Language

“When I use a word,” Humpty Dumpty said, in a rather scornful tone,
“it means just what I choose it to mean - nothing more nor less.”
“The question is,” said Alice, “whether you can make words mean so
many different things.”
Lewis Carroll, Through the Looking Glass

The most powerful tool we have for communication is language. This is
true whether we are considering communication between two humans,
communication between a human programmer and a computer, or com-
munication between multiple computers. In computing, we use language
to describe procedures and use tools to turn descriptions of procedures in
language that are easy for humans to read and write into executing pro-
cesses. This chapter considers what a language is, how language works,
and introduces the techniques we will use to define languages.

2.1 Surface Forms and Meanings

A language is a set of surface forms, s, meanings, m, and a mapping be-
tween the surface forms in s and their associated rneanings.1 In the earliest
human languages, the surface forms were sounds. But, the surface forms
can be anything that can be perceived by the communicating parties. We
will focus on languages where the surface forms are text.

A natural language is a language spoken by humans, such as English. Nat-
ural languages are very complex since they have evolved over many thou-
sands years of individual and cultural interaction. We will be primarily
concerned with designed languages that are created by humans for some
deliberate purpose (in particular, languages created for expressing proce-
dures to be executed by computers).

A simple communication system could be described by just listing a table
of surface forms and their associated meanings. For example, this table

IThanks to Charles Yang for this definition.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

| e

Rotary traffic signal

Languages and
Infinity

26 2.1. Surface Forms and Meanings

describes a communication system between traffic lights and drivers:

Surface Form Meaning

Green Go
Yellow Caution
Red Stop

Communication systems involving humans are notoriously imprecise and
subjective. A driver and a police officer may disagree on the actual mean-
ing of the Yellow symbol, and may even disagree on which symbol is being
transmitted by the traffic light at a particular time. Communication sys-
tems for computers demand precision: we want to know what our pro-
grams will do, so it is important that every step they make is understood
precisely and unambiguously. The method of defining a communication
system by listing a table of

< Symbol, Meaning >

pairs can work adequately only for trivial communication systems. The
number of possible meanings that can be expressed is limited by the num-
ber of entries in the table. It is impossible to express any new meaning
using the communication system: all meanings must already be listed in
the table!

A real language must be able to express infinitely many different meanings.
This means it must provide infinitely many surface forms; hence, there
must be a system for generating new surface forms and a way of infer-
ring the meaning of each generated surface form. No finite representation
such as a printed table can contain all the surface forms and meanings in
an infinite language.

One way humans can generate infinitely large sets is to use repeating pat-
terns. For example, most humans would recognize the notation:

1,2,3,...

7”7

as the set of all natural numbers. We interpret the “...” as meaning keep
doing the same thing for ever. In this case, it means keep adding one to the
preceding number. Thus, with only a few numbers and symbols we can
describe a set containing infinitely many numbers.

The repeating pattern technique might be sufficient to describe some lan-
guages with infinitely many meanings. For example, this table defines an
infinite language:

Chapter 2. Language 27

Surface Form Meaning
I will run today. Today, I will run.

[will run the day after today. One day after today, [will
run.

I will run the day after the day ~ Two days after today, I will
after today. run.

Although we can describe some infinite languages in this way;, it is entirely
unsatisfactory.? The set of surface forms must be produced by simple repe-
tition. Although we can express new meanings using this type of language
(for example, we can always add one more “the day after” to the longest
previously produced surface form), the new surface forms and associated
meanings are very similar to previously known ones.

2.2 Language Construction

To define more expressive infinite languages, we need a richer system for
constructing new surface forms and associated meanings. We need ways
of describing languages that allow us to describe an infinitely large set of
surface forms and meanings with a compact notation. The approach we
will use is to define a language by defining a set of rules that produce all
strings in the language (and no strings that are not in the language).

A language is composed of:

* primitives — the smallest units of meaning. A primitive cannot be
broken into smaller parts that have relevant meanings.

* means of combination — rules for building new language elements by
combining simpler ones.

In English, the primitives are the smallest meaningful units, known as mor-
phemes. The means of combination are rules for building words from mor-
phemes, and for building phrases and sentences from words.

Since we have rules for producing new words not all words are primitives.
For example, we can create a new word by adding anti- in front of an ex-
isting word. The meaning of the new word is (approximately) “against the
meaning of the original word”.

2Languages that can be defined using simple repeating patterns in this way are known
as regular languages.

Components of
Language

Means of
Abstraction

28 2.2. Language Construction

For example, the verb freeze means to pass from a liquid state to a solid state;
antifreeze is a substance designed to prevent freezing. English speakers who
know the meaning of freeze and anti- could roughly guess the meaning of
antifreeze even if they have never heard the word before.?

Note that the primitives are defined as the smallest units of meaning, not
based on the surface forms. Both anti and freeze are morphemes; they can-
not be broken into smaller parts with meaning. We can break anti- into two
syllables, or four letters, but those sub-components do not have meanings
that could be combined to produce the meaning of the morpheme.

This property of English means anyone can invent a new word, and use
it in communication in ways that will probably be understood by listeners
who have never heard the word before. There can be no longest English
word, since for whatever word you claim to be the longest, I can create a
longer one (for example, by adding anti- to the beginning of your word).

In addition to primitives and means of combination, powerful languages
have an additional type of component that enables economic communica-
tion: means of abstraction.

Means of abstraction allow us to give a simple name to a complex entity. In
English, the means of abstraction are pronouns like “she”, “it”, and “they”.
The meaning of a pronoun depends on the context in which it is used. It
abstracts a complex meaning with a simple word. For example, the it in
the previous sentence abstracts “the meaning of a pronoun”, but the it in
the sentence before that one abstracts “a pronoun”. In natural languages,
means of abstraction tend to be awkward (English has she and he, but no
gender-neutral pronoun for abstracting a person), and confusing (it is often
unclear what a particular it is abstracting). Languages for programming
computers need to have powerful and clear means of abstraction.

The next three sections introduce three different ways to define languages.
The first system, production systems, is very powerful* but not widely used
for defining languages today because it is too difficult (meaning it can be
impossible) to determine if a given string is in the language. The next two,
recursive transition networks and replacement grammars are less powerful than
production systems, but more useful because they are simpler to reason
about.

We focus on languages where the surface forms can easily be written down

3Guessing that it is a verb meaning to pass from the solid to liquid state would also be
reasonable. This shows how imprecise and ambiguous natural languages are; for program-
ming computers, we need the meanings of constructs to be clearly determined.

“In fact, it is exactly as powerful as a Turing machine (which we introduce in Chapter 6
and show is equivalent to a different model of computation in Chapter 17).

Chapter 2. Language 29

and interpreted linearly. This means the surface forms will be sequences
of characters. A character is a symbol selected from a finite set of symbols
known as an alphabet. A typical alphabet comprises the letters, numerals,
and punctuation symbols used in English. We will refer to a sequence of
zero or more characters as a string. Hence, our goal in defining the surface
forms of a textual language is to define the set of strings in the language. To
define a language, we need to define a system that produces all strings in
the language, and no other strings. The problem of associating meanings
with those strings is much more difficult; we consider it in various ways in
later chapters.

Exercise 2.1. [x] Merriam-Webster’s word for the year for 2006 was truthi-
ness, a word invented and popularized by Stephen Colbert. Its definition is,
“truth that comes from the gut, not books”. Identify the morphemes that
are used to build truthiness, and explain, based on its composition, what
truthiness should mean.

Exercise 2.2. According to the Guinness Book of World Records, the
longest word in the English language is floccinaucinihilipilification, meaning
“The act or habit of describing or regarding something as worthless”.

p

[x] Break floccinaucinihilipilification into its morphemes. Show that a
speaker familiar with the morphemes could understand the word.

&

[*] Prove Guinness wrong by demonstrating a longer English word. An
English speaker (familiar with the morphemes) should be able to deduce
the meaning of your word.

Exploration 2.1: Wordsmithing

Embiggening your vocabulary with anticromulent words that ecdysiasts
can grok.

a. [x] Invent a new English word by combining common morphemes.
b. |~ Getsomeone else to use the word you invented.

C. Get Merriam-Webster to add your word to their dictionary.

As for any claims I might make
perhaps the best I can say is
that I would have proved
Godel’s Theorem in 1921 —
had I been Godel.

Emil Post, from postcard to
Godel, October 1938.

30 2.3. Production Systems

2.3 Production Systems

Production systems were invented by Emil Post, an American logician in
the 1920’s. A Post production system consists of a set of production rules.
Each production rule consists of a pattern to match on the left side, and a
replacement on the right side. From an initial string, rules that match are
applied to produce new strings.

For example, Douglas Hofstadter describes the following Post production
system known as the MIU-system in Godel, Escher, Bach (each rule is de-
scribed first formally, and the quoted text below is paraphrased from the
description from GEB):

Rule I: x| ::=xIU
“If you possess a string whose last letter is |, you may pro-
duce the string with U added at the end.”

Rule II: Mx ::=Mxx
“If you have Mx, you may produce Mxx.”

Rule III: xllly :=xUy
“If Il occurs in one of the strings in your collection, you
may produce a new string with U in place of lI.”

Rule IV: xUUy :=xy
“If UU occurs inside your string, you can produce a string
with it removed.”

The rules use the variables x and y to match any sequence of symbols. On
the left side of a rule, x means match a sequence of zero or more symbols.
On the right side of a rule, x means produce whatever x matched on the
left side of the rule. We refer to this process as binding. The variable x
is initially unbound — it may match any sequence of symbols. Once it
is matched, though, it is bound and refers to the sequence of symbols that
were matched.

For example, consider applying Rule II to MUM. To match Rule II, the first
M matches the M at the beginning of the left side of the rule. After that the
rule uses x, which is currently unbound. We can bind x to UM to match the
rule. The right side of the rule produces Mxx. Since x is bound to UM, the
result is MUMUM.

Given these four rules, we can start from a given string and apply the rules
to produce new strings. For example, starting from M| we can apply the

rules to produce MUIUIU:

1. Mi Initial String

Chapter 2. Language 31

2. Ml Apply Rule II with x bound to |

3. MIl Apply Rule II with x bound to ||

4. MU Apply Rule II with x bound to Il

5. MUl Apply Rule IIl with x bound to M and y bound to llllI
6. MUIIINU Apply Rule I with x bound to MUIIII

7. MUIUIU Apply Rule III with x bound to MUl and y bound to |U

At some steps we have many choices about which rule to apply, and what
bindings to use when we apply the rule. For example, at step 5 we could
have instead bound x to MUIl and y to the empty string to produce MUIIU.

Exercise 2.3. MIU-system productions.

a. [x] Using the MIU-system, show how M can be derived starting from
MI?

b. [x] Using the MIU-system, how many different strings can be derived
starting from UMI?

c. [x| Using the MIU-system, how many different strings can be derived
starting from MI?

d. (Based on GEB) Using the MIU-system, is it possible to produce MU
starting from MI?

Exercise 2.4. Devise a Post production system that can produce all the

surface forms in the { “I will run today.”, “I will run the day after today.”,
“I will run the day after the day after today.”, ... } language.

2.4 Recursive Transition Networks

Although Post production systems are powerful enough to generate com-
plex languages, they are more awkward to use than we would like. In
particular, applying a rule requires making decisions about binding vari-
ables in the left side of a rule. This makes it hard to reason about the strings
in a language, and hard to determine whether or not a given string is in
the language (see Exercise 3). Recursive transition networks (RTNs) are a less
powerful5 way of defining a language, but provide a clearer way of under-

SWe mean less powerful in a formal sense: there are languages that can be described
by a Post production system that cannot be defined by any recursive transition network.
Exploration 2.2 discusses the relative power of different language definition mechanisms.

Recursive transition networks

32 2.4. Recursive Transition Networks

standing the set of strings in a defined language.

A recursive transition network is defined by a graph of nodes and edges.
The edges are labeled with output symbols. One of the nodes is designated
the start node (indicated by an arrow pointing into that node). One or more
of the nodes may be designated as final nodes (indicated by an inner circle).
A string is in the language if there exists some path from the start node to
a final node in the graph where the output symbols along the path edges
produce the string.

For example, Figure 2.1 shows a simple recursive transition network with
three nodes and four edges.

Alice jumps

\-/N Noun Verb

Bob

runs

Figure 2.1. Simple recursive transition network.

This network can produce four different sentences. Starting in the node
marked Noun, we have two possible edges to follow; each edge outputs
a different symbol, and leads to the node marked Verb. From that node,
we have two possible edges, each leading to the node marked S, which is
a final node. Since there are no edges out of S, this ends the string. Hence,
we can produce four strings corresponding to the four different paths from
the start to final node: “Alice jumps”, “Alice runs”, “Bob jumps”, and “Bob
runs”.

This way of defining a language is more efficient than just listing all strings
in a table, since the number of possible strings increases with the number
of possible paths in the graph. For example, adding one more edge from
Noun to Verb with label “Colleen”, would add two new strings to the lan-

guage.

The expressive power of recursive transition networks really increases once
we add edges that form cycles in the graph. This is where the recursive in
the name comes from. Once a graph has a cycle, there are infinitely many
possible paths through the graph, since we can always go around the cycle
one more time. Consider what happens when we add a single edge to the
previous network:

Chapter 2. Language 33

Figure 2.2. RTN with a cycle.

Now, we can produce infinitely many different strings! We can follow the
“and” edge back to the Noun node, to produce strings like “Alice runs and
Bob jumps and Alice jumps and Alice runs” with as many conjuncts as we
want.

Exercise 2.5. [x] Draw a recursive transition network that defines the lan-
guage of the whole numbers: 0,1, 2,

Exercise 2.6. Recursive transition networks.

a. [x] What is the smallest number of edges needed for a recursive transi-
tion network that can produce exactly 8 strings?

b. [x] What is the smallest number of nodes needed for a recursive transi-
tion network that can produce exactly 8 strings?

c. What is the smallest number of edges needed for a recursive transi-
tion network that can produce exactly 7 strings?

Exercise 2.7. Is it possible to define the language of the MIU-system
using a recursive transition network? Either draw a network that matches
the language produced by the MIU-system, or explain what it is impossible
to do so.

2.4.1 Subnetworks

In the RTNs we have seen so far, the labels on the output edges are direct
outputs known as terminals: following an edge just produces the symbol
on that edge. We can make more expressive RTNs by allowing edge labels

34 2.4. Recursive Transition Networks

to also name subnetworks. A subnetwork is identified by the name of its
starting node. When an edge with a subnetwork label is followed, instead
of outputting one symbol, the network traversal jumps to the subnetwork
node. Then, it can follow any path from that node to a final node. Upon
reaching a final node, the network traversal jumps back to complete the
edge.

For example, consider the network shown in Figure 2.3. It describes the
same language as the RTN in Figure 2.1, but uses subnetworks for Noun
and Verb. To produce a string, we start in the Sentence node. The only
edge out from Sentence is labeled Noun. To follow the edge, we jump to
the Noun node, which is a separate subnetwork. Now, we can follow any
path from Noun to a final node (in this cases, outputting either “Alice” or
“Bob” on the path toward EndNoun.

Noun /[N Verb
\> Sentence ——> S1 f

Alice T

e
— runs

Figure 2.3. Recursive transition network with subnetworks.

Suppose we replace the Noun subnetwork with the more interesting ver-
sion shown in Figure 2.4.

The new subnetwork includes an edge from Noun to N1 labeled with Noun.
So, if we follow this edge, control jumps back into the Noun node, for an-
other path through the Noun subnetwork. Starting from Noun, we can
generate complex phrases like “Alice and Bob” or “Alice and Bob and Al-
ice” (note there are two different paths that generate this phrase).

To keep track of paths through RTNs without subnetworks, a single marker
suffices. We can start with the marker on the start node, and move it along
the path through each node to the final node. To keep track of paths on

Chapter 2. Language 35

Figure 2.4. Alternate Noun subnetwork.

an RTN with subnetworks, though, is more complicated. We need to keep
track of the where we are in the current network, but also where we need
to jump to when a final node is reached. Since we can enter subnetworks
within subnetworks, we need a way to keep track of arbitrarily many jump
points.

A data structure for keeping track of this is known as a stack. We can think stack
of a stack like a stack of trays in a cafeteria. At any point in time, only the

top tray on the stack can be reached. We can take the top tray off the stack,

after which the next tray is now on top. This operation is called popping the
stack. We can push a new tray on top of the stack, which makes the old top

of the stack now one below the new top. This operation is called pushing.

Using a stack, we can follow a path through an RTN using this procedure:®

1. Initially, push the starting node on the stack.

Pop a node, N, off the stack.

3. If N is a final node, check if the stack is empty. If the stack is empty,
stop. Otherwise, go back to step 2.

4. Select an edge from the RTN that starts from node N. Use D to repre-
sent the destination of that edge, and s to output symbol on the edge.

5. Push D on the stack.

6. If s is a node (that is, the name of a subnetwork), push s on the stack.
Otherwise, output s.

7. Go back to step 2.

N

For the example, we start by pushing Sentence on the stack. In step 2, we
pop the stack, so the current node, N, is Sentence. Since it is not a final
node, we do nothing for step 3. In step 4, we choose an edge starting from
Sentence. There is only one edge to choose, and it leads to the node labeled

®For simplicity, this procedure assumes we always stop when a final node is reached.
RTNs can have edges out of final nodes (as in Figure 2.2) where it is possible to either stop
or continue from a final node.

36 2.5. Replacement Grammars

S1. In step 5, we push S1 on the stack. The label on the edge is Noun,
which is a node, so we push Noun on the stack. The stack now contains
two items: [Noun, S1]. As directed by step 7, we go back to step 2 and
continue by popping the top node, Noun, off the stack. It is not a final
node, so we continue to step 4, and select the edge from Noun to N1. Since
N1 is not a final node, we continue to step 5 and push N1 on the stack. The
label on the edge is Noun, which is a node, so we push Noun on the stack
in step 6. At this point, the stack contains three nodes: [Noun, N1, S1].

We continue in the same manner, following the steps in the procedure as we
keep track of a path through the network. Next, we pop Noun, and select
the edge labeled “Alice”, pushing EndNoun on the stack. Returning to step
2, we pop the EndNoun, which is a final node. Now, we are at the point to
jump back to where we entered the subnetwork. This is the N1 node, which
is now on top of the stack. Continuing in step 2, we pop N1, and follow the
edge labeled “and”, continuing to node N2. This leads to another pass
through the Noun subnetwork, after which we reach the EndNoun node.
After continuing to step 3, the stack now contains just [51]. In this manner,
we can follow a path through the network, using the stack to keep track of
the nodes to return to after finishing each subnetwork.

Exercise 2.8. Traversing RTNs.

a. [x] Show the sequence of stack values used in generating the string “Al-
ice and Bob and Alice runs”.

b. [x] Identify a string that cannot be produced with a stack that can hold
no more than four elements.

Exercise 2.9. The procedure given for traversing RTNs assumes that
a subnetwork path always stops when a final node is reached. Hence, it
cannot follow all possible paths for an RTN where there are edges out of a
final node. Describe a procedure that can follow all possible paths, even for
RTNs that include edges from final nodes.

2.5 Replacement Grammars

Another way to define a language is to use a grammar.” This is the most
common way languages are defined by computer scientists today, and the

7You are probably already somewhat familiar with grammars from your time in what
was previously known as “grammar school”!

Chapter 2. Language 37

way we will use for the rest of this book.

A grammar is a set of rules for generating all strings in the language. The
grammars we will use are a simple notation known as Backus-Naur Form
(BNF). BNF was invented by John Backus in the late 1950s. Backus led
efforts at IBM to define and implement Fortran, the first widely used high-
level programming language. Fortran enabled computer programs to be
written in a language more like familiar algebraic formulas than low-level
machine instructions, enabling programs to be written more quickly and
reliably (in the next chapter, we describe programming languages and how
they are implemented). In defining the Fortran language, Backus and his
team used ad hoc English descriptions to define the language. Backus de-
veloped the replacement grammar notation to precisely describe the lan-
guage of a later programming language, Algol (1958). Peter Naur adapted
the notation for the report describing the Algol language, and it was sub-
sequently known as Backus-Naur Form at the suggestion of Donald Knuth
to recognize both Backus” and Naur’s contributions.

Rules in a Backus-Naur Form grammar are of the form:

nonterminal ::=> replacement

These rules are similar to Post production rules, except that the left side
of a rule is always a single symbol, known as a nonterminal since it can
never appear in the final generated string. Whenever we can match the
nonterminal on the left side of a rule, we can replace it with what appears
on the right side of the matching rule. This method of defining languages is
exactly as powerful as recursive transition networks (the follow subsection
considers why), but easier to write down.

The right side of a rule contains one or more symbols. These symbols may
include nonterminals, which will be replaced using replacement rules be-
fore generating the final string. They may also be terminals, which are sym-
bols that never appear as the left side of a rule. When we describe gram-
mars, we use ifalics to represent nonterminal symbols, and bold to repre-
sent terminal symbols. Once a terminal is reached, no more replacements
can be done on it.

We can generate a string in the language described by a replacement gram-
mar by starting from a designated start symbol (e.g., sentence), and at each
step selecting a nonterminal in the working string, and replacing it with
the right side of a replacement rule whose left side matches the nontermi-
nal. Unlike Post production systems, there are no variables to bind in BNF
grammar rules. We simply look for a nonterminal that matches the left side
of a rule.

John Backus

I flunked out every year. I never
studied. I hated studying. I was
just goofing around. It had the
delightful consequence that
every year I went to summer
school in New Hampshire
where I spent the summer

sailing and having a nice time.
John Backus

38 2.5. Replacement Grammars

Here is an example BNF grammar:

1. Sentence ::= Noun Verb
2. Noun := Alice

3. Noun := Bob

4. Verb = jumps

5. Verb = runs

Starting from Sentence, we can generate four different sentences using the
replacement rules: “Alice jumps”, “Alice runs”, “Bob jumps”, and “Bob
runs”.

Derivation A derivation shows how a grammar generates a given string. Here is the
derivation of “Alice runs”:

Sentence ::=Noun Verb using Rule 1
::=Alice Verb replacing Noun using Rule 2
::=Alice runs replacing Verb using Rule 5

Parse Tree: We can represent a grammar derivation as a tree, where the root of the tree
is the starting nonterminal (Sentence in this case), and the leaves of the tree
are the terminals that form the derived sentence. Such a tree is known as a
parse tree.

Here is the parse tree for the derivation of “Alice runs”:

Sentence

T

Noun Verb

Alice runs

From this example, we can see that BNF notation offers some compression
over just listing all strings in the language, since a grammar can have mul-
tiple replacement rules for each nonterminal. Adding another rule like,

6. Noun ::= Colleen

Chapter 2. Language 39

to the grammar would add two new strings (“Colleen runs” and “Colleen
jumps”) to the language.

The real power of BNF as a compact notation for describing languages,
though, comes once we start adding recursive rules to our grammar. A
grammar is recursive if there is a way to start from a given nonterminal,
and follow a sequence of one or more replacement rules to generate a pro-
duction that contains the same nonterminal.

Suppose we add the rule,

7. Sentence ::=> Sentence and Sentence

to our example grammar. Now, how many sentences can we generate?

Infinitely many! For example, we can generate “Alice runs and Bob jumps”
and “Alice runs and Bob jumps and Colleen runs”. We can also generate
“Alice runs and Alice runs and Alice runs and Alice runs”, with as many
repetitions of “Alice runs” as we want. This is very powerful: it means a
compact grammar can be used to define a language containing infinitely
many strings.

Example 2.1: Whole Numbers. Here is a grammar that defines the lan-
guage of the whole numbers (0, 1, .. .):

Number
MoreDigits ::
MoreDigits ::
Digit "
Digit
Digit
Digit
Digit
Digit
Digit
Digit
Digit
Digit

Digit MoreDigits

Number

I A A A A A
O X I DU WD =O

Note that the second rule says we can replace MoreDigits with nothing.
This is sometimes written as € to make it clear that the replacement is
empty:

Recursive Grammars

Circular vs. Recursive
Definitions

40 2.5. Replacement Grammars

MoreDigits := €

This is a very important rule in the grammar—without it no strings could
be generated; with it infinitely many strings can be generated. The key is
that we can only produce a string when all nonterminals in the string have
been replaced with terminals. Without the MoreDigits ::= € rule, the only
rule we would have with MoreDigits on the left side is the third rule:

MoreDigits ::= Number

The only rule we have with Number on the left side is the first rule, which
replaces Number with Digit MoreDigits. Every time we go through this
replacement cycle, we replace MoreDigits with Digit MoreDigits. We can
produce as many Digits as we want, but without the MoreDigits ::=> € rule
we can never stop.

This is the difference between a circular definition, and a recursive defini-
tion. Without the stopping rule, MoreDigits would be defined in a circular
way. There is no way to start with MoreDigits and generate a production
that does not contain MoreDigits (or a nonterminal that eventually must
produce MoreDigits). With the MoreDigits ::= € rule, however, we have a
way to produce something terminal from MoreDigits. This is known as a
base case — a rule that turns an otherwise circular definition into a mean-
ingful, recursive definition.

Figure 2.5 shows a parse tree for the derivation of 150 from Number.

It is common to have many grammar rules with the same left side non-
terminal. For example, the whole numbers grammar has ten rules with
Digit on the left side to produce the ten terminal digits. Each of these is an
alternative rule that can be used when the production string contains the
nonterminal Digit. A compact notation for these types of rules is to use the
vertical bar () to separate alternative replacements. For example, we could
write the ten Digit rules compactly as:

Digit:= 0]1|2]3]4|5|6|7|8]9

Exercise 2.10. [x] The grammar for whole numbers is complicated because
we do not want to include the empty string in our language. Devise a sim-
pler grammar that defines the language of the whole numbers including
the empty string.

Chapter 2. Language 41

Exercise 2.11.

Number

N

Digit ~ MoreDigits

1 Number

N

Digit MoreDigits

5 Number

TN

Digit ~ MoreDigits

0 €

Figure 2.5. Deriviation of 150 from Number.

Suppose we replaced the first rule (Number ::= Digit

MoreDigits) in the whole numbers grammar with this rule:

Number ::= MoreDigits Digit

a. [x] How does this change the parse tree for the derivation of 150 from

b.

Exercise 2.12.

Number? Draw the parse tree that results from the new grammar.

Does this change the language? Either show some string that is in
the language defined by the modified grammar but not in the original
language (or vice versa), or argue that both grammars can generate ex-
actly the same sets of strings.

The grammar for whole numbers we defined allows

strings with non-standard leading zeros such as “000” and “00005”. De-
vise a grammar that produces all whole numbers (including “0”), but no
strings with unnecessary leading zeros.

42 2.5. Replacement Grammars

Exercise 2.13. Devise a grammar that defines the language of valid
dates (e.g., “December 7, 1941”). Your language should include all valid
dates, but no invalid dates (that is, “September 29, 2007” and “February 29,
2008” are in the language, but “February 29, 2009” is not).

Exploration 2.2: Power of Language Systems

We claimed that recursive transition networks and BNF replacement gram-
mars are equally powerful. Here, we explain more precisely what that means
and prove that the two systems are, in fact, equivalent in power.

First, what does it mean to say two systems are equally powerful? The
purpose of a language description mechanism is to define a set of strings
comprising a language. Hence, the power of a language description mech-
anism is determined by the set of languages (that is, a set of sets of strings)
it can define.

One approach to consider is counting the number of languages that can
be defined. Even the simplest mechanisms can define infinitely many lan-
guages, however, so just counting the number of languages does not dis-
tinguish well between the different language description mechanisms. For
example, even with the table listing all surface forms in the language (as in-
troduced in Section 2.1) we can define infinitely many different languages.
There is no limit on the number of entries in the table, so we can always add
one more entry containing a new surface form to define a new language.
Similarly, we can argue that both RTNs and BNFs can describe infinitely
many different languages. We can always add a new edge to an RTN to
increase the number of strings in the language, or add a new replacement
rule to a BNF that replaces a nonterminal with a new terminal symbol.

Instead, we need to consider the particular languages that each mechanism
can define. A system A is more powerful that another system B if we can
use A to define every language that can be defined by B, and there is some
language L that can be defined using A that cannot be defined using B. This
matches our intuitive interpretation of more powerful — A is more powerful
than B if it can do everything B can do and more. The set diagrams in
Figure 2.6 depict three possible scenarios.

In the leftmost picture, the set of languages that can be defined by B is a
proper subset of the set of languages that can be defined by A. Hence, A
is more powerful than B. In the center picture, the sets are equal. This
means every language that can be defined by A can also be defined by B,
and every language that can be defined by B can also be defined by A, and
the systems are equally powerful. In the rightmost picture, there are some
elements of A that are not elements of B, but there are also some elements
of B that are not elements of A. This means we cannot say either one is

Chapter 2. Language 43

A

/
[
[

| A |
\ |
\\\ i

@

A is more powerful than B A is as powerful as B A and B are not comparable

Figure 2.6. System power relationships.

more powerful; A can do some things B cannot do, and B can do some
things A cannot do.

So, to determine the relationship between RTNs and BNFs, we need to un-
derstand if there are languages that can be defined by an RTN that cannot
be defined by a BNF and if there are languages that can be defined by a
BNF that cannot be defined by an RTN.

First, we will prove that there are no languages that can be defined by a
BNF that cannot be defined by an RTN. This is equivalent to showing that
every language that can be defined by a BNF grammar has a corresponding
RTN. Since there are infinitely many languages that can be defined by BNF
grammars, we obviously cannot prove this by enumerating each language
and showing the corresponding RTN. Instead, we use a proof technique
commonly used in computer science: proof by construction. We show that
given any BNF grammar we can construct a corresponding RTN. That is,
define an algorithm that takes as input a BNF grammar, and produces as
output an RTN that defines the same language as the input BNF grammar.

Our general strategy is to construct a subnetwork corresponding to each
nonterminal. For each rule where the nonterminal is on the left side, the
right hand side is converted to a path through that node’s subnetwork.
Here is our algorithm for converting a BNF grammar to an equivalent RTN:

1. For each nonterminal X in the grammar, construct two nodes, StartX
and EndX, where EndX is a final node. Make the node StartS the start
node of the RTN, where S is the start nonterminal of the grammar.

2. For each rule in the grammar, add a corresponding path through the
RTN. All BNF rules have the form X ::= replacement where X is a
nonterminal in the grammar and replacement is a sequence of zero or
more terminals and nonterminals: [Ro, Ry, ..., Ry].

(a) If the replacement is empty, make StartX a final node.

(b) If the replacement has just one element, Ry, add an edge from
StartX to EndX with edge label Ry.

44 2.5. Replacement Grammars

(c) Otherwise:

i. Add an edge from StartX to a new node labeled X;((where
i identifies the grammar rule), with edge label Ro.

ii. For each remaining element R; in the replacement add an
edge from X;; 1 to a new node labeled X;; with edge label
R;. (For example, for element Ry, a new node X;; is added,
and an edge from X;(to X;; with edge label R;.)

iii. Add an edge from X;,_; to EndX with edge label R,,.

Following this procedure, we can convert any BNF grammar into an RTN
that defines the same language. Hence, we have proved that RTNs are at
least as powerful as BNF grammars.

To complete the proof that BNF grammars and RTNs are equally powerful
ways of defining languages, we also need to show that a BNF can define
every language that can be defined using an RTN. This part of the proof
can be done using a similar strategy: by showing a procedure that can be
used to construct a BNF equivalent to any input RTN. We leave the details
as an exercise for especially ambitious readers.

a. [x] Prove that BNF grammars are not more powerful than Post produc-
tion systems.

b. Prove that BNF grammars are as powerful as RTNs by devising a
procedure that can construct a BNF grammar that defines the same lan-
guage as any input RTN.

