth table: if both inputs are *true* (represented by full bottles of wine in our machine), the output should be *true* (that is, a full bottle of wine); if either input is *false* (an empty bottle), the output should be *false* (an empty bottle).

One way to do this is shown in Figure 6.1. Both inputs pour into a basin. The output nozzle is placed at a height corresponding to one bottle of wine in the collection basin, so the output bottle will fill (representing true), only if both inputs are true.

²Scheme provides a special form *and* that performs the same function as the logical *and* function. It is a special form, though, since the second input expression is not evaluated unless the first input expression evaluates to true.

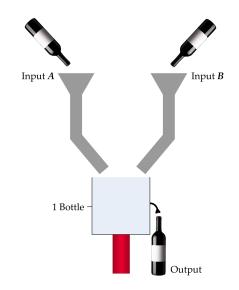


Figure 6.1. Computing and with wine.

The design in Figure 6.1 would work in theory, but probably not very well in practice. Some of the wine is likely to spill or get stuck in the pipes, so even when both inputs are *true*, the output might not be a full bottle of wine, but rather one that is only partially full. While the loss of wine is unfortunate, the real problem is for our representation. What should a $\frac{3}{4}$ full bottle of wine represent? What about a bottle that is half full?

digital abstraction The solution is the *digital abstraction*. Although there are many different quantities of wine that could be in a bottle, regardless of the actual quantity the value is interpreted as only one of two possible values: *true* or *false*. If the bottle has more than a given threshold, say half full, it represents *true*; otherwise, it represents *false*. This means an infinitely large set of possible values are abstracted as meaning *true*, so it doesn't matter which of the values above half full it is.

The digital abstraction provides a transition between the continuous world of physical things and the logical world of discrete values. It is much easier to design computing systems around discrete values than around continuous values; by mapping a range of possible continuous values to just two discrete values, we give up a lot of information but gain in simplicity and reliability. Essentially all computing machines today operate on discrete values using the digital abstraction.

Implementing or. The logical *or* function takes two inputs, and outputs true if any of the inputs are true.³

³Scheme provides a special form *or* that implements the logical *or* function, similarly to

Here is the truth table for the *or* function:

Inputs		Output	
A	В	(or A B)	
false	false	false	
true	false	true	
false	true	true	
true	true	true	

Try to invent your own design for a machine that computes the *or* function before looking at our solution in Figure 6.2(a).

Implementing not. Next, consider the logical *not* function. The output of the *not* function is the opposite of the value of its input. It only takes one input, so its truth table only has two entries:

Input	Output
A	(not A)
false	true
true	false

Implementing a logical *not* is more difficult: the output needs to be the opposite of the input. Alas, it is not possible to produce a logical *not* without some other source of wine; it needs to create wine (to represent *true*) when there is none input (representing *false*). To implement the *not* function, we need the notion of a *source current* and a *clock*. The source current injects a bottle of wine on each clock tick. The clock ticks periodically, on each operation. The inputs need to be set up before the clock tick. When the clock ticks, a bottle of wine is sent through the source current, and the output is produced. Try to imagine your own design of a *not* function before looking at our solution in Figure 6.2(b).

6.2.2 Composing Operations

We have seen how to implement *and*, *or* and *not* using wine, but is that enough to perform interesting computations? In this subsection, we consider how simple logical functions can be combined to implement any logical function; in the following subsection, we see how this is enough to build basic arithmetic operations also.

We start by consider how to make a three-input conjunction function. The *and3* of three inputs is *true* if and only if all three inputs are *true*. One way

the *and* special form. If the first input evaluates to true, the second input is not evaluated and the value of the *or* expression is true.

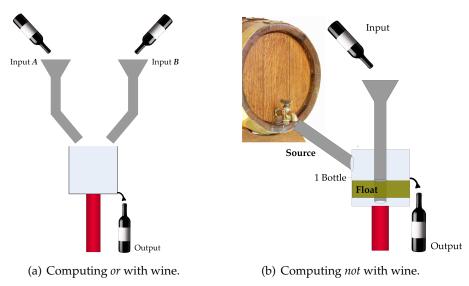


Figure 6.2. Computing logical *or* and *not* with wine

(a) The *or* machine is similar to the *and* machine in design, except we move the output nozzle to the bottom of the basin, so if either input is *true*, the output will be *true* (when both inputs are *true*, some wine is spilled, which is a shame, of course, but this does not impact the logical operation).

(b) The *not* machine uses a clock. Before the clock tick, the input is set. If the input is *true*, the float is lifted, blocking the source opening; if the input i *false*, the float rests on the bottom of the basin. When the clock ticks, the source wine is injected. If the float is up (because of the *true* input), the opening is blocked, and the output is empty (*false*). If the float is down (because of the *false* input), the opening is open, the source wine will pour across the float, filling the output (representing *true*). (This design assumes wine coming from the source does not leak under the float, which might be hard to build in a real system, but is reasonable to imagine.)

to make the three-input *and3* is to follow the same idea as the two-input *and*, but make the basin with the output nozzle above the two bottle level (as shown in Figure 6.3).

Another way to implement a three-input *and3* is to compose two of the two-input *and* functions, similarly to how we composed procedures in Section 4.2. Building *and3* by composing two two-input *and* functions allows us to construct a three-input *and3* without needing to design any new structures, as shown in Figure 6.4. The output of the first *and* function is fed into the second *and* function as its first input; the third input is fed directly into the second *and* function as its second input. We could write this as:

(and (and A B) C)

Composing logical functions allows us to build new logical functions also. Consider the *xor* (exclusive or) function that takes two inputs, and has out-

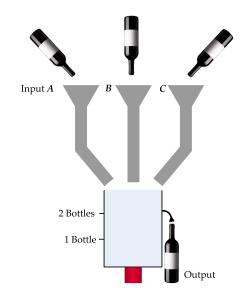


Figure 6.3. Computing the three-input and 3.

put *true* when exactly one of the inputs is *true*.

The truth-table for *xor* is:

Inputs		Output	
A	В	(xor A B)	
false	false	false	
true	false	true	
false	true	true	
true	true	false	

Can we build *xor* by composing the functions we already have (*and*, *or*, and *not*)?

The *xor* is similar to *or*, except for the result when both inputs are *true*. So, we could compute (*xor A B*) as:

(and (or A B) (not (and A B)))

Another approach is to observe that (*xor A B*) is *true* in only two situations: (1) when *A* is *true* and *B* is *false*, and (2) when *A* is *false* and *B* is *true*. Hence, we can compute (*xor A B*) by using the *or* function to combine these two situations:

(or (and A (not B)) (and (not A) B))

The first input to the *or* function is *true* only if the first situation holds, and the second input is *true* only if the second situation holds, so the *or* will be

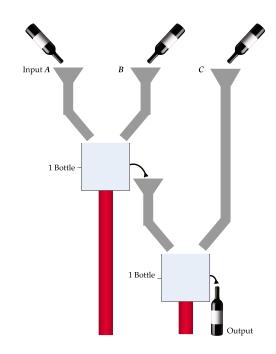


Figure 6.4. Computing and3 by composing two and functions.

true only if at least one of the clauses is *true*. Thus, we can build an *xor* machine by composing the designs we already have for *and*, *or*, and *not*.

We can also compose different functions, for example, *not* and *and*. We can compose any pair of functions where the outputs for the first function are consistent with the input for the second function (because of mathematical notation, the functions are listed in reverse order: composing *not* and *and* means first perform *and*, and then perform *not* on the output of the *and*). This produces the logical function known as *nand*, described by the truth table below:

Inputs		Output		
A B		(nand A B)		
false	false	true		
true	false	true		
false	true	true		
true	true	false		

In fact, we can implement all Boolean logic functions on two inputs using just the *nand* function. One way to prove this is to show how to build all logic functions using just *nand*. For example, we can implement *not* using *nand* where the one input to the *not* function is used for both inputs to the *nand* function:

$$(not A) \equiv (nand A A)$$

Now that we have shown how to implement *not* using *nand*, it is easy to see how to implement *and* using *nand*:

$$(and A B) \equiv (not (nand A B))$$

Implementing *or* is a bit trickier. Recall that *A* or *B* is *true* if any one of the inputs is *true*. But, *A* nand *B* is *true* if both inputs are *false*, and *false* if both inputs are *true*. To compute *or* using only *nand* functions, we need to invert both inputs:

$$(or A B) \equiv (nand (not A) (not B))$$

To complete the proof, we would need to show how to implement all the other Boolean logic functions. We omit the details here, but leave some of the other functions as exercises.

Exercise 6.2. Define a Scheme procedure, *logical-or*, that takes two inputs and outputs the logical or of those inputs.

Exercise 6.3. What is the meaning of composing *not* with itself? For example, (*not* (*not* A)).

Exercise 6.4. [*] Show how to implement the *xor* function using only *nand* functions.

Exercise 6.5. $[\star]$ Our definition of (*not A*) as (*nand A A*) assumes there is a way to produce two copies of a given input. Design a component for our wine machine that can do this. It should take one input, and produce two outputs, both with the same value as the input. (Hint: when the input is *true*, we need to produce two full bottles as outputs, so there must be a source similarly to the *not* component.)

Exercise 6.6. [*] The digital abstraction works fine as long as actual values stay close to the value they represent. But, if we continue to compute with the outputs of functions, the actual values will get increasingly fuzzy. For example, if the inputs to the *and3* function in Figure 6.4 are initially all $\frac{3}{4}$ full bottles (which should be interpreted as *true*), the basin for the first *and* function will fill to $1\frac{1}{2}$, so only $\frac{1}{2}$ bottle will be output from the first *and*. When combined with the third input, the second basin will contain $1\frac{1}{4}$ bottles, so only $\frac{1}{4}$ will spill into the output bottle. Thus, the output will represent *false*,

even though all three inputs represent *true*. The solution to this problem is to use an *amplifier* to restore values to their full representations. Design a wine machine amplifier that takes one input and produces a strong representation of that input as its output. If that input represents *true* (any value that is half full or more), the amplifier should output *true*, but with a strong, full bottle representation. If that input represents *false* (any value that is less than half full), the amplifier should output a strong *false* value (completely empty).

6.2.3 Arithmetic

Not only is the *nand* function complete for Boolean logical functions, it is also enough to implement all discrete arithmetic functions. First, consider the problem of adding two one-bit numbers.

There are four possible pairs of inputs:

Inputs			Output		
Α		В		r_1	r_0
0	+	0	=	0	0
0	+	1	=	0	1
1	+	0	=	0	1
1	+	1	=	1	0

We can compute each of the two output bits as a logical function of the two input bits. The right output bit is 1 if both input bits are 0 or both input bits are 1:

$$r_0 = (or (and (not A) (not B)) (and A B))$$

More simply, we can observe that r_0 is 1 only when exactly one of *A* and *B* is 1. This is what the *xor* function computes, so:

$$r_0 = (xor A B)$$

The left output bit is 0 for all inputs except when both inputs are 1:

$$r_1 = (and A B)$$

Since we have already seen how to implement *and*, *or*, *xor*, and *not* using only *nand* functions, this means we can implement a one-bit adder using only *nand* functions.

Implementing an adder for larger numbers requires more logical functions. Consider adding two *n*-bit numbers:

The algorithm most people (at least in North America) learn for adding decimal numbers in elementary school is to sum up the digits from right to left. If the result in one place is more than one digit, the additional tens are carried to the next digit. We use c_k to represent the carry digit in the k^{th} column.

	C_n	c_{n-1}	c_{n-2}	•••	c_1	
		a_{n-1}	a_{n-2}	•••	a_1	a_0
+		b_{n-1}	b_{n-2}	•••	b_1	b_0
=	r_n	r_{n-1}	r_{n-2}	•••	r_1	r_0

The algorithm for addition is:

- Initially, $c_0 = 0$.
- Then, repeat for each digit *k* from 0 to *n*:
 - 1. $v_1v_0 = a_k + b_k + c_k$ (if there is no digit a_k or b_k use 0).

2.
$$r_k = v_0$$
.

3. If *v* has two digits, $c_{k+1} = v_1$; otherwise $c_{k+1} = 0$.

Note that this is an algorithm (perhaps the first interesting one most people learn): if followed correctly, it is guaranteed to produce the correct result, and to always finish, for any two input numbers.

Step 1 seems to require already knowing how to perform addition, since it uses +. But, the numbers added are one-digit numbers (and c_k is 0 or 1). Hence, there are a finite number of possible inputs for the addition in step 1: 10 decimal digits for $a_k \times 10$ decimal digits for $b_k \times 2$ possible values of c_k . We can memorize the 100 possibilities for adding two digits (or write them down in a table), and easily add one as necessary for the carry. Hence, computing this addition does not require a general addition algorithm, just a specialized method for adding one-digit numbers.

We can use the same algorithm to sum binary numbers, except it is simpler since there are only two binary digits. Without the carry bit, the result bit, r_k , is 1 if (*xor* a_k b_k). If the carry bit is 1, the result bit should flip. So,

$$r_k = (xor (xor a_k b_k) c_k)$$

This is the same as adding $a_k + b_k + c_k$ base two and keeping only the right digit.

The carry bit is 1 if the sum of the input bits and previous carry bit is greater than 1. This happens when any two of the bits are 1:

$$c_{k+1} = (or (and a_k b_k) (and a_k c_k) (and b_k c_k))$$

As with elementary school decimal addition, we start with $c_0 = 0$, and proceed through all the bits from right to left.

We can propagate the equations through the steps to find a logical equation for each result bit in terms of just the input bits. First, we simplify the functions for the first result and carry bits based on knowing $c_0 = 0$:

 $r_0 = (xor (xor a_0 b_0) c_0) = (xor a_0 b_0)$ $c_1 = (or (and a_0 b_0) (and a_0 c_0) (and b_0 c_0)) = (and a_0 b_0)$

Then, we can derive the functions for r_1 and c_2 :

$$r_1 = (xor (xor a_1 b_1) c_1) = (xor (xor a_1 b_1) (and a_0 b_0)) c_2 = (or (and a_1 b_1) (and a_1 c_1) (and b_1 c_1)) = (or (and a_1 b_1) (and a_1 (and a_0 b_0)) (and b_1 (and a_0 b_0)))$$

As we move left through the digits, the terms get increasingly complex.

But, for any number of digits, we can always find functions for computing the result bits using only logical functions on the input bits. Hence, we can implement addition for any length binary numbers using only *nand* functions.

Using a similar strategy, we can also implement multiplication, subtraction, and division using only *nand* functions. We omit the details here, but the essential approach of breaking down our elementary school arithmetic algorithms into functions for computing each output bit will work for all of the arithmetic operations. Exercise 6.7. Adding logically.

- **a.** What is the logical formula for r_3 ?
- **b.** Without simplification, how many functions will be composed to compute the addition result bit *r*₄?
- c. $[\star]$ Is it possible to compute r_4 with fewer logical functions?

Exercise 6.8. [*] Show how to compute the result bits for binary multiplication of two 2-bit inputs using only logical functions.

Exercise 6.9. [*] Show how to compute the result bits for binary multiplication of two inputs of any length using only logical functions.

6.3 Modeling Computing

By composing the logic functions, we could build a wine computer to perform any Boolean function. And, we can perform any discrete arithmetic function using only Boolean functions. For a useful computer, though, we need programmability. We would like to be able to make the inputs to the machine describe the logical functions that it should perform, rather than having to build a new machine for each desired function. We could, in theory, construct such a machine using wine, but it would be awfully complicated. Instead, we consider programmable computing machines abstractly.

Recall in Chapter 1, we defined a computer as a machine that can:

- 1. Accept input.
- Execute a mechanical procedure.
- 3. Produce output.

So, our model of a computer needs to model these three things.

In real computers, input comes in many forms: typing on a keyboard, moving a mouse, packets coming in from the network, an accelerometer in the device, etc.

For our model, we want to keep things as simple as possible, though. From a reputation for being a computational standpoint, it doesn't really matter how the input is collected. As seen in Chapter 1, so long as the input is a discrete we can represent any input with just a sequence of bits. Input devices like keyboards are clearly discrete: there are a finite number of keys, and each key could

The virtual shopping spree was a first for the President who has a reputation for being "technologically challenged." But White House sources insist that the First Shopper used his own laptop and even "knew how to use the mouse." BusinessWeek, 22 December 1999

Figure 6.5. Sample input devices. Keyboard, mouse, camera, touchscreen, and microphone.

be assigned a unique number. Input from a pointing device like a mouse could be continuous, but we can always identify some minimum detected movement distance, and record the mouse movements as discrete numbers of move units and directions. Richer input devices like a camera or microphone can also produce discrete output by discretizing the input using a process similar to the image storage in Chapter 1. So, the information produced by any input device can be represented by a sequence of bits.

For real input devices, the time an event occurs is often crucial. For example, when playing a video game, it does not just matter than the mouse button was clicked, it matters *when* the click occurs. How can we model inputs where time matters using just our simple sequence of bits?

One way would be to divide time into discrete quanta (as discussed in the footnote on page 14, it is not known if time is actually discrete or continuous, but we can sensibly divide time into small enough quanta that the quantization is imperceptible to a human) and encode the input as zero or one events in each quanta. A more efficient way would be to add a timestamp to each input. The timestamps are just numbers (e.g., the number of milliseconds since the start time), so can be written down just as a sequence of bits.

Thus, we can model a wide range of complex input devices with just a finite sequence of bits. The input must be finite, since our model computer needs all the input before it starts processing. This means our model is not a good model for computations where the input is infinite, such as a web server intended to keep running and processing new inputs (e.g., requests for a web page) forever. In practice, though, this isn't usually a big problem with our model since we can make the input finite by limiting the time the server is running in the model.

The finite sequence of bits could be modeled using a long, narrow, tape that is divided into squares, where each square contains one bit of the input.

We'll consider the output next. Output from computers effects the physical world in lots of very complex ways: displaying images on a screen, printing text on a printer, sending an encoded web page over a network, sending an electrical signal to an anti-lock brake to increase the braking pressure, etc.

Figure 6.6. Sample output devices. Monitor, multi-screen display, printer, and speakers.

We don't attempt to model the physical impact of computer outputs; that would be far too complicated, but it is also one step beyond modeling the computation itself. Instead, we consider just the information content of the output. The information in a picture is the same whether it is presented as a sequence of bits or an image projected on a screen, its just less pleasant to look at as a sequence of bits. So, we can model the input just like we modeled the output: a sequence of bits written on a tape divided into squares.

Modeling the processing is trickier. We need a model that can capture every possible mechanical procedure, but we want the model to be as simple as possible. One thing our model computer needs is a way to keep track of what it is doing. We can think of this like scratch paper: a human would not be able to do a long computation without keeping track of intermediate values on scratch paper, and a computer has the same need. In Babbage's Analytical Engine, this was called the *store*, and divided into a thousand variables, each of which could store a fifty decimal digit number. In the Apollo Guidance Computer, the working memory was divided into banks, each bank holding 1024 words. Each word was 15 bits (plus one bit for error correction). In current 32-bit processors, such as the x86, memory is divided into pages, each containing 1024 32-bit words.

For our model machine, we don't want to have arbitrary limits on the amount of working storage. So, we model the working storage with an infinitely long tape. Like the input and output tapes, it is divided into squares, and each square can contain one symbol. For our model computer, it is useful to think about having an infinitely long tape, but of course, no real computer has infinite amounts of working storage. We can, however, imagine continuing to add more memory to a real computer as needed until we have enough to solve a given problem, and adding more if we need to solve a larger problem.

So, our model involves three tapes: one for the input, one for the output, and one for the working tape. We can simplify the model by using a single

tape for all three. At the beginning of the execution, the tape contains the input (which must be finite). As processing is done, the input is read and the tape is used as the working tape. Whatever is on the tape and the end of the execution is the output.

We also need a way for our model machine to interface with the tape. The simplest possible interface is to have a tape head that identifies a current square on the tape. The tape head can read the symbol in the current square, can write a symbol in the current square, and can move one square either left or right.

The final thing we need is a way to model actually doing the processing. In our model, this means controlling what the tape head does: at each step, it needs to decide what to write on the tape, and whether to move left or right, or to finish the execution. Babbage called the processor the *mill*; in modern computers, it is called the *central processing unit* (CPU).

In early computing machines, processing meant performing one of the basic arithmetic operations (addition, subtraction, multiplication, or division). We don't want to have to model anything as complex as multiplication in our model machine, however. In Section 6.2.3, we how simpler logical operations can be used to describe addition. The other arithmetic operations can also be defined in terms of simpler logical operations, indeed, all computations can be broken down into compositions of simple logical operations. To carry out a complex operation as a composition of simple operations, we need a way to keep track of enough state to know what to do next. The machine state is just a number that keeps track of what the machine is doing. Unlike the tape, it is limited to a finite number. There are two reasons why the machine state number must be finite: first, we need to be able to write down the program for the machine by explaining what it should do in each state, which would be difficult if there were infinitely many states.

To control the machine, we need rules to control what the tape head does. We can think of each rule as a mapping from the current observed state of the machine to what to do next. The input for a rule is the symbol in the current tape square and the current state of the machine; the output of each rule is three things: the symbol to write on the current tape square, the direction for the tape head to move (left, right, or halt), and the new machine state. So, we can describe the program for the machine by listing the rules. For each machine state, we need a rule for each possible symbol on the tape.

Alan Turing

Image from Bletchley Park Ltd.

This abstract model of a computer was invented by Alan Turing in the 1930s and is known as a *Turing Machine*. Turing's model is depicted in Figure 6.7. An infinite tape divided into squares is used as the input, work-

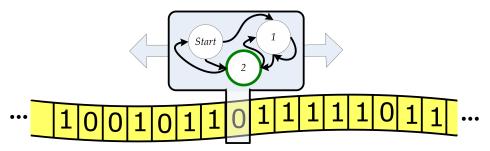


Figure 6.7. Turing Machine model.

ing storage, and output. A tape head can read the current square on the tape, write a symbol into the current tape square, and move left or right one position. The tape head keeps track of its internal state, and follows rules matching the current state and current tape square to determine what to do next. In the example at the end of this section, we describe a Turing Machine for solving a simple problem. It is quite tedious, and rarely necessary, to describe a Turing Machine in full detail, but instructive to do it once.

Turing's model is equivalent to the model we described earlier, but instead of using only bits as the symbols on the tape, Turing's model uses members of any finite set of symbols, known as the *alphabet* of the tape. Allowing the tape alphabet to contain any set of symbols instead of just the two binary digits makes it easier to describe a Turing Machine that computes a particular function, but does not change the power of the model. That means, every computation that could be done with a Turing Machine using any alphabet set, could also be done by some Turing Machine using only the binary digits.

We could show this by describing an algorithm that takes in a description of a Turing Machine using an arbitrarily large alphabet, and produces a Turing Machine that uses only two symbols to simulate the input Turing Machine. As we saw in Chapter 1, we can map each of the alphabet symbols to a finite sequence of binary digits. Mapping the rules is more complex: since each original input symbol is now spread over several squares, we need extra states and rules to read the equivalent of one original input. For example, suppose our original machine uses 16 alphabet symbols, and we map each symbol to a 4-bit sequence. If the original machine used a symbol X, which we map to the sequence of bits 1011, we would need four states for every state in the original machine that has a rule using X as input. These four states would read the 1, 0, 1, 1 from the tape. The last state now corresponds to the state in the original machine when an X is read from the tape. To follow the rule, we also need to use four states to write the bit sequence corresponding to the original write symbol on the tape. Then, simulating moving one square left or right on the original Turing Machine, now requires moving four squares, so requires four more states. Hence, we may need 12 states for each edge on the original machine, but can simulate everything it does using only two symbols.

universal computing machine The Turing Machine model is a *universal computing machine*. This means that every algorithm can be implemented by some Turing Machine. We call a system that can implement every algorithm *Turing complete*. A system that is Turing complete can simulate every possible Turing Machine. Chapter 15 explores more deeply what it means to simulate every possible Turing Machine, and the set of problems that can be solved by a Turing Machine.

Of course, any real machine is limited by the amount of space it has; as we saw in Chapter 1, the amount of information a machine can process is limited by its memory. If the machine does not have enough space to store 1000 bits, say, there is no way it can do a computation where the input requires 1000 bits to describe. For any physical machine, there is some limit on the number of bits it can store. Nevertheless, it is useful to think about most real machines as Turing Machines. The simplicity of the model, and its robustness, make it a useful way to think about computing even if it is not possible to really build a truly universal computing machine.

Although Turing's model is by far the most widely used model for computers today, Turing developed it in 1936, before anything resembling a modern computer existed. Turing did not develop his model as a model of an automatic computer, but instead as a model for what could be done by a human following mechanical rules. He devised the infinite tape to model the two-dimensional graph paper students used to perform arithmetic. He restricted the number of machine states to a finite number by arguing that the amount of information a human could keep in mind at one time was finite. Turing's model has proven to be remarkably robust. Despite being invented before anything resembling a modern computer existed, nearly every computing machine ever imagined or built can be modeled well using Turing's simple model.⁴ The important thing about the model is that we can simulate any computer using a Turing Machine. Any step on any computer that operates using standard physics and be simulated with a finite number of steps on a Turing Machine. This means if we know how many steps it takes to solve some problem on a Turing Machine, the number of steps it takes on any other machine is at most some multiple of that number. Hence, if we can reason about the number of steps required for a Turing Machine to solve a given problem, then we can make strong and general claims about the number of steps it would take *any* standard computer to solve the problem. We will show this more convincingly in Chapter 15, but

⁴In Chapter 17, we describe a few machines that cannot be modeled well using Turing's model.

for now we assert it, and use it to reason about the cost of executing various procedures in the following chapter.

Alan Turing was born in London in 1912, and developed his computing model while at Cambridge in the 1930s. He developed the model to solve a famous problem posed by David Hilbert in 1928. The problem, known as the *Entscheidungsproblem* (German for "decision problem") asked for an algorithm that could determine the truth or falsehood of a mathematical statement. To solve the problem, Turing first needed a formal model of an algorithm. For this, he invented the Turing Machine model described above, and defined an algorithm as any Turing Machine that is guaranteed to eventually halt on any input. With the model, Turing was able to show that there are some problems that cannot be solved by *any* algorithm. We return to this in Chapter 15 and explain Turing's proof and examples of problems that cannot be solved.

After publishing his solution to the *Entscheidungsproblem* in 1936, Turing went to Princeton and studied with Alonzo Church (inventor of the Lambda calculus, on which Scheme is based). With the start of World War II, Turing joined the highly secret British effort to break Nazi codes at Bletchley Park. Turing was instrumental in breaking the Enigma code, used by the Nazi's to communicate with field units and submarines, and designed an electro-mechanical machine for searching possible keys to decrypt Enigma-encrypted messages. The machines, known as *bombes*, used logical operations to search the possible rotor settings on the Enigma to find the settings that were most likely to have generated an intercepted encrypted message. Bletchley Park was able to break thousands of Enigma messages during the war, and the Allies used the knowledge gained from them to avoid Nazi submarines and gain a tremendous tactical advantage.

After the war, Turing continued to make both practical and theoretical contributions to computer science. Among other things, he worked on designing general-purpose computing machines and published a paper *Intelligent Machinery*, speculating on the ability of computers to exhibit intelligence. Turing introduced a test for machine intelligence (now known as the Turing Test) based on a machines ability to answer questions indistinguishably from a human, and speculated that machines would be able to pass the test within 50 years (that is, by the year 2000). Turing also studied morphogenesis (how biological systems grow), including studying why Fibonacci numbers appear so often in plants.

In 1952, Turing's house was broken into, and Turing reported the crime to the police. The investigation revealed that Turing was a homosexual, which at the time was considered a crime in Britain. Turing did not attempt to hide his homosexuality, and was convicted and given a choice between serving

Bombe Rebuilt at Bletchley Park

time in prison and taking hormone treatments. He accepted the treatments, and has his security clearance revoked. In 1954, at the age of 41, Turing was found dead in an apparent suicide, with a cynide-laced partially-eaten apple next to him. The codebreaking effort at Bletchley Park was kept secret for many years after the war (Turing's report on Enigma was not declassified until 1996), so Turing never received public recognition for his contributions to the war effort.

Example 6.1: Balancing Parentheses. Here we define a Turing Machine that solves the problem of checking parentheses are well-balanced. For example, in a Scheme expression, every opening left parenthesis must have a corresponding closing right parenthesis. For example, (()(()))() is well-balanced, but (()))(() is not (even though it has the same number of open and close parentheses). Our goal is to design a Turing Machine that takes as input a string of parentheses (with a # at the beginning and end to mark the endpoints) and produces as output a 1 on the tape if the input string is well-balanced, and a 0 otherwise. For this problem, the output is what is written in the square under the tape head; it doesn't matter what is left on the rest of the tape.

Our strategy is to find matching pairs of parentheses and cross them out (by writing an X on the tape in place of the parenthesis). If all the parentheses are crossed out at the end, the input was well-balanced, so the machine writes a 1 as its output and halts. If not, the input was not well-balanced, and the machine write a 0 as its output and halts. The trick to the matching is to observe a closing parenthesis always matches the first open parenthesis found moving to the left from the closing parenthesis. The plan for the machine is to move the tape head to the right (without changing the input) until a closing parenthesis is found. Cross out that closing parenthesis by replacing it with an X, and move to the left until an open parenthesis is found. This matches the closing parenthesis, so it is replaced with an X. Then, continue to the right searching for the next closing parenthesis. If the end of the tape (marked with a #) is found when searching for a closing parenthesis, check the tape has no remaining open parenthesis.

Hence, we need three internal states: *LookForClosing*, in which the machine continues to the right until it finds a closing parenthesis (this is the start state); *LookForOpen*, in which the machine continues to the left until it finds the balancing open parenthesis; and *CheckTape*, in which the machine checks there are no unbalanced open parentheses on the tape starting from the right end of the tape and moving towards the left end. The full rules are shown in Figure 6.8.

Another way to depict a Turing Machine is to show the states and rules graphically. Each state is a node in the graph. For each rule, we draw

State	Read	Next State	Write	Move	
LookForClosing)	LookForOpen	Х	\leftarrow	Found closing.
LookForClosing	(LookForClosing	(\rightarrow	Keep looking.
LookForClosing	Х	LookForClosing	Х	\rightarrow	Keep looking.
LookForClosing	#	CheckTape	#	\leftarrow	End of tape.
LookForOpen)	-	Х	Error	Shouldn't happen.
LookForOpen	(LookForClosing	Х	\rightarrow	Found open.
LookForOpen	Х	LookForOpen	Х	\leftarrow	Keep looking.
LookForOpen	#	-	0	Halt	Reached beginning.
CheckTape)	-	0	Error	Shouldn't happen.
CheckTape	(-	0	Halt	Unbalanced open.
CheckTape	Х	CheckTape	Х	\leftarrow	Keep checking.
CheckTape	#	-	1	Halt	Finished checking.

Figure 6.8. Transition rules for checking balanced parentheses Turing Machine.

an edge on the graph between the starting state and the next state, and label the edge with the read and write tape symbols (separated by a /), and move direction. Figure 6.9 shows the same Turing Machine as a state graph. When a read symbol in a given state indicates an error (such as when a) is encountered in the *LookForOpen* state), it is not necessary to draw an edge on the graph. If there is no outgoing edge for the current read symbol for the current state in the state graph, execution terminates with an error.

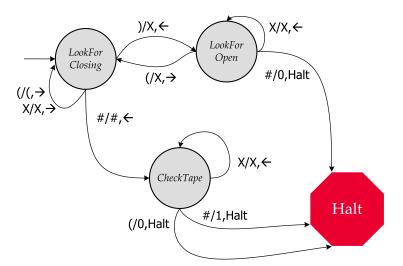


Figure 6.9. Graphical depiction of Turing Machine for checking balanced parentheses.

Exercise 6.10. Follow the rules to simulate what the Turing Machine will do on each input (assume the beginning and end of the input is marked with a #):

a.)
b. (
c. ()
d. empty input
e. (() (())) ()
f. (())) (()

Exercise 6.11. [\star] Design a Turing Machine for adding two arbitrary-length binary numbers. The input is of the form $a_{n-1} \dots a_1 a_0 + b_{m-1} \dots b_1 b_0$ (with # markers at both ends) where each a_k and b_k is either 0 or 1. The output tape should contain bits that represent the sum of the two inputs.

6.4 Summary

The power of computers comes from their programmability. Universal computers can be programmed to execute any algorithm. The Turing Machine model provides a simple, abstract, model of a computing machine. Despite its simplicity, every algorithm can be implemented as a Turing Machine, and a Turing Machine can simulate any other reasonable computer.

As the first computer programmer, Ada deserves the last word:

It may be desirable to explain, that by the word operation, we mean any process which alters the mutual relation of two or more things, be this relation of what kind it may. This is the most general definition, and would include all subjects in the universe. In abstract mathematics, of course operations alter those particular relations which are involved in the considerations of number and space, and the results of operations are those peculiar results which correspond to the nature of the subjects of operation. But the science of operations, as derived from mathematics more especially, is a science of itself, and has its own abstract truth and value; just as logic has its own peculiar truth and value, independently of the subjects to which we may apply its reasonings and processes....

The operating mechanism can even be thrown into action indepen-

dently of any object to operate upon (although of course no result could then be developed). Again, it might act upon other things besides number, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine. Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.

> Ada Augusta Byron King, Sketch of The Analytical Engine, Translator's Note A, 1843

A LISP programmer knows the value of everything, but the cost of nothing. Alan Perlis

I told my dad that someday I'd have a computer that I could write programs on. He said that would cost as much as a house. I said, "Well, then I'm going to live in an apartment."

Steve Wozniak

In this chapter, we begin our exploration of how to predict the *cost* of evaluating a given expression. Predicting the cost of executing a procedure has practical value (for example, we can determine whether it is worth waiting for a computer to produce a response, or estimate how large a computer we need to solve a given problem instance), but also provides deep insights into the nature of procedures and problems.

The most commonly use cost metric is the amount of time it will take for an execution to complete. Other measures of cost include the amount of memory the processor needs and the amount of energy consumed. Indirectly, these costs can often be translated into money: the value of the time for the person waiting for the program to produce an answer, the number of transactions per second a service can support, or the price of the computer needed to solve a problem.

In this chapter, we introduce tools for understanding the cost of evaluating a procedure application. Our goal is to reason about the cost of a procedure in a way that does not depend on ephemeral details of a particular computer. From the Turing Machine model in the previous chapter, we know that a simple model computer is enough to execute any algorithm, and that our simple model can simulate any reasonable computer using a constant multiple of the number of steps. Hence, the tools we use to measure cost are robust to details that would be altered by using a different computer. The following chapter uses these tools to characterize procedures and make predictions about how long evaluations of different applications of those procedures will take.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

7.1 Measuring Cost

The most obvious way to measure the cost of evaluating a given expression is to just evaluate it. If we are primarily concerned with time, we could just use a stopwatch to measure the time it takes to complete the evaluation. For more accurate results, we can use the built-in (*time Expression*) special form to find the processor time used to evaluate the expression.¹ Evaluating (*time Expression*) produces the value of the input expression, but also prints out the time required to evaluate the expression (shown in our examples using *slanted* font).

The output printed by *time* contains three values:

- cpu time The time in milliseconds the processor ran to evaluate the expression. CPU is an abbreviation for "central processing unit", the computer's main processor.
- real time The actual time in milliseconds it took to evaluate the expression. Since other processes may be running on the computer while this expression is evaluated, the real time may be longer than the CPU time, which reflects just the amount of time the processor was working on evaluating this expression.
- gc time The time in milliseconds the interpreter spent on garbage collection to evaluate the expression. Garbage collection is used to reclaim memory that is storing data that will never be used again.

For example, using the definitions from Chapter 5,

(time (solve-pegboard (board-remove-peg (make-board 5) (make-position 1 1))))

produces:

cpu time: 141797 real time: 152063 gc time: 765

followed by the output:

((Move (Position 3 1) (Direction -1 0))...)

¹The *time* construct is not part of the standard Scheme language, but is an extension provided by DrScheme. It must be a special form, since the expression is not evaluated before entering *time* as it would be with the normal application rule. If it were evaluated normally, there would be no way to time how long it takes to evaluate, since it would have already been evaluated before *time* is applied.

From the printed output generated by *time*, we see the real time is 152 seconds, so this evaluation took just over two and a half minutes. Of this time, the evaluation was using the CPU for 142 seconds, and the garbage collector ran for less than one second.

Here are two more examples:

> (time (car (list-append (intsto 1000) (intsto 100))))
cpu time: 531 real time: 531 gc time: 62
1
> (time (car (list-append (intsto 1000) (intsto 100))))
cpu time: 609 real time: 609 gc time: 0
1

The two expressions are identical, but the time taken is different. Even on the same computer, the time needed to evaluate the same expression varies. Many properties unrelated to our expression (such as where things happen to be stored in memory) impact the actual time needed for any particular evaluation. Hence, it is dangerous to draw conclusions about which procedure is faster based on a few timings.

Another limitation of this way of measuring cost is it only works if we wait for the evaluation to complete. If we try an evaluation and it has not finished after an hour, say, we have no idea if the actual time to finish the evaluation is sixty-one minutes or a quintillion years. We could wait another minute, but if it still hasn't finished we don't know if the execution time is sixty-two minutes or a quintillion years. The techniques we develop allow us to predict the time an evaluation needs without waiting for it to execute.

Finally, measuring the time of a particular application of a procedure doesn't *what you're talking about*. provide much insight into how long it will take to apply the procedure to ^{John von Neumann} different inputs. We would like to understand how the evaluation time depends on the procedure inputs so we can understand which inputs the procedure can sensibly be applied to, and can choose the best procedure to use for different situations.

Exercise 7.1. Suppose you are defining a procedure that needs to append two lists, one short list, *short* and one very long list, *long*, but the order of elements in the resulting list does not matter. Is it better to use (*list-append short long*) or (*list-append long short*)? (A good answer will involve both experimental results and an analytical explanation.)

Example 7.1: Multiplying Like Rabbits. Filius Bonacci was an Italian monk and mathematician in the 12th century. He published a book, *Liber*

There's no sense in being precise when you don't even know what you're talking about. John von Neumann *Abbaci,* on how to calculate with decimal numbers that introduced Hindu-Arabic numbers to Europe (replacing Roman numbers) along with many of the algorithms for doing arithmetic we learn in elementary school. It also included the problem for which *Fibonacci* numbers are named:²

A pair of newly-born male and female rabbits are put in a field. Rabbits mate at the age of one month and after that procreate every month, so the female rabbit produces a new pair of rabbits at the end of its second month. Assume rabbits never die and that each female rabbit produces one new pair (one male, one female) every month from her second month on. How many pairs will there be in one year?

We can define a function that gives the number of pairs of rabbits at the beginning of the n^{th} month as:

$$Fibonacci(n) = \begin{cases} 1 & : n = 1 \\ 1 & : n = 2 \\ Fibonacci(n-1) + Fibonacci(n-2) & : n > 1 \end{cases}$$

The third case follows from Bonacci's assumptions: all the rabbits alive at the beginning of the previous month are still alive (the *Fibonacci*(n - 1) term), and all the rabbits that are at least two months old reproduce (the *Fibonacci*(n - 2) term).

For example,

 $\begin{array}{l} Fibonacci(1) = 1\\ Fibonacci(2) = 1\\ Fibonacci(3) = Fibonacci(2) + Fibonacci(1) = 2\\ Fibonacci(4) = Fibonacci(3) + Fibonacci(2) = 3\\ Fibonacci(5) = Fibonacci(4) + Fibonacci(3) = 5\\ Fibonacci(6) = Fibonacci(5) + Fibonacci(4) = 8\\ \cdots \end{array}$

The sequence produced is known as the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...

These numbers occur frequently in nature, such as the arrangement of florets in a sunflower (34 spirals in one direction and 55 in the other) or the number of petals in common plants (typically 1, 2, 3, 5, 8, 13, 21, or 34), hence the rarity of the four-leaf clover.

²Although the sequence is named for Bonacci, it was probably not invented by him. The sequence was already known to Indian mathematicians with whom Bonacci studied.

Sunflower

Translating the definition of the *Fibonacci* function into a Scheme procedure is straightforward; we combine the two base cases using the *or* special form:

(define (fibo n) (if (or (= n 1) (= n 2)) 1 (+ (fibo (- n 1)) (fibo (- n 2)))))

Applying *fibo* to small inputs works fine:

> (time (fibo 10))
cpu time: 0 real time: 0 gc time: 0
55
> (time (fibo 20))
cpu time: 16 real time: 16 gc time: 0
6765
> (time (fibo 30))
cpu time: 2156 real time: 2187 gc time: 0
832040

Our definition of *fibo* appears to be correct, but when we use it to try to determine the number of rabbits in five years by computing (*fibo* 60), our interpreter just hangs without producing a value.³

The *fibo* procedure is defined in a way that guarantees it will complete when applied to a non-negative whole number: each recursive call reduces the input by one or two, so both inputs get closer to the base cases than the original input. Hence, we always make progress and must eventually reach the base case, unwind the recursive applications, and produce a value. So, we know it always eventually finishes. To understand why the evaluation of (*fibo* 60) did not finish in our interpreter, we need to consider how much work is required to evaluate the expression.

To evaluate (*fibo* 60), the interpreter follows the if-expressions to the recursive case, where it needs to evaluate (+ (*fibo* 59) (*fibo* 58)). To evaluate (*fibo* 59), it needs to evaluate (*fibo* 58) again and also evaluate (*fibo* 57). To evaluate (*fibo* 58) (which needs to be done twice), it needs to evaluate (*fibo* 57) and (*fibo* 56). So, there is one evaluation of (*fibo* 60), one evaluation of (*fibo* 59), two evaluations of (*fibo* 58), and three evaluations of (*fibo* 57). The number of evaluations of the *fibo* procedure for each input is itself the Fibonacci sequence!

³Try evaluating this yourself to see what happens. If you get bored waiting for a result, you can use the **Stop** button in the upper right hand corner to terminate the evaluation.

To understand why, consider the evaluation tree for (*fibo* 4) shown in Figure 7.1. The only direct number values are the 1 values that result from evaluations of either (*fibo* 1) or (*fibo* 2). Hence, the number of 1 values must be the value of the final result, which just sums all these numbers. For (*fibo* 4), there are 5 leaf applications, and 3 more inner applications, for 8 (= *Fibonacci*(5)) total recursive applications. The number of evaluations of applications of *fibo* needed to evaluate (*fibo* 60) is the 61st Fibonacci number — 2,504,730,781,961 — over two and a half trillion applications of *fibo*!

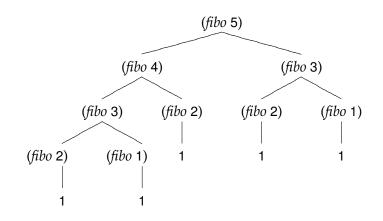


Figure 7.1. Evaluation of *fibo* procedure.

Although our *fibo* definition is *correct*, it is ridiculously inefficient. In practice, it only works for input numbers below about 40. It involves a tremendous amount of duplicated work: for the (*fibo* 60) example, there are two evaluations of (*fibo* 58) and over a trillion evaluations of (*fibo* 1) and (*fibo* 2).

A more efficient definition would avoid this duplicated effort. We can do this by building up to the answer starting from the base cases. This is more like the way a human would determine the numbers in the Fibonacci sequence: we find the next number by adding the previous two numbers, and stop once we have reached the number we want.

The *fast-fibo* procedure computes the n^{th} Fibonacci number, but avoids the duplicate effort by computing the results building up from the first two Fibonacci numbers, instead of working backwards.

```
(define (fast-fibo n)

(define (fibo-iter a b left)

(if (\leq = left \ 0)

b

(fibo-iter b (+ a b) (- left 1))))

(fibo-iter 1 1 (- n 2)))
```

This is a form of what is known as *dynamic programming*. The definition *dynamic programming* is still recursive, but unlike the original definition the problem is broken down differently. Instead of breaking the problem down into a slightly smaller instance of the original problem, with dynamic programming we build up from the base case to the desired solution. In the case of Fibonacci, the *fast-fibo* procedure builds up from the two base cases until reaching the desired answer.

The helper procedure, *fibo-iter* (short for iteration), takes three parameters: *a* is the value of the previous-previous Fibonacci number, *b* is the value of the previous Fibonacci number, and *left* is the number of iterations needed before reaching the target. The initial call to *fibo-iter* passes in 1 as *a* (the value of *Fibonacci*(1)), and 1 as b (the value of *Fibonacci*(2)), and (-n 2) as *left* (we have n - 2 more iterations to do to reach the target, since the first two Fibonacci numbers were passed in as *a* and *b* we are now working on *Fibonacci*(2)).

The body of *fibo-iter* first checks if we have reached the target number. This happens when *left* is 0, and the value is the previous Fibonacci number (which was passed in as the value of the *b* parameter). If we have not reached the target number, we make progress by recursively calling *fiboiter*, but advancing the inputs: the value that was previously b (the previous Fibonacci number) will now be the first input (the previous-previous Fibonacci number), the value of the previous Fibonacci number is the sum of the previous two, (+ a b), and since we have completed one iteration the value passed in as *left* is decremented by 1.

The *fast-fibo* procedure produces the same output values as the original *fibo* procedure, but requires far less work to do so. The number of applications of *fibo-iter* needed to evaluate (*fast-fibo* 60) is now only 59. The value passed in as *left* for the first application of *fibo-iter* is 58, and each recursive call reduces the value of *left* by one until the zero case is reached. This allows us to compute the expected number of rabbits in 5 years is 1548008755920 $(over 1.5 Trillion)^4$.

Orders of Growth 7.2

From the Fibonacci example, we see that the same problem can be solved by procedures that require vastly different resources. The important question in understanding the resources required to evaluate a procedure ap-

⁴Perhaps Bonacci's assumptions are not a good model for actual rabbit procreation. This result suggests that in about 10 years the mass of all the rabbits produced from the initial pair will exceed the mass of the Earth, which, although scary, seems unlikely!

plication is *how the required resources scale with the size of the input*. For small inputs, both Fibonacci procedures work using with minimal resources. For large inputs, the first Fibonacci procedure never finishes, but the fast Fibonacci procedure finishes (nearly instantly) on a typical laptop (the time reported by (*time (fast-fibo* 60)) is 0 milliseconds).

The important difference is the number of recursive applications: for the original *fibo* procedure, we need *Fibonacci*(n + 1) recursive applications to compute (*fibo* n); for the *fast-fibo* procedure, we only need n - 2 applications of *fibo-iter* to evaluate (*fast-fibo* n). Although the amount of time each application takes is different for the two procedures, the actual time needed does not matter too much for understanding the resources required to evaluate the procedure applications. The actual time depends on the computer we have, as well as on other factors like what other programs are running on the computer at the same time, and how things happen to be arranged in memory.

capital, increases at compound In this section, we introduce three functions computer scientists use to cap*interest: but it differs from the accumulation of capital in this; that the increase of knowledge moduces a more rapid rate of*

- O(f) ("big oh") is the set of functions that grow *no faster* than f grows.
- $\Theta(f)$ (theta) is the set of functions that grow *as fast* as *f* grows.
- $\Omega(f)$ (omega) is the set of functions that grow *no slower* than *f* grows.

The point of these functions is to capture the asymptotic behavior of functions, that is, how they behave as the inputs get arbitrarily large. To understand how the time required to evaluate a procedure increases as the inputs to that procedure increase, we want to understand the asymptotic behavior of a function that takes the size of input to the target procedure as its input, and outputs the number of steps required to evaluate the target procedure on that input.

Figure 7.2 depicts the sets O, Θ , Ω for some function f. Next, we define each function and provide some examples. Chapter 8 illustrates how to analyze the time required to evaluate applications of procedures using these notations.

7.2.1 Big O

The first notation we introduce is O, pronounced "big oh". The O function takes as input a function, and produces as output the set of all functions that grow no faster than the input function. The set O(f) is the set of all

Remember that accumulated knowledge, like accumulated *interest: but it differs from the* accumulation of capital in this; that the increase of knowledge produces a more rapid rate of progress, whilst the accumulation of capital leads to a lower rate of interest. Capital thus checks its own accumulation: knowledge thus accelerates its own advance. *Each generation, therefore, to* deserve comparison with its predecessor, is bound to add much more largely to the common stock than that which it immediately succeeds. Charles Babbage, 1851

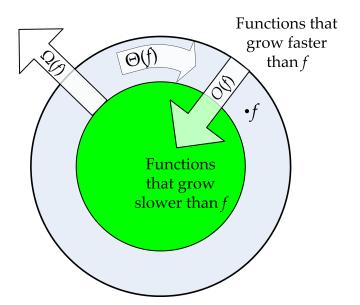


Figure 7.2. Visualization of the sets O(f), $\Omega(f)$, and $\Theta(f)$.

functions that grow as fast as, or slower than, f grows. In Figure 7.2, the O(f) set is represented by everything inside the outer circle.

To define the meaning of *O* precisely, we need to consider what it means for a function to *grow*. What we want to capture is how the output of the function increases as the input to the function increases. First, we consider a few examples; then we provide a formal definition of *O*.

Consider two functions, f(n) = n + 12 and g(n) = n - 7. No matter what input value we try for n, the value of f(n) is greater than the value of g(n). This doesn't matter for the growth rates, though. What matters is how the difference between g(n) and f(n) changes as the input values increase. No matter what values we choose for n_1 and n_2 , we know $g(n_1) - f(n_1) = g(n_2) - f(n_2) = -19$. So, the growth rates of f and g are identical. Hence, n - 7 is in the set O(n + 12), and n + 12 is in the set O(n - 7).

Suppose the functions are f(n) = 2n and g(n) = 3n. The difference between g(n) and f(n) is n. This difference increases as the input value n increases, but it increases by the same amount as n increases. So, the growth rate as n increases is $\frac{n}{n} = 1$. The value of 2n is always within a constant multiple of 3n, so they grow asymptotically at the same rate. Hence, 2n is in the set O(3n) and 3n is in the set O(2n).

Now, consider f(n) = n and $g(n) = n^2$. The difference between g(n) and f(n) is $n^2 - n = n(n-1)$. The growth rate as *n* increases is $\frac{n(n-1)}{n} = n - 1$. The value of n - 1 increases as *n* increases, so *g* grows faster than *f*. This means n^2 is *not* in O(n) since n^2 grows faster than *n*. The function *n* is in

 $O(n^2)$ since *n* grows slower than n^2 grows.

For our final example, consider the number of applications of our Fibonacci procedures. For the *fibo* procedure, evaluating (*fibo* n) requires *Fibonacci*(n + 1) recursive applications; for the *fast-fibo* procedure, there are n - 2 applications.

The *Fibonacci* function grows very rapidly. The value of *Fibonacci*(n + 2) is more than *double* the value of *Fibonacci*(n) since

Fibonacci(n + 2) = Fibonacci(n + 1) + Fibonacci(n)

and Fibonacci(n + 1) > Fibonacci(n). The rate of increase is multiplicative, and must be at least a factor of $\sqrt{2} \approx 1.414$ (since increasing by one twice more than doubles the value).⁵ This is much faster than the growth rate of n - 2, which increases by one when we increase n by one. So, n - 2 is in the set O(Fibonacci(n + 1)), but Fibonacci(n + 1) is not in the set O(n - 2).

Some of the example functions are plotted in Figure 7.2.1. Recall that we are concerned with the running time of programs as input sizes increase. The *O* notation reveals the asymptotic behavior of functions. Note in the first graph, the rightmost value of n^2 is greatest, followed by 3n, n + 12 and *Fibonacci*(n). For higher input values, however, eventually the value of *Fibonacci*(n) will be greatest. For the third graph, the values of *Fibonacci*(n) for input values up to 20 are so high, that the other functions appear as nearly flat lines on the graph.

Definition of *O*. The function *g* is a member of the set O(f) if and only if there exist positive constants *c* and n_0 such that

 $g(n) \le cf(n)$

for all values $n \ge n_0$.

We can show *g* is in O(f) using the definition of O(f) by choosing positive constants for the values of *c* and n_0 , and showing that the property $g(n) \le cf(n)$ holds for all values $n \ge n_0$. To show *g* is not in O(f), we need to explain how, for any choices of *c* and n_0 , we can find values of *n* that are greater than n_0 such that $g(n) \le cf(n)$ does not hold.

Example 7.2: *O* **Examples.** We now show the properties claimed earlier are true using the formal definition.

a. n - 7 is in O(n + 12): Choose c = 1 and $n_0 = 1$. Then, we need to show $n - 7 \le 1(n + 12)$ for all values $n \ge 1$. This is true, since n - 7 > n + 12 for all values n.

⁵In fact, the rate of increase is a factor of $\phi = (1 + \sqrt{5})/2 \approx 1.618$, also known as the "golden ratio". This is a rather remarkable result, but explaining why is beyond the scope of this book.

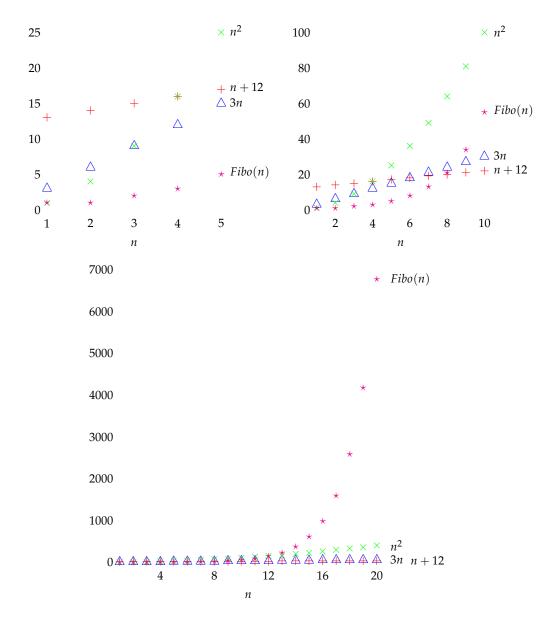


Figure 7.3. Orders of Growth.

Each graph shows the same four functions, but for different input ranges.

- **b.** n + 12 is in O(n 7): Choose c = 2 and $n_0 = 26$. Then, we need to show $n + 12 \le 2(n 7)$ for all values $n \ge 26$. The equation simplifies to $n + 12 \le 2n 14$, which simplifies to $26 \le n$. This is trivially true for all values $n \ge 26$.
- **c.** 2*n* is in O(3n): Choose c = 1 and $n_0 = 1$. Then, $2n \le 3n$ for all values $n \ge 1$.
- **d.** 3*n* is in O(2n): Choose c = 2 and $n_0 = 1$. Then, $3n \le 2(2n)$ simplifies to $n \le 4/3n$ which is true for all values $n \ge 1$.
- **e.** *n* is in $O(n^2)$: Choose c = 1 and $n_0 = 1$. Then $n \le n^2$ for all values $n \ge 1$.
- **f.** n^2 is **not** in O(n): We need to show that no matter what values are chosen for *c* and n_0 , there are values of $n \ge n_0$ such that the inequality $n^2 \le cn$ does not hold. For any value of *c*, we can make $n^2 > cn$ by choosing n > c.
- **g.** n 2 is in O(Fibonacci(n + 1)): Choose c = 1 and $n_0 = 1$. Then $n 2 \le Fibonacci(n + 1)$ for all values $n \ge n_0$.
- **h.** *Fibonacci*(n + 1) is **not** in O(n 2): No matter what values are chosen for c and n_0 , there are values of $n \ge n_0$ such that *Fibonacci*(n + 1) > c(n 2). We know *Fibonacci*(12) = 144, and, from the discussion above, that:

$$Fibonacci(n+2) > 2 * Fibonacci(n)$$

This means, for n > 12, we know *Fibonacci* $(n) > n^2$. So, no matter what value is chosen for *c*, we can choose n = c. Then, we need to show

$$Fibonacci(n+1) > n(n-2)$$

The right side simplifies to $n^2 - 2n$. For n > 12, we know *Fibonacci* $(n) > n^2$, so we also know *Fibonacci* $(n + 1) > n^2 - 2n$. Hence, we can always choose an n that contradicts the *Fibonacci* $(n + 1) \le n - 2$ inequality by choosing an n that is greater than n_0 , 12, and c.

For all of the examples where g is in O(f), there are many possible choices for c and n_0 that would work. For the given c values, we can always use a higher n_0 value than the selected value. It only matters that there is some finite, positive constant we can choose for n_0 , such that the required inequality, $g(n) \leq cf(n)$ holds for all values $n \geq n_0$. Hence, our proofs would work equally well if we selected higher values for n_0 than we did. Similarly, we could always choose higher c values with the same n_0 values. The key is just to pick any appropriate values for c and n_0 , and show the inequality holds for all values $n \geq n_0$. Proving that a function is not in O(f) is usually tougher. The key to these proofs is that the value of n that invalidates the inequality is selected *after* the values of c and n_0 are chosen. One way to think of this is as a game between two adversaries. The first player picks c and n_0 , and the second player picks n. To show the property that g is not in O(f), we need to show that no matter what values the first player picks for c and n_0 , the second player can always find a value n that is greater than n_0 such that g(n) > cf(n).

Exercise 7.2. For each of the *g* functions below, answer whether or not *g* is in the set O(n). Your answer should include a proof. If *g* is in O(n) you should identify values of *c* and n_0 that can be selected to make the necessary inequality hold. If *g* is not in O(n) you should argue convincingly that no matter what values are chosen for *c* and n_0 there are values of $n \ge n_0$ such the inequality in the definition of *O* does not hold.

a. g(n) = n + 5b. g(n) = .01nc. $g(n) = 150n + \sqrt{n}$ d. $g(n) = n^{1.5}$ e. g(n) = n!

Exercise 7.3. [\star] Given *f* is some function in *O*(*h*), and *g* is some function not in *O*(*h*), which of the following are true (for any choice of *h*):

- **a.** For all positive integers $m, f(m) \le g(m)$.
- **b.** For some positive integer m, f(m) < g(m).
- **c.** For some positive integer m_0 , and all positive integers $m > m_0$,

$$f(m) < g(m)$$

7.2.2 Omega

The set $\Omega(f)$ (omega) is the set of functions that grow no *slower* than f grows. So, a function g is in $\Omega(f)$ if it grows as fast as f or faster. This is different from O(f), which is the set of all functions that grow no *faster* than f grows. In Figure 7.2, $\Omega(f)$ is the set of all functions outside the darker circle.

The formal definition of $\Omega(f)$ is nearly identical to the definition of O(f): the only difference is the \leq comparison is changed to \geq .

Definition of $\Omega(f)$. The function *g* is a member of the set $\Omega(f)$ if and only if there exist positive constants *c* and n_0 such that

$$g(n) \ge cf(n)$$

for all values $n \ge n_0$.

Example 7.3: Ω **Examples.** We repeat the examples from the previous section with Ω instead of O. The strategy is similar: we show g is in $\Omega(f)$ using the definition of $\Omega(f)$ by choosing positive constants for the values of c and n_0 , and showing that the property $g(n) \ge cf(n)$ holds for all values $n \ge n_0$. To show g is not in $\Omega(f)$, we need to explain how, for any choices of c and n_0 , we can find a choice for $n \ge n_0$ such that g(n) < cf(n).

- **a.** n-7 is in $\Omega(n+12)$: Choose $c = \frac{1}{2}$ and $n_0 = 38$. Then, we need to show $n-7 \ge \frac{1}{2}(n+12)$ for all values $n \ge 38$. This is true, since the inequality simplifies $\frac{n}{2} \ge 19$ which holds for all values $n \ge 38$.
- **b.** n + 12 is in $\Omega(n 7)$: Choose c = 1 and $n_0 = 1$.
- **c.** 2*n* is in $\Omega(3n)$: Choose $c = \frac{1}{3}$ and $n_0 = 1$. Then, $2n \ge \frac{1}{3}(3n)$ simplifies to $n \ge 0$ which holds for all values $n \ge 1$.
- **d.** 3n is in $\Omega(2n)$: Choose c = 1 and $n_0 = 1$. Then, $3n \ge 2n$ simplifies to $n \ge 0$ which is true for all values $n \ge 1$.
- **e.** *n* is not in $\Omega(n^2)$: Whatever values are choosen for *c* and n_0 , we can choose $n \ge n_0$ such that $n \ge cn^2$ does not hold. We can choose $n > \frac{1}{c}$ (note that *c* must be less than 1 for the inequality to hold for any positive *n*, so if *c* is not less than 1 we can just choose $n \ge 2$). Then, the right side of the inequality cn^2 will be greater than *n*, and the needed inequality $n \ge cn^2$ does not hold.
- **f.** n^2 is in $\Omega(n)$: Choose c = 1 and $n_0 = 0$: $n^2 \ge n$ for all $n \ge 0$.
- **g.** n 2 is not in $\Omega(Fibonacci(n + 1))$: No matter what values are choosen for c and n_0 , we can choose $n \ge n_0$ such that $n - 2 \ge Fibonacci(n + 1)$ does not hold. The value of Fibonacci(n + 1) more than doubles every time n is increased by 2 (see Section 7.2.1), but the value of c(n - 2) only increases by 2c. Hence, if we keep increasing n, eventually Fibonacci(n + 1) > c(n - 2) for any choice of c.
- **h.** Fibonacci(n + 1) is in $\Omega(n 2)$: choose c = 1 and $n_0 = 0$: Fibonacci $(n + 1) \ge n 2$ for all $n \ge 0$.

Exercise 7.4. Repeat Exercise 7.2, but using Ω instead of *O*.

Exercise 7.5. For each part, identify a function *g* that satisfies the stated property.

- **a.** g is in $O(n^2)$ but not in $\Omega(n^2)$.
- **b.** *g* is not in $O(n^2)$ but is in $\Omega(n^2)$.
- **c.** *g* is in both $O(n^2)$ and $\Omega(n^2)$.

7.2.3 Theta

The notation $\Theta(f)$ is the set of functions that grow at the same rate as f. It is the intersection of the sets O(f) and $\Omega(f)$. Hence, a function g is in $\Theta(f)$ if and only if g is in O(f) and g is in $\Omega(f)$. In Figure 7.2, $\Theta(f)$ is the ring between the outer and inner circles.

An alternate definition combines the inequalities for *O* and Ω :

Definition of $\Theta(f)$. The function *g* is a member of the set $\Theta(f)$ if any only if there exist positive constants c_1 , c_2 , and n_0 such that

$$c_1 f(n) \ge g(n) \ge c_2 f(n)$$

is true for all values $n \ge n_0$.

If g(n) is in $\Theta(f(n))$, then the sets $\Theta(f(n))$ and $\Theta(g(n))$ are identical. We also know O(f(n)) = O(g(n)) and $\Omega(f(n)) = \Omega(g(n))$. Intuitively, since $g(n) \in \Theta(f(n))$ means g and f grow at the same rate,

Example 7.4: Θ **Examples.** We repeat the previous examples using Θ . Determining membership in $\Theta(f)$ is simple once we know membership in O(f) and $\Omega(f)$.

- **a.** n 7 is in $\Theta(n + 12)$: n 7 is in O(n + 12) and in $\Omega(n + 12)$. Intuitively, n 7 increases at the same rate as n + 12, since adding one to n adds one to both function outputs. Choose $c_1 = 1$, $c_2 = \frac{1}{2}$, and $n_0 = 38$. We can choose our value of c_1 as the value of c in the O(f) proof, c_2 as the value of c in the $\Omega(f)$ proof, and n_0 as the maximum value of the n_0 values from the O(f) and $\Omega(f)$ proofs.
- **b.** n + 12 is in $\Theta(n 7)$: n + 12 is in O(n 7) and in $\Omega(n 7)$. Choose $c_1 = 2, c_2 = 1$, and $n_0 = 1$.

- **c.** 2*n* is in $\Theta(3n)$: 2*n* is in O(3n) and in $\Omega(3n)$. Choose $c_1 = 1$, $c_2 = \frac{1}{3}$, and $n_0 = 1$.
- **d.** 3*n* is in $\Theta(2n)$: 3*n* is in O(2n) and in $\Omega(2n)$. Choose $c_1 = 2, c_2 = 1$, and $n_0 = 1$.
- **e.** *n* is **not** in $\Theta(n^2)$: *n* is not in $\Omega(n^2)$. Intuitively, *n* grows slower than n^2 since increasing *n* by one always increases the value of the first function, *n*, by one, but increases the value of n^2 by 2n + 1, a value that increases as *n* increases.
- **f.** n^2 is **not** in $\Theta(n)$: n^2 is not in O(n).
- **g.** n 2 is **not** in $\Theta(Fibonacci(n + 1))$: n 2 is not in $\Omega(n)$.
- **h.** *Fibonacci*(n + 1) is **not** in $\Omega(n 2)$: *Fibonacci*(n + 1) is not in O(n 2).

Exercise 7.6. Repeat Exercise 7.2, but using Θ instead of *O*.

Properties of O, Ω , and Θ . Because O, Ω , and Θ are concerned with the asymptotic properties of functions, that is, how they grow as inputs approach infinity, many functions that are different when the actual output values matter generate identical sets with the O, Ω , and Θ functions. For example, we saw n - 7 is in $\Theta(n + 12)$ and n + 12 is in $\Theta(n - 7)$. In fact, every function that is in $\Theta(n - 7)$ is also in $\Theta(n + 12)$.

More generally, if we could prove *g* is in $\Theta(an + k)$ where *a* is a positive constant and *k* is any constant, then *g* is also in $\Theta(n)$. Thus, the set $\Theta(an + k)$ is equivalent to the set $\Theta(n)$.

We can prove $\Theta(an + k) \equiv \Theta(n)$ from the definition of Θ . To prove the sets are equivelent, we need to show that (1) any function *g* which is in $\Theta(n)$ is also in $\Theta(an + k)$; and (2) any function *g* which is in $\Theta(an + k)$ is also in $\Theta(n)$:

1. Suppose *g* is in $\Theta(n)$. This means we can find positive constants c_1 , c_2 , and n_0 such that $c_1n \ge g(n) \ge c_2n$. In order to show *g* is also in $\Theta(an + k)$, we need to show that we can find d_1 , d_2 , and m_0 such that $d_1(an + k) \ge g(n) \ge d_2(an + k)$ for all $n \ge m_0$. Simplifying the inequalities, we need $(ad_1)n + kd_1 \ge g(n) \ge (ad_2)n + kd_2$. Ignoring the constants for now, we can pick $d_1 = \frac{c_1}{a}$ and $d_2 = \frac{c_2}{a}$. Since *g* is in $\Theta(n)$, we know

$$(a\frac{c_1}{a})n \ge g(n) \ge (a\frac{c_2}{a})n$$

is satisfied. As for the constants, as n increases they become insignificant. Adding one to d_1 and d_2 adds an to the first term and k to the second term. Hence, as n grows, an becomes greater than k.

2. Suppose g is in $\Theta(an + k)$. This means we can find positive constants c_1, c_2 , and n_0 such that $c_1(an + k) \ge g(n) \ge c_2(an + k)$. Simplifying the inequalities, we have $(ac_1)n + kc_1 \ge g(n) \ge (ac_2)n + kc_2$ or, for some different positive constants $b_1 = ac_1$ and $b_2 = ac_2$ and constants $k_1 = kc_1$ and $k_2 = kc_2$, $b_1n + k_1 \ge g(n) \ge b_2n + k_2$. In order to show g is also in $\Theta(n)$, we need to show that we can find d_1, d_2 , and m_0 such that $d_1n \ge g(n) \ge d_2n$ for all $n \ge m_0$. If it were not for the constants, we already have this with $d_1 = b_1$ and $d_2 = b_2$. As before, the constants become inconsequential as n increases.

This property also holds for the *O* and Ω operators since our proof for Θ also proved the property for the *O* and Ω inequalities.

This result can be generalized to any polynomial. The set $\Theta(a_0 + a_1n + a_2n^2 + ... + a_kn^k)$ is equivalent to $\Theta(n^k)$. Because we are concerned with the asymptotic growth, only the highest power term of the polynomial matters once *n* gets big enough.

Exercise 7.7. Show that $\Theta(n^2 - n)$ is equivalent to $\Theta(n^2)$.

Exercise 7.8. $[\star]$ Is $\Theta(n^2)$ equivalent to $\Theta(n^{2.1})$? Either prove they are identical, or prove they are different.

Exercise 7.9. [\star] Is $\Theta(2^n)$ equivalent to $\Theta(3^n)$? Either prove they are identical, or prove they are different.

7.3 Summary

By considering the asymptotic growth of functions, rather than their actual outputs, we can better capture the important properties of how the cost of evaluating a procedure application grows with the size of the input. The O, Ω , and Θ operators allow us to hide constants and factors that change depending on the speed of our processor, how data is arranged in memory, and the specifics of how our interpreter is implemented. Instead, we can consider the essential properties of the procedure. In the next chapter, we explore how to use these operators to analyze the costs of executing different procedures.

Time makes more converts than reason. Thomas Paine

The previous chapter introduced notations for conveniently describing the asymptotic growth rates of functions. Chapter 6 introduced the Turing Machine model and argued that it can simulate any reasonable computer. In this chapter, we combine the computing model with the asymptotic operators to reason about the running time of procedures.

The first section of this chapter explains how to measure input sizes and running times. Section 8.2 provides examples of procedures with different growth rates. The growth rate of a procedure's running time gives us an understanding of how the running time increases as the size of the input increases. In the next chapter, we provide an extended example.

8.1 Measuring Running Time

To understand the growth rate of a procedure's running time, we need a function that maps the size of the inputs to the procedure to the amount of time it takes to evaluate the application. First we consider how to measure the input size; then, we consider how to measure the running time. In Section 8.1.3 we consider *which* input of a given size should be used to reason about the cost of applying a procedure.

8.1.1 Input Size

Procedure inputs may be many different types: Numbers, Lists of Numbers, Lists of Lists, Procedures, etc. Our goal is to characterize the input size with a single number that does not depend on the types of the input.

We use the Turing machine to model a computer, so the way to measure the size of the input is the number of characters needed to write the input

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

on the tape. The characters can be from any fixed-size alphabet, such as the ten decimal digits, or the letters of the alphabet. As we saw in Chapter 1, we can use a sequence of bits to uniquely represent a member of any finite set.

The number of different symbols in the tape alphabet does not matter for our analysis, since we are concerned with orders of growth, not with absolute values. Within the O, Ω , and Θ operators, a constant factor does not matter. For example, $\Theta(n)$ defines exactly the same set as $\Theta(17n + 523)$. This means whether we use an alphabet with two symbols or an alphabet with 256 symbols, the effective input size is not impacted; with two symbols the input may be 8 times as long as it is with a 256-symbol alphabet, but the constant factor of 8 does not matter in the asymptotic operator.

Thus, we measure the size of the input as the number of symbols required to write the number on a Turing Machine input tape. To figure out the input size of a given type, we need to think about how many symbols it would require to write down inputs of that type.

Booleans. There are only two Boolean values: *true* and *false*. Hence, we can encode each value using a single symbol. The length of a Boolean input is fixed.

Numbers. Using the decimal number system (that is, 10 tape symbols), we can write a number of magnitude *n* using $\log_{10} n$ digits. Using the binary number system (that is, 2 tape symbols), we can write it using $\log_2 n$ digits. Withing the asymptotic operators, the base of the logarithm does not matter (as long as it is a constant). We can see this from the argument above — changing the number of symbols in the input alphabet changes the input length by a constant factor which has no impact within the asymptotic operators. Another way to see this is to use the formula for change logarithm bases:

$$\log_b x = \frac{1}{\log_a b} \cdot \log_a x$$

Changing the base of the logarithm multiplies the value by $\frac{1}{\log_a b}$, a constant factor if both logarithm bases are constants.

Lists. If the input is a List, the size of the input is related to the number of elements in the list. If each element is a constant size (for example, a list of numbers where each number is between 0 and 100), then the size of the input list is some constant multiple of the number of elements in the list. Hence, the size of an input that is a list of *n* elements is *cn* for some constant *c*. Since $\Theta(cn) = \Theta(n)$, the size of a List input is $\Theta(n)$ where *n* is the number of elements in the List. If List elements can vary in size, then we need to account for that in the input size. For example, suppose the

input is a List of Lists, where there are *n* elements in each inner List, and there are *n* List elements in the main List. Then, there are n^2 total elements, so the input size is in $\Theta(n^2)$.

8.1.2 Running Time

As discussed in Section 7.1, timing the actual time of particular executions of a procedure does not, by itself, provide a very useful way to understand important properties of the cost of a procedure. Instead, we want a measure of the running time of a procedure that satisfies two properties: (1) it should be robust to ephemeral properties of a particular execution or computer, and (2) it should provide insights into how long it will take to evaluate the procedure on a wide range of inputs.

To estimate the running time of an evaluation, we need to consider the number of steps required to perform the evaluation. The actual number of steps depends on the details of how much work can be done on each step. If we count instructions on a particular processor, the amount of work that can be done in one instruction varies. Further, not all instructions take the same amount of time of time to execute. Even the same simple instruction, such as reading the value in some memory location, may take vastly different amounts of time depending on the state of the machine.¹

When we analyze procedures, however, we usually don't want to deal with these details. Instead, what we care about is how the running time changes as the input size increases. This means we can count anything we want as a "step" as long as each step is the approximately same size (that is, the time a step requires does not depend on the size of the input).

The clearest and simplest definition of a step is to use one Turing Machine step. We have a precise definition of exactly what a Turing Machine can do in one step: it can read the symbol in the current square, write a symbol into that square, transition its internal state number, and move one square to the left or right. Counting Turing Machine steps is very precise, but difficult because we do not usually start with a Turing Machine description of a procedure and creating one could be tedious.

Instead, we can usually reason directly from a Scheme procedure (or any precise description of a procedure) using larger steps. As long as we can claim that whatever we consider a step could be simulated using a constant number of steps on a Turing Machine, our larger steps will produce

¹If the same memory location has been read recently, it is likely to be available in a memory cache that is built-in to the processor, so the access time is very quick. If it has not been read recently, it may take several thousand times as long to read it.

the same answer within the asymptotic operators. One possibility when we are analyzing a Scheme procedure is to count the number of times an evaluation rule is used in an evaluation of an application of the procedure. The amount of work in each evaluation rule may vary slightly (for example, the evaluation rule for an if-expression seems more complex than the rule for a primitive) but does not depend on the input size.

Hence, it is reasonable to assume all the evaluation rules to take constant time. This does not include any additional evaluation rules that are needed to apply one rule. For example, the evaluation rule for application expressions includes evaluating every subexpression. Evaluating an application constitutes one work unit for the application rule itself, plus all the work required to evaluate the subexpressions. In cases where the bigger steps are unclear, we can always return to our precise definition of a step as one step of a Turing Machine.

8.1.3 Worst Case Input

A procedure may have different running times for inputs of the same size. One example is this procedure that takes a List as input and outputs the first positive number in the list:

(define (list-first-pos p)
 (if (null? p)
 (error "No positive element found")
 (if (> (car p) 0)
 (car p)
 (list-first-pos (cdr p)))))

If the first element in the input list is positive, evaluating the application of *list-first-pos* requires very little work. It is not necessary to consider any other elements in the list if the first element is positive. On the other hand, if none of the elements are positive, the procedure needs to test each element in the list until it reaches the end of the list (where the base case reports an error).

In our analyses we usually consider the *worst case* input. This is the input of a given size for which evaluating the procedure takes the most work. By focusing on the worst case input, we know the maximum running time for the procedure. Without knowing something about the possible inputs to the procedure, it is safest to be pessimistic about the input and not assume any properties that are not known (such as that the first number in the list is positive for the *first-pos* example).

In some cases, we need to also consider the average case input. Since most

procedures can take infinitely many inputs, this requires understanding the distribution of possible inputs to determine an "average" input. This is often necessary when we are analyzing the running time of a procedure that uses another helper procedure. If we use the worst-case running time for the helper procedure, we will grossly overestimate the running time of the main procedure. Instead, since we know how the main procedure uses the helper procedure, we can more precisely estimate the actual running time by considering the actual inputs. We see an example of this in the analysis of how the + procedure is used by *list-length* in Section 8.2.2.

8.2 Growth Rates

Our goal is to understand how the running time of an application of a procedure is related to the size of the input. To do this, we want is to devise a function that predicts the running time of the procedure application. That function should take as input a number that represents the size of the input, and produces as output a number that gives the maximum number of steps required to complete the evaluation on an input of that size. Symbolically, we can think of this function as:

Number-Of-Steps Procedure: Number \rightarrow Number

Because the output represents the *maximum* number of steps required, we need to consider the worst-case input of the given size.

Because of all the issues with counting steps exactly, and the uncertainty about how much work can be done in one step on a particular machine, we cannot usually determine the exact function for *Number-Of-Steps*_{Procedure}. Instead, we characterize the running time of a procedure with a set of functions produce by an asymptotic operator. Inside the *O*, Ω , and Θ , the actual time needed for each step does not matter since the constant factors are hidden by the operator; what matters is how the number of steps required grows as the size of the input grows.

Hence, we will characterize the running time of a procedure using a set of functions produced by one of the asymptotic operators. The Θ operator provides the most information. Recall that O(f) is the set of functions that grow *no faster* than f, $\Omega(f)$ is the set of functions that grow *no slower* than f, and $\Theta(f)$ is the set of functions that grow *as fast as* f. Since $\Theta(f)$ is the intersection of O(f) and $\Omega(f)$, knowing that the running time of a procedure is in $\Theta(f)$ for some function f provides much more information than just knowing it is in O(f) or just knowing that it is in $\Omega(f)$. Hence, our goal is

to characterize the running time of a procedure using the set of functions defined by $\Theta(f)$ of some function *f*.

The rest of this section provides examples of procedures with different growth rates, from slowest (no growth) through increasingly rapid growth rates. The growth classes described are important classes that are commonly encountered when analyzing procedures, but these are only examples of growth classes. Between each pair of classes described here, there are an unlimited number of different growth classes.

8.2.1 No Growth: Constant Time

If the running time of a procedure does not increase when the size of the input increases, it means the procedure must be able to produce its output by looking at only a constant number of symbols in the input.

Procedures whose running time does not increase with the size of the input *constant time* are known as *constant time* procedures. Their running time is in O(1) — it does not grow at all. By convention, we use O(1) instead of $\Theta(1)$ to describe constant time. Since there is no way to grow slower than no growth, O(1) and $\Theta(1)$ are equivalent.

We cannot do much in constant time, since we cannot even examine the whole input. A constant time procedure must be able to produce its output by examining only a fixed-size part of the input. Recall that the input size measures the number of squares needed to represent the input. A constant time procedure can look at no more than *C* squares on the tape where *C* is some constant. If the input is larger than *C*, a constant time procedure can not even read parts of the input.

List procedures. An example of a constant time procedure is the builtin procedure *car*. When *car* is applied to a non-empty list, it evaluates to the first element of that list. No matter how long the input list is, all the *car* procedure needs to do is extract the first component of the list. So, the running time of *car* is in O(1).²

Other built-in procedures that involve lists and pairs that have running times in O(1) include *cons, cdr, null?*, and *pair?*. None of these procedures need to examine more than the first pair of the list.

²Since we are speculating based on what *car* does, not examining how *car* a particular Scheme interpreter actually implements it, we cannot say definitively that its running time is in O(1). It would be rather shocking, however, for an implementation to implement *car* in a way such that its running time that is not in O(1). The implementation of *scar* in Section 5.2.1 is constant time: regardless of the input size, evaluating an application of it involves evaluating a single application expression, and then evaluating an if-expression.

Boolean procedures. All sensible procedures that have only Booleans as inputs are constant time. This is because the size of a Boolean input is a constant. Since there is no way to grow the size of a Boolean input, the running time of a procedure that takes only Boolean inputs should not grow either. For example, the logical-and procedure from Chapter 6 takes two Boolean inputs. Evaluating it involves evaluating one if-expression, so the running time is constant.

Number procedures. Most procedures that take numbers are inputs are not constant time, since most operations on numbers depend on the whole number. For example, there is no way to correctly add two numbers without completely examining all the digits in both numbers. There are some operations we can do on numbers in constant time, however.

For example, the zero? procedure takes a number as its input and outputs a Boolean indicating whether or not the input number is zero. Whether it is possible to implement zero? in constant time depends on how numbers are represented. If numbers are represented with no leading zeros (that is, 0043 is not a valid number), then all zero? needs to do is look at the first digit, so it can be done in constant time. We will more examples in the next section involving arithmetic operations where one of the numbers is a constant.

8.2.2 Linear Growth

When the running time of a procedure increases by a constant amount when the size of the input grows by one, the running time of the procedure grows *linearly* with the input size. If the input size is *n*, the running *linearly* time is in $\Theta(n)$. If a procedure has running time in $\Theta(n)$, doubling the size of the input will approximately double the execution time.

Many procedures that take a List as input have linear time growth. A procedure that does something that takes constant time with every element in the input List, has running time that grows linearly with the size of the input since adding one element to the list increases the number of steps by a constant amount. Next, we examine three example list procedures, all of which have running times that scale linearly with the size of their input.

Example 8.1: Append. Consider the *list-append* procedure (from Example 5.6):

(**define** (*list-append p q*) (**if** (*null*? *p*) *q* (cons (car p) (list-append (cdr p) q))))

We want to understand how the running time of *list-append* scales with the

size of its input. Since *list-append* takes two inputs, we need to be careful about how we refer to the input size. We use n_p to represent the number of elements in the first input, and n_q to represent the number of elements in the second input.

To analyze the running time of *list-append*, we examine its body which is an if-expression. The predicate expression applies the *null*? procedure. As we argued in the previous section, *null*? can be applied in constant time since the effort required to determine if a list is *null* does not depend on the length of the list. When the predicate expression evaluates to true, the alternate expression is just *q*, which can also be evaluated in constant time.

Next, we consider the alternate expression. It includes a recursive application of *list-append*. Hence, the running time of the alternate expression is the time required to evaluate the recursive application plus the time required to evaluate everything else in the expression. The other expressions to evaluate are applications of *cons*, *car*, and *cdr*, each of which is a constant time procedure.

So, we could express the total running time as,

*Running-Time*_{list-append} $(n_p, n_q) = C + Running-Time$ _{list-append} $(n_p - 1, n_q)$

where *C* is some constant (that is, the time for all the operations besides the recursive call does not depend on the length of any of the inputs). Note that the value of n_q does not matter, so we can simplify this to:

*Running-Time*_{list-append}
$$(n_p) = C + Running-Time_{list-append}(n_p - 1).$$

This indicates that the running time to evaluate an application of *list-append* when the first input is a list with n_p elements is the time required to evaluate *list-append* on an input with one fewer element plus some constant.

This does not yet provide a useful characterization of the running time of *list-append* though, since it is a circular definition. To make it a recursive definition, we need a base case. The base case for the running time definition is the same as the base case for the procedure: when the input is *null*. For the base case, the running time is constant. So, we can also define:

Running-Time_{list-append}
$$(0) = C_0$$

where C_0 is some constant (not necessarily the same as *C*).

To better characterize the running time of *list-append*, we want a closed form solution. For a given input *n*, *Running-Time*(*n*) is $C + C + C + C + ... + C + C_0$ where there are n - 1 of the *C* terms in the sum. This simplifies to $(n - 1)C + C_0 = nC - C + C_0 = nC + C_2$. We do not know what the values

of *C* and *C*₂ are, but since we use the asymptotic notations to describe the running time, it doesn't matter. The important thing is that the running time scales linearly with the value of its input. Thus, the running time of *list-append* is in $\Theta(n_p)$ where n_p is the number of elements in the first input.

Usually, we do not need to reason at quite this low a level. Instead, to analyze the running time of a recursive procedure it is enough to determine the amount of work involved in each recursive call (excluding the recursive application itself) and multiply this by the number of recursive calls. For this example, there are n_p recursive calls since each call reduces the length of the p input by one until the base case is reached. Each call involves only constant-time procedures (other than the recursive application), so the amount of work involved in each call is constant. Hence, the running time is in $\Theta(n_p)$. This is equivalent to stating that the running time for the *list-append* procedure scales linearly with the length of the first input list.

Example 8.2: Length. Consider the *list-length* procedure from Chapter 5:

(define (list-length p) (if (null? p) 0 (+ 1 (list-length (cdr p)))))

This procedure makes one recursive application of *list-length* for each element in the input p. If the input has n elements, there will be n + 1 total applications of *list-length* to evaluate (one for each element, and one for the *null*). So, the total work is in $\Theta(n \cdot \text{work}$ for each recursive application).

To determine the running time, we need to determine how much work is involved in each application. Evaluating an application of *list-length* consists of evaluating its body, which is an if-expression. To evaluate the if-expression, the predicate expression, (*null*? p), must be evaluated first. This requires constant time since the *null*? procedure has constant running time (see Section 8.2.1).

If the predicate expression evaluates to true, the consequent expression must be evaluated. It is the primitive expression, 0, which can be evaluated in constant time.

When the predicate expression evaluates to false, the alternate expression, (+1 (list-length (cdr p))) is evaluated. We analyze the running time of evaluating this expression without including the recursive *list-length* application. The reason we do not include this know is that we know there are n + 1 total applications of *length* to evaluate. Once we know the running time for each application (other than the recursive application itself), we can just multiply this by the number of recursive calls to get the total running time.

The remaining work is evaluating (cdr p) and evaluating the + application. The cdr procedure is constant time. Analyzing the running time of the + procedure application is more complicated.

Since + is a built-in procedure, we need to think about how it might be implemented. Following the elementary school addition algorithm (from Section 6.2.3), we know we can add any two numbers by walking down the digits. The work required for each digit is constant; we just need to compute the corresponding result and carry bits using a simple formula or lookup table. The number of digits to add is the maximum number of digits in the two input numbers. Thus, if there are *b* digits to add, the total work is in $\Theta(b)$. In the worst case, we need to look at all the digits in both numbers. In general, we cannot do asymptotically better than this, since adding two arbitrary numbers might require looking at all the digits in both numbers.

But, in the *list-length* procedure the + is used in only a very limited way: (+ 1 (*list-length* (*cdr p*))). One of the inputs is always 1. We might be able to add 1 to a number without looking at all the digits in the number. Recall the addition algorithm: we start at the rightmost (least significant) digit, add that digit, and continue with the carry. If one of the input numbers is 1, then once the carry is zero we know now of the more significant digits will need to change. In the worst case, adding one requires changing every digit in the other input. For example, (+ 99999 1) is 100000. In the best case (when the last digit is below 9), adding one requires only examining and changing one digit.

Figuring out the average case is more difficult, but necessary to get a good estimate of the running time of *list-length*. We assume the numbers are represented in binary, so instead of decimal digits we are counting bits (this is both simpler, and closer to how numbers are actually represented in the computer). Approximately half the time, the least significant bit is a 0, so we only need to examine one bit. When the last bit is not a 0, we need to examine the second least significant bit (the second bit from the right): if it is a 0 we are done; if it is a 1, we need to continue. So, we need to examine two or more bits in the case where the least significant bit is a 1.

Thus, we always need to examine one bit, the least significant bit. Half the time we need to also examine the second least significant bit. Of those times, half the time we need to continue and examine the next least significant bit. This continues through the whole number. Thus, the expected number of bits we need to examine is,

$$1 + \frac{1}{2} \left(1 + \frac{1}{2} \left(1 + \frac{1}{2} \left(1 + \frac{1}{2} \left(1 + \dots \right) \right) \right) \right)$$

where the number of terms is the number of bits in the input number, *b*.

Worst Case

Simplifying the equation, we get:

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots + \frac{1}{2^b}$$

No matter how large *b* gets, this value is always less than 2. So, on average, the number of bits to examine to add 1 is constant: it does not depend on the length of the input number. Although adding two arbitrary values cannot be done in constant time, adding 1 to an arbitrary value can be done in constant time.

This result generalizes to addition where one of the inputs is any constant. One way to see this is that adding any constant *C* to a number *n* is equivalent to adding one *C* times. Since adding one is a constant time procedure, adding one *C* times can also be done in constant time for any constant *C*. Another way to see this is to note that the constant *C* can be written in $\log_2 C$ bits. Hence, we always need to look at the rightmost $\log_2 C$ bits of the input number, but only need to look beyond those bits when there are carries. The frequency of carries after the next most significant bit is the same as if we are adding 1. So, on average, we only need to look at a constant number of bits to add a constant to any number.

Excluding the recursive application, the *list-length* application involves applications of two constant time procedures: *cdr* and adding one using +. Hence, the total time needed to evaluate one application of *list-length*, excluding the recursive application, is constant. It does not depend on the length of the input list.

There are n + 1 total applications of *list-length* to evaluate total, so the total running time is c(n + 1) where c is the amount of time needed for each application. The set $\Theta(c(n + 1))$ is identical to the set $\Theta(n)$, so we can say that the running time for the length procedure is in $\Theta(n)$ where n is the length of the input list.

Example 8.3: Accessing List Elements. Consider the *list-get-element* procedure from Example 5.3:

(define (list-get-element
$$p n$$
)
(if (= n 1)
(car p)
(list-get-element (cdr p) (- n 1))))

The procedure takes two inputs, a List and a Number selecting the element of the list to get. Since there are two inputs, we need to think carefully about the input size. We can use variables to represent the size of each input, for example s_p and s_n for the size of p and n respectively. In this case, however, we will see that only the size of the first input really matters.

The procedure body is an if-expression. The predicate uses the built-in = procedure to compare *n* to 1. The worst case running time of the = procedure is linear in the size of the input: it potentially needs to look at all bits in the input numbers to determine if they are equal. Similarly to +, however, if one of the inputs is a constant, the comparison can be done in constant time. To compare a number of any size to 1, it is enough to look at a few bits. If the least significant bit of the input number is not a 1, we know the result is *false*. If it is a 1, we need to examine a few other bits of the input number to determine if its value is different from 1 (the exact number of bits we need to look at depends on how numbers are represented in more detail; if there are no leading zeros, which is not the case with most computer representations, it would only be necessary to examine one more bit). So, the = comparison can be done in constant time.

If the predicate is true, the base case applies the *car* procedure, which has constant running time. The alternate expression involves the recursive calls, as well as evaluating (*cdr* p), which requires constant time, and (-n 1). The - procedure is similar to +: for arbitrary inputs, its worst case running time is linear in the input size, but when one of the inputs is a constant the running time is constant. This follows from a similar argument to the one we used for the + procedure. To subtract a constant of length *C* bits, we need to examine *C* bits of the input number, and further bits only some of the time (Exercise 4 asks for a more detailed analysis of the running time of subtraction). So, the work required for each recursive call is constant.

The number of recursive calls is determined by the value of n and the number of elements in the list p. In the best case, when n is 1, there are no recursive calls and the running time is constant. It does not depend on the number of elements in the list, since the procedure only needs to examine the first element. Each recursive call reduces the value passed in as n by 1, so the number of recursive calls scales linearly with n (the actual number is n - 1 since the base case is when n equals 1). But, there is a limit on the value of n for which this is true. If the value passed in as n exceeds the number of elements in p, the procedure will produce an error when it attempts to evaluate (cdr p) for the empty list. This happens after s_p recursive calls, where s_p is the number of elements in p. Hence, the running time of *list-get-element* does not grow with the length of the input passed as n; after the value of n exceeds the number of elements in p it does not matter how much bigger it gets, the running time does not continue to increase.

Thus, the worst case running time of *list-get-element* grows linearly with the length of the input list. Equivalently, the running time of *list-get-element* is in $\Theta(s_p)$ where s_p is the number of elements in the input list.

Exercise 8.1. Explain why the *list-map* procedure from Section 5.4.1 has running time that is linear in the size of its List input. Assume the procedure input has constant running time.

Exercise 8.2. Consider the *list-sum* procedure (from Example 5.2):

(**define** (*list-sum p*) (**if** (*null*? *p*) 0 (+ (*car p*) (*list-sum* (*cdr p*)))))

What assumptions are needed about the elements in the list for the running time to be linear in the number if elements in the input list?

Exercise 8.3. For the decimal six-digit odometer (shown in the picture on page 196), we measure the amount of work to add one as the total number of wheel digit turns required. For example, going from 000000 to 000001 requires one work unit, but going from 000099 to 000100 requires three work units.

- **a.** What are the worst case inputs?
- **b.** What are the best case inputs?
- **c.** [*] On average, how many work units are required for each mile? Assume over the lifetime of the odometer, the car travels 1,000,000 miles.
- **d.** Lever voting machines were used by the majority of American voters in the 1960s, although they are not widely used today. Most level machines used a three-digit odometer to tally votes. Explain why candidates ended up with 99 votes on a machine far more often than 98 or 100 on these machines.

Exercise 8.4. $[\star]$ The *list-get-element* argued by comparison to +, that the – procedure has constant running time when one of the inputs is a constant. Develop a more convincing argument why this is true by analyzing the worst case and average case inputs for –.

Exercise 8.5. $[\star]$ Our analysis of the work required to add one to a number argued that it could be done in constant time. Test experimentally if the DrScheme + procedure actually satisfies this property. Note that one + application is too quick to measure well using the *time* procedure, so you will need to design a procedure that applies + many times without doing much other work.

Voting Machine Counter

8.2.3 Quadratic Growth

If the running time of a procedure scales as the square of the size of the *quadratically* input, the procedure's running time grows *quadratically*. Doubling the size of the input approximately quadruples the running time. The running time is in $\Theta(n^2)$ where *n* is the size of the input.

A procedure that takes a list as input has running time that grows quadratically if it goes through all elements in the list once for every element in the list. For example, we can compare every element in a list of length n with every other element using n(n-1) comparisons. This simplifies to $n^2 - n$, but $\Theta(n^2 - n)$ is equivalent to $\Theta(n^2)$ since as n increases only the highest power term matters (see Exercise 7.7).

Example 8.4: Reverse. Consider the *list-reverse* procedure defined in Section 5.4.2:

(define (list-reverse p)
 (if (null? p)
 null
 (list-append (list-reverse (cdr p)) (list (car p)))))

To determine the running time of *list-reverse*, we need to know how many recursive calls there are and how much work is involved in each recursive call. Each recursive application passes in (cdr p) as the input, so reduces the length of the input list by one. Hence, applying *list-reverse* to a input list with *n* elements involves *n* recursive calls.

The work for each recursive application, excluding the recursive call itself, is applying *list-append*. The first input to *list-append* is the output of the recursive call. As we argued in Example 8.1, the running time of *list-append* is in $\Theta(n_p)$ where n_p is the number of elements in its first input. So, to determine the running time we need to know the length of the first input list to *list-append*. For the first call, (*cdr p*) is the parameter, with length n - 1; for the second call, there will be n - 2 elements; and so forth, until the final call where (*cdr p*) has 0 elements. So, the total number of elements in all of these calls is:

$$(n-1) + (n-2) + \ldots + 1 + 0.$$

The average number of elements in each call is approximately $\frac{n}{2}$. Within the asymptotic operators the constant factor of $\frac{1}{2}$ does not matter, so the average running time for each recursive application is in $\Theta(n)$.

There are *n* recursive applications, so the total running time of *list-reverse* is *n* times the average running time of each recursive application: $n \cdot \Theta(n) =$

 $\Theta(n^2)$. Thus, the running time is quadratic in the size of the input list.

Example 8.5: Multiplication. Consider the problem of multiplying two numbers. The elementary school long multiplication algorithm works by multiplying each digit in *b* by each digit in *a*, aligning the intermediate results in the right places, and summing the results:

			×	a_{n-1} b_{n-1}	· · · · · · ·	a_1 b_1	a_0 b_0
+	$a_{n-1}b_{n-1}$			$\overline{a_{n-1}b_0}$ \dots a_0b_{n-1}		$a_1b_0\\a_0b_1$	a_0b_0
r_{2n-1}	<i>r</i> _{2<i>n</i>-2}	•••		<i>r</i> ₃	<i>r</i> ₂	<i>r</i> ₁	r_0

If both input numbers have *n* digits, there are n^2 digit multiplications, each of which can be done in constant time. The intermediate results will be *n* rows, each containing *n* digits. So, the total number of digits to add is n^2 : 1 digit in the ones place, 2 digits in the tens place, ..., *n* digits in the 10^{n-1} s place, ..., 2 digits in the 10^{2n-3} s place, and 1 digit in the 10^{2n-2} s place. Each digit addition requires constant work, so the total work for all the digit additions is in $\Theta(n^2)$. Adding the work for both the digit multiplications and the digit additions, the total running time for the elementary school multiplication algorithm is quadratic in the number of input digits, $\Theta(n^2)$ where *n* is the number if digits in the inputs.

This is not the fastest known algorithm for multiplying two numbers, although it was the best algorithm known until 1960. In 1960, Anatolii Karatsuba discovers a multiplication algorithm with running time in $\Theta(n^{\log_2 3})$. Since $\log_2 3 < 1.585$ this is an improvement over the $\Theta(n^2)$ elementary school algorithm. In 2007, Martin Fürer discovered an even faster algorithm for multiplication.³ It is not yet known if this is the fastest possible multiplication algorithm, or if faster ones exist.

Exercise 8.6. [*] Analyze the running time of the elementary school long division algorithm.

³Martin Fürer, Faster Integer Multiplication, *ACM Symposium on Theory of Computing*, 2007.

Exercise 8.7. $[\star]$ Define a Scheme procedure that multiplies two multi-digit numbers (without using the built-in \star procedure except to multiply single-digit numbers). Strive for your procedure to have running time in $\Theta(n)$ where *n* is the total number of digits in the input numbers.

Exercise 8.8. $[\star \star \star \star]$ Devise a multiplication algorithm that is faster than Fürer's, or prove that no faster algorithm for general multiplication exists.

8.2.4 Polynomial Growth

A *polynomial* function is a function that is the sum of powers of one or more variables multiplied by coefficients. For example,

$$a_k n^k + \dots + a_3 n^3 + a_2 n^2 + a_1 n + a_0$$

is a polynomial where the variable is n and the coefficients are $a_0, a_1, ..., a_k$. Within the O, Ω and Θ operators, only the term with the largest exponent matters. For high enough n, all the other terms become insignificant. An easy way to see this is to observe that n^k is $n \cdot n^{k-1}$. So, whatever the a_{k-1} coefficient is, once $n > a_{k-1}$ the value of $n^k > a_{k-1}n^{k-1}$. So, the polynomial above is in $\Theta(n^k)$ which is equivalent to $\Theta(a_kn^k + ... + a_3n^3 + a_2n^2 + a_1n + a_0)$ for all positive constants $a_0, ..., a_k$.

All of the slower growth rates in this section are polynomials: constant growth is a polynomial where the highest exponent is 0, linear growth is a polynomial where the highest exponent is 1, and quadratic grow is a polynomial where the highest exponent is 2. We can have procedures where the running time grows as a higher polynomial. The next example analyzes a procedure whose running time grows cubically with the size of its input.

Example 8.6: Satisfying pair. The *list-satisfying-pair* procedure, defined below, takes as inputs a test procedure and a list. The test procedure is a procedure that takes two inputs and produces a Boolean value. If there are any pairs of elements in the list for which the test procedure evaluates to true, the output is a pair of two elements in the list for which the test procedure evaluates to true. Otherwise, the output is false to indicate there is no satisfying pair.

Here are some example evaluations:

> (list-satisfying-pair = (list 1 3 2 4 6 1))
(1 . 1)
> (list-satisfying-pair = (list 1 3 2 4 6 7))
false

> (list-satisfying-pair (lambda (a b) (= a (* b 2)))
(list 2 3 5 7 11 13))
false
> (list-satisfying-pair (lambda (a b) (= a (* b b)))
(list 3 4 5 6 7 8 9 10 11))
(9.3)

We can define *list-satisfying-pair* by using *list-get-element* to select elements in turn to try all possible pairs.

The inner definition defines the *list-satisfying-pair-iter* procedure that takes two inputs, *i* and *j*, Numbers used to represent the indices of elements in the list to compare. It also uses the two parameters to the outer *list-satisfying-pair* procedure: *cf*, the Procedure used to test if a pair of inputs satisfy some property, and *p*, the input List.

To check all possible pairs, we need to evaluate the test procedure for every pair of values *i* and *j* that correspond to elements in the input list. We use *n* to represent the number of elements in the input list. Since there are *n* possible values for *i* and *n* possible values for *j*, this amounts to n^2 total comparisons. The number of recursive calls to *list-satisfying-pair-iter* should match this. The recursive definition is a bit complex since there are two different recursive calls. The first base case is when *i* exceeds the length of the input list. When this is true, it means all possible pairs have been tried without finding a satisfying pair, so the output is false. The second base case is when *j*, the second index, exceeds the length of the list. This happens when the procedure has finished trying the comparison procedure with all pairs for a given first element (the value of *i*). To continue, the recursive call, (*list-satisfying-pair-iter* (+ *i* 1) 1) passes in the next value for *i* and resets the value for the *j* parameter to 1. This happens *n* times.

The other recursive call is done when (> j (list-length p)) evaluates to false: (*list-satisfying-pair-iter i* (+ *j* 1)). The value passed in as *i* does not change,

but the value passed as *j* increases by 1. Since *j* starts at 1, the number of recursive calls required before the predicate is false is *n*. After these *n* calls, the recursive call that increases *i* by 1 and resets *j* to 1 is used. Hence, the total number of recursive calls is n^2 .

So, to determine the running time of *list-satisfying-pair* we need to estimate the running time of each application of *list-satisfying-pair-iter* (excluding the recursive call) and multiply that by n^2 . The worst (and most common) path through *list-satisfying-pair-iter* is the path where the first two predicate expressions are false, and the third one is true. Along this path, we need to evaluate (> *i* (*list-length p*)), (> *j* (*list-length p*)), (and (not (= *i j*)) (cf (*list-get-element p i*) (*list-get-element p j*))), and (cons (*list-get-element p i*) (*list-get-element p j*)). We consider the running time of each expression in turn; the total running time for each *list-satisfying-pair-iter* application is the sum of the running times of each expression.

The first two expressions use the > procedure to compare the index value to the length of the list. The running time of *list-length* is linear in the number of elements in the input list, so this involves $\Theta(n)$ work. The less than comparison can be done by examining the bits of the input numbers from most-significant to least-significant bit. In the worst case, all bits in the input numbers need to be examined. This occurs when all the bits are the same, or all the bits except the last bit are the same. The value of the first input is some number between 1 and n + 1; the value of the second input is always n. Hence, the size of the input to < is $\Theta(\log n)$ and the running time for evaluating each > expression is in $\Theta(\log n)$. The total running time for evaluating (> i (*list-length* p)) is $\Theta(n + \log n)$ which is equivalent to $\Theta(n)$ since as n increases, the log n term becomes much smaller than n(that is, $1.1n > (n + \log n)$ for n > 100). The running time for the second comparison expression is also in $\Theta(n)$.

The third expression involves applications of the Boolean procedure *not*, which is constant time since it takes Boolean inputs; the comparison procedure, *cf*, which we assume is constant time; and two applications of *list-get-element*, which we analyzed in Example 8.3 to have running time that is linear in the number of elements in the input List in the worst case. The running time for *list-get-element* scales linearly with the value of the second input, up to the length of the first input. On average, the values of *i* and *j* will be the average length of the list = n/2, so the expected running time of each call is also in $\Theta(n)$. This means the total running time for *list-satisfying-pair* is in $\Theta(n^3)$ since there are $\Theta(n^2)$ recursive calls, and each one has running time in $\Theta(n) = \Theta(n)$.

The fourth expression, (cons (list-get-element p i) (list-get-element p j)), also in-

volves two applications of *list-get-element* and the constant time procedures *cons*. Hence, its running time is in $\Theta(n)$.

The total running time to evaluate all four expressions is the sum of their running times: $\Theta(n) + \Theta(n) + \Theta(n) + \Theta(n)$, which is equivalent to $\Theta(n)$. Since there are n^2 recursive calls, the total running time for *list-satisfying-pair* is in $n^2 \cdot \Theta(n) = \Theta(n^3)$.

Exercise 8.9. $[\star\star]$ The provided definition of *list-satisfying-pair* has cubic running time, but it is possible to implement a procedure with the same behavior that has running time in $\Theta(n^2)$ where *n* is the number of elements in the input list. Write a definition of *list-satisfying-pair* that has quadratic running time, and explain why the running time of your procedure is quadratic.

8.2.5 Exponential Growth

If the running time of a procedure scales as some power of the size of the input, the procedure's running time grows *exponentially*. When the size of the input increases by one, the running time is multiplied by some constant factor. The growth rate of a function whose output is multiplied by w when the input size, n, increases by one is w^n .

A common instance of exponential growth is when the running time is in $\Theta(2^n)$. This occurs when the running time doubles when the input size increases by one. Exponential growth is very fast — if our procedure has running time that is exponential in the size of the input, it is not feasible to evaluate applications of the procedure on large inputs.

For a surprisingly large number of interesting problems, the best known algorithm has exponential running time. Examples of problems like this include finding the best route between two locations on a map (the problem mentioned in Chapter 4), the pegboard puzzle from Chapter 5, solving generalized versions of most other games such as Suduko and Minesweeper, and finding the factors of a number. Whether or not it is possible to design faster algorithms that solve these problems is the most important open problem in computer science, which we will return to in Chapter 16.

Next, we provide one example of a procedure that has exponential running time. In this case, we know there is no faster than exponential solution, since the size of the output is exponential in the size of the input. Since the most work a Turing Machine can do in one step is write one square, the size of the output provides a lower bound on the running time of the Turing Machine. For example, if the size of the output to a problem is exponential in the size of its input, the fastest possible procedure for that problem has at least exponential running time. This doesn't mean that such a procedure exists, just that it is not possible to find a faster one since just writing out the output itself requires exponential running time.

Example 8.7: Power Set. In mathematics, the power set of a set *S* is the set of all subsets of *S*. For example, the power set of $\{1, 2, 3\}$ is

```
\{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}
```

The number of elements in the power set of *S* is $2^{|S|}$ (where |S| is the number of elements in the set *S*).

Here is a procedure that takes a list as input, and produces as output the power set of the elements of the list (unlike mathematical sets we allow duplicate values in our input list, and the resulting list-sets):

The *list-powerset* procedure produces a List of Lists. Hence, for the base case, instead of just producing *null*, it produces a list containing a single element, *null*. In the recursive case, we can produce the power set by appending the list of all the subsets that include the first element, with the list of all the subsets that do not include the first element. For example, the powerset of $\{1, 2, 3\}$ is found by finding the powerset of $\{2, 3\}$, which is $\{\{\}, \{2\}, \{3\}, \{2, 3\}\}$, and taking the union of that set, and the set of all elements in that set unioned with $\{1\}$.

An application of *list-powerset* involves applying *list-append*, and two recursive applications of (*list-powerset* (*cdr s*)). Increasing the size of the input list by one, *doubles* the total number of applications of *list-powerset*. This is the case because to evaluate (*list-powerset s*), we need to evaluate (*list-powerset* (*cdr s*)) twice. So, the number of applications of *list-powerset* is 2^n where *n* is the length of the input list.⁴

The body of *list-powerset* is an if-expression. The predicate is a constanttime procedure, *null*?. The consequent expression, (*list null*) is also constant time. The alternate expression is an application of *list-append*. From Example 8.1, we know the running time of *list-append* is $\Theta(n_p)$ where n_p is the number of elements in its first input. The first input is the result of applying

⁴Careful readers will note that it is not really necessary to perform this evaluation twice, since we could do it once and reuse the result. Later, we explain how to avoid needing two evaluations of (*list-powerset* (*cdr s*)).

list-map to a procedure and the List produced by (*list-powerset* (*cdr s*)). The length of the list output by *list-map* is the same as the length of its input, so we need to determine the length of (*list-powerset* (*cdr s*)).

We use n_s to represent the number of elements in s. The length of the input list to *map* is the number of elements in the power set of a size $n_s - 1$ set: 2^{n_s-1} . But, for each application, the value of n_s is different. Since we are trying to determine the total running time, we can do this by thinking about the total length of all the input lists to *list-map* over all of the *list-powerset*. In the input is a list of length n, the total length is:

$$2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0$$

which is equal to $2^n - 1$. So, the running time for all the *list-map* applications is in $\Theta(2^n)$.

The analysis of the *list-append* applications is similar. The length of the first input to *list-append* is the length of the result of the *list-powerset* application, so the total length of all the inputs to append is 2^n .

Other than the applications of *list-map* and *list-append*, the rest of each *list-powerset* application requires constant time. So, the running time required for 2^n applications is in $\Theta(2^n)$. The total running time for *list-powerset* is the sum of the running times for the *list-powerset* applications, in $\Theta(2^n)$; the *list-map* applications, in $\Theta(2^n)$; and the *list-append* applications, in $\Theta(2^n)$. Hence, the total running time is in $\Theta(2^n)$.

8.2.6 Faster than Exponential Growth

We have already seen an example of a procedure that grows faster than exponentially in the size of the input: the *fibo* procedure at the beginning of this chapter! Evaluating an application of *fibo* involves $\Theta(\phi^n)$ recursive applications where *n* is the *value* of the input parameter. The size of a numeric input is the number of digits needed to express it, so the value *n* can be as high as $10^d - 1$ where *d* is the number of digits. Hence, the running time of the *fibo* procedure is in $\Theta(\phi^{10^d})$. This is why we are still waiting for (*fibo* 60) to finish evaluating.

8.2.7 Non-terminating Procedures

All of the procedures so far in the section are algorithms: they may be slow, but they are guaranteed to always finish. Some procedures never terminate. For example, (**define** (*run-forever*) (*run-forever*))

defines a procedure that never finishes. Its body calls itself, never making any progress toward a base case. The running time of this procedure is effectively infinite since it never finishes.

Exercise 8.10. Analyze the running time of the *intsto* procedure (from Example 5.8):

```
(define (intsto n)
(if (= n 0) null (list-append (intsto (-n 1)) (list n))))
```

Be careful to describe the running time in terms of the *size* (not the magnitude) of the input.

Exercise 8.11. Analyze the running time of the *factorial* procedure (from Example 4.1):

(**define** (factorial n) (**if** (= n 0) 1 (* n (factorial (-n 1)))))

Exercise 8.12. Analyze the running time of the *board-replace-peg* procedure (from Example 5.11):

```
(define (row-replace-peg pegs col val)
  (if (= col 1)
        (cons val (cdr pegs))
        (cons (car pegs) (row-replace-peg (cdr pegs) (- col 1) val))))
```

(define (board-replace-peg board row col val)
 (if (= row 1)
 (cons (row-replace-peg (car board) col val) (cdr board))
 (cons (car board) (board-replace-peg (cdr board) (- row 1) col val)))))

Exercise 8.13. [*] Find and correct at least one error in the *Orders of Growth* section of the Wikipedia page on *Analysis of Algorithms* (http://en.wikipedia. org/wiki/Analysis_of_algorithms). This is rated as [*] now (9 February 2009), since the current entry contains many fairly obvious errors. Hopefully it will soon become a [* * *] challenge, and perhaps, eventually will become impossible!

8.3 Summary

Because the speed of computers varies, and the exact time required for a particular application depends on many details, the most important property to capture is how the amount of work required to evaluate the procedure scales with the size of the input. The asymptotic operator for measuring orders of growth provide a convenient way of understanding the cost involved in evaluating an application of a procedure.

Procedures that can produce an output only touching a fixed amount of input regardless of the input size have constant (O(1)) running times. Procedures whose running time increases by a constant amount when the input size increases by one have linear (in $\Theta(n)$) running times. Procedures whose running time quadruples when the input size doubles have quadratic (in $\Theta(n^2)$) running times. Procedures whose running times. Procedures whose running times. Procedures whose running time is multiplied by a constant factor when the input size increases by one have exponential (in $\Theta(k^n)$ for some constant k) running times. If a procedure has exponential running time, it can only be evaluated for small inputs.

The asymptotic analysis, however, must be considered carefully. For large enough inputs, a procedure with running time in $\Theta(n)$ is always faster than a procedure with running time in $\Theta(n^2)$. But, for an input of a particular size, the $\Theta(n^2)$ procedure may be faster. The asymptotic operators provide useful ways for reasoning about the running times of procedures, but they hide many details including constant factors. Without knowing the constants that are hidden by the asymptotic operators, there is no way to acurately predict the actual running time on a given input.

In this chapter, we have focused on analyzing the running time of a known procedure. A deeper question concerns the running time of the best possible procedure that solves a particular problem. We explore that question in Chapter 16.

Sorting and Searching

9

If you keep proving stuff that others have done, getting confidence, increasing the complexities of your solutions—for the fun of it—then one day you'll turn around and discover that nobody actually did that one! And that's the way to become a computer scientist.

Richard Feynman, Lectures on Computation

In this chapter, we conclude the first half of this book by presenting two extended examples that use the programming techniques from Chapters 2–5 and the analysis ideas from Chapters 6–8 to solve some interesting and important problems. First, we consider the problem of arranging a list in order. Next, we consider the problem of finding an item that satisfies some property.

These examples involve some quite challenging problems and incorporate many of the ideas we have seen up to this point in the book. Readers who can understand them well are well on their way to thinking like computer scientists!

9.1 Sorting

The sorting problem takes two inputs: a list of elements, and a comparison procedure. The result is a list containing same elements as the input list ordered according to the comparison procedure. For example, if we sort a list of numbers using < as the comparison procedure, the output is the list of numbers sorted in order from least to greatest.

Sorting is one of the most widely studied problems in computing, and many different sorting algorithms have been developed and analyzed. In this section, we explore a few sorting procedures. Curious readers should attempt to develop their own sorting procedures before continuing further. It may be illuminating to try sorting some items by hand an think carefully about how you do it and how much work it is. For example, take a shuffled deck of cards and arrange them in sorted order by ranks. Or, try arranging

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

all the students in your class alphabetically by name, or chronologically by birthday.

9.1.1 Best-First Sort

A simple sorting strategy is to find the *best* element in the list and put that at the front. For a given comparison function, the best element is an element for which the comparison procedure evaluates to true when applied to that element and every other element. For example, if the comparison function is <, the best element is the smallest number in the list. This element belongs at the front of the output list.

The notion of the best element in the list for a given comparison function only makes sense if the comparison function has the property that for any inputs *a*, *b*, and *c*, if (*cf a b*) and (*cf b c*) are both true, the result of (*cf a c*) must *transitivity* be true. This property is known as *transitivity*. The < function is transitive: a < b and b < c implies a < c for all numbers *a*, *b*, and *c*. If the comparison function does not have this property, there may be no way to arrange the elements in a single sorted list, so all of our sorting procedures require that the procedure passed as the comparison function is transitive.

> Once we can find the best element in a given list, we can sort the whole list by successively finding the best element of the remaining elements until no more elements remain. To define our best-first sorting procedure, we first define a procedure for finding the best element in the list, and then define a procedure for removing an element from a list.

> **Finding the Best.** The best element in the list is either the first element, or the best element from the rest of the list. Hence, we define *list-find-best* recursively. An empty list has no best element, so the base case is for a list that has one element. When the input list has only one element, then whatever that element is it is the best element in the singleton list. If the list has more than one element, the best element is the better of the first element in the list and the best element of the rest of the list.

To pick the better element from two elements, we define the *pick-better* procedure that takes three inputs: a comparison function and two values.

(**define** (*pick-better cf p*1 *p*2) (**if** (*cf p*1 *p*2) *p*1 *p*2))

Assuming the procedure passed as *cf* has constant running time, the running time of *pick-better* is constant. For most of our examples, we use the < procedure as the comparison function. For arbitrary inputs, the running time of < is not constant since in the worst case performing the comparison requires examining every digit in the input numbers. But, if the maximum

value of a number in the input list is limited, then we can consider < a constant time procedure since all of the inputs passed to it in this context are below some fixed size.

Then, we use *pick-better* to define *list-find-best*:

```
(define (list-find-best cf p)
  (if (null? (cdr p))
      (car p)
      (pick-better cf (car p) (list-find-best cf (cdr p)))))
```

We use *n* to represent the number of elements in the input list *p*. An application of *list-find-best* involves n - 1 recursive applications since each one passes in (*cdr p*) as the new *p* operand and the base case stops when the list has one element left. The running time for each application (excluding the recursive application) is constant since it involves only applications of the constant time procedures *null*?, *cdr*, and *pick-better*. So, the total running time for *list-find-best* scales linearly with the length of the input list.

Deleting an Element. To implement best first sorting, we need to produce a list that contains all the elements of the original list except for the best element, which will be placed at the front of the output list. We define a procedure, *list-delete*, that takes as inputs a List and a Value, and produces a List that contains all the elements of the input list in the original order except for the first element that is equal to the input value.

(define (list-delete p el)
 (if (null? p)
 null
 (if (equal? (car p) el) ; found match, skip this element
 (cdr p)
 (cons (car p) (list-delete (cdr p) el)))))

We use the *equal*? procedure to check if the element matches instead of =, so the *list-delete* procedure works on elements that are not just Numbers. The *equal*? procedure behaves identically to = when both inputs are Numbers, but also works sensibly on many other datatypes including Booleans, Characters, Pairs, Lists, and Strings. Since we assume the sizes of the inputs to *equal*? are bounded, we can consider *equal*? to be a constant time procedure (even though it would not be constant time on arbitrary inputs).

The worst case running time for *list-delete* occurs when no element in the list matches the value of *el* (in the best case, the first element matches and the running time does not depend on the length of the input list at all). We use n to represent the number of elements in the input list. There can be up to n recursive applications of *list-delete*. Each application has constant

running time since all of the procedures applied (except the recursive call) have constant running time. Hence, the total running time for *list-delete* is in $\Theta(n)$ where *n* is the length of the input list.

Sorting. We define *list-sort-best-first* using *list-find-best* and *list-delete*:

The running time of the *list-sort-best-first* procedure grows quadratically with the length of the input list. We use *n* to represent the number of elements in the input list. There are *n* recursive applications since each application of *list-delete* produces an output list that is one element shorter than its input list. In addition to the constant time procedures (*null?* and *cons*), the body of *list-sort-best-first* involves two applications of *list-find-best* on the input list, and one application of *list-delete* on the input list.

As analyzed earlier, each of these applications has running time in $\Theta(m)$ where *m* is the length of the input list to *list-find-best* and *list-delete* (we use *m* here to avoid confusion with *n*, the length of the first list passed into *list-sort-best-first*). In the first application, this input list will be a list of length *n*, but in later applications it will be involve lists of decreasing length: n - 1, $n - 2, \dots, 1$. Hence, the *average* length of the input lists to *list-find-best* and *list-delete* is approximately $\frac{n}{2}$. Thus, the average running time for each of these applications is in $\Theta(\frac{n}{2})$, which is equivalent to $\Theta(n)$.

There are three applications (two of *list-find-best* and one of *list-delete*) for each application of *list-sort-best-first*, so the total running time for each application is in $\Theta(3n)$, which is equivalent to $\Theta(n)$. There are *n* recursive applications, each with average running time in $\Theta(n)$, so the running time for *list-sort-best-first* is in $\Theta(n^2)$. This means doubling the length of the input list quadruples the expected running time, so we would except sorting a list of 2000 elements to take approximately four times as long as sorting a list of 1000 elements.

Let expression. Each application of the *list-sort-best-first* procedure involves two evaluations of (*list-find-best cf p*), a procedure with running time in $\Theta(n)$ where *n* is the length of the input list.

The result of both evaluations is the same, so there is no need to evaluate this expression twice. We could just evaluate (*list-find-best cf p*) once and reuse the result. One way to do this is to introduce a new procedure using a lambda-expression and pass in the result of (*list-find-best cf p*) as a

parameter to this procedure so it can be used twice:

(define (list-sort-best-first-nodup cf p)
 (if (null? p)
 null
 ((lambda (best)
 (cons best (list-sort-best-first-nodup cf (list-delete p best))))
 (list-find-best cf p))))

This procedure avoids the duplicate evaluation of (*list-find-best cf p*), but is quite awkward to read and understand. Scheme provides the let-expression special form to avoid this type of duplicate work more elegantly.

The let-expression is a special form. The grammar for the let-expression is:

Expression	$::\Rightarrow$	LetExpression
LetExpression	$::\Rightarrow$	(let (Bindings) Expression)
Bindings	$::\Rightarrow$	Binding Bindings
Bindings	$::\Rightarrow$	ϵ
Binding	$::\Rightarrow$	(Name Expression)

The evaluation rule for the let-expression is:

Evaluation Rule 6: Let-expression. To evaluate a let-expression, evaluate each binding in order. To evaluate each binding, evaluate the binding expression and bind the name to the value of that expression. Then, the value of the let-expression is the value of the body expression evaluated with the names in the expression that match binding names substituted with their bound values.

A let-expression can be transformed into an equivalent application expression. The let-expression

is equivalent to the application expression:

((lambda (Name₁ Name₂ . . . Name_k) Expression_{body}) Expression₁ Expression₂ . . . Expression_k)

The advantage of the let-expression syntax is it puts the expressions next to the names to which they are bound. Using a let-expression, we can define *list-sort-best-first* to avoid the duplicate evaluations of *list-find-best* in a way that is easier to read and understand than the application expression:

This runs faster than *list-sort-best-first* since it avoids the duplicate evaluations of *list-find-best*, but the asymptotic growth rate is the same. The running time of *list-sort-best-first-let* is in $\Theta(n^2)$ since there are *n* recursive applications of *list-sort-best-first-let* and each application involves linear time applications of *list-find-best* and *list-delete*. It improves the actual running time by avoiding the duplicate work, but does not impact the asymptotic growth rate since the duplicate work is hidden in the constant factor.

Exercise 9.1. Use the *time* special form (introduced in Chapter 7) to measure the actual evaluation times for applications of the *list-sort-best-first* procedure. See if the results in your interpreter match the expected running times based on the analysis that the running time of the procedure is in $\Theta(n^2)$. Hint: You may find it helpful to define a procedure that constructs a list containing *n* random elements. To generate the random elements use the built-in procedure *random* that takes one Number as input and evaluates to a random number between 0 and one less than the value of the input Number. Be careful in your time measurements that you do not include the time required to generate the input list.

Exercise 9.2. Compare the running times of the original *list-sort-best-first* procedure and the *list-sort-best-first-let* procedure that avoids duplicate work. Are the timing results consistent with the analysis?

Exercise 9.3. [*] Define the *list-find-best* procedure using the *list-accumulate* procedure from Section 5.4.2 and evaluate its asymptotic running time.

Exercise 9.4. [*] Instead of sorting the elements by finding the best element first and putting at the front of the list, we could sort by finding the worst element first and putting it at the end of the list. Define a *list-sort-worst-last* procedure that sorts this way and analyze the running time of your *list-sort-worst-last* procedure.

9.1.2 Insertion Sort

The *list-sort-best-first* procedure seems quite inefficient. For every output element, we are searching the whole remaining list to find the best element, but do nothing of value with all the comparisons that were done to find the best element.

An alternate approach is to build up a sorted list as we go through the elements. Insertion sort works by putting the first element in the list in the right place in the list that results from sorting the rest of the elements.

First, we define the *list-insert-one* procedure that takes three inputs: a comparison procedure, an element, and a List. The input List must be sorted according to the comparison function. As output, *list-insert-one* produces a List consisting of the elements of the input List, with the input element inserts in the right place according to the comparison function.

(define (list-insert-one cf el p) ; requires: p must be in sorted order by cf
 (if (null? p)
 (list el)
 (if (cf el (car p))
 (cons el p)
 (cons (car p) (list-insert-one cf el (cdr p)))))))

The running time for *list-insert-one* is in $\Theta(n)$ where *n* is the number of elements in the input list. In the worst case, the input element belongs at the end of the list and we need to make *n* recursive applications of *list-insert-one*. Each application involves constant work, so the overall running time of *list-insert-one* is in $\Theta(n)$.

To sort the whole list, we need to insert each element into the list that results from sorting the rest of the elements:

```
(define (list-sort-insert cf p)
  (if (null? p)
      null
      (list-insert-one cf (car p) (list-sort-insert cf (cdr p)))))
```


Evaluating an application of *list-sort-insert* on a list of length n involves n recursive applications of *list-sort-insert*. The lengths of the input lists in the recursive applications are n - 1, n - 2, ..., 0. Each application involves an application of *list-insert-one* which has running time in $\Theta(m)$ where m is the number of elements in the input list to *list-insert-one*. The average length of the input list over all the applications is approximately $\frac{n}{2}$, so the average running time of the *list-insert-one* applications is in $\Theta(n)$. Since there are n applications of *list-insert-one*, the total running time is in $\Theta(n^2)$.

Exercise 9.5. We analyzed the worst case running time of *list-sort-insert* above. Analyze the best case running time. Your analysis should identify the inputs for which *list-sort-insert* runs fastest, and describe the asymptotic running time is for the best case input.

Exercise 9.6. Both the *list-sort-best-first-sort* and *list-sort-insert* procedures have asymptotic running times in $\Theta(n^2)$. This tells us how their worst case running times grow with the size of the input, but isn't enough to know which procedure is faster for a particular input. For the questions below, use both analytical and empirical analysis to provide a convincing answer.

- **a.** How do the actual running times of *list-sort-best-first-sort* and *list-sort-insert* on typical inputs compare?
- **b.** Are there any inputs for which *list-sort-best-first* is faster than *list-sort-insert*?
- **c.** For sorting a long list of *n* random elements, how long does each procedure take? (See Exercise 9.1 for help on creating a list of random elements.)

9.1.3 Quicker Sorting

Although insertion sort is typically faster than best-first sort, its running time is still scales quadratically with the length of the list. If it takes 100 milliseconds (one tenth of a second) to sort a list containing 1000 elements using *list-sort-insert* (on my laptop, it takes about 120 milliseconds to sort a random list of 1000 elements), we would expect it to take four (= 2^2) times as long to sort a list containing 2000 elements, and a million times (= 1000^2) as long (over a day!) to sort a list containing one million (1000 * 1000) elements. Yet computers routinely need to sort lists containing many millions of elements (for example, consider processing credit card transactions or analyzing the data collected by a super collider).

The problem with our insertion sort is that it divides the work unevenly into inserting one element and sorting the rest of the list. This is a very unequal division. Any sorting procedure that works by considering one element at a time and putting it in the sorted position as is done by *list-sort-find-best* and *list-sort-insert* will have a running time in $\Omega(n^2)$. We cannot do better than this with this strategy since there are *n* elements, and the time required to figure out where each element goes is in $\Omega(n)$.

To do better, we need to either reduce the number of recursive applications needed to sort the list (this would mean each recursive call results in more than one element being sorted), or reduce the time required for each application. The approach we take is to use each recursive application to divide the list into two approximately equal-sized parts, but to do the division in such a way that the results of sorting the two parts can be combined directly to form the result. This means, we should partition the elements in the list so that all elements in the first part are less than (according to the comparison function) all elements in the second part.

Our first attempt is to modify *insert-one* to partition the list into two parts (this approach does not quite produce a sorting procedure with running time in better than $\Theta(n^2)$ because of the inefficiency of accessing list elements; however, this attempt leads to insights for producing a quicker sorting procedure).

First, we define the *list-extract* procedure that takes three inputs: a List, and two Numbers indicating the start and end positions. As output, it produces a List consisting of the elements of the input list between the start and end position.

(define (list-extract p start end)
 (if (= start 0)
 (if (= end 0)
 null
 (cons (car p) (list-extract (cdr p) start (- end 1))))
 (list-extract (cdr p) (- start 1) (- end 1))))

The running time of the *list-extract* procedure is in $\Theta(n)$ where *n* is the number of elements in the input list. The worst case input is when the value of *end* is the length of the input list, which means there will be *n* recursive applications, each involving a constant amount of work.

We use *list-extract* to define procedures for obtaining lists of the first and second halves of the elements of an input list (when the list has an odd number of elements, we put the middle element in the second half of the list).

```
(define (list-first-half p)
(list-extract p 0 (floor (/ (list-length p) 2))))
```

(**define** (*list-second-half p*) (*list-extract p* (*floor* (/ (*list-length p*) **2**)) (*list-length p*)))

The *list-first-half* and *list-second-half* procedures apply *list-extract*, so they have running times in $\Theta(n)$ where *n* is the number of elements in the input list.

Next, we define the *list-insert-one-halves* procedure to only consider the appropriate half of the list.

```
(define (list-insert-one-halves cf el p) ; requires: p is sorted by cf
 (if (null? p)
        (list el)
        (if (null? (cdr p))
        (if (cf el (car p)) (cons el p) (list (car p) el))
        (let ((front (list-first-half p))
            (back (list-second-half p)))
        (if (cf el (car back))
            (list-append (list-insert-one-halves cf el front) back)
            (list-append front (list-insert-one-halves cf el back)))))))
```

In addition to the normal base case when the input list is null, we need a special case when the input list has one element. If the element to be inserted is before this element, the output is produced using *cons*; otherwise, we produce a list of the first (only) element in the list followed by the inserted element.

In the recursive case, we use the *list-first-half* and *list-second-half* procedures to split the input list and bind the results of the first and second halves to the *front* and *back* variables so we do not need to evaluate these expressions more than once.

Since the list passed to *list-insert-one-halves* must be sorted, the elements in *front* are all less than the first element in *back*. Hence, we can determine into which of the sublists contains the element should be inserted using just one comparison: if the element is before the first element in *back* it is in the first half, and we produce the result by appending the result of inserting the element in the front half (the recursive call) with the back half unchanged; if the element is not before the first element in *back*, then it is in the second half, so we produce the result by keeping the front half as it is, and appending it with the result of inserting the element in the front half of inserting the element in the back half.

To analyze the running time of *list-insert-one-halves* we determine the num-

ber of recursive calls and the amount of work involved in each application. We use *n* to denote the number of elements in the input list. Unlike the other recursive list procedures we have analyzed, the number of recursive applications of *list-insert-one-halves* does not scale linearly with the length of the input list. The reason for this is that instead of using (*cdr p*) in the recursive application, *list-insert-one-halves* passes in either the *front* or *back* value which is the result of (*first-half p*) or (*second-half p*) respectively. The length of the list produced by these procedures is approximately $\frac{1}{2}$ the length of the input list. With each recursive application, the size of the input list is halved. This means, doubling the size of the input list only adds one more recursive application.

Recall that the *logarithm* (\log_b) of a number *n* is the number *x* such that $b^x = n$ where *b* is the *base* of the logarithm. If the base is 10, then the value of $\log_{10} n$ is the number *x* such that $10^x = n$. For example, $\log_{10} 10 = 1$ and $\log_{10} 1000 = 3$. In computing, we most commonly encounter logarithms with base 2. Doubling the input value, increases the value of its logarithm base two by one: $\log_2 2n = 1 + \log_2 n$. This corresponds to the situation with *list-insert-one-halves*, where doubling the size of the input increases the number of recursive applications by one.

Changing the base of a logarithm from *k* to *b* changes the value by the constant factor (see Section 8.1.1), so inside the asymptotic operators a constant base of a logarithm does not matter. Thus, when the amount of work increases by some constant amount when the input size doubles, we write that the growth rate is in $\Theta(\log n)$ without specifying the base of the logarithm. Thus, the number of recursive applications of *list-insert-one-halves* is in $\Theta(\log n)$ since doubling the size of the input requires one more recursive application.

Each application of *list-insert-one-halves* involves an application of *list-append* where the first parameter is either the front half of the list, or the result of inserting the element in the front half of the list. In either case, the length of the list is approximately $\frac{n}{2}$. The running time of *list-append* is in $\Theta(m)$ where *m* is the length of the first input list. So, the time required for each *list-insert-one-halves* application is in $\Theta(n)$ where *n* is the length of the input list to *list-insert-one-halves*.

The lengths of the input lists to *list-insert-one-halves* in the recursive calls are approximately $\frac{n}{2}$, $\frac{n}{4}$, $\frac{n}{8}$, ..., 1 since the length of the list halves with each call. The summation has $\log_2 n$ terms, and the sum of the list is n, so the average length input is $\frac{n}{\log_2 n}$. Hence, the total running time for the *list-append* applications in each application of *list-insert-one-halves* is in $\Theta(\log_2 n \times \frac{n}{\log_2 n}) = \Theta(n)$.

The analysis of the applications of *list-first-half* and *list-second-half* is similar: each requires running time in $\Theta(m)$ where m is the length of the input list, which averages $\frac{n}{\log_2 n}$ where n is the length of the input list of *list-insert-one-halves*. Hence, the total running time for *list-insert-one-halves* is in $\Theta(n)$.

The *list-sort-insert-halves* procedure is identical to *list-sort-insert* (except for calling *list-insert-one-halves*):

(define (list-sort-insert-halves cf p)
 (if (null? p)
 null
 (list-insert-one-halves cf (car p) (list-sort-insert-halves cf (cdr p)))))

As with *list-sort-insert*, the *list-sort-insert-halves* procedure involves n applications of *list-insert-one-halves*, and the average length of the input list is $\frac{n}{2}$. Since *list-sort-insert-halves* involves $\Theta(n)$ applications of *list-insert-one-halves* (with average input list length of $\frac{n}{2}$, the total running time for *list-sort-insert-halves* is in $\Theta(n^2)$. Because of the cost of evaluating the *list-append*, *list-first-half*, and *list-second-half* applications, the change to splitting the list in halves has not improved the asymptotic performance; in fact, because of all the extra work in each application, the actual running time is most likely higher than it was for *list-sort-insert*.

The problem with our *list-insert-one-halves* procedure is that the *list-first-half* and *list-second-half* procedures have to *cdr* down the whole list to get to the middle of the list, and the *list-append* procedure needs to walk through the entire input list to put the new element in the list. All of these procedures have running times that scale linearly with the length of the input list.

What we need is some way of getting to the middle of the list quickly. With the standard list representation this is impossible: it requires one *cdr* application to get to the next element in the list, so there is no way to access the middle of the list without using at least $\frac{n}{2}$ applications of *cdr*. To do better, we need to change the way we represent our data.

9.1.4 Binary Trees

sorted binary tree The data structure we will use is known as a *sorted binary tree*. While a List provides constant time procedures for accessing the first element and the rest of the elements, a binary tree provides constant time procedures for accessing the *root* element, the *left* side of the tree, and the *right* side of the tree. The left and right sides of the tree are themselves trees. So, like a list, a binary tree is a recursive data structure.

We define a binary tree as:

tree :: \Rightarrow null tree :: \Rightarrow (make-tree Tree Element Tree)

Whereas we defined a List (in Chapter 5) as:

A *List* is either (1) null or (2) a Pair whose second cell is a *List*.

a Tree is defined as:

A *Tree* is either (1) null or (2) a triple while first and third parts are both *Trees*.

The *make-tree* procedure can be defined using *cons* to package the three inputs into a tree:

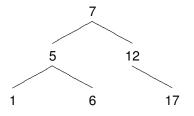
(**define** (make-tree left element right) (cons element (cons left right)))

We define selector procedures for extracting the parts of a non-*null* tree:

(**define** (*tree-element tree*) (*car tree*)) (**define** (*tree-left tree*) (*car* (*cdr tree*))) (**define** (*tree-right tree*) (*cdr* (*cdr tree*)))

The *tree-left* and *tree-right* procedures are constant time procedures that evaluate to the left or right subtrees respectively of a tree.

The tree elements are maintained in a sorted structure. All elements in the left subtree of a Tree are less than (according to the comparison function) the value of the root element of the Tree; all elements in the right subtree of a Tree are greater than or equal to the value of the root element of the Tree (the result of comparing them with the root element is false). For example, here is a sorted binary tree containing 6 elements using < as the comparison function:



The top node has element value 7, and its left subtree is a tree containing the tree elements whose values are less than 7. The *null* subtrees are not shown. For example, the left subtree of the element whose value is 12 is *null*. Note that although there are six elements in the tree, we can reach any element from the top by following at most two branches. By contrast, with a list of six elements, we would need five *cdr* operations to reach the last element.

depth The *depth* of a tree is the largest number of steps needed to reach any node in the tree starting from the root. The example tree has depth 2, since we can reach every node starting from the root of the tree in two or fewer steps. A tree of depth *d* can contain up to $2^{d+1} - 1$ elements. One way to see this is from this recursive definition for the maximum number of nodes in a tree:

$$TreeNodes(d) = \begin{cases} 1 & : d = 0 \\ TreeNodes(d-1) + 2 \times TreeLeaves(d-1) & : d > 0 \end{cases}$$

A tree of depth zero has one node. Increasing the depth of a tree by one means we can add two nodes for each leaf node in the tree, so the total number of nodes in the new tree is the sum of the number of nodes in the original tree and twice the number of leaves in the original tree. The maximum number of leaves in a tree of depth d is 2^d since each level doubles the number of leaves. Hence, the second equation simplifies to

$$TreeNodes(d-1) + 2 \times 2^{d-1} = TreeNodes(d-1) + 2^{d}$$
.

The value of *TreeNodes*(d - 1) is $2^{d-1} + 2^{d-2} + ... + 1 = 2^d - 1$. Adding 2^d and $2^d - 1$ gives $2^{d+1} - 1$ as the maximum number of nodes in a tree of depth *d*. Hence, a well-balanced tree containing *n* nodes has depth approximately $\log_2 n$.

The *list-first-half*, *list-second-half*, and *list-append* procedures that had running times in $\Theta(n)$ for the standard list representation can all be implemented with constant running times using the tree representation. For example, *list-first-half* can be implemented using *tree-left* and *list-second-half* can be implemented using *tree-right*. To implement *list-append* requires making a new tree using *make-tree*, which is also a constant time procedure.

The *tree-insert-one* procedure inserts an element in a sorted binary tree:

```
(define (tree-insert-one cf el tree)

(if (null? tree)

(make-tree null el null)

(if (cf el (tree-element tree))

(make-tree (tree-insert-one cf el (tree-left tree))

(tree-element tree)

(tree-right tree))

(make-tree (tree-left tree)

(tree-element tree)

(tree-insert-one cf el (tree-right tree))))))
```

When the input tree is *null*, the new element is the top element of a new tree whose left and right subtrees are *null*. Otherwise, the procedure compares the element to insert with the element at the top node of the tree. If the comparison evaluates to true, the new element belongs in the left subtree. The result is a tree where the left tree is the result of inserting this element in the old left subtree, and the element and right subtree are the same as they were in the original tree. For the alternate case, the element is inserted in the right subtree, and the left subtree is unchanged.

Unlike *list-insert-one*, the *tree-insert-one* procedure involves only applications of constant time procedures, except for the recursive application. Assuming the tree is well balanced (that is, the left and right subtrees contain the same number of elements), each recursive application *halves* the size of the input tree so there are approximately $\log_2 n$ recursive calls. Hence, the running time for using *tree-insert-one* to insert an element in a well balanced tree is in $\Theta(\log n)$.

Using *tree-insert-one*, we can define *list-to-sorted-tree*, a procedure that takes a comparison function and a List as its inputs, and outputs a sorted binary tree containing the elements in the input list. It works by inserting each element of the list in turn into the sorted tree:

```
(define (list-to-sorted-tree cf p)
  (if (null? p)
      null
      (tree-insert-one cf (car p) (list-to-sorted-tree cf (cdr p)))))
```

Assuming well-balanced trees as above (we revisit this assumption later), the expected running time of *list-to-sorted-tree* is in $\Theta(n \log n)$ where *n* is the size of the input list. There are *n* recursive applications of *list-to-sorted-tree* since each application uses *cdr* to reduce the size of the input list by one. Each application involves an application of *tree-insert-one* (as well as only constant-time procedures), so the expected running time of each application is in $\Theta(\log n)$. Hence, the total running time for *list-to-sorted-tree*

is in $\Theta(n \log n)$: there are *n* applications of *tree-insert-one*, each of which has expected running time in $\Theta(\log n)$.

To use our *list-to-sorted-tree* procedure to perform sorting we need to extract a list of the elements in the tree in the correct order. The leftmost element in the tree should be the first element in the list. Starting from the top node, all elements in its left subtree should appear before the top element, and all the elements in its right subtree should follow it. The *tree-extract-elements* procedure does this:

The total number of applications of *tree-extract-elements* is between n (the number of elements in the tree) and 3n since there can be up to two null trees for each leaf element (it could never actually be 3n, but for our asymptotic analysis it is enough to know it is always less than some constant multiple of n). For each application, the body applies *list-append* where the first parameter is the elements extracted from the left subtree. The end result of all the *list-append* applications is the output list, containing the n elements in the input tree.

Hence, the total size of all the appended lists is at most n, and the running time for all the *list-append* applications is in $\Theta(n)$. Since this is the *total* time for all the *list-append* applications, not the time for *each* application of *tree-extract-elements*, the total running time for *tree-extract-elements* is the time for the recursive applications, in $\Theta(n)$, plus the time for the *list-append* applications, in $\Theta(n)$, which is in $\Theta(n)$.

Putting things together, we define *list-sort-tree* by applying *tree-extract-elements* to the result of *list-to-sorted-tree*:

(**define** (*list-sort-tree cf p*) (*tree-extract-elements* (*list-to-sorted-tree cf p*)))

The total running time for *list-sort-tree* is the running time of the *list-to-sorted-tree* application plus the running time of the *tree-extract-elements* application. The running time of *list-sort-tree* is in $\Theta(n \log n)$ where *n* is the number of elements in the input list (in this case, the number of elements in *p*), and the running time of *tree-extract-elements* is in $\Theta(n)$ where *n* is the number of elements in its input list (which is the result of the *list-to-sorted*)

tree application, a list containing *n* elements where *n* is the number of elements in *p*).

Only the fastest growing term contributes to the total asymptotic running time, so the expected total running time for an application of *list-sort-tree-insert* to a list containing *n* elements is in $\Theta(n \log n)$. This is substantially better than the previous sorting algorithms which had running times in $\Theta(n^2)$ since logarithms grow far slower than their input. For example, if *n* is one million, n^2 is over 50,000 times bigger than $n \log_2 n$; if *n* is one billion, n^2 is over 33 million times bigger than $n \log_2 n$ since $\log_2 1000000000$ is just under 30. There is no general sorting procedure that has expected running time better than $\Theta(n \log n)$, so there is no algorithm that is asymptotically faster than *list-sort-tree* (in fact, it can be proven that no asymptotically faster sorting procedure exists). There are, however, sorting procedures that may have advantages such as how they use memory which may provide better absolute performance in some situations.

Unbalanced Trees. Our analysis assumes the left and right halves of the tree passed to *tree-insert-one* having approximately the same number of elements. If the input list is in random order, this assumption is likely to be valid: each element we insert has equal probability of going in the left or right half, so the halves contain approximately the same number of elements all the way down the tree. But, if the input list is not in random order this may not be the case.

For example, suppose the input list is already in sorted order. Then, each element that is inserted will be the rightmost node in the tree when it is inserted. For the previous example, this produces the unbalanced tree:

This tree contains the same six elements as the earlier example, but because it is not well-balanced the number of branches that must be traversed to

reach the deepest element is 5 instead of 2. Similarly, if the input list is in reverse sorted order, we will have an unbalanced tree where only the left branches are used.

In these pathological situations, the tree effectively becomes a list. The number of recursive applications of *tree-insert-one* needed to insert a new element will not be in $\Theta(\log n)$, but rather will be in $\Theta(n)$. Hence, the worst case running time for *list-sort-tree-insert* is in $\Theta(n^2)$ since the worst case time for *tree-insert-one* is in $\Theta(n)$ and there are $\Theta(n)$ applications of *tree-insert-one*. The *list-sort-tree-insert* procedure has expected running time in $\Theta(n \log n)$ for randomly distributed inputs, but has worst case running time in $\Theta(n^2)$.

Exercise 9.7. Define a procedure *binary-tree-size* that takes as input a binary tree and outputs the number of elements in the tree. Analyze the running time of your procedure.

Exercise 9.8. [*] Define a procedure *binary-tree-depth* that takes as input a binary tree and outputs the depth of the tree. Recall that the depth of a binary tree is the length of the *longest* path from the root to any node in the tree. The running time of your procedures should not grow faster than linearly with the number of nodes in the tree.

Exercise 9.9. $[\star\star]$ Define a procedure *binary-tree-balance* that takes as input a sorted binary tree and the comparison function, and outputs a sorted binary tree containing the same elements as the input tree but in a well-balanced tree. The depth of the output tree should be no higher than $\log_2 n + 1$ where *n* is the number of elements in the input tree.

9.1.5 Quicksort

Although building and extracting elements from trees allows us to sort with expected time in $\Theta(n \log n)$, the constant time required to build all those trees and extract the elements from the final tree is high.

In fact, we can use the same approach to sort without needing to build trees. Instead, we keep the two sides of the tree as separate lists, and sort them recursively. The key is to divide the list into halves by *value*, instead of by *position*. The values in the first half of the list are all less than the values in the second half of the list, so the lists can be sorted separately.

The *list-quicksort* procedure uses *list-filter* (from Example 5.5) to divide the

My first task was to implement ... a library subroutine for a new fast method of internal sorting just invented by Shell... My boss and tutor, Pat Shackleton, was very pleased with my completed program. I then said timidly that I thought *I had invented a sorting method* that would usually run faster than Shell sort, without taking much extra store. He bet me sixpence that I had not. Although my method was very *difficult to explain, he finally* agreed that I had won my bet. Sir Tony Hoare, The Emperor's Old Clothes, 1980 Turing Award Lecture. (Shell sort is a $\Theta(n^2)$) sorting algorithm, somewhat similar to insertion sort.)

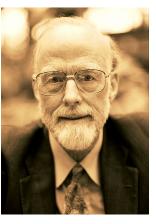
input list into sublists containing elements below and above the comparison element, and then recursively applies *list-quicksort* to sort those sublists.

```
(define (list-quicksort cf p)
  (if (null? p)
     null
     (list-append
      (list-quicksort cf (list-filter
                         (lambda (el) (cf el (car p)))
                         (cdr p)))
       (cons (car p)
            (list-quicksort cf (list-filter
                               (lambda (el) (not (cf el (car p))))
```

This is the famous *quicksort* algorithm that was invented by Sir C. A. R. (Tony) Hoare while he was an exchange student at Moscow State University in 1959. He was there to study probability theory, but also got a job working on a project to translate Russian into English. The translation depended on looking up words in a dictionary. Since the dictionary was stored on a magnetic tape which could be read in order faster than if it was necessary to jump around, the translation could be done more quickly if the words to translate were sorted alphabetically. Hoare invented the quicksort algorithm for this purpose. A few years later, he worked for Elliot Brothers, a small British computer manufacturer. His first assignment there was to implement a sorting library procedure for a new machine they were developing. Quicksort proved to be faster than the best previously known sorting algorithms, and remains the most widely used sorting algorithm.

As with list-sort-tree-insert, the expected running time for a randomly arranged list is in $\Theta(n \log n)$ and the worst case running time is in $\Theta(n^2)$. In the expected cases, each recursive call halves the size of the input list (since if the list is randomly arranged we expect about half of the list elements are below the value of the first element), so there are approximately $\log n$ expected recursive calls.

Each call involves an application of *list-filter*, which has running time in one way is to make it so simple $\Theta(m)$ where *m* is the length of the input list. At each call depth, the total length of the inputs to all the calls to *list-filter* is *n* since the original list is subdivided into 2^d sublists, which together include all of the elements in the original list. Hence, the total running time is in $\Theta(n \log n)$ in the expected cases where the input list is randomly arranged. As with *list-sorttree-insert*, if the input list is not randomly rearranged it is possible that all elements end up in the same partition. Hence, the worst case running time of *list-quicksort* is still in $\Theta(n^2)$.



Sir Tony Hoare Photo by Gespür für Licht

There are two ways of constructing a software design: that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult. It demands the same skill, devotion, insight, and even inspiration as the discovery of the simple physical laws which underlie the complex phenomena of nature. Sir Tony Hoare, The Emperor's Old Clothes (1980 Turing Award Lecture)

Exercise 9.10. Estimate the time it would take to sort a list of one million elements using *list-quicksort*.

Exercise 9.11. Both the *list-quicksort* and *list-sort-tree-insert* procedures have expected running times in $\Theta(n \log n)$. How do their actual running times compare?

Exercise 9.12. Is there a best case input for *list-quicksort*? Describe it and analyze the asymptotic running time for *list-quicksort* on best case inputs.

Exercise 9.13. [\star] Instead of using binary trees, we could use ternary trees. A node in a ternary tree has two elements, a left element and a right element, where the left element must be before the right element according to the comparison function. Each node has three subtrees: *left*, containing elements before the left element; *middle*, containing elements between the left and right elements; and *right*, containing elements after the right element. Is it possible to sort faster using ternary trees and with binary trees?

9.2 Searching

Nearly all problems can be thought of a search problems in a broad sense. We can solve any problem by defining the space of possible solutions, and then searching that space to find a correct solution. For example, to solve the pegboard puzzle (Example 5.11) we found a way to enumerate all possible sequences of moves and searched that space to find a winning sequence.

In this section we explore a few specific types of search problems. First, we consider the simple problem of finding an element in a list that satisfies some property. Then, we consider searching for an item in sorted data. Finally, we consider the more specific problem of efficiently searching for documents (such as web pages) that contain some target word.

9.2.1 Unstructured Searching

To search for an item that satisfies an arbitrary property in unstructured data, there is no alternative to testing each element in turn until one that satisfies the property is found. Since we have no more information about the property, there is no way to more quickly find a satisfying element.

The *list-search* procedure takes as input a matching function and a List, and outputs the first element in the list that satisfies the matching function or

false if there is no satisfying element:¹

(define (list-search ef p)
 (if (null? p)
 false ; Not found
 (if (ef (car p))
 (car p)
 (list-search ef (cdr p))))))

Here are some example evaluations of *list-search*:

> (list-search (lambda (el) (= 12 el)) (intsto 10))
false
> (list-search (lambda (el) (= 12 el)) (intsto 15))
12
> (list-search (lambda (el) (> el 12)) (intsto 15))
13

Assuming the matching function has constant running time, the worst case running time of *list-search* is linear in the size of the input list. The worst case is when there is no satisfying element in the list. If the input list has length *n*, there are *n* recursive calls to *list-search*, each of which involves only constant time procedures.

Without imposing more structure on the input and comparison function, there is no asymptotically more efficient way to search. In the worst case, we always need to test every element in the input list before concluding that there is no element that satisfies the matching function.

9.2.2 Binary Search

If the data to search is structured, it may be possible to find an element that satisfies some property without examining all elements. Suppose the input data is a sorted binary tree, as introduced in Section 9.1.4. Then, with a single comparison we can determine if the element we are searching for would be in the left or right subtree. Instead of eliminating just one element with each application of the matching function as was the case with *list-search*, with a sorted binary tree a single application of the comparison function is enough to eliminate approximately half the elements from consideration.

¹If the input list contains *false* as an element, we do not know when the *list-search* result is **false** if it means the element is not in the list or the element whose value is *false* satisfies the property. An alternative would be to produce an error if no satisfying element is found, but this is more awkward when *list-search* is used by other procedures.

To implement *binary-tree-search* we need two input procedures, in addition to the sorted binary tree containing the elements. We need one procedure to determine when a satisfying element has been found (we call this the *ef* procedure, since for many of our searches it is some kind of equality test), and a second procedure, *cf*, to determine whether the left or right subtree should be searched if the root element does not satisfy the *ef* procedure. Since *cf* is used to traverse the tree, the input tree must be sorted by *cf*.

(define (binary-tree-search ef cf tree) ; requires: tree is sorted by cf
(if (null? tree)
 false
 (if (ef (tree-element tree))
 (tree-element tree)
 (if (cf (tree-element tree))
 (binary-tree-search ef cf (tree-left tree))
 (binary-tree-search ef cf (tree-right tree)))))))

We can search for a number in a sorted binary tree of numbers by using = as the equality function and < as the comparison function (which must be the same as the comparison function used to build the tree).

(**define** (binary-tree-has-number tree target) (**if** (binary-tree-search (**lambda** (el) (= target el)) (**lambda** (el) (< target el)) tree) true

false))

To analyze the running time of *binary-tree-search*, we need to determine the number of recursive calls. As with our analysis of *list-sort-tree* we need to assume the input tree is well-balanced. If not, all the elements could be in the right branch, for example, and *binary-tree-search* becomes like *list-search* in the pathological case.

If the tree is well-balanced, each recursive call approximately halves the number of elements in the input tree since it passed in either the left or right subtree. Hence, the number of calls needed to reach a *null* tree is in $\Theta(\log n)$ where *n* is the number of elements in the input tree. This is the depth of the tree: *binary-tree-search* traverses *one* path from the root through the tree until either reaching an element that satisfies the *ef* function, or reaching a *null* node.

Assuming the procedures passed as *ef* and *cf* have constant running time, the work for each call is constant (except for the recursive call). Hence, the total running time for *binary-tree-search* is in $\Theta(\log n)$ where *n* is the

number of elements in the input tree. This is a huge improvement over linear searching: with linear search, doubling the number of elements in the input doubles the search time; with binary search, doubling the input size only increases the search time by a constant.

9.2.3 Indexed Search

The limitation of binary search is we can only use is when the input data is already sorted. What if we want to search a collection of documents, such as finding all web pages that contain a given word?

The web visible to search engines currently contains billions of web pages most of which contain hundreds or thousands of words. A linear search over such a vast corpus would be infeasible: supposing each word can be tested in 1 millisecond, the time to search 1 trillion words would be over 30 years!

Providing useful searches over large data sets like web documents requires finding a way to structure the data so it is not necessary to examine all documents to perform a search. One way to do this is to build an index that provides a mapping from words to the documents that contain them. Then, we can build the index once, store it in a sorted binary tree, and use it to perform all the searches. Once the index is built, the work required to perform one search is just the time it takes to look up the target word in the index. If the index is stored as a sorted binary tree, this is logarithmic in the number of distinct words.

Strings. We use the built-in String datatype to represent documents and target words. A String is similar to a List, but specialized for representing sequences of characters. A convenient way to make a String it to just use double quotes around a sequence of characters. For example, "abcd" evaluates to a String containing four characters.

The String data type provides built-in procedures for matching and ordering Strings:

- *string*=?: String × String → Boolean true if the input Strings have exactly the same sequence of characters, otherwise false.
- *string*<?: String × String → Boolean true if the first input String is lexicographically before the second input String, otherwise false.

There are also built-in procedures for converting between Strings and Lists of characters:

string->list: String → List — evaluates to a List of characters corresponding to the characters in the input String.

list->string: List → String — evaluates to a String containing the characters in the input List.

One advantage of using Strings instead of Lists of characters is the String representation of "abcd" displays as a "abcd" which is easier to read than the List representation: (#\a #\b #\c #\d). Another advantage is the built-in procedures for comparing Strings; we could certainly write similar procedures for Lists of characters, but lexicographic ordering is somewhat tricky to get right, so it is better to use the built-in procedures.

Building the index. The entries in the index are Pairs of a word (which we will represent as a String), and a list of locations where that word appears in the document set. Each location is a Pair consisting of a document identifier (for web documents, this is the Uniform Resource Locator (URL) that is the address of the web page represented as a String) and a Number identifying the position within the document where the word appears (we label positions as the number of characters in the document before this location).

To build the index, we need to split each document into words, and record the position of each word in the document. The first step is to define a procedure that takes as input a String representing an entire document, and produces a List of (*word* . *position*) pairs containing one element for each word in the document. We define a word as a sequence of alphabetic characters; any non-alphabetic character (such as a space, number, or punctuation mark) is treated as a word separator and is not included in the index.

The *text-to-word-positions* procedure takes a String as input and outputs a List of word-position pairs corresponding to each word in the input:

```
(define (text-to-word-positions s)
  (define (text-to-word-positions-iter p w pos)
     (if (null? p)
        (if (null? w) null (list (cons (list->string w) pos)))
        (if (not (char-alphabetic? (car p))); finished word
           (if (null? w); no current word
               (text-to-word-positions-iter (cdr p) null (+ pos 1))
               (cons (cons (list->string w) pos)
                     (text-to-word-positions-iter
                      (cdr p)
                      null
                      (+ pos (list-length w) 1))))
           (text-to-word-positions-iter
            (cdr p)
            (list-append w (list (char-downcase (car p))))
            pos))))
  (text-to-word-positions-iter (string->list s) null 0))
```

The inner procedure, *text-to-word-positions-iter*, takes three inputs: a List of the characters in the document, a List of the characters in the current word, and a Number representing the position in the String where the current word starts. It outputs the List of (*word . position*) pairs. The value passed in as *w* can be *null*, meaning there is no current word. Otherwise, it is a List of the characters in the current word. A word starts when the first alphabetic character is found, and continues until either the first non-alphabetic character or the end of the document. We use *char-downcase* to convert all letters to their lowercase form, so KING, King, and king all correspond to the same word.

The next step is to build an index from the List of word-position pairs. To enable fast searching, we store the index in a binary tree sorted by the target word. The *insert-into-index* procedure takes as input an index and a word-position pair and outputs an index consisting of the input index with the input word-position pair added.

The index is represented as a sorted binary tree where each element is a Pair of a word and a List of the positions where that word appears. Each word should appear in the tree only once, so if the word-position Pair to be added corresponds to a word that is already in the index, the position is added to the corresponding list of positions. Otherwise, a new entry is added to the index for the word with a list of positions containing the position as its only element.

```
(define (insert-into-index index wp)
  (if (null? index)
     (make-tree null (cons (car wp) (list (cdr wp))) null)
     (if (string=? (car wp) (car (tree-element index)))
         (make-tree (tree-left index)
                    (cons (car (tree-element index))
                           (list-append (cdr (tree-element index))
                                        (list (cdr wp))))
                    (tree-right index))
         (if (string <? (car wp) (car (tree-element index)))
            (make-tree (insert-into-index (tree-left index) wp)
                        (tree-element index)
                        (tree-right index))
            (make-tree (tree-left index)
                        (tree-element index)
                        (insert-into-index (tree-right index) wp))))))
```

To insert all the (*word* . *position*) pairs in a list into the index, we use *insert-into-index* to add each pair, passing the resulting index into the next recursive call:

(define (insert-all-wps index wps)
 (if (null? wps)
 index
 (insert-all-wps (insert-into-index index (car wps)) (cdr wps)))))

To add all the words in a document to the index we use *text-to-word-positions* to obtain the list of word-position pairs. Since we want to include the document identity in the positions, we use *list-map* to add the *url* (a String that identifies the document location) to the position of each word. Then, we use *insert-all-wps* to add all the word-position pairs in this document to the index. The *index-document* procedure takes a document identifier and its text as a String, and produces an index of all words in the document.

We leave analyzing the running time of *index-document* as an exercise. The important point, though, is that it only has to be done once for a given set of documents. Once the index is built, we can use it to answer any number of search queries without needing to reconstruct the index. Large search

engine companies dedicate large numbers of machines to maintaining the index as new web pages are found.

Merging indexes. Our goal is to produce an index for a set of documents, not just a single document. So, we need a way to take two indexes produced by *index-document* and combine them into a single index. Then, we can use this repeatedly to create an index of any number of documents. To merge two indexes, we need to combine their word occurrences. If a word occurs in both documents, the word should appear in the merged index with a position list that includes all the positions in both indexes. If the word occurs in only one of the documents, that word and its position list should be included in the merged index.

```
(define (merge-indexes d1 d2)
  (define (merge-elements p1 p2)
    (if (null? p1)
        p2
        (if (null? p2)
           p1
           (if (string = ? (car (car p1)) (car (car p2))))
               (cons (cons (car (car p1))
                           (list-append (cdr (car p1)) (cdr (car p2))))
                     (merge-elements (cdr p1) (cdr p2)))
               (if (string<? (car (car p1)) (car (car p2)))
                  (cons (car p1) (merge-elements (cdr p1) p2))
                  (cons (car p2) (merge-elements p1 (cdr p2))))))))
  (list-to-sorted-tree
   (lambda (e1 e2) (string<? (car e1) (car e2)))
   (merge-elements (tree-extract-elements d1)
                     (tree-extract-elements d2)))))))
```

To merge the indexes, we first use *tree-extract-elements* to convert the tree representations to lists. The inner *merge-elements* procedure takes the two Lists of word-position Pairs and outputs a single List.

Since the lists are sorted by the target word, we can perform the merge efficiently. If the first words in both lists are the same, we produce a word-position pair that appends the position lists for the two entries. If they are different, we use *string*<? to determine which of the words belongs first, and include that element in the merged list. This way, the two lists are kept synchronized, so there is no need to search the lists to see if the same word appears in both lists.

Obtaining documents. To build a useful index for searching, we need some documents to index. The web provides a useful collection of freely

available documents. To read documents from the web, we use library procedures provided by DrScheme.

This expression loads the libraries for managing URLs and getting files from the network:

(require (lib "url.ss" "net"))

One procedure this library defines is *string->url*, which takes a String as input and produces a representation of that String as a URL. A Uniform Resource Locator (URL) is a standard way to identify a document on the network. The address bar in most web browsers typically displays the URL of the currently displayed web page.

The full grammar for URLs is quite complex, but we will use simple web page addresses of the form:²

URL	$::\Rightarrow$	http:// Domain OptPath
Domain	$::\Rightarrow$	Name MoreDomain
MoreDomain	$::\Rightarrow$. Domain
MoreDomain	$::\Rightarrow$	ϵ
OptPath	$::\Rightarrow$	Path
OptPath	$::\Rightarrow$	ϵ
Path	$::\Rightarrow$	/ Name OptPath

An example of a URL is http://www.whitehouse.gov/index.html. The http indicates the HyperText Transfer Protocol, which prescribes how the web client (browser) and server communicate with each other. The domain name is www.whitehouse.gov, and the path name is /index.html (which is the default page for most web servers).

The library also defines the *get-pure-port* procedure which takes as input a URL and produces a Port for reading the document at that location. The *read-char* procedure takes as input a Port, and outputs the first character in that Port. It also has a side-effect: it advances the Port to the next character. We can use *read-char* repeatedly to read each character in the web page of the Port. When the end of the file is reached, the next application of *read-char* outputs a special marker representing the end of the file. The procedure *eof-object?* evaluates to true when applied to this marker, and false for all other inputs.

The *read-all-chars* procedure takes a Port as its input, and produces a List containing all the characters in the document the Port is associated with:

²We use *Name* to represent sequences of characters in the domain and path names, although the actual rules for valid names for each of these are different.

(define (read-all-chars port)
 (let ((c (read-char port)))
 (if (eof-object? c)
 null
 (cons c (read-all-chars port)))))

Using these procedures, we define *web-get*, a procedure that takes as input a String that represents the URL of some web page, and produces as output a String representing the contents of that page.

(**define** (*web-get url*) (*list->string* (*read-all-chars* (*get-pure-port* (*string->url url*)))))

To make it easy to build an index of a set of web pages, we define the *indexpages* procedure that takes as input a List of web pages and outputs an index of the words in those pages. It recurses through the list of pages, indexing each document, and merging that index with the result of indexing the rest of the pages in the list.

```
(define (index-pages p)
(if (null? p)
null
(merge-indexes (index-document (car p) (web-get (car p)))
(index-pages (cdr p)))))
```

We can use this to create an index of any set of web pages. For example, here we use Jeremy Hylton's collection of the complete works of William Shakespeare (http://shakespeare.mit.edu) to define *shakespeare-index* as an index of the words used in all of Shakespeare's plays.

```
(define shakespeare-index
 (index-pages
 (list-map
  (lambda (play)
    (string-append "http://shakespeare.mit.edu/" play "/full.html"))
    (list "allswell" "asyoulikeit" "comedy_errors" "cymbeline" "Ill"
    "measure" "merry_wives" "merchant" "midsummer" "much_ado"
    "pericles" "taming_shrew" "tempest" "'troilus_cressida" "twelfth_night"
    "two_gentlemen" "winters_tale" "1henryiv" "2henryiv" "henryv"
    "1henryvi" "2henryvi" "3henryvi" "henryviii" "john" "richardiii"
    "richardiii" "cleopatra" "coriolanus" "hamlet" "julius_caesar" "lear"
    "macbeth" "othello" "romeo juliet" "timon" "titus"))))
```

Building the index takes about two and a half hours on my laptop. It contains 22949 distinct words and over 1.6 million word occurrences. Much of the time spent building the index is in constructing new lists and trees for every change, which can be avoided by using the mutable data types we cover in the next chapter. The key idea, though, is that the index only needs to be built once. Once the documents have been indexed, we can use the index to quickly perform any search.

Searching. Now that we have an index, searching for pages that use a given word is easy and efficient. Since the index is a sorted binary tree, the *binary-tree-search* procedure does what we need. We just need to pass in procedures for testing if the target word has been found, and for using the lexicographic ordering of the tree to determine whether the target word would be in the left or right subtree. The *search-in-index* procedure takes as input an index and a String representing the target word, and outputs the entry in the index that corresponds to the target word or false if the target word does not appear in the index.

```
(define (search-in-index index word)
  (binary-tree-search
    (lambda (el) (string=? word (car el)))
    (lambda (el) (string<? word (car el)))
    index))</pre>
```

As analyzed in the previous section, the expected running time of *binarytree-search* is in $\Theta(\log n)$ where *n* is the number of nodes in the input tree.³ The body of *search-in-index* applies *binary-tree-search* to the index. The number of nodes in the index is the number of distinct words in the indexed documents. So, the running time of *search-in-index* scales logarithmically with the number of distinct words in the indexed documents. Note that the number and size of the documents does not matter! This is why a search engine such as Google can respond to a query quickly even though its index contains many billions of documents.

One minor issue we should be careful about is the running time of the procedures passed into *binary-tree-search*. Our analysis of *binary-tree-search* requires that the equality and comparison functions are constant time procedures. Here, the procedures as *string*=? and *string*<?, which both have worst case running times that are linear in the length of the input string. As used here, one of the inputs is the target word. So, the amount of work for each *binary-tree-search* recursive call is in $\Theta(w)$ where w is the length of *word*. Thus, the overall running time of *search-in-index* is in $\Theta(w \log d)$ where w is the length of *word* and d is the number of words in the *index*. If we assume all words are of some maximum length, though, the w term

³Because of the way *merge-indexes* is defined, we do not actually get this expected running time. See Exercise 9.16.

disappears as a constant factor (that is, we are assuming w < C for some constant *C*. Thus, the overall running time is in $\Theta(\log d)$.

Here are some example uses of *search-in-index* using our index of Shake-speare's plays:

> (search-in-index shakespeare-index "mathematics")
("mathematics"
("http://shakespeare.mit.edu/taming_shrew/full.html" . 26917)
("http://shakespeare.mit.edu/taming_shrew/full.html" . 75069)
("http://shakespeare.mit.edu/taming_shrew/full.html" . 77341))
> (search-in-index shakespeare-index "procedure")
false
> (search-in-index shakespeare-index "abstraction")
false

The mathematics and the metaphysics, Fall to them as you find your stomach serves you; No profit grows where is no pleasure ta'en: In brief, sir, study what you most affect. William Shakespeare, The Taming of the Shrew

Our *search-in-index* and *index-pages* procedures form the beginnings of a search engine service. A useful web search engine needs at least two more capabilities: a way to automate the process of finding documents to index, and a way to rank the documents that contain the target word by the likelihood they are useful. The two explorations at the end of this section explore how to provide these capabilities.

Histogram. We can also use our index to answer various interesting questions about Shakespeare's writing. For example, the procedure *indexhistogram* produces a list of the words in an index sorted by how frequently they appear.

The expression

(*list-filter* (**lambda** (*entry*) (> *string-length* (*car entry*) 5)) (*index-histogram shakespeare-index*))

evaluates to a list of Shakespeare's favorite 6-letter and longer words:

```
(("blockquote" . 63345) ("speech" . 31099)
("should" . 1557) ("father" . 1086) ("exeunt" . 1061)
("master" . 861) ("before" . 826) ("mistress" . 787)
... ("brother" . 623)
... ("daughter" . 452)
... ("daughter" . 418)
... ("mustardseed" . 13)
... ("excrement" . 5)
... ("zwaggered" . 1))
```

The first two are words from the web page formatting markup, not from Shakespeare's writing. The rest of the word frequencies provide a glimpse into Shakespeare's world.

Exercise 9.14. Define a procedure for finding the longest word in a document. Analyze the running time of your procedure.

Exercise 9.15. [*] Analyze the running time required to build the index.

- **a.** Analyze the running time of the *text-to-word-positions* procedure. Use *n* to represent the number of characters in the input String, and *w* to represent the number of distinct words. Be careful to clearly state all assumptions on which your analysis relies.
- **b.** Analyze the running time of the *insert-into-index* procedure.
- c. Analyze the running time of the *index-document* procedure.
- **d.** Analyze the running time of the *merge-indexes* procedure.
- **e.** Analyze the overall running time of the *index-pages* procedure. Your result should describe how the running time is impacted by the number of documents to index, the size of each document, and the number of distinct words.

Exercise 9.16. [*] The *search-in-index* procedure does not actually have the expected running time in $\Theta(\log w)$ (where *w* is the number of distinct words in the index) for the Shakespeare index because of the way it is built using *merge-indexes*. The problem has to do with the running time of the binary tree on pathological inputs. Explain why the input to *list-to-sorted-tree* in the *merge-indexes* procedure leads to a binary tree where the running time for searching is in $\Theta(w)$. Modify the *merge-indexes* definition to avoid this problem and ensure that searches on the resulting index run in $\Theta(\log w)$.

Exploration 9.1: Web Crawling

For our Shakespeare index example, we manually found a list of interesting documents to index. This approach does not scale well to indexing the World Wide Web where there are trillions of documents and new ones are created all the time. For this, we need a *web crawler*.

A web crawler finds documents on the web to add to a search index. Typical web crawlers start with a set of seed URLs, and then find more documents to index by following the links on those pages. This proceeds recursively: the links on each newly discovered page are added to the set of URLs for the crawler to index. To develop a web crawler, we need a way to extract the links on a given web page, and to manage the set of pages to index.

- **a.** [*] Define a procedure *extract-links* that takes as input a String representing the text of a web page and outputs a List of all the pages linked to from this page. Linked pages can be found by searching for anchor tags on the web page. An anchor tag has the form:⁴ . (The *text-to-word-positions* procedure may be a helpful starting point for defining *extract-links*.)
- b. [★] Define a procedure *crawl-page* that takes as input an index and a String representing a URL. As output, it produces a pair consisting of an index (that is the result of adding all words from the page at the input URL to the input index) and a List of URLs representing all pages linked to by the crawled page.
- c. [**] Define a procedure *crawl-web* that takes as input a List of seed URLs and a Number indicating the maximum depth of the crawl. It should output an index of all the words on the web pages at the locations given by the seed URLs and any page that can be reached from these seed URLs by following no more than the maximum depth number of links.

⁴Not all links match this structure exactly, so this may miss some of the links on a page.

Exploration 9.2: Ranking Pages

For a web search engine to be useful, we don't want to get all the pages that contain some target word, we want to get a few pages that contain the target word that are the pages that are most likely to be interesting. Selecting the best pages for a given query is a challenging and important problem, and the ability to do this well is one of the main things that distinguishes successful and unsuccessful commercial web search engines. Many factors are used to rank pages including an analysis of the text on the page itself, whether the target word is part of a title, how recently the page was updated, etc.

The most interesting ways of ranking pages also consider the pages that link to the ranked page. If many pages link to a given page, it is more likely that the given page is useful. This property can also be defined recursively: a page is highly ranked if there are many highly-ranked pages that link to it.

Lawrence Page, Assignee: The ranking system used by Google is based on this formula:

$$R(u) = \sum_{v \in L_u} \frac{R(v)}{L(v)}$$

where L_u is the set of web pages that contain links to the target page u and L(v) is the number of links on the page v (thus, the value of a link from a page containing many links is less than the value of a link from a page containing only a few links). The value R(u) gives a measure of the ranking of the page identified by u, where higher values indicate more valuable pages.

The problem with this formula is that is is circular: there is no base case, and no way to order the web pages to compute the correct rank of each page in turn, since the rank of each page depends on the rank of the other pages that link to it.

relaxation One way to approximate equations like this one is to use *relaxation*. Relaxation obtains an approximate solution to some systems of equations by repeatedly evaluating the equations. To estimate the page ranks for a set of web pages, we initially assume every page has rank 1 and evaluate R(u) for all the pages (using the value of 1 as the rank for every other page). Then, re-evaluate the R(u) values using the resulting ranks. A relaxation keeps repeating until the values stop changing by some threshold amount, but there is no guarantee how quickly this will happen. For the page ranking evaluation, it may be enough to decide on some fixed number of iterations and use the ranks resulting from the last iteration as the final ranks.

The rank assigned to a document is calculated from the ranks of documents citing it. In addition, the rank of a document is calculated from a constant representing the *probability that a browser* through the database will randomly jump to the document. The method is particularly useful in enhancing the performance of search engine results for hypermedia databases, such as the world wide web, whose documents have a large variation in quality. United States Patent #6,285,999, September 2001. (Inventor: Stanford University)

- a. [**] Define a procedure, *web-link-graph*, that takes as input a set of URLs and produces as output a graph of the linking structure of those documents. The linking structure can be represented as a List where each element of the List is a pair of a URL and a List of all the URLs that include a link to that URL. The *extract-links* procedure from the previous exploration will be useful for determining the link targets of a given URL.
- **b.** [*] Define a procedure that takes as input the output of *web-link-graph* and outputs a preliminary ranking of each page that measures the number of other pages that link to that page.
- **c.** [******] Refine your page ranking procedure to weight links from highly-ranked pages more heavily in a page's rank by using a algorithm.
- **d.** $[\star \star \star \star]$ Come up with a cool name, set up your search engine as a web service, and attract more than 0.001% of all web searches to your site.

Exploration 9.3: Historical Histograms

The site http://www.speechwars.com provides an interesting way to view political speeches by looking at how the frequency of the use of different words changes over time. For example, we can see that "computer" was first used in a state of the union speech by Jimmy Carter in 1981, and used five times by Bill Clinton, but not (yet) by any other president. Use the *index-histogram* procedure to build a historical histogramming program. It could take as input a List of indexes ordered by time, and a target word, and output a List showing the number of occurrences of the target word in each of the indexes. You could use your program to analyze how Shakespeare's word use is different in tragedies and comedies, how language on the web has changed over time (see http://www.archive.org for a way to obtain snapshots of web pages at particular times in the past), or how some other interesting set of documents evolved over time.

9.3 The Story So Far

Chapters 1–9 have introduced several of the most important concepts in computing. Much of what we have seen so far (and much of all of computer science) stems from the three powerful ideas introduced in Section 1.4: recursive definitions, higher order procedures, and abstraction. Here, we recap these ideas, review the many forms in which these ideas have appeared so far, and preview how they will recur later.

Recursive definitions. A recursive definition defines something in terms of

a smaller instance of itself and a base case. All interesting languages involve some recursive definitions, since this is the way to produce infinitely many different surface forms from a finite number of rules. Nearly all of the interesting procedures in this book are recursively defined. Datatypes can also be defined recursively, for example a List is either *null* or a Pair whose second cell is a List. In Part III, we will see many more recursive definitions, and extend the notion of recursive definitions to the language interpreter itself.

Higher order procedures. A procedure defines a precise sequence of steps. Procedures can take inputs that specialize the steps they produce to a particular instance of a problem. Procedures can be passed as inputs to other procedures to enable one procedure to do many different things, and can be produced as outputs of a procedure. In Part III, we will change the language evaluation rules themselves, and see how different evaluation rules enable different ways of expressing procedures. In Part IV, we will extend the notion of procedure to allow a procedure input that can describe any computing machine. Making the input to a procedure a description of an arbitrary computing machine enables us to understand deep properties about what problems can and cannot be solved by mechanical computing.

Abstraction. We use abstraction to represent many different things with one thing so that it is easier to understand and reason about designs. We have seen many different types of abstraction so far: the digital abstraction uses a continuous range of voltages to represent just two values; procedural abstraction defines a procedure using a small amount of code to produce many different processes; and data abstraction hides how data is represented so programmers can focus on what you can do with the data instead of the details of how it is represented. The asymptotic operators used to describe running times are also a kind of abstraction—they allow us to represent the set of infinitely many different functions with a compact notation. In Part III, we will see many more examples of procedural abstraction and data abstraction; we will also develop object abstractions where code and data are packaged into one entity.

Reasoning about computing. The focus of Part II has been on predicting properties of procedures, in particular how their running time scales with the size of their input. With the analysis tools from Chapters 6–8, it is possible to analyze the running time of any procedure.

In Part IV, we consider a deeper problem: what is the running time of the fastest possible algorithm that solves a given problem. Exploring this will allow us to understand what problems can realistically be solved by computers, and what problems it is infeasible to solve with even much more powerful computers than we have today.

As inventor of Quicksort, Sir Tony gets the last word:

I quickly learned that the characteristic of a good course lasting one term is that after the first half of the course, the students just can't see what it is about at all, but at the end of the course they can't see what they found difficult anymore. So you have to choose a fixed time frame, and if you don't have that initial confusion and doubt you're probably not teaching things that are stretching your students enough.

Tony Hoare, Charles Babbage Institute Interview, July 2002

We've covered a lot of material! Don't despair if it doesn't all make sense yet. The same concepts will recur frequently in the remainder of this book, and it takes lots of practice and many years to fully understand the implications of recursive definitions, higher order procedures, and abstraction.

Part III

Improving Expressiveness

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

Faced with the choice between changing one's mind and proving that there is no need to do so, almost everyone gets busy on the proof. John Kenneth Galbraith

The subset of Scheme we have used until this chapter provides no means to change the value associated with a name. This enabled very simple evaluation rules for names, as well as allowing the substitution model of evaluation. Since the value associated with a name was always the value it was defined as, no complex evaluation rules are needed to determine the value associated with a name.

This chapter introduces special forms known as *mutators* that allow pro-*mutators* grams to change the value in a given place. Introducing mutation does not change the computations we can express—every computation that can be expressed using mutation could also be expressed using the only purely functional subset of Scheme from Chapter 3. It does, however, make it possible to express certain computations more efficiently and clearly than could be done without it. Adding mutation is not free, however; reasoning about the value of expressions becomes much more complex.

10.1 Assignment

The **set!** (pronounced "set-bang!") special form associates a new value with an already defined name. The exclamation point at the end of **set!** follows a naming convention to indicate that an operation may mutate state. The set-expression replaces the value associated with a name. A set-expression is also known as an *assignment*. It *assigns* a value to a variable.

assignment

The grammar rule for the set-expression is:

Expression ::⇒ SetExpression SetExpression ::⇒ (set! Name Expression) The evaluation rule for a set-expression is:

Evaluation Rule 7: Assignment. To evaluate a set-expression, evaluate the expression, and replace the value associated with the name with the value of the expression. A set-expression has no value.

A set expression does not produce an output value. Set expressions are *side-effects* used for their *side-effects*. They change the value of some state (namely, the value associated with the name in the set expression), but do not produce an output.

Here is an example use of **set!**:

```
> (define num 200)
> num
200
> (set! num 150)
> num
150
```

Begin expression. Since set-expressions do not have a value, they are often used inside a begin-expression. A begin-expression is a special form that evaluates a sequence of expressions in order and evaluates to the value of the last expression.

The grammar rule for the begin-expression is:

Expression ::⇒ BeginExpression BeginExpression ::⇒ (begin MoreExpressions Expression)

The evaluation rule is:

Evaluation Rule 8: Begin. To evaluate a begin-expression,

(**begin** *Expression*₁ *Expression*₂ ... *Expression*_k)

evaluate each subexpression in order from left to right. The value of the begin-expression is the value of the last subexpression, *Expression*_k.

A begin-expression is used to evaluate a sequence of expressions that have side-effects. The side-effecting expressions are evaluated for the state change

they effect, not for the value they produce. The values of all the subexpressions except the last one are ignored.

The begin-expression must be a special form. It is not possible to define a procedure that behaves identically to a begin-expression since the application rule does not specify the order in which the operand subexpressions are evaluated.

The definition syntax for procedures includes a hidden begin-expression. The syntax,

(define (Name Parameters) MoreExpressions Expression)

is an abbreviation for:

(define Name
 (lambda (Parameters)
 (begin MoreExpressions Expression)))

The let-expression introduced in the previous chapter also includes a hidden begin-expression. The let-expression

(let ((Name₁ Expression₁) (Name₂ Expression₂)

(*Name_k* Expression_k)) MoreExpressions Expression)

is equivalent to the application-expression:

10.2 Impact of Mutation

Introducing the set-expression presents many complications for our programming model. It invalidates the substitution model of evaluation we introduced in Section 3.6.2 and have found satisfactory until this point. Without mutation, all the procedures we could define behaved almost like mathematical functions—every time they are applied to the same inputs, they produce the same output.¹ Set-expressions allow us to define nonfunctional procedures that produce different results for different applications even with the same inputs.

Example 10.1: Counter. Consider the *update-counter!* procedure:

(define (update-counter!)
 (set! counter (+ counter 1))
 counter)

To use *update-counter!*, we must first define the *counter* variable it uses:

(define counter 0)

Every time (*update-counter*!) is evaluated the value associated with the name *counter* is increased by one and the new value of counter is produced as the output. Because of the hidden begin-expression in the definition, the (**set!** *counter* (+ *counter* 1)) is always evaluated first, followed by *counter* which is the last expression in the begin-expression so its value is the value of the procedure. Thus, the value of (*update-counter*!) is 1 the first time it is evaluated, 2 the second time, and so forth.

The substitution model of evaluation doesn't make any sense for this evaluation: the value of *counter* changes during the course of the evaluation. Since the value of a given expression can change depending on when it is evaluated, it no longer makes sense to perform evaluations using simple substitutions.

Mutation also means some expressions have undetermined values. Consider evaluating the expression (+ *counter* (*update-counter*!)). The evaluation rule for the application expression does not specify the order in which the operand subexpressions are evaluated. But, the value of the name expression *counter* depends on whether it is evaluated before or after the application of *update-counter*! is evaluated!

The expression is undetermined: if the second subexpression, *counter*, is evaluated before the third subexpression, *(update-counter!)*, the value of the expression is 1 the first time it is evaluated, and 3 the second time it is evaluated. Alternately, but consistently with the evaluation rules, the third subexpression could be evaluated before the second subexpression. With this ordering, the value of the expression is 2 the first time it is evaluated, and 4 the second time it is evaluated.

¹Observant readers should notice that we have already used a few procedures that are not functions including the printing procedures from Section 4.5.1, and *random* and *read-char* from the previous chapter.

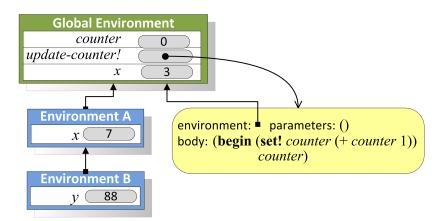
10.2.1 Names, Places, Frames, and Environments

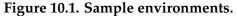
Because set-expressions can change the value associated with a name, the order in which expressions are evaluated now matters. As a result, we need to revisit several of our other evaluation rules and change the way we think about processes.

Since the value associated with a name can now change, instead of associating a value directly with a name we use a name as a way to identify a place. A place has a name and holds the value associated with that name. place With mutation, we can change the value in a place; this changes the value associated with the place's name. A *frame* is a collection of places. frame

An *environment* is a pair consisting of a frame and a pointer to a parent en- *environment* vironment. A special environment known as the global environment has no parent environment. The global environment exists when the interpreter starts, and is maintained for the lifetime of the interpreter. Initially, the global environment contains the built-in procedures. Names defined in the interactions buffer are placed in the global environment. Other environments may be created and destroyed as a program is evaluated. Figure 10.1 illustrates some example environments, frames, and places.

The global environment has no parent environment; every other environment has a parent environment. All these environments descend from the global environment. Hence, if we start with any environment, and con-





The global environment contains a frame that has three names. Each name has an associated place that contains the value associated with that name. The value associated with *counter* is the value in the place next to *counter*, currently **0**. The value associated with *set-counter*! is the procedure we defined in Example 10. 1. A procedure is characterized by its parameters, body code, and a pointer to the environment in which it will be evaluated (Section 10.2.2 explains the new evaluation rule for application).

tinue to follow their parent pointers we always eventually reach the global environment.

The key change to our evaluation model is that whereas before we could evaluate expressions without any notion of *where* they are evaluated, once we introduce mutation, we need to consider the environment in which an expression is evaluated. An environment captures the current state of the interpreter. The value of an expression depends on both the expression itself, and on the environment in which it is evaluated.

10.2.2 Evaluation Rules with State

Introducing mutation requires us to revise the evaluation rule for names, the definition rule, and the application rule for constructed procedures. All of these rules must be adapted to be more precise about how values are associated with names by using places and environments.

Names. The new evaluation rule for a name expression is:

Statefull Evaluation Rule 2: Names. To evaluate a name expression, search the evaluation environment's frame for a place with a name that matches the name in the expression. If such a place exists, the value of the name expression is the value in that place. Otherwise, the value of the name expression is the result of evaluating the name expression in the parent environment. If the evaluation environment has no parent, the name is not defined and the name expression evaluates to an error.

To evaluate the value of the name expression x in Environment B in Figure 10.1, we first look in the frame of Environment B for a place named x. Since there is no place named x in that frame, we follow the parent pointer to Environment A, and evaluate the value of the name expression in Environment A. Environment A's frame contains a place named x that contains the value 7, so the value of evaluating x in Environment B is 7.

If we evaluate the same expression in the Global Environment, the result would be 3 since that is the value in the place named *x* in the Global Environment's frame.

To evaluate the value of y in Environment A, we first look in the frame in Environment A for a place named y. Since no y place exists, evaluation continues by evaluating the expression in the parent environment, which is the Global Environment. The Global Environmentï£_is frame does not contain a place named y, and the global environment has no parent, so the

name is undefined. It is an error, since there is no place named *y* visible from Environment A.

Definition. The revised evaluation rule for a definition is:

Statefull Definition Rule. A definition creates a new place with the definition's name in the frame associated with the evaluation environment. The value in the place is value of the definition's expression. If there is already a place with the name in the current frame, the definition replaces the old place with a new place and value.

The rule for redefinitions means we could use **define** in some situations to mean something similar to **set!**. The meaning is different, though, since a set-expression finds the place associated with the name and puts a new value in that place. A set-expression evaluation follows the Statefull Evaluation Rule 2 to find the place associated with a name. Hence, (**define** *Name Expression*) has a different meaning from (**set!** *Name Expression*) when there is no place named *Name* in the current execution environment. To avoid this confusion, it is best to only use **define** for the first definition of a name, and to always use **set!** when the intent is to change the value associated with a name.

Application. The final rule that must change because of mutation is the application rule for constructed procedures. Instead of using substitution, the new application rule creates a new environment with a fram containing places named for the parameters. Evaluating an application involves three steps:

Statefull Application Rule 2: Constructed Procedures. To apply a constructed procedure:

- 1. Construct a new environment, whose parent is the environment of the applied procedure.
- 2. For each procedure parameter, create a place in the frame of the new environment with the name of the parameter. Evaluate each operand expression in the environment or the application and initialize the value in each place to the value of the corresponding operand expression.
- 3. Evaluate the body of the procedure in the newly created environment. The resulting value is the value of the application.

Consider evaluating the application expression (*bigger* **3 4**) where *bigger* is the procedure defined in Example 3.3:

(**define** (*bigger a b*) (**if** (> *a b*) *a b*)))

Evaluating an application of *bigger* involves following the Statefull Application Rule 2. First, create a new environment. Since *bigger* was defined in the global environment, its environment pointer points to the global environment. Hence, the parent environment for the new environment is the global environment.

Next, create places in the new environment's frame named for the procedure parameters, a and b. The value in the place associated with a is 3, the value of the first operand expression. The value in the place associated with b is 4.

The final step is to evaluate the body expression, (if (> a b) a b), in the newly created environment. Figure 10.2 shows the environment where the body expression is evaluated. The values of *a* and *b* are found in the application environment.

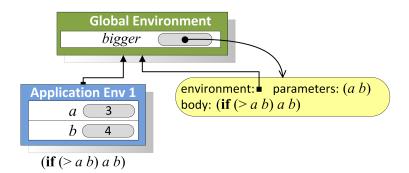


Figure 10.2. Environment created to evaluate (bigger 3 4).

The impact of the new application rule is more interesting when we consider procedures that create new procedures. For example, the *make-adder* procedure takes a number as input and produces as output a procedure.

(define (make-adder v) (lambda (n) (+ n v)))

Suppose we evaluate (**define** *inc* (*make-adder* 1)). The resulting environment is shown in Figure 10.3. The name *inc* has a value that is the procedure resulting from the application of (*make-adder* 1). To evaluate the application, we follow the application rule above and create a new environment con-

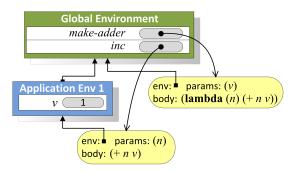


Figure 10.3. Environment after evaluating (define inc (make-adder 1)).

taining a frame with the parameter name, *inc*, and its associated operand value, 1.

The result of the application is the value of evaluating its body in this new environment. Since the body is a lambda expression, it evaluates to a procedure. That procedure was created in the execution environment that was created to evaluate the application of *make-adder*, hence, its environment pointer points to the application environment which contains a place named *inc* holding the value 1.

Next, consider evaluating (*inc* 149). Figure 10.4 illustrates the environment for evaluating the body of the *inc* procedure. The evaluation creates a new environment with a frame containing the place n and its associated value 149. We evaluate the body of the procedure, (+ n v), in that environment. The value of n is found in the execution environment. The value of v is not found there, so evaluation continues by looking in the parent environment. It contains a place v containing the value 1.

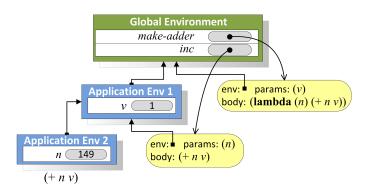


Figure 10.4. Environment for evaluating the body of (inc 149).

Exercise 10.1. $[\star]$ Devise a Scheme expression that could have four possible values, depending on the order in which application subexpressions are evaluated.

Exercise 10.2. Draw the environment that results after evaluating:

- > (**define** *alpha* 0)
- > (define *beta* 1)
- > (define *update-beta!* (lambda () (set! *beta* (+ *alpha* 1)))
- > (**set!** *alpha* 3)
- > (update-beta!)
- > (**set!** *alpha* 4)

Exercise 10.3. Draw the environment that results after evaluating the following expressions, and explain what the value of the final expression is. (Hint: first, rewrite the let-expression as an application.)

> (define (make-applier proc) (lambda (x) (proc x)) > (define p (make-applier (lambda (x) (let ((x 2)) x))))

```
> (p 4)
```

10.3 Mutable Pairs and Lists

immutable The Pair datatype introduced in Chapter 5 is *immutable*. This means that once a Pair is created, the values in its cells cannot be changed.²

The MutablePair datatype is a mutable pair. A MutablePair is constructed using *mcons*, which is similar to *cons* but produces a MutablePair. The parts of a MutablePair can be extracted using the *mcar* and *mcdr* procedures, which behave analogously to the *car* and *cdr* procedures. A MutablePair is a distinct datatype from a Pair; it is an error to apply *car* to a MutablePair, or to apply *mcar* to an immutable Pair.

The MutablePair datatype also provides two procedures that change the

²The mutability of standard Pairs is quite a controversial issue. In most Scheme implementations and the standard definition of Scheme, the standard *cons* Pair is mutable. But, as we will see later in the section, mutable pairs cause lots of problems. So, the designers of DrScheme decided for Version 4.0 to make the standard Pair datatype immutable and to provide a mutable Pair datatype for use when mutation is needed.

values in the cells of a MutablePair:

- *set-mcar*!: MutablePair × Value → Void replaces the value in the first cell of the MutablePair with the value of the second input. The Void result type indicates the *set-mcar*! does not evaluate to a value.
- *set-mcdr*!: MutablePair × Value → Void replaces the value in the second cell of the MutablePair with the value of the second input.

Here are some example interactions using a MutablePair:

> (define pair (mcons 1 2))
> (set-mcar! pair 3)
> pair
(3 . 2)
> (set-mcdr! pair 4)
> pair
(3 . 4)

The *set-mcdr*! procedure allows us to create a pair where the second cell of the pair is itself: (*set-mcdr*! *pair pair*). This produces the rather frightening object shown in Figure 10.5. Every time we apply *mcdr* to *pair*, we get the same pair as the output. Hence, the value of (*mcar* (*mcdr* (*mcdr* (*mcdr* pair)))) is 3.

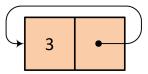


Figure 10.5. Pair created by evaluating (set-mcdr! pair pair).

We can, of course, create objects that combine mutable and immutable Pairs. For example,

(define *mstruct* (cons (mcons 1 2) 3))

defines *mstruct* as an immutable Pair containing a MutablePair in its first cell. Since the outer Pair is immutable, we cannot change the objects in its cells. Thus, the second cell of *mstruct* always contains the value 3. We can, however, change the values in the cells of the mutable pair in its first cell. For example, (*set-mcar!* (*car mstruct*) 7) replaces the value in the first cell of the MutablePair in the first cell of *mstruct*.

Mutable Lists. As we used immutable Pairs to build immutable Lists, we can use MutablePairs to construct MutableLists. A MutableList is either null or a MutablePair whose second cell contains a MutableList.

The MutableList type is defined by a library. To use it, include the following expression:

(require scheme/mpair)

All of the examples in this chapter assume this expression has been evaluated. This library defines the *mlist* procedure that is similar to the *list* procedure, but produces a MutableList instead of an immutable List. For example, (*mlist* 1 2 3) produces the structure shown in Figure 10.6.

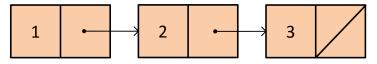


Figure 10.6. MutableList created by evaluating (mlist 1 2 3).

Each node in the list is a MutablePair, so we can use the *set-mcar!* and *set-mcdr!* procedures to change the values in the cells.

> (define m1 (mlist 1 2 3))
> (set-mcar! (mcdr m1) 5)
> (set-mcar! (mcdr (mcdr m1)) 0)
> m1
{1 5 0}; DrScheme denotes MutableLists using curly brackets.

Many of the list procedures from Chapter 5 can be directly translated to work on mutable lists. For example, we can define *mlist-length* as:

(define (mlist-length m)
 (if (null? m) 0 (+ 1 (mlist-length (mcdr m)))))

As shown in the following exercise, though, we need to be careful when using *mcdr* to recurse through a MutableList since structures created with MutablePairs can include circular pointers.

Exercise 10.4. What does (*mlist-length pair*) evaluate to for the pair shown in Figure 10.5?

Exercise 10.5. [*] Define a *mpair-circular*? procedure that takes a Mutable-Pair as its input and evaluates to a Boolean indicating if the input is a circular structure. The result should be true when *mpair-circular*? is applied to any MutablePair for which repeated *mcdr* operations will never reach *null*.

10.4 Imperative Programming

Mutation enables a style of programming known as *imperative programming*. *imperative programming*. *imperative programming*. Whereas *functional programming* is concerned with defining procedures that can be composed to solve a problem, imperative programming is primarily concerned with modifying state in ways that lead to a state that provides a solution to a problem.

The main operation in function programming is application. A functional program applies a series of procedures, passing the outputs of one application as the inputs to the next procedure application. With imperative programming, the primary operation is assignment (performed by **set**!, *set*-*mcar*!, and *set*-*mcdr*! in Scheme; but typically by an assignment operator, often := or =, in languages designed for imperative programming such as Pascal, Algol60, Java, and C++).

The next subsection presents imperative-style versions of some of the procedures we have seen in previous chapters for manipulating lists. The following subsection introduces some imperative control structures.

10.4.1 List Mutators

All the procedures for changing the value of a list in Section 5.4.3 actually do not change any values; instead they construct new lists. When our goal is only to change some elements in an existing list, this wastes memory constructing a new list and may require more running time than a procedure that modifies the input list instead. Here, we revisit some of the procedures from Section 5.4.3, but instead of producing new lists with the desired property these procedures modify the input list.

Example 10.2: Mapping. The *list-map* procedure (from Example 5.4) produces a new list that is the result of applying the same procedure to every element in the input list.

(define (list-map f p)
 (if (null? p) null (cons (f (car p)) (list-map f (cdr p)))))

Whereas the functional *list-map* procedure uses *cons* to build up the output list, the imperative *mlist-map*! procedure uses *set-car*! to mutate the input list's elements:

```
(define (mlist-map! f p)
(if (null? p)
(void)
(begin (set-mcar! p (f (mcar p)))
(mlist-map! f (mcdr p)))))
```

The base case uses (*void*) to evaluate to no value. The *void* procedure takes no inputs and outputs no value. Unlike *list-map* which evaluates to a List, the *mlist-map*! procedure produces no output.

The running time of the *mlist-map*! procedure is in $\Theta(n)$ where *n* is the number of elements in the input list (assuming the procedure passed as *f* has constant running time). There will be *n* recursive applications of *mlist-map*! since each one passes in a list one element shorter than the input list, and each application requires constant time. This is asymptotically the same as the *list-map* procedure, but we would expect the actual running time to be faster since there is no need to construct a new list.

The memory consumed is asymptotically different. The *list-map* procedure allocates *n* new *cons* cells, so it requires memory in $\Theta(n)$ where *n* is the number of elements in the input List. The *mlist-map!* procedure is tail recursive (so no stack needs to be maintained) and does not allocate any new *cons* cells, so it requires constant memory.

Example 10.3: Filtering. The *list-filter* procedure takes as inputs a test procedure as a parameter, and produces as output a list containing the elements of the input list for which applying the test procedure evaluates to a true value. In Example 5.5, we defined *list-filter* as:

An imperative version of *list-filter* removes the unsatisfying elements from a mutable list instead of creating a new list. We define *mlist-filter*! by using *set-mcdr*! to skip over elements that should not be included in the filtered list.

(define (mlist-filter! test p)
 (if (null? p) null
 (begin (set-mcdr! p (mlist-filter! test (mcdr p)))
 (if (test (mcar p)) p (mcdr p)))))

Assuming the test procedure has constant running time, the running time of the *mlist-filter*! procedure is in $\Theta(n)$ where *n* is the length of the input list. This is comparable to the *list-filter* procedure. As with *mlist-map*!, the space used by *mlist-filter*! is constant, which is better than the $\Theta(n)$ space used by *list-filter*.

Unlike *mlist-map*! which produces no output value, *mlist-filter*! does produce an output value. This is necessary to produce the correct behavior when the first element is not in the list. Consider this example:

> (define a (mlist 1 2 3 1 4)) > (mlist-filter! (lambda (x) (> x 1)) a) {2 3 4} > a {1 2 3 4}

The value of *a* after the *mlist-filter*! application still includes the initial 1. There is no way for the *mlist-filter*! procedure to remove the first element of the list: the *set-mcar*! and *set-mcdr*! procedures only enable us to change what the mutable pair's components contain.

To avoid this, *mlist-filter!* should be used with **set!** to assign the variable to the resulting mutable list:

(**set!** *a* (*mlist-filter!* (**lambda** (*x*) (> *x* 1)) *a*))

Example 10.4: Append. The *list-append* procedure takes as input two lists and produces a list consisting of the elements of the first list followed by the elements of the second list. An imperative version of this procedure instead mutates the first list so after the application it now contains the elements of both lists.

```
(define (mlist-append! p q)
 (if (null? p)
    (error "Cannot append to an empty list")
    (if (null? (mcdr p))
        (set-mcdr! p q)
        (mlist-append! (mcdr p) q))))
```

The *mlist-append!* procedure produces an error when the first input is *null* — this is necessary since if the input is *null* there is no pair to modify. ³

Like *list-append*, the running time of the *mlist-append*! procedure is in $\Theta(n)$ where *n* is the number of elements in the first input list. The *list-append* procedure copies the first input list, so its memory use is in $\Theta(n)$ where *n* is the number of elements in the first input list. The memory use of *mlist-append*! is constant: it does not create any new cons cells to append the lists.

10.4.2 Aliasing

Adding mutation makes it possible to define many procedures more efficiently and compactly, but introduces many new potential pitfalls in producing reliable programs. Since our evaluation model now depends on the environment in which an expression is evaluated, it becomes much harder to reason about code by itself.

aliasing One challenge introduced by mutation is *aliasing*. There may be many different ways to refer to the same object. This was true before mutation also, but didn't matter since the value of an object never changed. Once object values can change, however, aliasing can cause may unexpected behaviors.

For example,

> (define m1 (mlist 1 2 3)) > (define m2 (mlist 4 5 6)) > (mlist-append! m1 m2) > m1 {1 2 3 4 5 6} > m2 {4 5 6} > (set! m1 (mlist-filter! (lambda (el) (= (modulo el 2) 0)) m1)) > m1 {2 4 6}

The last time *m*2 was evaluated its value was {4 5 6}, and no expressions since then involved *m*2. But, the value of *m*2 has still changed! The value of *m*2 is now {4 6}. It changed because after evaluating (*mlist-append! m*1 *m*2)

³The *mappend*! library procedure in DrScheme takes a different approach: when the first input is null it produces the value of the second list as output in this case. This has unexpected behavior when an expression like (*append*! a b) is evaluated where the value of a is *null* since the value of a is not modified.

the *m*1 object shares cells with *m*2. Thus, when the *mlist-filter*! application changes the value of *m*1, it also changes the value of *m*2.

The built-in procedure *eq*? takes as input any two objects and outputs a Boolean. The result is true if and only if the inputs are the same object. For example, (*eq*? 3 3) evaluates to true but (*eq*? (*mcons* 1 2) (*mcons* 1 2)) evaluates to false. Even though the input pairs have the same value, they are different objects—mutating one of the pairs does not effect the value of the other pair.

For the earlier *mlist-append!* example, (*eq? m1 m2*) evaluates to false since *m1* and *m2* do not refer to the same object. But, (*eq? (mcdr m1) m2*) evaluates to true since the second cell of *m1* points to the same object as *m2*. Evaluating (*set-mcar! m2* 3) effects the value of both *m1* and *m2* since the modified cell is used in both structures.

Exercise 10.6. Define an imperative-style procedure, *mlist-inc!* that takes as input a MutableList of Numbers and modifies the list by adding one to the value of each element in the list.

Exercise 10.7. $[\star]$ Define a procedure *mlist-truncate!* that takes as input a MutableList and modifies the list by removing the last element in the list. Specify carefully the requirements for the input list to your procedure.

Exercise 10.8. [\star] Define a procedure *mlist-make-circular!* that takes as input a MutableList and modifies the list to be a circular list containing all the elements in the original list, repeated indefinitely. For example, (*mlist-make-circular!* (*mlist* 3)) should produce the same structure as the circular pair shown in Figure 10.5.

Exercise 10.9. [*] Define an imperative-style procedure, *mlist-reverse!*, that reverses the elements of a list. Is it possible to implement a *mlist-reverse!*, that procedure that is asymptotically faster than the *list-reverse* procedure from Example 5. 4?

Exercise 10.10. $[\star\star]$ Define a procedure *mlist-aliases?* that takes as input two mutable lists and outputs true if and only if there are any mcons cells shared between the two lists.

If you steal property, you must report its fair market value in your income in the year you steal it unless in the same year, you return it to its rightful owner. Your Federal Income Tax, IRS Publication 17, 2009.

10.4.3 Imperative Control Structures

The imperative style of programming makes progress by using assignments to manipulate state. In many cases, solving a problem requires repeated operations. With functional programming, this is done using recursive definitions. We make progress towards a base case by passing in different values for the operands with each recursive application. With imperative programming, we can make progress by changing state repeatedly without needing to passing in different operands.

while loop A common control structure in imperative programming is a *while loop*. A while loop has a test condition and a body. The test condition is a predicate. If it evaluates to true, the while loop body is executed. Then, the test condition is evaluated again. The while loop continues to execute until the test condition evaluates to false.

We can define *while* as a procedure that takes as input two procedures, a test procedure and a body procedure, each of which take no parameters. Even though the test and body procedures take no parameters, they need to be procedures instead of expressions, since every iteration of the loop should re-evaluate the test and body expressions of the passed procedures.

(define (while test body)
 (if (test)
 (begin (body) (while test body))
 (void))); no value

We can use the *while* procedure to implement Fibonacci similarly to the *fast-fibo* procedure:

```
(define (fibo-while n)
(let ((a 1)
(b 1))
(while (lambda () (> n 2))
(lambda ()
(set! b (+ a b))
(set! a (- b a))
(set! n (- n 1))))
b))
```

The final value of *b* is the result of the *fibo-while* procedure. In each iteration, the body procedure is applied, updating the values of *a* and *b* to the next Fibonacci numbers.

The value assigned to *a* is computed as (-b a) instead of *b*. The reason for

this is the previous **set!** expression has already changed the value of *b*, by adding *a* to it. Since the next value of *a* should be the old value of *b*, we can find the necessary value by subtracting *a*. The fact that the value of a variable can change depending on when it is used can make imperative programming trickier than functional programming.

An alternative approach, which would save the need to do subtraction, is to store the old value in a temporary value. We could use this as the body procedure instead:

```
(lambda ()
(let ((oldb b))
(set! b (+ a b))
(set! a oldb)
(set! n (- n 1))))
```

Programming languages developed for imperative programming provide control constructs similar to the *while* procedure defined above. For example, here is a version of the procedure in the Python programming language:

```
def fibonacci (n):
    a = 1
    b = 1
    while n > 2:
        a, b = b, a + b
        n = n - 1
    return b
```

We will be covering Python starting in Chapter 12, although you can probably guess what most of this procedure means without knowing Python. The point of the example is to give you a sense what other programming languages look like, and how similar control structures are across different languages.

The most interesting statement is the double assignment: a, b = b, a + b. This assigns the new value of a to the old value of b, and the new value of b to the sum of the old values of a and b. Without the double assignment operator, it would be necessary to store the old value of b in a new variable so it can be assigned to a after updating b to the new value.

Exercise 10.11. [*] Define the *mlist-map!* example from the previous section using *while*.

Exercise 10.12. [*] Another popular imperative programming structure is

repeat-until a *repeat-until* loop. Define a *repeat-until* procedure that takes two inputs, a body procedure and a test procedure. The procedure should evaluate the body procedure repeatedly, until the test procedure evaluates to a true value. For example, using *repeat-until* we could define *factorial* as:

```
(define (factorial n)
  (let ((fact 1))
      (repeat-until
      (lambda () (set! fact (* fact n)) (set! n (- n 1)))
      (lambda () (< n 1)))
      fact))</pre>
```

Exploration 10.1: Web Searching Redux

Improve the efficiency of the indexing procedures from the previous chapter by using mutation. Start by defining a mutable binary tree abstraction, and then use this and the defined MutableList data type to implement an imperative-style *insert-into-index!* procedure that mutates the input index by adding a new word-position pair to it. Then, define an efficient *merge-index!* procedure that takes two mutable indexes as its inputs and modifies the first index to incorporate all word occurrences in the second index. Analyze the impact of your changes on the running time of indexing a collection of documents.

10.5 Summary

Adding the ability to change the value associated with a name complicates our evaluation rules, but also enables simpler and more efficient solutions to many problems. Mutation allows us to efficiently manipulate larger data structures efficiently since it is not necessary to copy the data structure to make any changes to it.

Once we add assignment to our language, the order in which things happen affects the value of some expressions. Instead of evaluating expressions using substitution, we now need to always evaluate an expression in a particular execution environment.

The problem with mutation is that it makes it much tougher to reason about the meaning of an expression. In the next chapter, we introduce a new kind of abstraction that packages procedures with the state they manipulate. This helps manage some of the complexity resulting from mutation by limiting the places where data may be accessed and modified.

It was amazing to me, and it is still amazing, that people could not imagine what the psychological difference would be to have an interactive terminal. You can talk about it on a blackboard until you are blue in the face, and people would say, "Oh, yes, but why do you need that?"... We used to try to think of all these analogies, like describing it in terms of the difference between mailing a letter to your mother and getting on the telephone. To this day I can still remember people only realizing when they saw a real demo, say, "Hey, it talks back. Wow! You just type that and you got an answer." Fernando Corbató (who worked on Whirlwind in the 1950s), Charles Babbage Institute interview, 1989

So far, we have seen two main approaches for solving problems:

- Functional programming (introduced in Chapter 4): to solve a complex problem, break it into a group of simpler procedures and find a way to compose those procedures to solve the problem.
- Data-centric programming (introduced in Chapter 5, and extended to imperative programming with mutation in the previous chapter): to solve a complex problem, think about how to represent the data the problem involves, and develop procedures to manipulate that data.

All computational problems involve both data and procedures. All procedures act on some form of data; without data they can have no meaningful inputs and outputs. Any data-focused design must involve some procedures to perform computations using that data.

In this chapter, we overcome a weakness of both previous approaches: the data and the procedures that manipulate it are separate. Packaging procedures and data together leads to a new problem-solving approach known as *object-oriented programming*.

Unlike many programming languages, Scheme does not provide special built-in support for objects¹. We can, however, build an object system ourselves using simpler expressions (primarily the procedure-making lambda

object-oriented programming

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

¹This refers to the standard Scheme language, not the many extended Scheme languages provided by DrScheme. The MzScheme language does provide additional constructs for supporting objects, but we do not cover them in this book.

expressions). By building an object system from simple components, we provide a clearer and deeper understanding of how object systems work.

The next section introduces techniques for programming with objects that combine state with procedures that manipulate that state. Section 11.2 describes a powerful technique for programming with objects by implementing new objects that add or modify the behaviors of previously implemented objects. Section 11.3 provides some historical background on the development of object-oriented programming.

11.1 Packaging Procedures and State

Recall our counter from Section 10.1:

(**define** (*update-counter!*) (**set!** *counter* (+ *counter* 1)) *counter*)

The *update-counter*! procedure increments the value of the *counter* variable, which is stored in the global environment, and evaluates to the resulting counter value. Every time an application of *update-counter*! is evaluated, we expect to obtain a value one larger than the previous application.

This only works, however, if there are no other evaluations that modify the *counter* variable. Hence, we can only have one counter: there is only one *counter* place in the global environment. If we want to have a second counter, we would need to define a new variable (such as *counter2*, and implement a new procedure, *update-counter2!*, that is identical to *updatecounter!*, but manipulates *counter2* instead. For each new counter, we would need a new variable and a new procedure.

11.1.1 Encapsulation

It would be more useful to package the counter variable with the procedure that manipulates it. Then we could create as many counters as we want, each with its own counter variable to manipulate.

The statefull application rule (from Section 10.2.2) suggests a way to do this: evaluating an application creates a new environment, so a counter variable is defined in the application environment is only visible through body of the created procedure.

The *make-counter* procedure creates a counter object that packages the *count* variable with the procedure that increases its value:

Each application of *make-counter* produces a new object that is a procedure with its own associated *count* variable. Protecting state so it can only be manipulated in controlled ways is known as *encapsulation*.

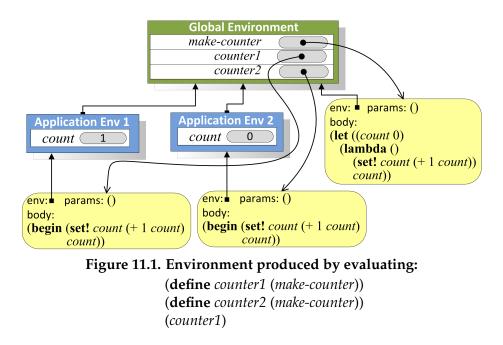
encapsulation

The *count* place is encapsulated with the counter object. Whereas the previous counter used the global environment to store the counter in a way that could be manipulated by other expressions, this version encapsulates the counter variable with the counter object. Hence, the only way to manipulate the counter value is through the counter object.

An equivalent *make-counter* definition uses a let-expression to make the initialization of the *count* variable clearer:

```
(define (make-counter)
  (let ((count 0))
        (lambda () (set! count (+ 1 count)) count)))
```

Figure 11.1 depicts the environment after creating two counter objects and applying one of them.



11.1.2 Messages

The object produced by *make-counter* is limited to only one behavior: every time it is applied the associated count variable is increased by one and the new value is output. To produce more useful objects, we need a way to combine state with multiple behaviors. For example, we might want a counter that return the current count, reset the count, and increment the count.

We do this by adding a *message* parameter to the procedure produced by *make-counter* that selects from different behavior procedures:

Like the earlier *make-counter*, this procedure produces a procedure with an environment that contains a frame containing a place named *count*.

The produced procedure takes a *message* parameter, and its body is an ifexpression that produces a different behavior depending on the input message. The input is a Symbol.

A Symbol is a sequence of characters preceded by a quote character such as 'next!. Two Symbols are equal (as determined by the *eq*? procedure) if their sequences of characters are identical.

The running time of the *eq*? procedure on symbol type inputs is constant; it does not increase with the length of the symbols since the symbols can be represented internally as small numbers and compared quickly using number equality. This makes symbols a more efficient way of selecting object behaviors than Strings, and a more memorable way to select behaviors than using Numbers.

Here are some sample interactions using the object produced by *make-counter*:

- > (**define** *counter* (*make-counter*))
- > (counter 'next!)
- > (*counter* 'get-count)
- 1
- > (counter 'previous!)
- Solution Contemporation Contemporati

Conditional expressions. If an object has many different behaviors, the nested if-expressions for selecting the behavior associated with the *message* input can get quite cumbersome. Scheme provides a compact conditional-expression for combining many if-expressions into one smaller expression.

The grammar for the conditional-expression is:

The evaluation rule for a conditional-expression is:

Evaluation Rule 9: Conditional. A conditional-expression of the form, (**cond**) has no value. To evaluate a conditional-expression of the form,

(cond ($Expression_{p1} Expression_{c1}$) ($Expression_{p2} Expression_{c2}$) ... ($Expression_{vk} Expression_{ck}$))

in the current execution environment, E, first evaluate $Expression_{p1}$ in E. If it evaluates to true, the value of the conditional-expression is the value of $Expression_{c1}$ in E. Otherwise, the value of the conditional-expression is the value in E of the conditionalexpression,

(cond ($Expression_{p2} Expression_{c2}$) ... ($Expression_{pk} Expression_{ck}$))

The evaluation rule is defined recursively. It continues through the predicate expressions until finding the first predicate that evaluates to *true*. Then, the value of the conditional-expression is the value of the consequent-expression associated with the first true predicate. If all the predicate expressions evaluate to *false*, the conditional-expression has no value.

Another way to define the evaluation rule for conditionals is to show how a conditional-expression can be transformed into an if-expression:

Evaluation Rule 9: Conditional (using if). The conditionalexpression (**cond**) has no value. All other conditional-expressions are of the form (**cond** ($Expression_{p1} Expression_{c1}$) *Rest*) where *Rest* is a list of conditional clauses. The value of such a conditionalexpression is the value of the if-expression:

(**if** *Expression*_{p1} *Expression*_{c1} (**cond** *Rest*))

This is also a recursive evaluation rule since the transformed expression still includes a conditional-expression, but is shorter and simpler since it takes advantage of the already defined evaluation rule for an if-expression.

The conditional-expression can be used to define *make-counter* more clearly than the nested if-expressions:

For linguistic convenience, Scheme provides a special syntax **else** for use in conditional-expressions. When used as the predicate in the last conditional clause it means the same thing as *true*. So, we could write the last clause as

(else (error "Unrecognized message"))

with the same exact meaning as above.

Sending messages. A more natural way to interact with objects is to define a generic procedure that takes an object and a message as its parameters, and send the message to the object.

The *ask* procedure is a simple procedure that does this:

(**define** (ask object message) (object message))

It simply applies the *object* input to the *message* input. Later, we will develop more complex versions of the *ask* procedure to provide a more powerful object model.

Using the *ask* procedure, the interactions with our counter object could be expressed as:

> (define counter (make-counter))
> (ask counter 'next!)
> (ask counter 'get-count)
1
> (ask counter 'previous!)
© Unrecognized message

Message parameters. Sometimes it is useful to have behaviors that take additional parameters. For example, we may want to support a message *adjust!* that increases the counter value by an input value.

To support such behaviors, we generalize the behaviors so that the result of applying the message dispatching procedure is itself a procedure. The procedures for *reset!*, *next!*, and *get-count* take no parameters; the procedure for *adjust!* takes one parameter.

We also need to also change the *ask* procedure to pass in the extra arguments. So far, all the procedures we have defined take a fixed number of operands. To allow *ask* to work for procedures that take a variable number of arguments, we use a special definition construct:

Definition :: \Rightarrow (define (*Name Parameters*. *Name_{Rest}*) Expression)

The name following the dot is bound to all the remaining operands combined into a list. This means the defined procedure can be applied to n or more operands where n is the number of names in *Parameters*. If there are only n operand expressions, the value bound to $Name_{Rest}$ is null. If there are n + k operand expressions, the value bound to $Name_{Rest}$ is a list containing the values of the last k operand expressions.

To apply the procedure we use the built-in *apply* procedure which takes two inputs, a Procedure and a List. It applies the procedure to the values in the list, extracting them from the list as each operand in order.

```
(define (ask object message . args)
(apply (object message) args))
```

We can use the new *ask* procedure with two or more parameters to invoke methods with any number of arguments:

> (define counter (make-adjustable-counter))
> (ask counter 'adjust! 5)
> (ask counter 'next!)
> (ask counter 'get-count)
6

11.1.3 Object Terminology

object An *object* is an entity that packages state and procedures.

- *instance variables* The state variables that are part of an object are called *instance variables*. The instance variables are stored in places that are part of the application environment for the object. This means they are encapsulated with the object and can only be accessed through the object. An object produced by *(make-counter)* defines a single instance variable, *count*.
 - *methods* The procedures that are part of an object are called *methods*. Methods may provide information about the state of an object (we call these *observers*) or modify the state of an object (we call these *mutators*). An object produced by (*make-counter*) provides three methods: *reset*! (a mutator), *next*! (a mutator), and *get-count* (an observer).
 - *invoke* An object is manipulated using the object's methods. We *invoke* a method on an object by sending the object a message. This is analogous to applying a procedure. We also need procedures for creating new objects, such as the *constructors make-counter* procedure above. We call these procedures *constructors*.

class A *class* is a kind of object. Classes are similar to data types. They define a set of possible values and operations (methods in the object terminology) for manipulating those values.

By convention, we call the constructor for a class *make-<class>* where *<class>* is the name of the class. Hence, an instance of the *counter* class is the result produced when the *make-counter* procedure is applied.

Exercise 11.1. Modify the *make-counter* definition to add a *previous!* method that decrements the counter value by one.

Exercise 11.2. \star Define a *variable-counter* object that provides these meth- *tell you I did not have C++ in* ods:

- *set-increment!*: Number \rightarrow Void sets the increment amount for this counter.
- *next*!: Void → Void modifies the value of the counter by adding the increment amount to it.
- *get-count*: Void \rightarrow Number outputs the current value of the counter.

The *make-variable-counter* takes one Number as input and produces a *variablecounter* object with initial counter value of 0 and an initial increment value that is the value of the input. Here are some sample interactions using a variable-counter object:

- > (**define** vcounter (make-variable-counter 1))
- > (ask vcounter 'next!)
- > (ask vcounter 'set-increment! 2)
- > (ask vcounter 'next!)
- > (ask vcounter 'get-count)
- 3

Inheritance 11.2

Objects are particularly well-suited to programs that involve modeling real or imaginary worlds such as graphical user interfaces (modeling windows, files, and folders on a desktop), simulations (modeling physical objects in the real world and their interactions), and games (modeling creatures and things in an imagined world).

Objects in the real world (or most simulated worlds) are complex. Suppose we are implementing a game that simulates a typical university. It might include many different kinds of objects including places (which are stationary and may contain other objects), things, and people. There are many different kinds of people, such as students and professors. All objects in our game have a name and a location; some objects also have methods for talking and moving. We could define classes independently for all of the

I invented the term "Object-Oriented" and I can mind. Alan Kay

object types, but this would involve a lot of duplicate effort. It would also make it hard to add a new behavior to all of the objects in the game without modifying many different procedures.

The solution is to define more specialized kinds of objects using the definitions of other objects. For example, a *student* is a kind of *person*, which is a kind of *movable-object*, which is a kind of *sim-object* (simulation object). A *student* has all the behaviors of a normal *person*, as well as some behaviors particular to a *student* such as choosing a major and graduating.

Figure 11.2 illustrates some possible inheritance relationships for a university simulator. The arrows point from subclasses to their superclass. Note that a class may be both a subclass to another class, and a superclass to a different class. For example, *person* is a subclass of *movable-object*, but a superclass of *student* and *professor*.

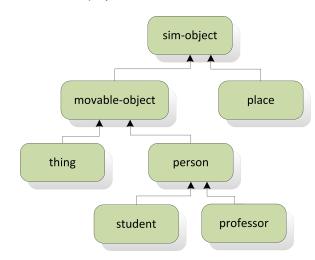


Figure 11.2. Inheritance Hierarchy.

To implement a *student* class, we want to reuse methods from the *person* class without needing to duplicate them in the *student* implementation. We *subclass* call the more specialized class (in this case the *student* class) the *subclass* and say *student* is a subclass of *person*. The reused class is known as the *superclass*, so *person* is the superclass of *student*. A class can have many subclasses but only one superclass.²

Our goal is to be able to reuse superclass methods in subclasses. When a

²Some object systems (such as the one provided by the C++ programming language) allow a class to have more than one superclass. This can be confusing, though. If a class has two superclasses and both define methods with the same name, it may be ambiguous which of the methods is used when it is invoked on an object of the subclass. In our object system, a class may have only one superclass.

method is invoked in a subclass, if the subclass does not provide a definition of the method, then the definition of the method in the superclass is used. This can continue up the superclass chain. For instance, *student* is a subclass of *person*, which is a subclass of *movable-object*, which is a subclass of *sim-object*.

Hence, if the *sim-object* class defines a *get-name* method, when the *get-name* method is invoked on a *student* object, the implementation of *get-name* in the *sim-object* class will be used (as long as neither *person* nor *movable-object* defines its own *get-name* method).

When one class implementation uses the methods from another class we say the subclass *inherits* from the superclass. Inheritance is a powerful way *inherits* to obtain many different objects with a small amount of code.

11.2.1 Implementing Subclasses

To implement inheritance we need to change class definitions so that if a requested method is not defined by the subclass, the method defined by its superclass will be used.

The *make-sub-object* procedure does this. It takes two inputs, a superclass object and the object dispatching procedure of the subclass, and produces an instance of the subclass. This is a procedure that takes a message as input and outputs the method corresponding to that message. If the method is defined by the subclass, it will be the subclass method. If the method is not defined by the subclass, it will be the superclass method.

```
(define (make-sub-object super subproc)
  (lambda (message)
        (let ((method (subproc message)))
            (if method
                 method
                 (super message))))))
```

When an object produced by (*make-sub-object obj proc*) is applied to a message, it will first apply the subclass dispatch procedure to the message to find an appropriate method if one is defined. If no method is defined by the subclass implementation, it evaluates to (*super message*), the method associated with the *message* in the superclass.

References to self. It is useful to add an extra parameter to all methods so the object on which the method was invoked is visible. Otherwise, the object will lose its special behaviors as it is moves up the superclasses. We call this the *self* object (in some languages it is called the *this* object instead).

To support this, we modify the *ask* procedure to pass in the object parameter to the method:

(**define** (ask object message . args) (apply (object message) object args))

All methods now take the *self* object as their first parameter, and may take additional parameters. So, the *counter* constructor is defined as:

```
(define (make-counter)
 (let ((count 0))
    (lambda (message)
        (cond
            ((eq? message 'get-count) (lambda (self) count))
            ((eq? message 'reset!) (lambda (self) (set! count 0)))
            ((eq? message 'next!) (lambda (self) (set! count (+ 1 count))))
            (true (error "Unrecognized message"))))))
```

Subclassing counter. Since subclass objects cannot see the instance variables of their superclass objects directly, if we want to provide a versatile counter class we need to also provide a *set-count!* method for setting the value of the counter to an arbitrary value. For reasons that will become clear later, we should use *set-count!* everywhere the value of the *count* variable is changed instead of setting it directly:

Previously, we defined *make-adjustable-counter* by repeating all the code from *make-counter* and adding an *adjust!* method. With inheritance, we can define *make-adjustable-counter* as a subclass of *make-counter* without repeating any code:

```
(define (make-adjustable-counter)
 (make-sub-object
 (make-counter)
 (lambda (message)
      (cond
            ((eq? message 'adjust!)
                (lambda (self val)
                     (ask self 'set-count! (+ (ask self 'get-count) val))))
                     (else false)))))
```

We use *make-sub-object* to create an object that inherits the behaviors from one class, and extends those behaviors by defining new methods in the subclass implementation. The new *adjust!* method takes one Number parameter (in addition to the *self* object that is passed to every method) and adds that number to the current counter value. It cannot use (**set!** *count* (+ *count val*)) directly, though, since the *count* variable is defined in the application environment of its superclass object and is not visible within *adjustable-counter*. Hence, it accesses the counter using the *set-count!* and *get-count* methods provided by the superclass.

Suppose we create an *adjustable-counter* object:

(**define** *acounter* (*make-adjustable-counter*))

Consider what happens when (*ask acounter* 'adjust! 3) is evaluated. The *acounter* object is the result of the application of *make-sub-object*, so it is the procedure

(lambda (message)
 (let ((method (subproc message)))
 (if method method (super message)))))

where *super* is the *counter* object resulting from evaluating (*make-counter*) and *subproc* is the procedure created by the lambda-expression in *make-adjustable-counter*. The body of *ask* evaluates (*object message*) to find the method associated with the input message, in this case 'adjust!. The *acounter* object takes the *message* input and evaluates the let-expression:

(**let** ((*method* (*subproc message*))) . . .)

The result of applying *subproc* to *message* is the *adjust!* procedure defined by *make-adjustable-counter*:

```
(lambda (self val)
    (ask self 'set-count! (+ (ask self 'get-count) val)))
```

Since this is not false, the predicate of the if-expression is non-false and the value of the consequent expression, *method*, is the result of the procedure application. The *ask* procedure uses *apply* to apply this procedure to the *object* and *args* parameters. The *object* is the *acounter* object, and the *args* is the list of the extra parameters, in this case (3).

Thus, the *adjust!* method procedure is applied to the *acounter* object and 3. The body of the *adjust!* method uses *ask* to invoke the *set-count!* method on the *self* object. As with the first invocation, the body of *ask* evaluates (*object message*) to find the method. In this case, the subclass implementation provides no *set-count!* method so the result of (*subproc message*) in the application of the subclass object is false. Hence, the alternate expression is evaluated: (*super message*). This evaluates to the method associated with the *set-count!* method to the *self* object, setting the value of the counter to the new value.

We can define new classes by defining subclasses of previously defined classes. For example, *reversible-counter* inherits from *adjustable-counter*:

(define (make-reversible-counter) (make-subobject (make-adjustable-counter) (lambda (message) (cond ((eq? message 'previous!) (lambda (self) (ask self 'adjust! -1))) (else false)))))

The *reversible-counter* object defines the *previous!* method which provides a new behavior. If the message to a *adjustable-counter* object is not *previous!*, the method from its superclass, *adjustable-counter* is used. Within the *previous!* method we use *ask* to invoke the *adjust!* method on the *self* object. Since the subclass implementation does not provide an *adjust!* method, this will result in the superclass method being applied.

11.2.2 Overriding Methods

In addition to adding new methods, subclasses can replace the definitions of methods defined in the superclass. When a subclass replaces a method *overrides* defined by its superclass, then the subclass method *overrides* the superclass method. When the method is invoked on a subclass object, the new method will be used.

For example, we can define a subclass of *reversible-counter* that is not allowed to have negative counter values. If the counter would reach a nega-

tive number, instead of setting the counter to the new value, it produces an error message and maintains the counter at zero. We can do this by overriding the *set-count!* method. This replaces the superclass implementation of the method with a new implementation.

What should go where the ... is? When the value to set the count to is not negative, what should happen is the count is set as it would be by the superclass *set-count!* method. In the *positive-counter* code though, there is no way to access the *count* variable since it is in the superclass procedure's application environment. There is also no way to invoke the superclass' *set-count!* method since it has been overridden by *positive-counter*.

The solution is to provide a way for the subclass object to obtain its superclass object. We can do this by adding a *get-super* method to the object produced by *make-sub-object*:

```
(define (make-sub-object super subproc)
  (lambda (message)
      (if (eq? message 'get-super)
            (lambda (self) super)
            (let ((method (subproc message)))
                  (if method method (super message))))))))
```

Thus, when an object produced by *make-sub-object* is passed the *get-super* message it returns a method that produces the *super* object. The rest of the procedure is the same as before, so for every other message it behaves like the earlier *make-sub-object* procedure.

With the *get-super* method we can define the *set-count!* method for *positive-counter*, replacing the ... with:

(ask (ask self 'get-super) 'set-count! val))

Figure 11.3 shows the subclasses that inherit from *counter* and the methods they define or override.

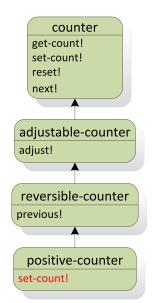


Figure 11.3. Counter class hierarchy.

Consider these sample interactions with a *positive-counter* object:

- > (**define** *poscount* (*make-positive-counter*))
- > (ask poscount 'next!)
- > (ask poscount 'previous!)
- > (ask poscount 'previous!)
- Segative count
- > (ask poscount 'get-count)
- 0

For the first *ask* application, the *next*! method is invoked on a *positive-counter* object. Since the *positive-counter* class does not define a *next*! method, the message is sent to the superclass, *reversible-counter*. The *reversible-counter* implementation also does not define a *next*! method, so the message is passed up to its superclass, *adjustable-counter*. This class also does not define a *next*! method, so the message is passed up to its superclass, *adjustable-counter*. This class also does not define a *next*! method, so the message is passed up to its superclass, *adjustable-counter*. This class also does not define a *next*! method, so the message is passed up to its superclass, *counter*. The *counter* class defines a *next*! method, so that method is used.

For the next *ask*, the *previous*! method is invoked. As before, the *positive-counter* class does not define a *previous*! method, so the message is sent to the superclass. Here, *reversible-counter* does define a *previous*! method. Its implementation involves an invocation of the *adjust*! method: (*ask self* 'adjust! -1). This invocation is done on the *self* object, which is an instance of the *positive-counter* class. Hence, the *adjust*! method is found from the *positive-counter* class implementation. This is the method that overrides the *adjust*! method defined by the *adjustable-counter* class. Hence, the second

invocation of previous! produces the "Negative count" error and does not adjust the count to -1.

The property this object system has where the method invoked depends on the object is known as *dynamic dispatch*. The method that will be used *dynamic dispatch* for an invocation depends on the *self* object. In this case, for example, it means that when we examine the implementation of the previous! method in the reversible-counter class it is not possible to determine what procedure will be applied for the method invocation, (ask self 'adjust! -1). It depends on the actual *self* object: if it is a *positive-counter* object, the *adjust!* method defined by *positive-counter* is used; if it is a *reversible-counter* object, the *ad*just! method defined by adjustable-counter class (the superclass of reversiblecounter) is used.

This is a lot of work to implement a simple counter, but the value of encapsulation and inheritance increases as programs get more complex. Programming with objects allows a programmer to manage complexity by hiding implementation details inside the objects from how those objects are used.

Dynamic dispatch provides for a great deal of expressiveness. It enables us to use the same code to produce many different behaviors by overriding methods in subclasses. This is very useful, but also very dangerous — it makes it impossible to reason about what a given procedure does, without knowing about all possible subclasses. For example, we cannot make any claims about what the previous! method in reversible-counter actually does, without knowing what the *adjust!* method does in all subclasses of reversible-counter.

Exercise 11.3. Define a *countdown* class that simulates a rocket launch countdown: it starts at some initial value, and counts down to zero, at which point the rocket is launched. Can you implement *countdown* as a subclass of counter?

Exercise 11.4. Define the variable-counter object from Exercise 11.2 as a subclass of counter.

Exercise 11.5. Define a new subclass of *parameterizable-counter* where the increment for each next! method application is a parameter to the constructor procedure. For example, (make-parameterizable-counter 0.1) would produce a counter object whose counter has value 0.1 after one invocation of the *next!* method.

11.3 Object-Oriented Programming

Object-oriented programming is a style of programming where programs are broken down into objects that can be combined to solve a problem or model a simulated world. The notion of designing programs around object manipulations goes back at least to Ada (see the quote at the end if Chapter 6), but started in earnest in the early 1960s.

During World War II, the US Navy began to consider the possibility of building a airplane simulator for training pilots and aiding aircraft designers. At the time, pilots trained in mechanical simulators that were custom designed for particular airplanes.

The Navy wanted a simulator that could be used for multiple airplanes and could accurately model the aerodynamics of different airplanes. Project Whirlwind was started at MIT to build the simulator. The initial plans called for an analog computer which would need to be manually reconfigured to change the aerodynamics model to a different airplane. Jay Forrester learned about emerging projects to build digital computers, in particular the ENIAC project at the University of Pennsylvania which became operational in 1946, and realized that building a digital programmable computer would enable a much more flexible and powerful simulator, as well as a machine that could be used for many other purposes.

Before Whirlwind, all digital computers operated as batch processors: a programmer would create a program (typically described using a stack of punch cards) and submit this to the computer. A computer operator would set up the computer to run the program, after which it would run and (if everything works as hoped) produce a result. A flight simulator, though, requires direct interaction between a human user and the computer.

The first Whirlwind computer was designed in 1947 and operational by 1950. It was the first interactive programmable digital computer. Producing a machine that could perform the complex computations needed for a flight simulator fast enough to be used interactively required much faster and more reliable memory that was possible with available technologies based on storing electrostatic charges in vacuum tubes. Jay Forrester invented a much faster memory based known as magnetic-core memory. Magnetic-core memory stores a bit using magnetic polarity.

The interactiveness of the Whirlwind computer opened up many new possibilities for computing. Shortly after the first Whirlwind computer, Ken Olson led an effort to build a version of the computer using transistors. The successor to this machine became the TX-2, and Ken Olsen went on to found Digital Equipment Corporation (DEC) which pioneered the wide-

Jay Forrester with magnetic-core memory (4096 bits)

spread use of moderately priced computers in science and industry. DEC was very successful in the 1970s and 1980s, but lacked the vision to see computers becoming inexpensive enough for individuals to own them, and suffered a long decline before eventually being bought by Compaq.

Ivan Sutherland, who was then a graduate student at MIT, had an opportunity to use the TX-2 machine. He developed a program called *Sketchpad* that was the first program to have an interactive graphical interface. Sketchpad allowed a used to draw and manipulate objects on the screen using a light pen. It was designed around objects and operations on those objects:

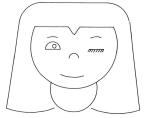
In the process of making the Sketchpad system operate, a few very general functions were developed which make no reference at all to the specific types of entities on which they operate. These general functions give the Sketchpad system the ability to operate on a wide range of problems. The motivation for making the functions as general as possible came from the desire to get as much result as possible from the programming effort involved. For example, the general function for expanding instances makes it possible for Sketchpad to handle any fixed geometry subpicture. The rewards that come from implementing general functions are so great that the author has become reluctant to write any programs for specific jobs. Each of the general functions implemented in the Sketchpad system abstracts, in some sense, some common property of pictures independent of the specific subject matter of the pictures themselves.

> Ivan Sutherland, Sketchpad: a Man-Machine Graphical Communication System, 1963

Sketchpad was a great influence on Douglas Engelbart who developed a research program around a vision of using computers interactively to enhance human intellect. In what has become known as "the mother of all demos", Engelbart and his colleagues demonstrated a networked, graphical, interactive computing system to the general public for the first time in 1968. He and his colleague, Bill English, also invented the computer mouse and gave it its name.

Sketchpad was also a major influence on Alan Kay in developing objectoriented programming. The first language to include built-in support for objects was the Simula programming language, developed in Norway in the 1960s by Kristen Nygaard and Ole Johan Dahl. Simula was designed to be a language for implementing simulations. It provided mechanisms for packaging data and procedures, and for implementing subclasses using inheritance.

In 1966, Alan Kay entered graduate school at the University of Utah, where Ivan Sutherland was then a professor. Here's how he describes his first assignment:



Components in Sketchpad

289

Alan Kay

Head whirling, I found my desk. ON it was a pile of tapes and listings, and a note: "This is the Algol for the 1108. It doesn't work. Please make it work." The latest graduate student gets the latest dirty task. The documentation was incomprehensible. Supposedly, this was the Case-Western Reserve 1107 Algol—but it had been doctored to make a language called Simula; the documentation read like Norwegian transliterated into English, which in fact it was. There were uses of words like activity and process that didn't seem to coincide with normal English usage.

Finally, another graduate student and I unrolled the program listing 80 feet down the hall and crawled over it yelling discoveries to each other. The weirdest part was the storage allocator, which did not obey a stack discipline as was usual for Algol. A few days later, that provided the clue. What Simula was allocating were structures very much like the instances of Sketchpad. There wee descriptions that acted like masters and they could create instances, each of which was an independent entity. What Sketchpad called masters and instances, Simula called activities and processes. Moreover, Simula was a procedural language for controlling Sketchpad-like objects, thus having considerably more flexibility than constraints (though at some cost in elegance).

This was the big hit, and I've not been the same since... For the first time I thought of the whole as the entire computer and wondered why anyone would want to divide it up into weaker things called data structures and procedures. Why not divide it up into little computers, as time sharing was starting to? But not in dozens. Why not thousands of them, each simulating a useful structure?

Alan Kay, The Early History of Smalltalk, 1993

Alan Kay went on to design the language Smalltalk, which became the first widely used object-oriented language. Smalltalk was developed as part of a project at XEROX's Palo Alto Research Center to develop a hand-held Don't worry about what computer that could be used as a learning environment by children.

best way to predict the future is In Smalltalk, everything is an object, and all computation is done by sending messages to objects. For example, in Smalltalk one computes (+12) by sending the message + 2 to the object 1. Here is Smalltalk code for implementing a counter object:

> class name counter instance variable names count *new count* < -0 $next \ count < - \ count + 1$ current ^ count

The new method is a constructor similar to make-counter. The next method replaces the value of the instance variable *count* with the result of sending the message + 1 to the *count* object.

Nearly all widely-used languages today provide built-in support for some

anybody else is going to do. The to invent it. Really smart people with reasonable funding can do just about anything that doesn't violate too many of Newton's Laws! Alan Kay

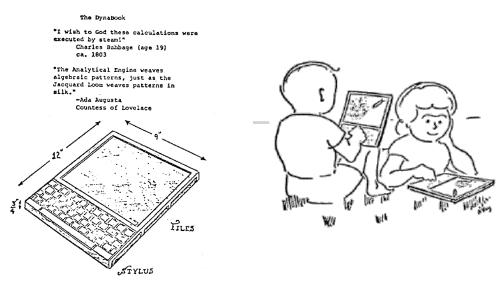


Figure 11.4. Images from Alan Kay, A Personal Computer for Children of All Ages, 1972.

form of object-oriented programming. For example, here is how a counter object could be defined in Python:

class counter: def __init__(self): self._count = 0 def rest(self): self._count = 0 def next(self): self._count = self._count + 1 def current(self): return self._count

The constructor is named <u>__init__</u>. Similarly to the object system we developed for Scheme, each method takes the *self* object as its parameter.

11.4 Summary

An object is an entity that packages state and procedures that manipulate that state together. By packaging state and procedures together, we can encapsulate state in ways that enable more elegant and robust programs.

Inheritance allows an implementation of one class to reuse or override methods in another class, known as its superclass. Programming using objects and inheritance enables a style of problem solving known as objectoriented programming in which we solve problems by modeling a problem instance using objects.

12 Interpreters

The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on our thinking abilities. Edsger Dijkstra, How do we tell truths that might hurt?

Languages are powerful tools for thinking. Different languages encourage different ways of thinking and lead to different thoughts. Hence, inventing new languages is a powerful way for solving problems. We can solve a problem by designing a language in which it is easy to express a solution, expressing the solution in that language, and implementing an interpreter for that language.

An *interpreter* is just a program. As input, it takes a specification of a pro-*interpreter* gram in some language. As output, it produces the output of the input program. By designing a new interpreter, we can invent a new language.

In this chapter, we explore how to implement an interpreter. We also introduce the Python programming language, and describe a Python program that implements an interpreter for a subset of the Scheme language. Implementing an interpreter further blurs the line between *data* and *programs*, that we first crossed in Chapter 3 by passing procedures as parameters and returning new procedures as results. Now that we are implementing an interpreter, all programs are just data input for the interpreter program. The meaning of the program is determined by the interpreter.

12.1 Building Languages

To implement an interpreter for a given target language we need to:

1. Implement a *parser* that takes as input a string representation of a *parser* program in the target language and produces a structural parse of the input program. The parser should break the input string into its language components, and form a parse tree data structure that represents the input text in a structural way. Section 12.3 describes our

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

parser implementation.

evaluator 2. Implement an *evaluator* that takes as input a structural parse of an input program, and evaluates that program. The evaluator should implement the target language's evaluation rules. Section 12.4 describes our evaluator.

Our target language is a simple subset of Scheme we call *Charme*.¹

The Charme language is very simple, yet is powerful enough to express all computations (that is, it is a universal programming language). Its evaluation rules are a subset of the statefull evaluation rules for Scheme. Charme includes the application expression, if expression, lambda expression, name expression, and definitions. It supports integral numbers, and provides the basic arithmetic and comparison primitives with the same meanings as they have in Scheme.

The full grammar and evaluation rules for Charme are given in Section 12.4. The evaluator implements those evaluation rules.

Before describing our interpreter implementation, the next section introduces Python, the programming language we use to implement the interpreter (and for most of the rest of the programs in this book).

12.2 Python

We could implement a Charme interpreter using Scheme (or any other universal programming language), but choose to implement it using the programming language Python. Python is a popular programming language initially designed by Guido van Rossum in 1991.² Python is freely available from http://www.python.org.

Python is widely used to develop dynamic web applications and as a scripting language for applications. Python was used to manage special effects production for Star Wars: Episode II, and is used extensively in many organizations including Google, reddit.com, and NASA.³

We use Python instead of Scheme to implement our Charme interpreter for

¹The original name of Scheme was "Schemer", a successor to the languages "Planner" and "Conniver". Because the computer on which "Schemer" was implemented only allowed six-letter file names, its name was shortened to "Scheme". In that spirit, we name our snake-charming language, "Charmer" and shorten it to Charme. Depending on the programmer's state of mind, the language name can be pronounced either "charm" or "char me".

²The name *Python* alludes to Monty Python's Flying Circus.

³See http://www.python.org/about/quotes/ for more descriptions of Python uses.

a few reasons. The first reason is pedagogical: it is instructive to learn new languages. As Dijkstra's quote at the beginning of this chapter observes, the languages we use have a profound effect on how we think. This is true for natural languages, but also true for programming languages. Different languages make different styles of programming more convenient, and it is important for every programmer to be familiar with many different styles of programming.

All of the major concepts we have covered so far apply to Python nearly identically to how they apply to Scheme, but seeing them in the context of a different language should make it clearer what the fundamental concepts are and what are artifacts of a particular programming language. Another reason for using Python is that it provides some features that enhance expressiveness that are not available in Scheme. These include built-in support for objects and imperative control structures.

The grammar for Python is quite different from the Scheme grammar, so Python programs look very different from Scheme programs. In most respects, however, the evaluation rules are quite similar to the evaluation rules for Scheme. This chapter does not describe the entire Python language, but instead introduces the grammar rules and evaluation rules for different Python constructs as we need them to implement our interpreter. For more complete documentation on Python see http://www.python.org.

Like Scheme, Python is a *universal programming language*: both languages are capable of expressing *all* mechanical computations. For any computation we can express in Scheme, there is a Python program that defines the same computation. Conversely, every Python program has an equivalent Scheme program.

One piece of evidence that every Scheme program has an equivalent Python program is the interpreter we develop in this chapter. Since we can implement an interpreter for a Scheme-like language in Python, we know we can express every computation that can be expressed by a program in that language with an equivalent Python program (that is, the Charme interpreter implemented in Python with the original Charme program as input).

Tokenizing. We introduce Python using one of the procedures in our interpreter implementation. We divide the job of parsing into two procedures that are combined to solve the problem of transforming an input string into a list describing the input program's structure. The first part is the *tokenizer* which *tokenizes* an input string. Its input is the input string in the target programming language, and its output is a list of the tokens in that string.

A *token* is an indivisible syntactic unit. For example, the Charme expres- *token* sion, (define *square* (lambda (x) (* x x))), contains the tokens: (, define,

square, (, lambda, (, x,), (, *, x, x,),), and). The tokens are separated by whitespace (spaces, tabs, and newlines). Punctuation marks such as the left and right parentheses are tokens by themselves; even when they are adjacent to non-whitespace characters these marks are considered independent tokens.

The *tokenize* procedure below takes as input a string *s* in the Charme target language, and produces as output a list of the tokens in *s*. We describe the Python language constructs it uses next.

```
def tokenize(s):
  current = " # the empty string (two single quotes)
  tokens = [] # the empty list
  for c in s: # for each character, c, in the string s
    if c.isspace(): # if c is a whitespace
       if len(current) > 0: # if the current token is non–empty
         tokens.append(current) # add it to the list
         current = " # reset current token to empty string
    elif c in '()': # else, if c is a parenthesis
       if len(current) > 0: # end the current token
         tokens.append(current)
         current = "
       tokens.append(c) # add the parenthesis to the token list
    else: # otherwise (it is an alphanumeric)
       current = current + c # add the character to the current token
  # end of the for loop (by indentation); reached the end of s
  if len(current) > 0: # if there is a current token add it
     tokens.append(current)
  return tokens # the result is the list of tokens
```

12.2.1 Python Programs

Whereas Scheme programs are composed of expressions and definitions, Python programs are mostly sequences of statements. Unlike expressions which (mostly) evaluate to values, a statement has no value. The emphasis on statements reflects (and impacts) the style of programming used with Python. It is more imperative than that used with Scheme: instead of composing expressions in ways that pass the result of one expression as an operand to the next expression, Python programs typically consist of a sequence of statements, each of which alters the state in some way towards reaching the goal state. Nevertheless, it is possible (but not recommended) to program in Scheme using an imperative style (emphasizing **begin** and **set!** expressions), and it is possible (but not recommended) to program in Python using a functional style (emphasizing procedure applications and eschewing the assignment statement).

Defining a procedure in Python is similar to defining a procedure in Scheme, except the grammar rule is different:

ProcedureDefinition	n::⇒	def Name (Parameters): Block
Parameters	$::\Rightarrow$	ϵ
Parameters	$::\Rightarrow$	SomeParameters
SomeParameters	$::\Rightarrow$	Name
SomeParameters	$::\Rightarrow$	Name, SomeParameters
Block	$::\Rightarrow$	Statement
Block	$::\Rightarrow$	<newline> indented(Statements)</newline>
Statements	$::\Rightarrow$	Statement < newline > MoreStatements
MoreStatements	$::\Rightarrow$	Statement < newline > MoreStatements
MoreStatements	$::\Rightarrow$	ϵ

Unlike in Scheme, the whitespace (such as new lines) has meaning in Python. Statements cannot be separated into multiple lines, and only one statement may appear on a single line. Indentation within a line also matters. Instead of using parentheses to provide code structure, Python uses the indentation to group statements into blocks. The Python interpreter will report an error if the indentation of the code does not match its structure.

Since whitespace matters in Python, we include newlines (*<newline>*) and indentation in our grammar. We use *indented*(*elements*) to indicate that the *elements* are indented. For example, the rule for *Block* is a newline, followed by one or more statements. The statements are all indented one level inside the block's indentation. This means it is clear when the block's statements end because the next line is not indented to the same level.

The evaluation rule for a procedure definition is similar to the rule for evaluating a procedure definition in Scheme.

Python Procedure Definition. The procedure definition,

def Name (Parameters): Block

defines *Name* as a procedure that takes as inputs the *Parameters* and has the body expression *Block*.

The procedure definition

def tokenize(s): ...

defines a procedure named *tokenize* that takes a single parameter, *s*.

Assignment. The body of the procedure uses several different types of Python statements. Following Python's more imperative style, five of the statements in *tokenize* are assignment statements. For example, the assignment statement, *tokens* = [] assigns the value [] (the empty list) to the name *tokens*.

The grammar for the assignment statement is:

Statement	$::\Rightarrow$	AssignmentStatement
AssignmentStatement	::⇒	<i>Target</i> = <i>Expression</i>
Target	$::\Rightarrow$	Name

For now, we use only a *Name* as the left side of an assignment, but since other constructs can appear on the left side of an assignment statement, we introduce the nonterminal *Target* for which additional rules can be defined to encompass other possible assignees. Anything that can hold a value (such as an element of a list) can appear as the target of an assignment.

The evaluation rule for an assignment statement is similar to Scheme's evaluation rule for set expressions: the meaning of x = e in Python is similar to the meaning of (**set!** *x e*) in Scheme, except that the target *Name* need not exist before the assignment. In Scheme, evaluating (**set!** *x* 7) where the name *x* was not previously defined is an error; in Python, if *x* is not already defined, evaluating x = 7 creates a new place named *x*.

Python Evaluation Rule: Assignment. To evaluate an assignment statement, evaluate the expression, and assign the value of the expression to the place identified by the target. If no such place exists, create a new place with that name.

Arithmetic and Comparison Expressions. Like Scheme, Python supports many different kinds of expressions for performing arithmetic and comparisons. Since Python does not use parentheses to group expressions, the grammar provides the grouping by breaking down expression in several steps. This defines an order of *precedence* for parsing expressions. If a complex expression includes many expressions, the grammar specifies how they will be grouped. For example, consider the expression 3+4*5. In Scheme, the expressions (+ 3 (* 4 5)) and (* (+ 3 4) 5) are clearly different and the parentheses group the subexpressions. The meaning of the Python expression 3+4*5 is (+ 3 (* 4 5)), that is, it evaluates to 23. The expression 4*5+3 also evaluates to 23.

This makes the Python grammar rules more complex since they must deal with * and + differently, but it makes the meaning of Python expressions match our familiar mathematical interpretation, without needing all the parentheses needed in Scheme expressions. The way this is done is by defining the grammar rules so an *AddExpression* can contain a *MultExpression* as one of its subexpressions, but a *MultExpression* cannot contain an *AddExpression*. This makes the multiplication operator have *higher precedence* than the addition operator. If an expression contains both + and * operators, the * operator attaches to its operands first. The replacement rules that happen first have lower precedence, since their components must be built from the remaining pieces.

Here are the grammar rules for Python expressions for comparison, multiplication, and addition expressions that achieve this:

Expression CompExpr Comparator CompExpr	$::\Rightarrow ::\Rightarrow $	CompExpr CompExpr Comparator CompExpr < > == <= >= AddExpression
AddExpression AddExpression AddExpression	::⇒	AddExpression + MultExpression AddExpression - MultExpression MultExpression
MultExpression MultExpression		MultExpression * PrimaryExpression PrimaryExpression
PrimaryExpressior PrimaryExpressior PrimaryExpressior	n::⇒	Name

The last rule allows parentheses to be used to group expressions. For example, (3 + 4) * 5 is parsed as the *PrimaryExpression*, (3 + 4), times 5, so it evaluates to 35; without the parentheses, 3 + 4 * 5 is parsed as 3 plus the *MultExpression*, 4 * 5, so it evaluates to 23.

A *Literal* can be a numerical constant. Numbers in Python are similar (but not identical) to numbers in Scheme. In the example program, we use the integer literal 0.

A PrimaryExpression can also be a name, similar to names in Scheme. The

evaluation rule for a name in Python is similar to the stateful rule for evaluating a name in Scheme⁴.

Exercise 12.1. Do comparison expressions have higher or lower precedence than addition expressions? Explain why using the grammar rules.

Exercise 12.2. Draw the parse tree for each of the following Python expressions and provide the value of each expression.

a. 1 + 2 + 3 * 4
b. 3 > 2 + 2
c. 3 * 6 >= 15 == 12
d. (3 * 6 >= 15) == True

12.2.2 Data Types

Python provides many built-in data types. We describe three of the most useful data types here: lists, strings, and dictionaries.

Lists. Python provides a list datatype similar to lists in Scheme, except instead of building list from simpler parts (that is, using *cons* pairs in Scheme), the Python list type is provided as a built-in datatype. The other important difference is that Python lists are mutable.

Lists are denoted in Python using square brackets. For example, [] denotes an empty list, and [1, 2] denotes a list containing two elements. As in Scheme, the elements of a list can be of any type (including another list).

Elements can be selected from a list using the list subscription expression:

PrimaryExpression ::⇒ *SubscriptExpression SubscriptExpression* ::⇒ *PrimaryExpression* [*Expression*]

If the first primary expression evaluates to a list, the subscript expression selects the element indexed by value of the inner expression from the list. For example,

 $\gg a = [1, 2, 3]$

⁴There are some subtle differences and complexities (see Section 4.1 of the Python Reference Manual, however, which we do not go into here.

```
\gg a[0]

1

\gg a[1+1]

3

\gg a[3]

IndexError: list index out of range
```

So, the expression *p*[0] in Python is analogous to (*car p*) in Scheme.

We can also use negative selection indexes to select elements from the back of the list. The expression p[-1] selects the last element in the list p.

The running time of a list selection operation in Python is approximately constant: it does not depend on the length of the list even if the selection index is the end of the list. The reason for this is that Python stores lists internally differently from how Scheme stores them as arbitrary pairs. The elements of a List are stored as a block in memory, so the location of the k^{th} element can be calculated by adding *Sk* to the location of the start of the list where *S* is a constant representing the size of each element in the list.

A subscript expression can also select a range of elements from the list:

SubscriptExpression :: \Rightarrow PrimaryExpression [Bound_{Low} : Bound_{High}] Bound :: \Rightarrow Expression | ϵ

The subscript expression evaluates to a list containing the elements between the low bound and the high bound. If the low bound is missing, the low bound is the beginning of the list. If the high bound is missing, the high bound is the end of the list. For example,

```
 \gg a = [1, 2, 3] 
 \gg a[:1] 
 [1] 
 \gg a[1:] 
 [2, 3] 
 \gg a[4-2:3] 
 [3] 
 \gg a[:] 
 [1, 2, 3]
```

So, the expression *p*[1:] in Python is analogous to (*cdr p*) in Scheme.

Python lists are mutable (the value of a list can change after it is created). We can use list subscripts as the targets for an assignment expression:

Target ::⇒ *SubscriptExpression*

For example,

 $\gg a = [1, 2, 3]$ $\gg a[0] = 7$ $\gg a$ [7, 2, 3] $\gg a[1:4] = [4, 5, 6]$ $\gg a$ [7, 4, 5, 6] $\gg a[1:] = [6]$ $\gg a$ [7, 6]

Note that assignments can not only be used to change the values of elements in the list, but also to change the length of the list.

In the *tokenize* procedure, we use *tokens* = [] to initialize *tokens* to an empty list, and use *tokens.append(current)* to append an element to the *tokens* list. The Python *append* procedure is similar to the *mlist-append!* procedure (except it works on the empty list, where there is no way in Scheme to modify the null input list).

Strings. The other datatype used in *tokenize* is the string datatype, named *str* in Python. As in Scheme, a String is a sequence of characters. Unlike Scheme Strings and Python Lists, which are mutable, the Python *str* datatype is immutable. So, once a string is created its value cannot change. This means all the string methods that seem to change the value of a string actually return a new string (for example, *capitalize*() returns a copy of the string with its first letter capitalized).

Strings are enclosed in quotes, which (unlike in Scheme where single quotes cannot be used) can be either single quotes (e.g., 'hello') or double quotes (e.g., "hello"). In our example program, we use the assignment expression, *current* = " (two single quotes), to initialize the value of *current* to the empty string. The input, *s*, is a string object.

Dictionaries. A dictionary is a lookup-table where values are associated with keys. The keys can be any immutable type (strings and numbers are commonly used as keys); the values can be of any type. We did not use the dictionary type in *tokenize*, but it is very useful for implementing frames in the evaluator.

A dictionary is denoted using curly brackets. The empty dictionary is {}. We can add a key-value pair to the dictionary using an assignment where

the left side is a subscript expression that specifies the key and the right side is the value assigned to that key. For example,

birthyear = {} *birthyear*['Euclid'] = '300BC' *birthyear*['Ada Lovelace'] = 1815 *birthyear*['Alan Turing'] = 1912 *birthyear*['Alan Kay'] = 1940

defines *birthdays* as a dictionary containing four entries. The keys are all strings; the values are numbers, except for Euclid's entry which is a string.

We can obtain the value associated with a key in the dictionary using a subscript expression. For example, *birthyear*['Alan Turing'] evaluates to 1912. We can replace the value associated with a key using the same syntax as adding a key-value pair to the dictionary. The statement,

birthyear['Euclid'] = -300

replaces the value of *birthyear* ['Euclid'] with the number -300.

The dictionary type also provides a method *has_key* that takes one input and produces a Boolean indicating if the dictionary object contains the input value as a key. For the *birthyear* dictionary, *birthyear.has_key*('John Backus') evaluates to False and *birthyear.has_key*('Ada Lovelace') evaluates to True.

The dictionary type lookup and update operations have approximately constant running time in most cases: the time it takes to lookup the value associated with a key does not scale as the size of the dictionary increases. This is done by computing a number based on the key that determines where the associated value would be stored (if that key is in the dictionary). The number is used to index into a structure similar to a Python list (so it has constant time to retrieve any element). Mapping keys to appropriate numbers to avoid many keys mapping to the same location in the list is a difficult problem, but one the Python dictionary object does well for typical sets of keys.

12.2.3 Objects and Methods

In Python, every data value, including lists and strings, is an object. This means the way we manipulate data is to invoke methods on objects. The list datatype provides methods for manipulating and observing lists. The grammar rules for expressions that call procedures are:

$PrimaryExpression :: \Rightarrow$	CallExpression
CallExpression $::\Rightarrow$	<pre>PrimaryExpression (ArgumentList)</pre>
ArgumentList $::\Rightarrow$	SomeArguments
ArgumentList $::\Rightarrow$	ϵ
SomeArguments $::\Rightarrow$	Expression
SomeArguments $::\Rightarrow$	Expression , SomeArguments

To invoke a method we use the same rules, but the *PrimaryExpression* of the *CallExpression* specifies an object and method:

PrimaryExpression ::⇒ *AttributeReference AttributeReference* ::⇒ *PrimaryExpression*. *Name*

The name *AttributeReference* is used since the same syntax is used for accessing the internal state of objects as well.

The *tokenize* procedure includes five method applications, four of which are *tokens.append(current)*. The object reference is *tokens*, the list of tokens in the input. The list *append* method takes one parameter and adds that value to the end of the list.

The other method invocation is *c.isspace*() where *c* is a string consisting of one character in the input. The *isspace* method for the string datatype returns true if the input string is non-empty and all characters in the string are whitespace (either spaces, tabs, or newlines).

The *tokenize* procedure also uses the built-in function *len*. The *len* function takes as input an object of a collection datatype (including a list or a string), and outputs the number of elements in the collection. It is is a procedure, not a method; the input object is passed in as a parameter. In *tokenize*, we use *len(current*) to find the number of characters in the current token.

12.2.4 Control Statements

Python provides control statements for making decisions, looping, and for returning from a procedure.

If. Python's if-statement is similar to both the if-expression and conditional-expression in Scheme:

```
Statement::IfStatementIfStatement ::if Expression_Predicate : Block Elifs OptElseElifs:::Elifs::elif Expression_Predicate : Block ElifsOptElse:::OptElse::else : Block
```

The evaluation rule is similar to Scheme's conditional expression. First, the *Expression*_{Predicate} of the **if** is evaluated. If it evaluates to a true value, the consequence *Block* is evaluated, and none of the rest of the *IfStatement* is evaluated. Otherwise, each of the *elif* predicates is evaluated in order. If one evaluates to a true value, its *Block* is evaluated and none of the rest of the *IfStatement* is evaluated. If none of the *elif* predicates evaluates to a true value, the rest of the *IfStatement* is evaluated. If none of the *elif* predicates evaluates to a true value, the **elif** predicates evaluates to a true value, the **elif** predicates evaluates to a true value, the *elif* predicates evaluates to a true value, the **elif** predicates evaluates to a true value value, the **elif** predicates evaluates to a true value value

The main if-statement in *tokenize* is:

```
if c.isspace():
    ...
elif c in '()':
    ...
else:
    current = current + c
```

The first if predicate tests if the current character is a space. If so, the end of the current token has been reached. The consequent *Block* is itself an *IfStatement*:

if len(current) > 0:
 tokens.append(current)
 current = "

If the current token has at least one character, it is appended to the list of tokens in the input string and the current token is reset to the empty string. This *IfStatement* has no *elif* or *else* clauses, so if the predicate is false, there is nothing to do. Unlike in Scheme, there is no need to have an alternate clause, since the Python if-statement does not need to produce a value.

If the predicate for the main if-statement is false, evaluation proceeds to the *elif* clause. The predicate for this clause tests if *c* is in the set of characters given by the literal string '()'. That is, it is true if *c* is either an open or close parentheses. As with spaces, a parenthesis ends the previous token, so the first statement in the *elif* clauses is identical to the first consequent clause. The difference is unlike spaces, we need to keep trace of the parentheses, so it is added to the token list by *tokens.append*(*c*).

The final clause is an *else* clause, so its body will be evaluated if neither the **if** or **elif** predicate is true. This means the current character is not a space or a parenthesis, so it is some other character. It should be added to the current token. This is done by the assignment expression, *current* = *current* + *c*. The addition operator in Python works on strings as well as numbers (and some other datatypes). For strings, it concatenates the operands into a new string. Recall that strings are immutable, so there is no equivalent to the list *append* method. Instead, appending a character to a string involves creating a new string object.

For. A **for** statement provides a way of iterating through a set of values, carrying out a body block for each value.

Statement ::⇒ ForStatement ForStatement ::⇒ for Target in Expression : Block

The *Target* (as was used in the assignment statement) is typically a variable name. The value of the *Expression* is a collection of elements. To evaluate a for statement, each value of the *Expression* collection is assigned to the *Target* in order, and the *Block* is evaluated once for each value.

Other than the first two initializations, and the final two statements, the bulk of the *tokenize* procedure is contained in a **for** statement. The forstatement in *tokenize* header is **for** c **in** s. The string s is the input string, a collection of characters. So, the loop will repeat once for each character in s, and the value of c is each character in the input string (represented as a singleton string), in turn.

Return. In Scheme, the body of a procedure is an expression and the value of that expression is the result of evaluating an application of the procedure. In Python, the body of a procedure is a block of one or more statements. Statements have no value, so there is no obvious way to decide what the result of a procedure application should be. Python's solution is to use a return statement.

The grammar for the return statement is:

Statement $::\Rightarrow$ ReturnStatementReturnStatement :: \Rightarrow return Expression

A return statement finishes execution of a procedure, returning the value of the *Expression* to the caller as the result.

The last statement of the *tokenize* procedure is:

return tokens

It returns the value of the *tokens* list to the caller.

12.3 Parser

The parser takes as input a Charme program string, and produces as output a Python list that encodes the structure of the input program. The first step is to break the input string into tokens; this is what the *tokenize* procedure defined in the previous section does.

The next step is to take the list of tokens and produce a data structure that encodes the structure of the input program. Since the Charme language is built from simple parenthesized expressions, we can represent the parsed program as a list. But, unlike the list returned by *tokenize* which is a flat list containing the tokens in order, the list returned by *parse* is a structured list that may have lists (and lists of lists, etc.) as elements.

Charme's syntax is very simple, so the parser can be implemented by just breaking an expression into its components using the parentheses and whitespace. The parser needs to balance the open and close parentheses that enclose expressions. For example, if the input string is "(define square (lambda (x) (* x x)))" the output of *tokenizer* is the list:

['(', 'define', 'square', '(', 'lambda', '(', 'x', ')', '(', '*', 'x', 'x', ')', ')', ')']

The parser structures the tokens according to the program structure, producing a parse tree that record the structure of the input program. The parenthesis provide the program structure, so are removed from the parse tree. For the example, the resulting parse tree is:

```
['define',
'square',
[ 'lambda',
['x'],
['*', 'x', 'x']
]
]
```

The output parse structure is a list containing three elements, the first is the keyword 'define', the second is the name 'square', and the third is a list containing three elements, ['lambda', ['x'], ['*', 'x', 'x']], the third of which is itself a list containing three elements.

Here is the definition of *parse*:

```
def parse(s):
  def parsetokens(tokens, inner):
    res = []
    while len(tokens) > 0:
      current = tokens.pop(0)
      if current == '(':
        res.append (parsetokens(tokens, True))
      elif current == ')':
        if inner: return res
        else:
         error('Unmatched close paren: ' + s)
         return None
      else:
        res.append(current)
    if inner:
      error ('Unmatched open paren: (+ s)
      return None
    else:
      return res
  return parsetokens(tokenize(s), False)
```

The input to *parse* is a string in the target language. The output is a list of the parenthesized-expressions in the input. Here are some examples:

```
 \gg parse('150') \\ ['150'] \\ \gg parse('(+ 1 2)') \\ [['+', '1', '2']] \\ \gg parse('(+ 1 (* 2 3))') \\ [['+', '1', ['*', '2', '3']]] \\ \gg parse('(define square (lambda (x) (* x x)))') \\ [['define', 'square', ['lambda', ['x'], ['*', 'x', 'x']]]] \\ \gg parse('(+ 1 2) (+ 3 4)') \\ [['+', '1', '2'], ['+', '3', '4']]
```

The parentheses are no longer included as tokens in the result, but their presence in the input string determines the structure of the result.

recursive descent The *parse* procedure implements what is known as a *recursive descent* parser. The main *parse* procedure defines the *parsetokens* helper procedure and returns the result of calling it with inputs that are the result of tokenizing the input string and the Boolean literal False: **return** *parsetokens(tokenize(s),* False). The *parsetokens* procedure takes two inputs: *tokens*, a list of tokens (that results from the *tokenize* procedure); and *inner*, a Boolean that indicates whether the parser is inside a parenthesized expression. The value of *inner* is False for the initial call since the parser starts outside a parenthesized expression. All of the recursive calls result from encountering a '(', so the value passed as *inner* is True for all the recursive calls.

The body of the *parsetokens* procedure initializes *res* to an empty list that will be used to store the result. Then, the **while** statement iterates as long as the token list contains at least one element. The first statement of the **while** statement block assigns *tokens.pop*(0) to *current*. The *pop* method of the list takes a parameter that selects an element from the list. The selected element is returned as the result. The *pop* method also mutates the list object by removing the selected element. So, *tokens.pop*(0) returns the first element of the *tokens* list and removes that element from the list. This is similar to (*cdr tokens*) with one big difference: the *tokens* object is modified by the call. This is essential to the parser making progress: every time the *tokens.pop*(0) expression is evaluated the number of elements in the token list is reduced by one.

If the *current* token is an open parenthesis, *parsetokens* is called recursively to parse the inner expression (that is, all the tokens until the matching close parenthesis). The result is a list of tokens, which is appended to the result. If the *current* token is a close parenthesis, the behavior depends on whether or not the parser is parsing an inner expression. If it is inside an expression (that is, an open parenthesis has been encountered with no matching close parenthesis yet), the close parenthesis closes the inner expression, and the result is returned. If it is not in an inner expression, the close parenthesis has no matching open parenthesis so a parse error is reported. The **else** clause deals with all other tokens by appending them to the list.

12.4 Evaluator

The evaluator takes a list representing a parsed program fragment in Charme and an environment, and outputs the result of evaluating the input code in the input environment. The evaluator implements the evaluation rules for the target language.

The core of the evaluator is the procedure *meval*:

def meval(expr, env):
 if isPrimitive(expr): return evalPrimitive(expr)
 elif isIf(expr): return evalIf(expr, env)
 elif isDefinition(expr): evalDefinition(expr, env)

elif isName(expr): return evalName(expr, env)
elif isLambda(expr): return evalLambda(expr, env)
elif isApplication(expr): return evalApplication(expr, env)
else: error ('Unknown expression type: ' + str(expr))

The if statement matches the input expression with one of the expression types (or the definition) in the Charme language, and returns the result of applying the corresponding evaluation procedure (if the input is a definition, no value is returned since definitions do not produce an output value). We next consider each evaluation rule in turn.

12.4.1 Primitives

Charme supports two kinds of primitives: natural numbers and primitive procedures.

```
def isPrimitive(expr):
    return (isNumber(expr) or isPrimitiveProcedure(expr))
```

If the expression is a number, it is a string of digits. The *isNumber* procedure evaluates to True if and only if its input is a number:

def isNumber(expr):
 return isinstance(expr, str) and expr.isdigit()

Here, we use the built-in function *isinstance* to check if *expr* is of type *str*. The and-expression in Python evaluates similarly to the Scheme **and** special form: the left operand is evaluated first; if it evaluates to a false value, the value of the and expression is that false value. If it evaluates to a true value, the right operand is evaluated, and the value of the and-expression is the value of its right operand. This evaluation rule means it is safe to use *expr.isdigit()* in the right operand, since it is only evaluated if the left operand evaluated to a true value, which means *expr* is a string.

Primitive procedures are defined using Python procedures. Hence, the *isPrimitiveProcedure* procedure is defined using *callable*, a procedure that returns true only for objects that are callable (such as procedures and methods):

def isPrimitiveProcedure(expr):
 return callable(expr)

The evaluation rule for a primitive is identical to the Scheme rule:

Charme Evaluation Rule 1: Primitives. A primitive expression evaluates to its pre-defined value.

We need to implement the *pre-defined* values in our Charme interpreter.

To evaluate a number primitive, we need to convert the string representation to a number of type *int*. The *int*(*s*) constructor takes a string as its input and outputs the corresponding integer:

```
def evalPrimitive(expr):
    if isNumber(expr): return int(expr)
    else: return expr
```

The **else** clause means that all other primitives (in Charme, this is only primitive procedures and Boolean constants) self-evaluate: the value of evaluating a primitive is itself.

For the primitive procedures, we need to define Python procedures that implement the primitive procedure. For example, here is the *primitivePlus* procedure that is associated with the + primitive procedure:

def primitivePlus (operands):
 if (len(operands) == 0): return 0
 else: return operands[0] + primitivePlus (operands[1:])

The input is a list of operands. Since a procedure is applied only after all subexpressions are evaluated (according to the Scheme evaluation rule for an application expression), there is no need to evaluate the operands: they are already the evaluated values. For numbers, the values are Python integers, so we can use the Python + operator to add them. To provide the same behavior as the Scheme primitive + procedure, we define our Charme primitive + procedure to evaluate to 0 when there are no operands, and otherwise, recursively add all of the operand values.

The other primitive procedures are defined similarly.

def primitiveTimes (operands):
 if (len(operands) == 0): return 1
 else: return operands[0] * primitiveTimes (operands[1:])

def primitiveMinus (operands):
 if (len(operands) == 1): return -1 * operands[0]
 elif len(operands) == 2: return operands[0] - operands[1]
 else:
 evalError('- expects 1 or 2 operands, given %s: %s' % (len(operands), str(operands))))

def primitiveEquals (operands):
 checkOperands (operands, 2, '=')

return *operands*[0] == *operands*[1]

```
def primitiveLessThan (operands):
    checkOperands (operands, 2, '<')
    return operands[0] < operands[1]</pre>
```

The *checkOperands* procedure reports an error if a primitive procedure is applied to the wrong number of operands:

```
def checkOperands(operands, num, prim):
    if (len(operands) != num):
        evalError('Primitive %s expected %s operands, given %s: %s'
            % (prim, num, len(operands), str(operands)))
```

12.4.2 If Expressions

Charme provides an if-expression special form with an evaluation rule identical to the Scheme if-expression.

The grammar rule for an if-expression is:

 $\begin{array}{ll} \textit{Expression} & :: \Rightarrow & \textit{IfExpression} \\ \textit{IfExpression} :: \Rightarrow & (\textbf{if } \textit{Expression}_{\textit{Predicate}} \\ & & \textit{Expression}_{\textit{Consequent}} \\ & & & \textit{Expression}_{\textit{Alternate}}) \end{array}$

The expression object representing an if-expression should be a list containing three elements, with the first element matching the keyword if.

All special forms have this property: they are represented by lists where the first element is a keyword that identifies the special form. The *isSpecialForm* procedure takes an expression and a keyword and outputs a Boolean. The result is True if the expression is a special form matching the keyword:

```
def isSpecialForm(expr, keyword):
    return isinstance(expr, list) and len(expr) > 0 and expr[0] == keyword
```

We can use this to recognize different special forms by passing in different keywords. We recognize an if-expression by the if token at the beginning of the expression:

```
def isIf(expr):
    return isSpecialForm(expr, 'if')
```

The evaluation rule for an if-expression is:⁵

Charme Evaluation Rule 5: If. To evaluate an if-expression in the current environment, (a) evaluate the predicate expression in the current environment; then, (b) if the value of the predicate expression is a false value then the value of the if-expression is the value of the alternate expression in the current environment; otherwise, the value of the if-expression is the value of the if-expression in the current environment expression in the current environment.

The procedure *evallf* is implements this evaluation rule:

def evallf(expr,env):
 if meval(expr[1], env) != False: return meval(expr[2],env)
 else: return meval(expr[3],env)

To program defensively, we also include some error checking in our *evallf* procedure by adding these statements at the beginning of the procedure:

```
assert isIf(expr)
if len(expr) != 4:
     evalError ('Bad if expression: %s' % str(expr))
```

The first statement uses the Python **assert** statement to make an assertion. The **assert** keyword is followed by an expression. If the value of the expression is False the assertion produces an error message and terminates the execution. It is an error to apply *evalIf* to an expression that is not an if-expression.

The second statement is an if-expression that tests the length of the input expression. It should have four elements: the if keyword, the predicate expression, the consequence expression, and the alternate expression. If the input expression has more or less than four elements, *evalError* is used to report and error and terminate execution.

12.4.3 Definitions and Names

To evaluate definitions and names we need to represent environments. A definition adds a name to a frame, and a name expression evaluates to the value associated with a name.

⁵We number the Charme evaluation rules using the numbers we used for the analogous Scheme evaluation rules, but present them in a different order.

We will use a Python class to represent an environment. As in Chapter 11, a class packages state and procedures that manipulate that state. In Scheme, we needed to use a message-accepting procedure to do this. Python provides the class construct to support it directly. We define the *Environment* class for representing an environment. It has internal state for representing the parent (itself an *Environment* or None, Python's equivalent to *null* for the global environment's parent), and for the frame.

The Python dictionary datatype provides a convenient way to implement a frame. The <u>__init__</u> procedure constructs a new object. It initializes the frame of the new environment to the empty dictionary using *self_frame* = {}.

The *addVariable* method either defines a new variable or updates the value associated with a variable. Using the dictionary datatype, we can do this with a simple assignment statement. The *lookupVariable* method first checks if the frame associated with this environment has a key associated with the input *name*. If it does, the value associated with that key is the value of the variable and that value is returned. Otherwise, if the environment has a parent, the value associated with the name is the value of looking up the variable in the parent environment. This directly follows from the statefull Scheme evaluation rule for name expressions. The **else** clause addresses the situation where the name is not found and there is no parent environment (since we have already reached the global environment) by reporting an evaluation error indicating an undefined name.

class Environment:

```
def __init__(self, parent):
    self._parent = parent
    self._frame = {}
    def addVariable(self, name, value):
        self._frame[name] = value
    def lookupVariable(self, name):
        if self._frame.has_key(name): return self._frame[name]
        elif (self._parent): return self._parent.lookupVariable(name)
        else: evalError('Undefined name: %s' % (name))
```

Once the *Environment* class is defined, implementing the evaluation rules for definitions and name expressions is straightforward.

```
def isDefinition(expr):
    return isSpecialForm(expr, 'define')

def evalDefinition(expr, env):
    assert isDefinition(expr)
    if len(expr) != 3: evalError ('Bad definition: %s' % str(expr))
    name = expr[1]
```

```
if isinstance(name, str):
    value = meval(expr[2], env)
    env.addVariable(name, value)
else:
    evalError ('Bad definition: %s' % str(expr))
def isName(expr):
    return isinstance(expr, str)
def evalName(expr, env):
```

```
assert isName(expr)
return env.lookupVariable(expr)
```

12.4.4 Procedures

The result of evaluating a lambda-expression is a procedure. Hence, to define the evaluation rule for lambda-expressions we need to define a class for representing user-defined procedures. It needs to record the parameters, procedure body, and defining environment:

```
class Procedure:
    def __init__(self, params, body, env):
        self._params = params
        self._body = body
        self._env = env
    def __str__(self):
        return '<Procedure %s / %s>' % (str(self._params), str(self._body))
    def getParams(self): return self._params
```

def getBody(self): return self._body def getEnvironment(self): return self._env

Using this, we can define the evaluation rule for lambda expressions to create a *Procedure* object:

```
def isLambda(expr):
    return isSpecialForm(expr, 'lambda')

def evalLambda(expr,env):
    assert isLambda(expr)
    if len(expr) != 3:
        evalError ('Bad lambda expression: %s' % str(expr))
    return Procedure(expr[1], expr[2], env)
```

12.4.5 Application

The evaluators circularity comes from the way evaluation and application are defined recursively. To perform an application, we need to evaluate all the subexpressions of the application expression, and then apply the result of evaluating the first subexpression to the values of the other subexpressions.

def isApplication(expr): # requires: all special forms checked first
 return isinstance(expr, list)

```
def evalApplication(expr, env):
    subexprs = expr
    subexprvals = map (lambda sexpr: meval(sexpr, env), subexprs)
    return mapply(subexprvals[0], subexprvals[1:])
```

The *evalApplication* procedure uses the built-in *map* procedure, which is similar to *list-map* from Chapter 5. The first parameter to *map* is a procedure constructed using a lambda expression (similar in meaning, but not in syntax, to Scheme's lambda expression); the second parameter is the list of subexpressions.

The *mapply* procedure implements the application rules. If the procedure is a primitive, it "just does it": it applies the primitive procedure to its operands. To apply a constructed procedure (represented by an object of the *Procedure* class) it follows the statefull application rule for applying constructed procedures: it creates a new environment, puts variables in that environment for each parameter and binds them to the corresponding operand values, and evaluates the procedure body in the new environment.

```
evalError('Application of non-procedure: %s' % (proc))
```

12.4.6 Finishing the Interpreter

To finish the interpreter, we define the *evalLoop* procedure that sets up the global environment and provides a simple user interface to the interpreter. To initialize the global environment, we create an environment with no parent and place variables in it corresponding to the primitives in Charme:

def initializeGlobalEnvironment(): global globalEnvironment globalEnvironment = Environment(None) globalEnvironment.addVariable('true', True) globalEnvironment.addVariable('false', False) globalEnvironment.addVariable('+', primitivePlus) globalEnvironment.addVariable('-', primitiveMinus) globalEnvironment.addVariable('+', primitiveTimes) globalEnvironment.addVariable('+', primitiveEquals) globalEnvironment.addVariable('-', primitiveEquals) globalEnvironment.addVariable('-', primitiveLessThan)

The evaluation loop reads a string from the user using the Python built-in procedure *raw_input*. It uses *parse* to convert that string into a structured list representation. Then, it uses a for-expression to loop through the expressions. It evaluates each expression using *meval*, and prints out the result.

```
def evalLoop():
    initializeGlobalEnvironment()
    while True:
        inv = raw_input('Charme> ')
        if inv == 'quit': break
        for expr in parse(inv):
            print str(meval(expr, globalEnvironment))
```

Here are some sample interactions with our Charme interpreter:

```
<Procedure ['n'] / ['if', ['=', 'n', '1'], '1', ['if', ['=', 'n', '2'], '1',
```

```
['+', ['fibo', ['-', 'n', '1']], ['fibo', ['-', 'n', '2']]]]]>
Charme> (fibo 10)
55
```

12.5 Summary

Languages are tools for thinking, as well as means to express executable programs. A programming language is defined by its grammar and evaluation rules. To implement a language, we need to implement a parser that carries out the grammar rules and an evaluator that implements the evaluation rules.

Once we have an interpreter, we can change the meaning of our language by changing the evaluation rules. In the next chapter, we will see some examples that illustrate the value of being able to extend and change a language.

13 Laziness

Modern methods of production have given us the possibility of ease and security for all; we have chosen, instead, to have overwork for some and starvation for others. Hitherto we have continued to be as energetic as we were before there were machines; in this we have been foolish, but there is no reason to go on being foolish forever. Bertrand Russell, In Praise of Idleness, 1932

By changing the language interpreter, we can change the evaluation rules of the programming language. This enables a new problem-solving strategy: if the solution to a problem cannot be expressed easily in an existing language, define and implement an interpreter for a new language in which the problem can be solved more easily.

In this chapter, we explore a variation on Charme we call *LazyCharme*. LazyCharme changes the application evaluation rule so that operand expressions are not evaluated until their values are needed. This is known as *lazy evaluation*.

Lazy evaluation enables many procedures which would otherwise be awkward to express to be defined concisely. Since both Charme and Lazy-Charme are universal programming languages they can express the same set of computations: all of the procedures we define that take advantage of lazy evaluation could be defined with eager evaluation (for example, by first defining an interpreter for a lazy evaluation language as we do in this chapter).

13.1 Lazy Evaluation

The Charme interpreter defined in the previous chapter as well as the standard Scheme language evaluate application expressions *eagerly*: all operand subexpressions are evaluated whether or not their values are needed. For example, evaluating ((**lambda** (*a*) 3) (*loop-forever*)) (where *loop-forever* is a procedure that never terminates) will not finish.

Eager evaluation means that any expression which does not evaluate all its

lazy evaluation

sub-expressions must be a special form. For example, there is no way to define a procedure that behaves like the if special form. We could attempt to define such a procedure by first defining *true* and *false* as procedures that take two parameters and output the first or second parameter:

(**define** *true* (**lambda** (*a b*) *a*)) (**define** *false* (**lambda** (*a b*) *b*))

These definitions provide the expected behavior similar to the **if** special form with this definition of *ifp*:

(**define** *ifp* (**lambda** (*p c a*) (*p c a*)))

For example, (*ifp true* 3 4) evaluates to 3 and (*ifp false* 3 4) evaluates to 4.

For uses where evaluating the consequent and alternate expressions does not produce an error, side-effect, or take a noticeable amount of time, the *ifp* procedure behaves indistinguishably from the special form (this assumes the values for *true* and *false* produced by the primitive procedures are changed accordingly to produce the values of *true* and *false* defined above).

Much of my work has come from being lazy. John Backus

When it is possible to tell if the alternate or consequent expressions is evaluated, however, the *ifp* procedure behaves very differently from the ifexpression special form. For example, (*ifp false* (*cdr null*) 1) evaluates to an error because (*cdr null*) attempts to apply *cdr* to a value that is not a Pair. With the if special form, though, the consequent expression is only evaluated when the predicate expression is true. Hence, the expression (**if** *false* (*cdr null*) 1) evaluates to 1.

Although this example is contrived, we often take advantage of this property of the if special form in recursive definitions. Nearly every recursive procedure we define for processing lists has a base case like (if (*null? p*)...) where the alternate expression applies list-extracting procedures list (*cdr* p). If it were not for the special evaluation rule for if-expressions, the if expression would produce an error when the end of the list is reached.

With lazy evaluation, an expression is not evaluated until its value is needed. Lazy evaluation changes the evaluation rule for applications of constructed procedures. Instead of evaluating all operand expressions, lazy evaluation delays evaluation of an operand expression until the value of the parameter is needed. To keep track of what is needed to perform the evaluation when and if it is needed, a special object known as a *thunk* is created and stored in the place associated with the parameter name. By delaying evaluation of operand expressions until their value is needed, we can enable programs to define procedures that conditionally evaluate their operands, such as the *ifp* procedure. The lazy evaluation rule for applying constructed procedures is:

Lazy Application Rule 2: Constructed Procedures. To apply a constructed procedure:

- 1. Construct a new environment, whose parent is the environment of the applied procedure.
- 2. For each procedure parameter, create a place in the frame of the new environment with the name of the parameter. **Put a** *thunk* in that place, which is an object that can be used later to evaluate the value of the corresponding operand expression if and when its value is needed.
- 3. Evaluate the body of the procedure in the newly created environment. The resulting value is the value of the application.

The rule is identical to the Statefull Application Rule except for the bolded part of step 2. In the next section, we explain how to modify the Charme Impatience, and Hubris. interpreter from the previous chapter to implement lazy evaluation. In Sec- Larry Wall, Programming Perl tion 13.3, we provide some examples of programming with lazy evaluation.

Confusingly, lazy evaluation is also known as normal order evaluation, even though in the Scheme language it is not the normal evaluation order.¹ Scheme is an *applicative-order* language, which means that all arguments are evalu- *applicative-order* ated as part of the application rule, whether or not their values are needed by the called procedure.

13.2 **Delaying Evaluation**

To implement lazy evaluation we modify the interpreter to implement the lazy application rule that delays evaluating the operand expressions until they are needed. We start by defining a Python class for representing thunks and then modify the interpreter to support lazy evaluation.

Thunks. A thunk keeps track of an expression whose evaluation is delayed until it is needed. Once the evaluation is performed, the resulting value is saved so the expression does not need to be re-evaluated the next time the value is needed.

We will encourage you to develop the three great virtues of a programmer: Laziness,

¹Some languages (including Haskell and Miranda) provide lazy evaluation as the standard application rule.

Thus, a thunk is in one of two possible states: *unevaluated* (the operand expression has not yet been needed, so it has not been evaluated and its value is unknown), and *evaluated* (the operand expression's value has been needed at least once, and its known value is recorded).

The Thunk class implements thunks:

```
class Thunk:
    def __init__(self, expr, env):
        self._expr = expr
        self._env = env
        self._evaluated = False
    def value(self):
        if not self._evaluated:
            self._value = forceeval(self._expr, self._env)
            self._evaluated = True
        return self._value
```

A *Thunk* object keeps track of the expression in the *_expr* instance variable. Since the value of the expression may be needed when the evaluator is evaluating an expression in some other environment, it also keeps track of the environment in which the thunk expression should be evaluated in the *_env* instance variable.

The *_evaluated* instance variable is a Boolean that records whether or not the thunk expression has been evaluated. Initially this value is False. After the expression is evaluated, the *_value* instance variable keeps track of its value.

The *value* method uses *forceeval* (defined in the next section) to obtain the evaluated value of the thunk expression and stores that result in the *_value* instance variable.

The *isThunk* procedure returns True only when its parameter is a thunk:

def *isThunk(expr)*: **return** *isinstance(expr, Thunk)*

Delayed and forced evaluation. To implement lazy evaluation, we change the evaluator so there are two different evaluation procedures: *meval* is the standard evaluation procedure (which leaves thunks in their unevaluated state), and *forceeval* is the evaluation procedure that forces thunks to be evaluated to values. The interpreter uses *meval* when the actual expression value may not be needed, and *forceeval* to force evaluation of thunks when the value of an expression is needed.

In the *meval* procedure, a thunk evaluates to itself. We add a new **elif** clause for thunk objects to the *meval* procedure:

elif isThunk(expr): # Added to support lazy evaluation
return expr # A thunk evaluates to itself

The *forceeval* procedure first uses *meval* to evaluate the expression normally. If the result is a thunk, it uses the *Thunk.value* method to force evaluation of the thunk expression. The *Thunk.value* method uses *forceeval* to find the value of the thunk expression, so any thunks inside the expression will be recursively evaluated.

def forceeval(expr, env):
 value = meval(expr, env)
 if isThunk(value): return value.value() # force evaluation of Thunk
 else: return value

Next, we change the application rule to perform delayed evaluation and change a few other places in the interpreter to use *forceeval* instead of *meval* to obtain the actual values when they are needed.

Lazy applications. We change the *evalApplication* procedure to delay evaluation of the operants by creating *Thunk* objects representing each operand. Only the first subexpression (the procedure to be applied) must be evaluated. Hence, *evalApplication* uses *forceeval* to obtain the value of the first subexpression, but makes Thunk objects for the operand expressions:

def evalApplication(expr, env):
 ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
 return mapply(forceeval(expr[0], env), ops)

Primitive applications. To apply a primitive, we need the actual values of its operands, so must force evaluation of any thunks in the operands. Hence, the definition for *mapply* forces evaluation of the operands to a primitive procedure:

```
def mapply(proc, operands):
    def deThunk(expr):
        if isThunk(expr): return expr.value()
        else: return expr

    if (isPrimitiveProcedure(proc)):
        ops = map (deThunk, operands)
        return proc(ops)
    elif isinstance(proc, Procedure):
```

... *# same as in Charme interpreter*

Decisions. To evaluate an if-expression, it is necessary to know the actual value of the predicate expressions. We change the *evallf* procedure to use

forceeval when evaluating the predicate expression:

```
def evallf(expr,env):
    if forceeval(expr[1], env) != False: return meval(expr[2],env)
    else: return meval(expr[3],env)
```

This forces the predicate to evaluate to a value (even if it is a thunk), so its actual value can be used to determine how the rest of the if expression evaluates; the evaluations of the consequent and alternate expressions are left as *mevals* since it is not necessary to force them to be evaluated yet.

Printing results. The final change to the interpreter is to force evaluation when the result is displayed to the user in the *evalLoop* procedure by replacing the call to *meval* with *forceeval*.

13.3 Lazy Programming

Lazy evaluation enables programming constructs that are not possible with eager evaluation. For example, with lazy evaluation the *ifp* procedure defined at the beginning of this chapter behaves like the if-expression special form.

Lazy evaluation also enables programs to deal with seemingly infinite data structures. This is possible since only those values of the apparently infinite data structure that are used need to be created.

Suppose we define procedures similar to the Scheme procedures for manipulating pairs:

```
(define cons (lambda (a b) (lambda (p) (if p a b))))
(define car (lambda (p) (p true)))
(define cdr (lambda (p) (p false)))
```

```
(define null false)
(define null? (lambda (x) (= x false)))
```

These behave similarly to the corresponding Scheme procedures, except in LazyCharme their operands are evaluated lazily. This means, we can define an infinite list:

(define *ints-from* (lambda (n) (cons n (*ints-from* (+n 1)))))

With eager evaluation, (*ints-from* 1) would never finish evaluating; it has no base case for stopping the recursive applications. In LazyCharme, however, the operands to the *cons* application in the body of *ints-from* are not

324

evaluated until they are needed. Hence, (*ints-from* 1) terminates. It produces a seemingly infinite list, but only the evaluations that are needed are performed:

```
LazyCharme> (car (ints-from 1))
1
LazyCharme> (car (cdr (cdr (ints-from 1)))))
4
```

Some evaluations fail to terminate even with lazy evaluation. For example, assume the standard definition of *list-length*:

(**define** *list-length* (**lambda** (*lst*) (**if** (*null*? *lst*) 0 (+ 1 (*list-length* (*cdr lst*))))))

An evaluation of (*length* (*ints-from* 1)) never terminates. Every time an application of *list-length* is evaluated, it applies *cdr* to the input list, which causes *ints-from* to evaluate another *cons*, increasing the length of the list by one. The actual length of the list is infinite, so the application of *list-length* does not terminate.

Lists with delayed evaluation can be used in useful programs. Reconsider the Fibonacci sequence from Chapter 7. Using lazy evaluation, we can define a list that is the infinitely long Fibonacci sequence:²

(**define** *fibo-gen* (**lambda** (*a b*) (*cons a* (*fibo-gen b* (+ *a b*))))) (**define** *fibos* (*fibo-gen* 0 1))

The n^{th} Fibonacci number is the n^{th} element of *fibos*:

(**define** *fibo* (**lambda** (*n*) (*list-get-element fibos n*)))

where *list-get-element* is defined as it was defined in Chapter 5.

Another strategy for defining the Fibonacci sequence is to first define a procedure that merges two (possibly infinite) lists, and then define the Fibonacci sequence in terms of itself. The *merge-lists* procedure combines elements in two lists using an input procedure.

²This example is based on *Structure and Interpretation of Computer Programs*, Section 3.5.2, which also presents several other examples of interesting programs constructed using delayed evaluation.

We can think of the Fibonacci sequence as the combination of two sequences, starting with the 0 and 1 base cases, combined using addition where the second sequence is offset by one position. This allows us to define the Fibonacci sequence without needing a separate generator procedure:

```
(define fibos (cons 0 (cons 1 (merge-lists fibos (cdr fibos) +))))
```

The sequence is defined to start with 0 and 1 as the first two elements. The following elements are the result of merging *fibos* and (*cdr fibos*) using the + procedure. This definition relies heavily on lazy evaluation; otherwise, the evaluation of (*merge-lists fibos* (*cdr fibos*) +) would never terminate: the input lists are effectively infinite.

Exercise 13.1. Define the sequence of factorials as an infinite list using delayed evaluation.

Exercise 13.2. Describe the infinite list defined by each of the following definitions. (Check your answers by evaluating the expressions in Lazy-Charme.)

- **a.** (define p (cons 1 (merge-lists p p +)))
- **b.** (define t (cons 1 (merge-lists t (merge-lists t t +) +)))
- **c.** (**define** *twos* (*cons* 2 *twos*))
- **d.** (**define** *doubles* (*merge-lists* (*ints-from* 1) *twos* *))

Exercise 13.3. $[\star\star]$ A simple procedure known as the *Sieve of Eratosthenes* for finding prime numbers was created by Eratosthenes, an ancient Greek mathematician and astronomer. The procedure imagines starting with an (infinite) list of all the integers starting from 2. Then, it repeats the following two steps forever:

- 1. Circle the first number that is not crossed off; it is prime.
- 2. Cross off all numbers that are multiples of the circled number.

To carry out the procedure in practice, of course, the initial list of numbers

must be finite, otherwise it would take forever to cross off all the multiples of 2. But, with delayed evaluation, we can implement the Sieve procedure on an effectively infinite list.

Implement the sieve procedure using lists with lazy evaluation. You may find the *list-filter* and *merge-lists* procedures useful, but will probably find it necessary to define some additional procedures.

13.4 Summary

We can produce new languages by changing the evaluation rules of an interpreter. Changing the evaluation rules changes what programs mean, and enables new approaches to solving problems.

Lazy evaluation increases the expressiveness of a language by supporting delayed evaluation. The main disadvantage of lazy evaluation is it makes the evaluation rules more complex. This makes it somewhat more complex to build an interpreter, but more importantly, makes it more difficult for humans to understand and reason about programs.

I think that there is far too much work done in the world, that immense harm is caused by the belief that work is virtuous, and that what needs to be preached in modern industrial countries is quite different from what always has been preached. Everyone knows the story of the traveler in Naples who saw twelve beggars lying in the sun (it was before the days of Mussolini), and offered a lira to the laziest of them. Eleven of them jumped up to claim it, so he gave it to the twelfth. This traveler was on the right lines. But in countries which do not enjoy Mediterranean sunshine idleness is more difficult, and a great public propaganda will be required to inaugurate it. ... All this is only preliminary. I want to say, in all seriousness, that a great deal of harm is being done in the modern world by belief in the virtuousness of work, and that the road to happiness and prosperity lies in an organized diminution of work.

First of all: what is work? Work is of two kinds: first, altering the position of matter at or near the earth's surface relatively to other such matter; second, telling other people to do so. The first kind is unpleasant and ill paid; the second is pleasant and highly paid. The second kind is capable of indefinite extension: there are not only those who give orders, but those who give advice as to what orders should be given. Usually two opposite kinds of advice are given simultaneously by two organized bodies of men; this is called politics.

Eratosthenes

Bertrand Russell, In Praise of Idleness, 1932

Type Checking

The first principle was security... A consequence of this principle is that every occurrence of every subscript of every subscripted variable was on every occasion checked at run time against both the upper and the lower declared bounds of the array. Many years later we asked our customers whether they wished us to provide an option to switch off these checks in the interests of efficiency on production runs. Unanimously, they urged us not to Ů– they already knew how frequently subscript errors occur on production runs where failure to detect them could be disastrous. I note with fear and horror that even in 1980, language designers and users have not learned this lesson. In any respectable branch of engineering, failure to observe such elementary precautions would have long been against the law. Tony Hoare, The Emperor's Old Clothes, 1980 Turing Award Speech

In this chapter, we change the Charme language in a way that does not increase its expressiveness, but in fact *reduces* it. Reducing expressiveness may seem undesirable, but in fact, a great deal of effort in modern language design seeks to reduce language expressiveness.

The reason language designers want to reduce expressiveness it can contribute to the goal of preventing programmers from expressing programs that will crash or produce unexpected results when they are executed. Such languages sacrifice expressiveness for the sake of *truthiness*¹—increasing the likelihood that a program means what its programmer intends.

A high level of truthiness is important when software is used to control a physical device whose correct and continued function is essential to safety such as software controlling a nuclear power plant, anti-lock brakes, or aircraft avionics. In such cases, it is much better to reduce the expressiveness of your programming language and get more errors when the software is developed, than to get unexpected behaviors when the software is running.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

¹According to Merriam-Webster's dictionary, *truthiness* has two different meanings: (1) "truth that comes from the gut, not books" (due to Stephen Colbert); and (2) "the quality of preferring concepts or facts one wishes to be true, rather than concepts or facts known to be true" (due to the American Dialect Society). Neither of these definitions quite matches how we use the word here to mean the actual meaning of the program is truthful to the programmer's intended meaning, but I know of no English word that better matches the intended meaning.

Types of Typing 14.1

As introduced in Section 5.1, a type defines a possibly infinite set of values and the operations that can be performed on them. For example, Number is a type. Addition, multiplication, and comparisons can be performed on Numbers.

latent In Scheme (and in Charme and LazyCharme), types are *latent*: they are not explicitly denoted in the program text. Nevertheless, they are very important for the correct execution of a Scheme program. If the value passed as an operand is not of the correct type, an error will result. For example,

```
> (+ 1 true)
\textcircled{} +: expects type <number> as 2nd argument, given: true;
other arguments were: 1
```

Scheme has fairly strong type checking. If the types of operands do not match the expected types, it reports an error. Other languages, such as Python, have weaker type checking:

 $\gg 1 + \text{True}$ 2

Instead of reporting a type error when + is used with a Boolean value, Python interprets the value of True as 1 and produces a result.

Both Scheme and Python have *dynamic type checking*. This means types dynamic type checking are checked only when an expression is evaluated. For example, evaluating (**define** (*badtype a b*) (+ (> a b) b)) does not produce a type error even though their are no possible inputs for which it could make sense since the body expression uses the primitive + procedure with a Boolean input. Expressions that are not well-typed produce errors when those expressions *There's no business like show* are evaluated, but not earlier.

business, but there are several businesses like accounting. David Letterman

In this chapter, we develop an interpreter for the language *StaticCharme* that manages types differently from the Charme language. Instead of using latent types as is done in Scheme, Python, and Charme, StaticCharme uses manifest manifest types: every definition and parameter will include explicit type information that describes the expected type of the variable or parameter. This increases the length of the program text and sacrifices expressiveness, but makes it easier to understand and reason about programs. To provide manifest types, we change the language grammar to support explicit type declarations. Many popular programming languages have manifest types including Ada, C, C#, and Java.

We also modify the Charme interpreter to perform *static type checking*. Static *static type checking* type checking checks that expressions are well-typed when they are defined, rather than waiting until they are evaluated. Static type checking reduces the expressiveness of our programming language; some expressions that would have values with dynamic type checking are no longer valid expressions.

The advantage of static type checking is that it detects many programming errors early. Whereas dynamic checking checks the types during an execution on one path through the program, static checking checks the types before an execution on *all* possible paths through the program before any path is executed. If a correct static type checker deduces the program is well-typed, there is no input on which it could produce a run-time type error. In many cases, it is much better to detect an error early, than to detect it later when a program is running. This is especially true in safetycritical software (such as flight avionics software) where a program failure can have disastrous results (such as a plane crashing).

Manifest Types 14.2

To provide manifest types, we modify the grammar for our language to include type declarations. Two rules need to change: definitions and lambda expressions. We replace the original definition rule,

Definition :: \Rightarrow (define Name Expression)

with a rule that includes a type specification after the name:

Definition :: \Rightarrow (define Name : Type Expression)

We modify the lambda-expression grammar rule similarly to include a type specification for each parameter:

 $::\Rightarrow$ *ProcedureExpression* Expression *ProcedureExpression* ::⇒ (lambda (*Parameters*) *Expression*) Parameters $::\Rightarrow \epsilon \mid Name : Type Parameters$

The new nonterminal, Type, is used to describe a type specification. A type specification can specify a primitive type. Like a primitive value, a

primitive expression is pre-defined by the language and its meaning cannot be broken into smaller parts. StaticCharme supports only two primitive types: **Number** (for representing numbers), and **Boolean** (for representing the Boolean values *true* and *false*).

Type $::\Rightarrow$ PrimitiveTypePrimitiveType $::\Rightarrow$ Number | Boolean

We also need constructs for specifying procedure types. The type of a procedure is specified by the type of it inputs (that is, a list of the input types), and the type of its results (a Charme procedure can only return one value, so the result type is a single type). The arrow (\rightarrow , or -> in program text) symbol is used to denote a procedure type, with the operand type list on the left side of the arrow and the result type on the right side of the arrow. To avoid ambiguity when specifying procedures that have procedure result types, we use parentheses around the procedure type specification.

Туре	$::\Rightarrow$	ProcedureType
ProcedureType	$e :: \Rightarrow$	($ProductType \rightarrow Type$)
ProductType	$::\Rightarrow$	(TypeList)
TypeList	$::\Rightarrow$	Type TypeList
TypeList	$::\Rightarrow$	ϵ

For example,

(define *x* : Number 3)

defines *x* as a Number and initializes its value to **3**.

The definition,

```
(define square : ((Number) \rightarrow Number)
(lambda (x : Number) (* x x)))
```

defines *square* as a procedure that takes one Number input and produces a Number as its output.

Here is a definition of a *compose* procedure that takes two procedures as inputs and produces a procedure as its output:

 $\begin{array}{l} (\text{define } compose : ((((\text{Number}) \rightarrow \text{Number}) \ ((\text{Number}) \rightarrow \text{Number})) \\ -> ((\text{Number}) \rightarrow \text{Number})) \\ (\text{lambda } (f : ((\text{Number}) \rightarrow \text{Number})) \\ g : ((\text{Number}) \rightarrow \text{Number})) \\ (\text{lambda } (x : \text{Number}) \ (g \ (f \ x))))) \end{array}$

The *compose* example reveals one of the ways StaticCharme reduces the expressiveness of Charme. In addition to requiring more than twice as many characters to define as the Scheme *compose* procedure, this procedure only works on a small subset of the inputs for which the Scheme *compose* procedure works, namely procedures that take Number inputs and produce a Number output.

It is not possible in StaticCharme to define a single compose procedure that works on as many inputs as the Scheme *compose* procedure, (**lambda** (f g) (**lambda** (x) (g (f x)))). For example, the Scheme *compose* procedure works on inputs of type (((Any) \rightarrow **Boolean**) ((**Boolean**) \rightarrow **Boolean**)) such as (*compose zero? not*). In StaticCharme, we would need do define different composition procedures for each input type.

14.3 **Representing Types**

We use Python classes to represent types in our StaticCharme interpreter. To avoid confusion with Python's built-in *type* keyword, we will prepend a *C* (for "Charme") to the names of the corresponding classes. Figure 14.1 shows the class hierarchy for the Python classes used to represent StaticCharme types. The *CPrimitiveType*, *CProductType*, *CProcedureType*, and *CErrorType* classes all inherit from the *CType* class.

The CType class defines methods for determining if a type is of a given kind

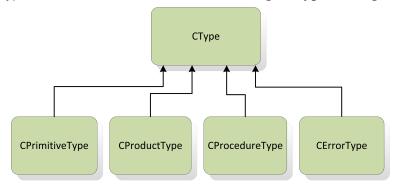


Figure 14.1. Class hierarchy for representing types.

(e.g., *isPrimitiveType* returns true only when invoked on a *CPrimitiveType* object. In the superclass, all of these methods are defined to return False.

class CType: def isPrimitiveType(self): return False def isProcedureType(self): return False def isProductType(self): return False def isError(self): return False

The subclass will override the appropriate method to return True, and define additional methods to implement the type. The most interesting method each subclass provides is the *matches* method. It takes a *CType* object as its input, as well as the *self* object, and outputs True if the input type matches the self type.

Primitive Types. The *CPrimitiveType* class is used to represent a primitive type:

class CPrimitiveType(CType): def __init__(self, s): self._name = s def __str__(self): return self._name def isPrimitiveType(self): return True def matches(self, other): return other.isPrimitiveType() and self._name == other._name

The class declaration syntax, **class** *CPrimitiveType*(*CType*), defines the class *CPrimitiveType* as a subclass of *CType*; *CPrimitiveType* inherits all the methods defined by the *CType* class. This is similar to how we used *make-subobject* to provide subclassing in Chapter 11.

The <u>__str__</u> method outputs a string representation of the object, in this case, just its name. The Python syntax *str(obj)* invokes the <u>__str__</u> method of *obj*. This is useful for printing objects in a human-readable way.

The *isPrimitiveType* method is defined to always return True. This overrides the definition in the *CType* class which always returns False.

The *matches* method is used to determine when two types are compatible. It returns True only if the *other* type is the same primitive type by first checking if the *other* object is a primitive type, and if it is, checking if they have

the same name. The Python **and** expression is similar to the Scheme special form: the second expression is only evaluated if the first expression is true.

Procedure Types. The *CProcedureType* class represents a procedure type:

```
class CProcedureType(CType):
    def __init__(self, args, rettype):
        self._args = args
        self._rettype = rettype
    def __str__(self):
        return '(' + str(self._args) + ' -> ' + str(self._rettype) + ')'
    def isProcedureType(self): return True
    def getReturnType(self): return self._rettype
    def getParameterTypes(self): return self._args
    def matches(self, other):
        return other.isProcedureType() \
            and self._args.matches(other._args) \
            and self._rettype.matches(other._rettype)
```

For procedure types to match, both the argument types and the return type must match.

Product Types. The *CProductType* class represents a list of types.

```
class CProductType(CType):
  def __init__(self, types): self._types = types
  def __str_(self):
     res = '('
    firstone = True
     for t in self._types:
       if firstone: firstone = False
       else: res = res + ' '
       res = res + str(t)
     res = res + ')'
     return res
  def isProductType(self): return True
  def matches(self, other):
     if other.isProductType():
       st = self._types
       ot = other._types
       if len(st) == len(ot): # number of types must match
          for i in range(0, len(st)):
            if not st[i].matches(ot[i]): return False
          # reached end of loop; all matched so types match
         return True
     return False
```

Type Errors. The *CErrorType* class is used to represent type errors. It has an instance variable, *_message*, for describing the type error. Since *CErrorType* represents a type error, it does not match any type and *matches* is always returns False.

```
class CErrorType(CType):
    def __init__(self, msg): self._msg = msg
    def __str__(self): return '<Type Error: ' + self._msg + '>'
    def getMessage(self): return self._msg
    def matches(self, other): return False
    def isError(self): return True
```

Constructing Types. Since we modified the grammar to include type specifications, we also need a procedure that takes the result of parsing a type specification and produces the corresponding *CType* object.

```
def parseType(p):
    if isinstance(p, str):
        if p == 'Number': return CPrimitiveType('Number')
        elif p == 'Boolean': return CPrimitiveType('Boolean')
        else: evalError('Undefined type: ' + p)
    else:
        if len(p) == 3 and p[1] == '->':
            return CProcedureType(parseType(p[0]), parseType(p[2]))
        else: # must be product type
        return CProductType(map(parseType, p))
```

14.4 Modifying the Evaluator

This section describe the changes to the interpreter made to associate types with names. We change the *Environment* and *Procedure* classes to add types, and modify the evaluation rule for definitions and lambda expressions to account for the type specifications. We also need to set up the initial global environment so names in the global environment have associated types. Section 14.5 describes the extensions to implement static type checking.

Typed environments. In StaticCharme, a variable name has both an associated value and an associated type. We modify the *Environment* class so that instead of associating just a value with each name in the frame, each place holds a *<type*, *value>* pair.

```
class Environment:
    def __init__(self, parent):
        self._parent = parent
```

self._frame = { }
def addVariable(self, name, typ, value): # added typ parameter
self._frame[name] = (typ, value) # replaced value with tuple
def _lookupPlace(self, name): # added
if self._frame.has_key(name): return self._frame[name]
elif (self._parent): return self._parent._lookupPlace(name)
else: return None
def lookupVariable(self, name): # rewritten to use _lookupPlace
return self._lookupPlace(name)[1]
def lookupVariableType(self, name): # added
place = self._lookupPlace(name)
if place: return place[0]
else: return CErrorType("Name not found: " + name)

We use a Python tuple, (*typ*, *value*), to represent a pair. Tuple elements are selects identically to list elements: p[0] selects the first element and p[1] selects the second element in the pair p.

The *addVariable* method takes an additional parameter, *typ* that represents the type of the variable.² It adds a new entry in the *_frame* that is a tuple of the type and value associated with the name.

The *_lookupPlace* method returns the *<type, value>* tuple associated with a name.³ The *lookupVariable* method returns the value associated with a variable.⁴ The *lookupVariableType* method, on the other hand, needs to deal with the situation where an undefined name is used. It returns a *CErrorType* object that represents and describes the undefined name error.

Definitions. The StaticCharme grammar has a different rule for definitions than standard Scheme because of the added type specification. The evaluation rule is modified accordingly to define the variable with the addition of its type.

def evalDefinition(expr, env):
 assert isDefinition(expr)
 assert len(expr) == 4 and expr[2] == ':'
 env.addVariable(expr[1], parseType(expr[3]), meval(expr[4], env))

²We avoid using the proper spelling, *type*, since that is a keyword in Python.

³The _ at the beginning of the method name hides the method from external users of the class. Methods beginning with a _ can only be called from within the class implementation. This supports data abstraction; by hiding the *_lookupPlace* method we avoid exposing the tuple representation of (*typ, value*) pairs.

⁴It is not necessary here to check if the name is defined (although defensive programming practice might suggest performing such a check anyway), since the type checking that will be done before an expression is evaluated ensures that all names used must be defined.

Procedures. The lambda expression in StaticCharme includes a type specification for each parameter name. We modify the *Procedure* class to store this information in a procedure object:

```
class Procedure:
    def __init__(self, params, typ, body, env):
        self._params = params
        self._body = body
        self._typ = typ # added
        self._env = env
    def getParamTypes(self):
        return self._typ
    ... # other methods unmodified
```

The evaluation rule for lambda-expressions extracts the type specifications from the parameter list and constructs a *Procedure* object:

```
def evalLambda(expr, env):
    assert isLambda(expr)
    assert len(expr) == 3
    params = expr[1]
    paramtypes = []
    paramnames = []
    assert len(params) % 3 == 0
    for i in range(0, len(params) / 3):
        name = params[i * 3]
        paramnames.append(name)
        typ = parseType(params[(i * 3) + 2])
        paramtypes.append(typ)
    return Procedure(paramnames, paramtypes, expr[2], env)
```

We also need to change the *mapply* procedure to put the types of the parameters in the new frame.

```
def mapply(proc, operands):
    if (isPrimitiveProcedure(proc)):
        return proc(operands)
    elif isinstance(proc, Procedure):
        params = proc.getParams()
        types = proc.getParamTypes() # added
        newenv = Environment(proc.getEnvironment())
        if len(params) != len(operands):
            evalError ('Parameter length mismatch: %s given operands %s'
            % (str(proc), str(operands)))
    for i in range(0, len(params)):
            newenv.addVariable(params[i], types[i], operands[i]) # added type
```

return meval(proc.getBody(), newenv)
else:
 evalError('Application of non-procedure: %s' % (proc))

Global Environment. The primitives placed in the global environment now must have associated types, so *initializeGlobalEnvironment* is modified to include the appropriate types.

```
def initializeGlobalEnvironment():
    global globalEnvironment
    globalEnvironment = Environment(None)
    globalEnvironment.addVariable('true', CPrimitiveType('Boolean'), True)
    globalEnvironment.addVariable('false', CPrimitiveType('Boolean'), False)
    globalEnvironment.addVariable \
    ('+', typeFromString('((Number Number) -> Number)'), primitivePlus)
    globalEnvironment.addVariable \
    ('-', typeFromString('((Number Number) -> Number)'), primitiveMinus)
    globalEnvironment.addVariable \
    ('+', typeFromString('((Number Number) -> Number)'), primitiveTimes)
    globalEnvironment.addVariable \
    ('+', typeFromString('((Number Number) -> Number)'), primitiveTimes)
    globalEnvironment.addVariable \
    ('-', typeFromString('((Number Number) -> Boolean)'), primitiveEquals)
    globalEnvironment.addVariable \
    ('-', typeFromString('((Number Number) -> Boolean)'), primitiveEquals)
```

The *typeFromString* procedure provides a convenient way for specifying a type using a string, as it would be done in a StaticCharme program.

def typeFromString(s):
 p = parse(s)
 assert len(p) == 1
 return parseType(p[0])

14.5 Checking Types

To implement static type checking, we define a procedure *typecheck* that is analogous to *meval*. Like *meval*, it takes two inputs, an expression and an environment. The result of an application of *typecheck* is the type of the input expression in the input environment. If the expression is not well typed, the result is an *CErrorType* object. Otherwise, it will be an object that represents the type of the expression.

The definition of *typecheck* is similar to *meval*. It has a clause for each kind of StaticCharme expression, but instead of evaluating the expression by calling *evalExpr* it checks its type using *typeExpr*.

def *typecheck(expr, env)*:

if isPrimitive(expr): return typePrimitive(expr)
elif isIf(expr): return typeIf(expr, env)
elif isLambda(expr): return typeLambda(expr, env)
elif isDefinition(expr): return typeDefinition(expr, env)
elif isName(expr): return typeName(expr, env)
elif isApplication(expr): return typeApplication(expr, env)
elif evalError ("Unknown expression type: " + str(expr))

To implement type checking, we implement the *typeExpr* procedure for each language construct. We describe primitives and if expressions first, and then describe the procedures for typechecking names, definitions, applications, and lambda expressions.

Primitives. The *typePrimitive* procedure takes a primitive expression and outputs its type.

def typePrimitive(expr):
 if isNumber(expr): return CPrimitiveType('Number')
 elif isinstance(expr, bool): return CPrimitiveType('Boolean')
 elif callable(expr): return globalEnvironment.reverseLookupType(expr)
 else: assert False

The type of number and Boolean expressions is straightforward. Dealing with primitive procedures is more difficult. They are represented by Python procedures, so the predicate *callable(expr)* is true if *expr* is a primitive procedure. But, there is no easy way to determine the type of the procedure.

The solution we use is to search the global environment for a name whose value matches the primitive procedure, and use the associated type. This is done by adding a *reverseLookupType* method to the *Environment* class that finds the type of the place whose value matches a given value. Since all primitive procedures are associated with names in the global environment, we can use the reverse lookup to find the type of a primitive procedure.

```
class Environment:
... # other methods
def reverseLookupType(self, val):
    for entry in self._frame.itervalues():
        if entry[1] == val: return entry[0]
        return CErrorType("Value not found")
```

If. The *typeIf* procedure checks an if-expression is well-typed and outputs the type of its value. The predicate must have type Boolean. The consequent and alternate expressions may have any type, but their types must

be the same. The type of the if-expression is the type of consequence and alternative expressions.

Names. The type of a name is stored in the environment, so we can type check a name by looking up its type in the environment.

def typeName(expr, env):
 return env.lookupVariableType(expr)

The *Environment.lookupVariableType* method produces an evaluation error if the name is not defined, so *typeName* also checks that all names are defined.

Definitions. A definition has no type (since it has no value), but type checking a definition may still detect a type error. Hence, *typeDefinition* either returns None (to represent no type) or a *CErrorType* object if the definition is mistyped. The type checking rule for a definition is that the type of the value expression must match the specified type.

One subtlety is caused by our desire to support recursive definitions. The value subexpression may use the name that is being defined. This means that we should type check the value subexpression in an environment in which the new name is defined with the specified type.

We support this by creating a new environment whose parent is the input environment that contains the variable with its declared type and value None. The value of the name is not yet known, but type checking does not depend on its value, so any value will do here. We create a new environment instead of using the input environment since if the definition is not well-typed, it should not be added to the environment. Names are added to the environment only when the definition is evaluated.

```
def typeDefinition(expr, env):
  assert isDefinition(expr)
  if len(expr) != 5: evalError ('Bad definition: %s' % str(expr))
  name = expr[1]
  if isinstance(name, str):
    if expr[2] != ':':
       return CErrorType ('Definition missing type: %s' % str(expr))
    typ = parseType(expr[3])
    newenv = Environment(env)
    newenv.addVariable(name, typ, None) # Support recursive definitions
    etyp = typecheck(expr[4], newenv)
    if not typ.matches(etyp):
       return CErrorType \setminus
        ('Mistyped definition: %s declared type %s, actual type %s'
         % (name, typ, etyp))
     return None # definition has no type
  else:
    return CErrorType ("Bad definition: %s" % str(expr))
```

To find the type of the value subexpression (*etyp*), the procedure recursively calls *typecheck* on the subexpression. If the result does not match the specified type (*typ*), the definition is mistyped and a *CErrorType* object is returned. Note that this outcome also results if the value subexpression itself is not well-typed, since in that case the call to *typecheck(expr*[4], *env*) will result in a *CErrorType* object which does not match any type.

Applications. An application expression is well-typed only if the first subexpression is a procedure. To be well-typed, the operand expressions must match the parameter types for that procedure.

The *optypes* variable is initialized to the result of mapping the *typecheck* procedure on each of the operand subexpressions. This produces a list of type objects (possibly including *CErrorType* objects if any of the operand subexpressions is not well-typed). A *CProductType* object is constructed from the

operand type list. The if statement checks if the operand types match the expected parameter types for the procedure. If they match, the type of the application expression is the return type of the applied procedure.

Lambda Expressions. To type check a lambda expression, we need to determine the type that will result from an application of the procedure. This involves partially applying the procedure even though we have no operands. Instead, we create a new environment containing the places corresponding to each parameter. Because of the type specifications, their types are known, but no value is available since the procedure is not being applied. We use None for the value, but rely on the nature of type checking. Type checking should never depend on actual values, only on the types which are known because of the parameter type specifications.

```
def typeLambda(expr, env):
  assert isLambda(expr)
  if len(expr) != 3: evalError ('Bad lambda expression: %s' % str(expr))
  newenv = Environment(env)
  params = expr[1]
  paramnames = []
  paramtypes = []
  assert len(params) \% 3 == 0
  for i in range(0, len(params) / 3):
    assert params[(i*3)+1] == ':'
    name = params[i*3]
    typ = parseType(params[(i*3)+2])
    paramnames.append(name)
    paramtypes.append(typ)
    newenv.addVariable(name, typ, None)
  resulttype = typecheck(expr[2], newenv)
  return CProcedureType(CProductType(paramtypes), resulttype)
```

The type of the lambda expression is a procedure type with the parameter types given in the parameter type specifications, and the result type determined by type checking the partial application.

Evaluator Loop. The *evalLoop* procedure is changed to type check every expression before it is evaluated. If the expression is not well-typed, type checking produces an error which is displayed. Otherwise, the expression is then evaluated.

```
def evalLoop():
    initializeGlobalEnvironment()
    while True:
        inv = raw_input('StaticCharme> ')
        if inv == 'quit': break
```

```
for expr in parse(inv):
  typ = typecheck(expr, globalEnvironment) # added
  if typ and typ.isError(): # added
    print 'Error: ' + typ.getMessage()
  else:
    res = meval(expr, globalEnvironment)
    if res != None: print str(res)
```

Examples. Here are some example evaluations using our StaticCharme interpreter:

```
StaticCharme> (define n : Number 3)
StaticCharme> (define b : Boolean 3)
Error: Mistyped definition: b declared type Boolean, actual type Number
StaticCharme> (define square : ((Number) -> Number)
                  (lambda (x : Number) (* x x)))
StaticCharme> (square 3)
9
StaticCharme> (square true)
Error: Parameter type mismatch: expected (Number), given (Boolean)
StaticCharme> (square 3 5)
Error: Parameter type mismatch: expected (Number), given (Number Number)
StaticCharme> (define f : ((Number) -> Number)
                  (lambda (x : Number) (< x 3)))
Error: Mistyped definition: f declared type ((Number) -> Number), actual type
    ((Number) -> Boolean)
StaticCharme> (define sapp : (() -> Number) (lambda () (square true)))
Error: Mistyped definition: sapp declared type (() -> Number), actual type (()
    -> <Type Error: Parameter type mismatch: expected (Number), given
    (Boolean)>)
StaticCharme> (if (< 34) true false)
True
StaticCharme> (if (+34) true 6)
Error: Mistyped predicate: Number
StaticCharme> (if (< 34) true 6)
Error: Inconsistent branch types: Boolean, Number
StaticCharme> (define fact:((Number) -> Number)
                  (lambda (n:Number) (if (= n 1) 1 (* n (fact (- n 1))))))
StaticCharme> (fact 10)
3628800
```

Note that type errors are reported for definitions, not when the defined names are used.

Exercise 14.1. Give the type of each of the following StaticCharme expressions. If the expression is not well-typed, explain the type error. Assume the square and compose definitions from Section 14.2.

- **a.** (+ 1 *true*)
- **b.** compose
- **c.** (*compose square square*)
- **d.** (*compose* (**lambda** (*a* : **Boolean**) *a*) *square*)
- e. (+ 1 2 3)
- **f.** (*square* ((**lambda** (*a* : **Number** *b* : **Number**) (> *a b*)) 3 4))
- g. (define *infinite-loop:*(() -> Number) (lambda () (*infinite-loop*)))
- **h.** (square (infinite-loop))

Exercise 14.2. $[\star]$ Extend the interpreter to support a conditional special form similar to the Scheme **cond** expression. The *typeConditional* procedure should check that all of the predicate expressions evaluate to a Boolean value. In order for a conditional expression to be type correct, the consequent expressions of each clause must be of the same type. The type of a conditional expression is the type of each consequent expression.

Exercise 14.3. [*] A stronger type checker would require that at least one of the conditional predicates must evaluate to a true value. Otherwise, the conditional expression does not have the required type (instead, it produces a run-time error). Either modify your *typeConditional* procedure to implement this stronger typing rule, or explain why it is impossible to do so. (Hint: see Chapter 15.)

14.6 Summary

Modifying our Charme interpreter to implement a language with manifest types and static type checking reduces the expressiveness of the language in ways that make it possible to detect programming errors earlier and more reliably. For safety-critical software, it is far better to detect an error before a program is executed, than to encounter an error at run-time, or to produce an incorrect result.

Part IV

The Limits of Computing

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

15 Computability

However unapproachable these problems may seem to us and however helpless we stand before them, we have, nevertheless, the firm conviction that their solution must follow by a finite number of purely logical processes... This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason; for in mathematics these is no ignorabimus. David Hilbert, Address to the Second International Congress of Mathematicians, 8 August 1900

> Gödel's paper has reached me at last. I am very suspicious of it now but will have to swot up the Zermelo-van Neumann system a bit before I can put objections down in black & white.

Alan Turing, letter to Max Newman, 1940

The small subset of Scheme introduced in Chapter 3 is sufficient to define a procedure that produces any possible computation. What remains to be considered, however, is what problems can and cannot be solved by mechanical computation. This is the *computability* question: a problem is com- *computability* putable if it can be solved by some algorithm.

Before getting to the question of computability, we consider a similar question for declarative knowledge: are there true statements that cannot be proven by any proof?

Section 15.2 introduces the *Halting Problem*, a problem that cannot be solved by any algorithm. Section 15.3 sketches Alan Turing's proof that the Halting Problem is noncomputable. Section 15.4 explores how to use the Halting Problem to recognize other problems that are noncomputable.

15.1 Mechanizing Reasoning

Humans have been attempting to mechanize reasoning for thousands of years. An early attempt was Aristotleï£;s Organon in approximately 350 BC. Aristotle developed syllogisms, rules of inference that codify logical deductions.

Euclid went beyond Aristotle by developing a formal axiomatic system. An

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

axiomatic system axiomatic system is a formal system consisting of a set of axioms and a set of inference rules. The goal of an axiomatic system is to codify knowledge in some domain.

The axiomatic system Euclid developed in *The Elements* concerned constructions that could be drawn using just a straightedge and a compass.

Euclid started with five axioms (more commonly known as *postulates*); an example axiom is: *A straight line segment can be drawn joining any two points*. In addition to the postulates, Euclid states five *common notions*, which could be considered inference rules. An example of a common notion is: *The whole is greater than the part*.

Starting from the axioms and common notions, along with a set of definitions (e.g., defining a *circle*), Euclid proved 468 propositions mostly about geometry and number theory. A *proposition* is a statement that is stated precisely enough to be either true or false. Euclid's first proposition is: given any line, an equilateral triangle can be constructed whose edges are the length of that line.

- *proof* A *proof* of a proposition in an axiomatic system is a sequence of steps that ends with the proposition. Each step must follow from the axioms using the inference rules. Nearly all of Euclid's proofs are constructive: most of the propositions state that a particular thing exists, and the proof is a series of steps that construct one of the target things. The steps follow from the postulates and the inference rules to prove that the thing resulting at the end satisfies the requirements of the proposition.
- *consistent* A *consistent* axiomatic system is one that can never derive contradictory statements by starting from the axioms and following the inference rules. If a system can generate both *A* and *not A* for any proposition *A*, the system is inconsistent. If the system cannot generate any contradictory pairs of statements it is consistent. Euclid's system is consistent; there is no way to derive contradictory statements in the system.
- *complete* A *complete* axiomatic system can derive all true statements by starting from the axioms and following the inference rules. This means if a given proposition is true, some proof for that proposition can be found in the system. Since we do not have a clear definition of *true* (if we defined true as something that can be derived in the system, all axiomatic systems would automatically be complete by definition), we state this more clearly by saying that the system can decide any statement. This means, for a given statement *A*, a complete axiomatic system would be able to derive either *A* or *not A*. A system that cannot decide all statements in the system is *incomplete*.

An ideal axiomatic system would be complete and consistent; it would be able to generate all true statements but never generate any false statements. Euclid's system is consistent but not complete. There are statements that concern simple properties in geometry (a famous example is *any angle can be divided into three equal sub-angles*) that cannot be derived in the system; trisecting an angle requires more powerful tools than the straightedge and compass provided by Euclid's postulates.

Figure 15.1 depicts two axiomatic systems. The left one is *incomplete* since there are some propositions that can be stated in the system that are true for which no valid proof exists in the system. The right one is *inconsistent*: it is possible to construct a proof that starts from the axioms and follows the inference rules but ends up with a proposition that is false. Once a single contradictory proposition can be proven the system becomes completely useless. The contradictory propositions amount to a proof that *true* = *false*, so once a single pair of contradictory propositions can be proven in the system. Hence, we focus on systems that are consistent and consider whether it is possible for them to also be complete.

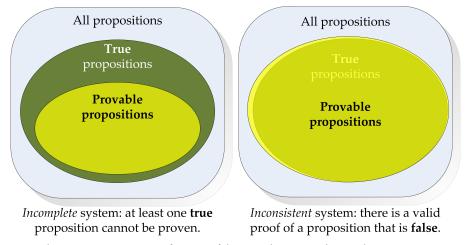


Figure 15.1. Incomplete and inconsistent axiomatic systems.

15.1.1 Russell's Paradox

Towards the end of the 19th century, many mathematicians sought to systematize mathematics. The goal was to develop an axiomatic system that was complete and consistent for all of some area of mathematics. One notable attempt was Gottlob Frege's *Grundgestze der Arithmetik* (1893) which attempted to develop an axiomatic system for all of mathematics built from simple logic.

Bertrand Russell discovered a problem with Frege's system, which is now known as *Russell's paradox*. Suppose *S* is defined as the set containing all sets that do not contain themselves as members. For example, the set of all prime numbers does not contain itself as a member (since all its members are numbers), so it is a member of *S*. On the other hand, the set of all entities that are not prime numbers is a member of *S*. This set contains all sets, since a set is not a prime number, so it must contain itself.

The paradoxical question is: *is the set S a member of S*? Like all binary questions, there are two possible answers to consider: "yes" and "no":

- Yes: suppose *S* is a member of *S*. Then, the set *S* contains itself. But, we defined the set *S* as the set of all sets that do not contain themselves as member. Hence, *S* cannot be a member of itself, and the statement that *S* is a member of *S* must be false.
- No: suppose *S* is not a member of *S*. Then, the set *S* does not contain itself. But, we defined the set *S* as the set of all sets that do not contain themselves as a member. So, if *S* is not a member of *S*, it does not contain itself, and it must be a member of set *S*. This is a contradiction, so the statement that *S* is not a member of *S* must be false.

This is a paradox! The question is a perfectly clear and precise binary question, but neither the "yes" answer or the "no" answer makes any sense.

Symbolically, we summarize the paradox: For any set A, $A \in S$ if and only if $A \notin A$. For any item and any set, the item is either in the set or not. So, selecting S for the item and S for the set, either (1) $S \in S$ or (2) $S \notin S$. But, both of these possibilities lead to contradictions because of the property above. Substituting S for A, we have $S \in S$ if and only if $S \notin S$. Thus, if $S \in S$ the property implies $S \notin S$, a contradiction. But, if $S \notin S$ the property implies $S \in S$, also a contradiction.

Whitehead and Russell attempted to resolve this paradox by constructing their system to make it impossible to define the set *S*. Their solution was to introduce types. Each set has an associated type, and a set can only contain members of type below the type of the set. The set types are defined recursively:

- A type zero set is defined as a set that contains only objects (that is, it cannot contain any sets as members).
- A type *n* set is a set that contains only objects and sets of type *n* − 1 and below.

With this definition, the paradox is avoided: the definition of *S* must now define *S* as a set of type k set containing all sets of type k - 1 and below

that do not contain themselves as members. Since *S* is a type *k* set, it cannot contain itself, since it cannot contain any type *k* sets.

The type restriction eliminates the paradox regarding set self-inclusion. In 1913, Alfred North Whitehead and Bertrand Russell published *Principia Mathematica*, a bold attempt to mechanize mathematical reasoning that stretched to over 2000 pages. Whitehead and Russell attempted to derive all true mathematical statements about numbers and sets starting from a set of axioms and formal inference rules. They employed the type restriction to eliminate the particular paradox caused by set inclusion, but it does not eliminate all self-referential paradoxes.

For example, consider this paradox named for the Cretan philosopher Epimenides who was purported to have said "All Cretans are liars.". If the statement is true, than Epimenides, a Cretan, is not a liar and the statement that all Cretans are liars is false. Another version is the self-referential sentence: *This statement is false*. If the statement is true, then it is true that the statement is false (a contradiction). If the statement is false, then it is a true statement (also a contradiction).

It was not clear until Gödel, however, if such statements could be stated in the *Principia Mathematica* system.

15.1.2 Gödel's Incompleteness Theorem

Kurt Gödel was born in Brno (then part of Austria-Hungary, now in the Czech Republic) in 1906. Gödel proved that the axiomatic system in *Principia Mathematica* could not be complete and consistent, but more generally that *no* powerful axiomatic system could be both complete and consistent. He proved that no matter what this axiomatic system is, if it is powerful enough to express certain things, it must also be the case that there exist statements that can be expressed in the system by cannot be proven either true or false within the system.

Gödel's proof used construction: to prove that *Principia Mathematica* contains statements which cannot be proven either true or false, it is enough to find one such statement. Gödel's statement is:

 G_{PM} : Statement G_{PM} does not have any proof in the system of *Principia Mathematica*.

If statement G_{PM} is provable in the system, then the system is inconsistent: it can be used to prove a statement that is not true. If G_{PM} is proven, then it means G_{PM} does have a proof, but G_{PM} stated that G_{PM} has no proof. On the other hand, if G_{PM} is not provable in the system, then the system

Gödel with Einstein, Princeton 1950 Institute for Advanced Study Archives

is incomplete. Since G_{PM} cannot be proven in the system, G_{PM} is a true statement. But, the premise is that G_{PM} is not provable. So, we have a true statement that is not provable in the system.

The proof generalizes to *any* axiomatic system, powerful enough to express a corresponding statement *G*:

G: Statement G does not have any proof in the system.

For the proof to be valid, it is necessary to show that statement *G* can be expressed in the system.

To express *G* formally, we need to consider what it means for a statement to not have any proof in the system. A proof of the statement *G* is a sequence of steps, $T_0, T_1, T_2, ..., T_N$. Each step is the set of all statements that have been proven true so far. Initially, T_0 is the set of axioms in the system. To be a proof of *G*, T_N must contain *G*. To be a valid proof, each step should be producible from the previous step by applying one of the inference rules to statements from the previous step.

To express statement *G* an axiomatic system needs to be powerful enough to express the notion that a valid proof does not exist. Gödel showed that such a statement could be constructed using the *Principia Mathematica* system, and using any system powerful enough to be able to express interesting properties. That is, in order for an axiomatic system to be complete and consistent, it must be so weak that it is not possible to express *this statement has no proof* in the system.

15.2 The Halting Problem

Gödel established that no interesting and consistent axiomatic system is capable of proving all true statements in the system. Now we consider the analogous question for computing: *are there problems for which no algorithm exists*?

Chapter 4 provided these definitions:

- A *problem* is a description of an input and a desired output.
- A *procedure* is a specification of a series of actions.
- An *algorithm* is a procedure that is guaranteed to always terminate.

A procedure solves a problem if that procedure produces a correct output for every possible input. If that procedure always terminates, it is an algorithm. So, the question can be stated as: is there a problem P such that there exists no procedure that produces the correct output for problem P for all inputs in a finite amount of time?

A problem is *computable* (the term *decidable* means the same thing) if there *computable* exists an algorithm that solves the problem. It is important to remember that in order for an algorithm to be a solution for a problem P, it must always terminate (otherwise it is not an algorithm) and must always produce the correct output for *all* possible inputs to *P*. If no such algorithm exists, the problem is *noncomputable* (also known as *undecidable*).

noncomputable

Alan Turing proved that there exist noncomputable problems. Similarly to Gödel's proof, the way to show that uncomputable problems exist is to find one the way Gödel show unprovable true statements exist by finding an unprovable true statement. The problem Turing found is known as the Halting Problem:¹

Halting Problem

Input: A String representing a Scheme expression.

Output: If evaluating the input expression in the current execution environment would ever finish, output true. Otherwise, output false.

Suppose we had a procedure *halts?* that solves the Halting Problem. The input to *halts*? is a Scheme expression expressed as a String. We could not use the Scheme expression directly as the input, since that would mean that it is evaluated before *halts*? is applied; if this were done, the *halts*? procedure would never be applied if the input expression would not halt.

The hypothetical *halts?* procedure should work like this:

> (halts? "(+ 2 3)") true > (define (factorial n) (if (= n 0) 1 (* n (factorial (- n 1))))) > (*halts*? "(factorial 10)") true > (*halts*? "(factorial -1)") false > (define (*fibo* n) (if (or (= n 1) (= n 2)) 1

¹This problem is a variation on Turing's original problem, which assumed a procedure that takes one input. Of course, Turing did not define the problem using a Scheme expression since Scheme had not yet been invented when Turing proved the Halting Problem was noncomputable in 1936. In fact, nothing resembling a programmable digital computer would emerge until several years later.

(+ (fibo (- n 1)) (fibo (- n 2))))) > (halts? "(fibo 60))") true

Note that it is not possible to implement *halts*? by evaluating the expression and outputting true if it terminates. The problem is it is not clear when to give up and output *false*. As we analyzed in Chapter 7, evaluating (*fibo* 60) would take millions of years; in theory, though, it eventually finishes so *halts*? should output *true*.

This argument is not sufficient to prove that *halts*? is noncomputable. It just shows that one particular way of implementing *halts*? would not work. To show that *halts*? is noncomputable, we need to show that there is no possible way to implement a *halts*? procedure that would produce the correct output for all inputs in a finite amount of time.

Proofs of non-existence are usually much tougher than proofs of existence. One way to prove non-existence of an *X*, is to show that if an *X* exists it leads to a contradiction. We will prove that if a *halts*? algorithm exists, a contradiction results, hence no *halts*? algorithm exists. We do this by showing one input for which the *halts*? procedure could not possibly work correctly.

Consider this input procedure:

```
(define (paradox)
  (if (halts? "(paradox)")
            (loop-forever)
            true))
```

where the procedure *loop-forever* is defined as:

(**define** (*loop-forever*) (*loop-forever*)

The body of the *paradox* procedure is an if-expression. The predicate expression is (*halts*? "(paradox)"). This could evaluate to either true or false.

If the predicate expression evaluates to true it means evaluating (*paradox*) finished. When the predicate expression evaluates to true, the consequent expression, (*loop-forever*), is evaluated. This applies the *loop-forever* procedure, whose body expression is an application of *loop-forever*. Evaluating this never terminates since it is a circular definition with no base case. Thus, if the predicate evaluates to true, the evaluation of an application of *paradox* never halts. But, this means the result of the (*halts*? "(paradox)") predicate was incorrect. Hence, it is not sensible for (*halts*? "(paradox)") to evaluate

to a true value, since this would cause the application of *paradox* to never terminate.

The other option is that the predicate expression evaluates to false. If this is the case, the alternate expression is evaluated. It is the primitive expression *true*. Thus, the evaluation of *paradox* terminates after the if-expression is evaluated. But, this option assumed the predicate (*halts*? "(paradox)") evaluates to false. This means the evaluation of *paradox* does not terminate. Hence, it is not sensible for (*halts*? 'paradox) to evaluate to a false value, since this would cause the application of *paradox* to terminate.

Either result for (*halts*? "(paradox)") leads to a contradiction! The only sensible thing *halts*? could do for this input is to not produce a value. That means there is no way to define an algorithm that solves the Halting Problem. Any procedure we attempt to define to implement *halts*? must sometimes either produce the wrong result or fail to produce a result at all (that is, run forever without producing a result). Thus, the Halting Problem is noncomputable.

There is one important hold in our proof: we argued that because *paradox* does not make sense, something in the definition of *paradox* must not exist, and identified *halts*? as the component that does not exist. This assumes that everything else we used to define *paradox* does exist.

This seems reasonable enough—we have been using everything else in it already (an if-expression, a string literal, applications, and the primitive *true*) and they seem to exist. But, perhaps the reason *paradox* leads to a contradiction is because *true* does not really exist or because it is not possible to implement an if-expression that adheres to the Scheme evaluation rules. Although we have been using there and they seems to always work fine, we have no formal model in which to argue that evaluating *true* always terminates or that an if-expression means what we think it does.

Our informal proof is also insufficient to prove the stronger claim that no algorithm exists to solve the halting problem. All we have shown is that no Scheme procedure exists that solves *halts*?. Perhaps there is a procedure in some more powerful programming language (in fact, we will see that no more powerful programming language exists).

Overcoming these weaknesses requires a formal model of computing. This is the reason Alan Turing developed the Turing Machine model we introduced in Chapter 6.

15.3 Universality

Turing argued that this simple model corresponds to our intuition about what can be done using systematic computation. Recall this was 1936, so the model for systematic computation was not what a mechanical computer can do, but what a human computer can do. Turing argued that his model corresponded to what a human computer could do by following a systematic procedure: the infinite tape was as powerful as a twodimensional sheet of paper, the set of symbols must be finite otherwise it would not be possible to correctly distinguish all symbols, and the number of machine states must be finite because there is a limited amount a human can remember.

Next, Turing argued that it is possible to enumerate all Turing Machines. One way to see this is to devise a notation for writing down any Turing Machine. A Turing Machine is completely described by its alphabet, states and transition rules. So, we could write down any Turing Machine by numbering each state and listing each transition rule as a tuple of the current state, alphabet symbol, next state, output symbol, and tape direction. We can map each state and alphabet symbol to a number, and use this encoding to write down a unique number for every possible Turing Machine. Hence, we can enumerate all possible Turing Machines by just enumerating the positive integers. Most positive integers do not correspond to a valid Turing Machine, but if we go through all the numbers we will eventually reach every possible Turing Machine.

TODO: Recall Chapter 1

This is already a strong step towards proving that some problems cannot be solved by any algorithm. The number of Turing Machines is less than the number of real numbers. Both numbers are infinite, so what does it mean to say there are more real numbers than integers? This question was resolved by Georg Cantor. His proof used a technique known as *diagonal*diagonalization ization. Suppose the real numbers are enumerable. This means we could list all the real numbers in order, so we could assign a unique integer to each number. For example, considering just the real numbers between 0 and 1, our enumeration might be:

- 1 .000000000000...
- 2 .2500000000000...
- 3 .33333333333333...
- 4 .666666666666666...
- . . .

. . .

. . .

57236 .141592653589793...

358

Cantor proved by contradiction that there is no way to enumerate all the real numbers. The trick is to produce a new real number that is not part of the enumeration. We can do this by constructing a number whose first digit is different from the first digit of the first number, whose second digit is different from the second digit of the second number, etc. For the example enumeration above, we might choose .1468....

The k^{th} digit of the constructed number is different from the k^{th} digit of the number k in the enumeration. Since the constructed number differs in at least one digit from every enumerated number, it does not match any of the enumerated numbers exactly. Thus, there is a real number that is not included in the enumeration list, and it is impossible to enumerate all the real numbers. This suggests that there are real numbers that cannot be produced by any Turing Machine: there are fewer Turing Machines than there are real numbers, so there must be some real numbers that cannot be produced by any Turing Machine.

The next step is to define a *Universal Turing Machine* as depicted in Fig- *Universal Turing Machine* ure 15.2.

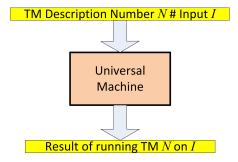


Figure 15.2. Universal Turing Machine.

A Universal Turing Machine is a machine that takes as input a number that identifies a Turing Machine and a description of an input and simulates the specified Turing Machine on the given input. The universal machine can simulate any Turing Machine on any input. In his proof, Turing describes the transition rules for a universal machine. A universal machine simulates the Turing Machine encoded by the input number. One can imagine doing this by using the tape to keep track of the state of the simulated machine. For each step, the universal machine needs to search the description of the input machine to find the appropriate rule. This is the rule for the current state of the simulated machine on the current input symbol of the simulated machine. The universal machine keeps track of the machine and tape state of the simulated machine, and simulates each step. Thus, there is a single Turing Machine that can simulate every Turing Machine. Using the universal machine and a diagonalization argument similar to the one above for the real numbers, Turing was able to reach a similar contradiction for a problem analogous to the Halting Problem described above for Scheme expressions but for Turing Machines instead.

Since a Universal Turing Machine can simulate every Turing Machine, and a Turing Machine can perform any computation according to our intuitive notion of computation, this means a Universal Turing Machine can perform all computations. If we can simulate a Universal Turing Machine in a programming language, that language is a universal programming language. There is some program that can be written in that language to perform every possible computation. It is sufficient to show that it can simulate a Universal Turing Machine, since a Universal Turing Machine can perform every possible computation. To simulate a Universal Turing Machine, we need some way to keep track of the state of the tape (for example, a List in Scheme would be adequate), a way to keep track of the internal machine state (a Number in Scheme can do this), and a way to execute the transition rules (we could define a Scheme procedure that does this, using an if-expression to make the decision about which transition rule to follow). Thus, Scheme is a universal programming language: one can write a Scheme program to simulate a Universal Turing Machine, and thus, perform any mechanical computation.

15.4 Proving Non-Computability

We can show that a problem is computable by describing a procedure and proving that the procedure always terminates and always produces the correct answer. It is enough to provide a convincing argument that such a procedure exists; finding the actual procedure is not necessary (but often helps to make the argument more convincing). To show that a problem is not computable, we need to show that *no* algorithm exists that solves the problem. Since there are an infinite number of possible procedures, we cannot just list all possible procedures and show why each one does not solve the problem. Instead, we need to construct an argument showing that if there were such an algorithm it would lead to a contradiction.

The core of our argument is based on knowing the Halting Problem is noncomputable. If a solution to some new problem P could be used to solve the Halting Problem, then we know that P is also noncomputable. That is, for a given problem P, no algorithm exists that can solve P since if such an algorithm exists it could be used to also solve the Halting Problem which we already know is impossible.

universal programming

language

The proof technique where we show that a solution for some problem *P* can be used to solve a different problem *Q* is known as a *reduction*.

A problem Q is *reducible* to a problem P if a solution to P could be used to *reducible* solve Q. This means that problem Q is no harder than problem P, since a solution to problem Q leads directly to a solution to problem P.

Example 15.1: Prints-Three Problem. Consider the problem of determining if an application of a procedure would ever print 3:

Prints-Three

Input: A specification of a Scheme expression.

Output: If evaluating the specified expression would ever print 3, output *true*. Otherwise, output *false*.

We show the Prints-Three Problem is noncomputable by showing that it is as hard as the Halting Problem, which we already know is noncomputable.

Suppose we had a procedure *prints-three*? that solves the Prints-Three Problem. Then, we could define *halts*? as:

(define (halts? expr)
 (prints-three?
 (string-append "(begin " expr " (print 3))")))

We use *string-append* to paste the input string representing a Scheme expression into a begin-expression where it is followed by (*print* 3).

The *prints-three*? application will evaluate to *true* if evaluating *expr* would halt, since that means the second expression in the begin expression would be evaluated and that expression prints 3. On the other hand, if evaluating *expr* would not halt, the second expression in the begin expression is never evaluated. As long as the procedure never prints 3, the application of *prints-three*? should evaluate to *false*. Hence, the output would correctly solve the Halting Problem.

The one wrinkle is that the input procedure might print 3 itself. We can avoid this problem by transforming the procedure in a way that it would never print 3 itself, without otherwise altering its halting or non-halting behavior. One way to do this would be to take advantage of the evaluation rule for names to hide the built-in *print* procedure. We can do this by using a let-expression to define a new *print* place containing a procedure that does nothing. Since this name will be found in a new environment, the definition of *print* in the global environment will not be used.

reduction

Note that the let-expression that hides the built-in *print* procedure when *expr* would be evaluated is closed by the right parentheses before (*print* 3), so if the second expression in the begin-expression is evaluated, the built-in print is used and 3 is indeed printed.

Thus, if there exists a *prints-three*? procedure that correctly solves the Prints-Three Problem — that is, it always terminates and always produces the correct true or false value indicating if the input procedure specification would ever print 3 — we could also define a *halts*? procedure that solves the Halting Problem. But, we know that the Halting Problem is noncomputable. Hence, the *prints-three*? procedure we used to define *halts*? cannot exist, and the Prints-Three Problem must also be noncomputable.

The Halting Problem and Prints-Three Problem are noncomputable, but do seem to be obviously important problems. It is useful to know if a procedure application will terminate in a reasonable amount of time, but the Halting Problem does not answer that question. It concerns the question of whether the procedure application will terminate in any finite amount of time, no matter how long it is. Next, we consider a problem that it would be very useful to have a solution for it one existed.

Example 15.2: Is-Virus Problem. A virus is a program that infects other programs. A virus spreads by copying its own code into the code of other programs, so when those programs are executed the virus will execute. In this manner, the virus spreads to infect more and more programs. A typical virus also includes a malicious payload so when it executes in addition to infecting other programs it also performs some damaging (corrupting data files) or annoying (popping up messages) behavior. The Is-Virus Problem is to determine if a procedure specification contains a virus:

Is-Virus

Input: A specification of an expression.

Output: If the expression contains a virus (a code fragment that will infect other files) output *true*. Otherwise, output *false*.

We demonstrate the Is-Virus Problem is noncomputable using a similar strategy to the one we used for the Prints-Three Problem: we show how to define a *halts*? algorithm given a hypothetical *is-virus*? algorithm. Since we know *halts*? is noncomputable, this shows there is no *is-virus*? algorithm.

Assume *infect-files* is a procedure that infects files, so the result of evaluating *(is-virus?* "(infect-files)") is true. Then, we can define *halts?* as:

```
(define (halts? expr)
  (is-virus?
    (string-append
    "(begin " expr " (infect-files))")))
```

This works as long as the input *expr* does not exhibit the file-infecting behavior. If it does, *expr* could infect a file and never terminate, and *halts*? would produce the wrong output.

To solve this we need to do something like we did in the previous example to hide the printing behavior of the original program. In this case it is a bit trickier, since we do not have a clear notion of what it means to infect a file. A rough definition of file-infecting behavior would be to consider any write to an executable file to be an infection. Then, we would use a let-expression to hide the definition of *write*, the library function that writes to a file, and other procedures that write to files. We could replace these procedures with procedures that check if the object being written to is an executable file, and ignore the write in these cases.

```
(define (halts? expr)
  (is-virus?
    (string-append
    "(begin (let ((write (lambda (val f) (if (file-stream-port? f) (void) ...)))) "
    expr
    " (infect-files)))")))
```

The actual let-expression needed to hide all file infections without otherwise changing the behavior of *expr* would be more complex, but the important point is that such an expression could be written, and then we could use *is-virus*? to define *halts*?. Since we know there is no algorithm that solves the Halting Problem, this proves that there is no algorithm that solves the *Is-Virus* problem.

Virus scanners such as Symantec's Norton AntiVirus attempt to solve the *Is-Virus* Problem, but its non-computability means they are doomed to always fail. Virus scanners detect known viruses by scanning files for strings that match signatures in a database of known viruses. As long as the signature database is frequently updated they may be able to detect currently spreading viruses, but this approach cannot detect a new virus that will not match the signature of a previously known virus.

Sophisticated virus scanners employ more advanced techniques than signature scanning to attempt to detect complex viruses such as metamorphic viruses that alter their own code as they propagate to avoid detection. But, because the general *Is-Virus* Problem is not computable, we know that it is impossible to create a program that always terminates and that always correctly determines if an input procedure specification is a virus.

Exercise 15.1. Is the Launches-Missiles Problem described below computable? Provide a convincing argument supporting your answer.

Launches-Missiles

Input: A specification of a procedure.

Output: If an application of the procedure would lead to the missiles being launched, outputs *true*. Otherwise, outputs *false*.

You may assume that the only thing that causes the missiles to be launched is an application of the *launch-missiles* procedure.

Exercise 15.2. Is the Same-Result Problem described below computable? Provide a convincing argument supporting your answer.

Same-Result

Input: Specifications of two procedures, *P* and *Q*.

Output: If an application of P terminates and produces the same value as applying Q, outputs true. If an application of P does not terminate, and an application of Q also does not terminate, outputs true. Otherwise, outputs false.

Exercise 15.3. Is the Check-Proof Problem described below computable? Provide a convincing argument supporting your answer.

Check-Proof

Input: A specification of an axiomatic system, a statement (the theorem), and a proof (a sequence of steps, each identifying the axiom that is applied).

Output: Outputs true if the proof is a valid proof of the theorem in the system, or false if it is not a valid proof.

Exercise 15.4. Is the Find-Finite-Proof Problem described below computable? Provide a convincing argument supporting your answer.

Find-Finite-Proof

Input: A specification of an axiomatic system, a statement (the theorem), and a maximum number of steps (max-steps).

Output: If there is a proof in the axiomatic system of the theorem that uses max-steps or fewer steps, outputs true. Otherwise, outputs false.

Exercise 15.5. [*] Is the Find-Proof Problem described below computable? Provide a convincing argument why it is or why it is not computable.

Find-Proof

Input: A specification of an axiomatic system, and a statement (the theorem).

Output: If there is a proof in the axiomatic system of the theorem, outputs true. Otherwise, outputs false.

I am rather puzzled why you draw this distinction between proof finders and proof checkers. It seems to me rather unimportant as one can always get a proof finder from a proof checker, and the converse is almost true: the converse false if for instance one allows the proof finder to go through a proof in the ordinary way, and then, rejecting the steps, to write down the final formula as a 'proof' of itself. One can easily think up suitable restrictions on the idea of proof which will make this converse true and which agree well with our ideas of what a proof should be like. I am afraid this may be more confusing to you than enlightening. Alan Turing, letter to Max Newman, 1940

15.5 Summary

Although today's computers can do amazing things, many of which could not even be imagined twenty years ago, there are some problems that cannot be solved by computing. The Halting Problem is the most famous example: it is impossible to define a mechanical procedure that always terminates and correctly determines if the computation specified by its input would terminate. Once we know the Halting Problem is noncomputable, we can show that other problems are also noncomputable by illustrating how a solution to the other problem could be used to solve the Halting Problem, which we know to be impossible.

Noncomputable problems frequently arise in practice. For example, identifying viruses, analyzing program paths, and constructing proofs, are all noncomputable problems. Just because a problem is noncomputable does not mean we cannot produce useful programs that address the problem. These programs provide approximate solutions — they produce the correct results on many inputs, but on some inputs either do not produce any result, or produce an incorrect result. Approximate solutions are often useful in practice, however, even if they are not correct solutions to the problem.

This chapter will introduce complexity classes including the classes *P* and *NP*, will explain the *P*=*NP* question, and will describe some examples of intractable problems.

Alternative Computing Models

This chapter will introduce several different computing models. First, it will cover Lambda Calculus (which might expand to a full chapter) and show it is equivalent to the Turing Machine model. Then, it will provide a brief introduction to randomness, quantum computing, and DNA computing.

Part V

Programming the Web

This chapter will introduce networking including circuit and packet switching; bandwidth and latency and how different network designs impact them; layers of abstraction in a network; and basic protocols.

19 The World Wide Web

This chapter will introduce the World Wide Web, including the HTTP protocol and HTML.

This chapter will explain how to design and build a web application.

21 Distributed Computing

This chapter will introduce distributed computing, including synchronization issues and techniques for building massively distributed applications.

Index

algorithm, 70 aliasing, 266 Apollo Guidance Computer, 15 applicative-order, 321 assignment, 251 axiomatic system, 350 base case, 75 binary numbers, 10 binary question, 4 binary tree, 6, 222 bit, **4** brute force, 124 class, 278 coffee, 2 complete, 350 computability, 349 computable, 355 computer, 3 consistent, 350 constant time, 192 constructors, 278 countable, 10 data abstraction, 123 debugging, 89 defensive programming, 114 depth, 7, 224 diagonalization, 10, 358 digital abstraction, 148 discrete, 10 divide and conquer, 70 dynamic dispatch, 287 dynamic programming, 175 dynamic type checking, 330 encapsulation, 273 environment, 255 Erdös, Paul, 2 evaluator, 294 frame, 255 function, 52 Google, 2 higher-order procedure, 72

immutable, 260 imperative programming, 263 information, 4 information processes, 2 inherits, 281 instance variables, 278 interpreter, 293 invoke, **278** latent, 330 lazy evaluation, 319 linearly, **193** list, 108 Lockhart, Paul, 2 logarithm, 6 manifest, 330 methods, 278 mutators, 251 noncomputable, 355 null, 108 object, 278 object-oriented programming, 271 overrides, 284 pair, 101 parser, 293 pixel, 13 pizza, 2 place, 255 precedence, 298 problem, 69 procedure, 2 proof, 350 proposition, 350 quadratically, 200 recursive definition, 21, 32, 39, 74-88 recursive descent, 308 recursive transition networks, 31 reducible, 361 reduction, 361 relaxation, 244 repeat-until, 270

Index

side effects, side-effects, sorted binary tree, *see* binary tree stack, **35** static type checking, subclass, superclass,

tagged list, **125** tail recursive, **81** thunk, **320** token, **295** Toy Story, 2 transitivity, **212** tree, *see* binary tree truth table, **147**

universal computers, universal computing machine, universal programming language, Universal Turing Machine,

while loop, 268