BGP routing policies in ISP networks

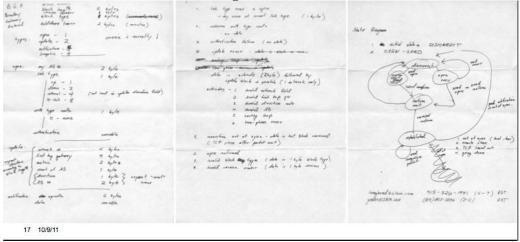
Author:

Matthew Caesar (PhD in UC Berkeley, post-doc in Princeton, now a professor in UIUC)

Jennifer Rexford (was a professor in Princeton, winner of Grace Hopper)

BGP Overview

Optional: Link State Routing Algorithm (Dijkstra), Distance-Vector Routing Algorithm (Bellman-Ford)


- 1. History: hierarchical routing: AS and ISP
- prior to 1989 (when BGP was born), backbone NSFNET phase II and its regional networks used EGP, the architecture was "core routers – non-core routers"...

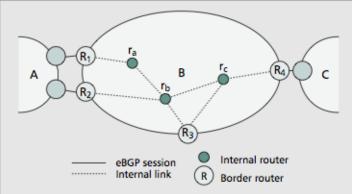
```
GGP/EGP
```

EGP: not a routing protocol, reachability exchange protocol, distance-vector

- exchange the complete routing table every 3min no matter whether there is a update
- no path info
- difficult to scale or detect routing loops
- constrain the topology to be a spanning tree
- directly on IP
- You name the disadvantages...
- 3. BGP inventor: Kirk Loughee (Cisco), Yakov Rekhter, with help of Len Bosack (Cisco).

BGP: three-napkin protocol, designed in 1989, IETF 12 Positioned as a short-termed design...

4. BGP overcame the problems of EGP described above. It evolved through the


years				
RFC Number	Date	Name	BGP Version	
1105	June 1989	<u>A Border Gateway</u> <u>Protocol (BGP)</u>	BGP-1	
1163	June 1990	<u>A Border Gateway</u> <u>Protocol (BGP)</u>	BGP-2	
1267	October 1991	<u>Border Gateway</u> Protocol 3 (BGP-3)	BGP-3	
1654	July 1994	<u>A Border Gateway</u> <u>Protocol 4 (BGP-4)</u>	BGP-4	
1771	March 1995	<u>A Border Gateway</u> Protocol 4 (BGP-4)	BGP-4	

One big change of BGP4 is its support for **routing policies**.

5. By the time of publishing BGP4 RFC, it has already been deployed widely across the Internet!

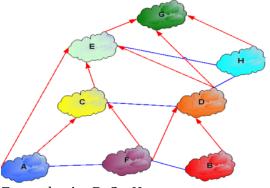
BGP as an Inter-Domain Protocol

- 1. BGP basics: iBGP and eBGP
- Functionalities: <u>For each AS</u>: obtain reachability information, reachability propagation within AS, make decisions <u>For the Internet</u>: Reachability advertisement
- 3. Route: prefix and its path attributes (e.g. AS-PATH, NEXT-HOP) Examples:

- 4. Difference between inter-AS routing protocol and intra-AS routing protocol
 - Policy
 - Scale
 - Performance

Routing Policies in Internet

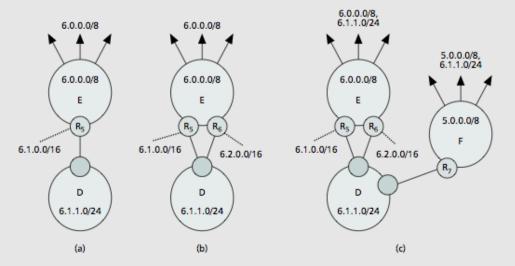
1. Decision process of BGP


Step	Attribute	Controlled by local or neighbor AS?
1.	Highest LocalPref	Local
2.	Lowest AS path length	Neighbor
З.	Lowest origin type	Neither
4.	Lowest MED	Neighbor
5.	eBGP-learned over iBGP-learned	Neither
6.	Lowest IGP cost to border router	Local
7.	Lowest router ID (to break ties)	Neither

- 2. 3 steps to process route advertisement:
 - import policies
 - decision process
 - export policies

ISPs tweak the above 3 steps in order to implement the routing policies

Policy Taxonomy


- 1. Business Relationships
 - Customer-provider
 - <u>Tier-1</u>:AT&T
 - They only provide transit traffic (need payment) or peer with other ISPs.
 - $\circ~$ Disconnection between two peering Tier-1 ISPs will partition the Internet.
 - Example: 2005, cogent and level3. Pop question: 3 scenarios to determine if you may have access problem
 - Sidebar: Being a pure Tier-1 is not an easy job...
 - Tier-2: Comcast

Example: A->B, C->H <u>Tier-3:</u> resell transit

• Peer-peer

- Backup
- Paper: change the local-perf to influence decision process
- Paper: controlling exports, using community attributes
- 2. Traffic Engineering
 - Outbound Traffic Engineering Change local-perf Achieve load balancing---goal of Traffic Engineering
 - Inbound Traffic Engineering Change MED Inflate the AS-PATH
 - Remote Control: community attributes
- 3. Scalability
 - Limit the routing table size Protect local ISP from other ISPs Protect other ISPs: route aggregate 3 scenarios:

- Limit the number of routing changes: Flap damping: improving routing instability
- 4. Security
 - Discard Invalid routes: import policies
 - Rewrite path attributes to prevent violations of peering agreements
 - Export policies: filter out sensitive information
 - Prevention of DoS attack
 Paper: discard offensive routes/updates
 <u>IP Hijack Example</u>: Feb 2008, Pakistan telecom hijacked Youtube by creating a black hole, propagated by BGP through the whole Internet, result: Youtube unavailable for 2 hours. (by using longest-prefix match in routing table) This can also be used to eavesdrop....

However, BGP remains as an in-secure protocol: BGP was designed when everyone was trusted...