
Defending Against
Derandomization Attacks

Patrick Graydon

Motivation: Meet Jane Whitehat

• Jane’s servers provide a critical service
– If service is interrupted for

more than a few minutes at
a time, Bad Things happen:
• Business may grind to a halt
• Fortunes may be lost
• Careers may be ruined…
• Lives may be in jeopardy?

Jane’s services

• Jane’s servers are a juicy target
– Maybe Jane’s employers

have enemies…
– Maybe the data on

Jane’s servers is
very valuable…

– Maybe Jane’s servers are
just a way to break into the
company’s network and go for the big score

Know thy enemy

• Meet John Blackhat, l337 h4x0r
• John wants into Jane’s network

– He has motivation
– He knows his trade:

• Stack smashing attacks
• Return to libc attacks
• …

– He has corporate/national backers???

Jane’s defense

• Jane protects her
services by deploying
instruction set
randomization
– Or maybe StackGuard…
– Or address space

randomization...
– Or maybe all of the above…

Randomization defenses

• Any of these techniques
work by randomizing some
part of the running system
– Attacker must guess a key

before an attack succeeds
– In ISR on Jane’s Intel

Heptium-based servers, this
is a 16-bit value XORed with
the instruction stream

Keys can be guessed at

• Remember War Games? After enough
guesses you too could start WWIII…

CPE1704TKS

• Conclusion:

Jane Needs
Our Help!

Sometimes failure is good

• Randomization defenses share some
characteristics that may help us help Jane:
– Any given attack attempt is likely to fail
– Any failed attempt is likely

to crash the system

• Why is this good?
– Because it gives us a way

to identify attack attempts
(After the fact, though)

Can we find the attacker?

• Thought: maybe we can identify the
attacker’s IP address and block it
– Easy to implement; minimal impact on users
– What about spoofing?

• If Jane’s services require a full TCP connect, it is
hard (but not impossible)
to spoof the address…

– But there are other
problems…

Problems with blacklisting…

• What if John has written a worm?
– Attacks could be coming in from > 214

compromised hosts at the same time…

• What if John employs a zombie network?
– Ditto

• What if the attacker has access to the
intranetwork wiring?
– Could pretend to be a legitimate client…

Maybe we can duck and cover?

• In some we can detect an attack and
suspend service until the
sysops can react…
– Could take an eternity …

maybe even minutes ☺
– Bottom line: Jane doesn’t

have the luxury of being
able to do this

When all else fails…

• Maybe we can learn something about the
requests themselves
– If we could find

a pattern in the
requests that
cause crashes,
we could block
attacks as they
happen

• Jane’s service receives requests as binary
blocks over the network and sends one
reply to each

• Jane’s service is written in
C/C++ and has a buffer
overflow hole (oops!)

• John has access to the code
for the software Jane uses

Assumptions I’ve made

More assumptions…

• Jane is willing to make modifications to the
server software at the source level
– Maybe we could do this at the OS level, but

we’ll cross that bridge when we get there…

• Jane’s servers are
configured to reboot
the server software
when it crashes

Knowing when to learn…

• We modify Jane’s software so that:
– Before accepting a request,

it checks against known attack
signatures and saves the incoming
request as a ‘suspicious’ request file

– After servicing a request, it marks the
suspicious request as good instead

– When it starts up, it looks for a suspicious request
file—if it’s there, the process must have crashed, and
the file contains the request that crashed it

Finding the patterns

• We can look for areas of a request that
match other known attack requests
– First, sort a pair of requests by byte values
– Look at each matching pair of bytes in turn:

• Are they part of a matching
regions in the unsorted request
streams? If so, take as big a
region as we can get…

– Basically, this is what grep does…

Finding too much

• It is possible to find too big
a pattern
– We want patterns that are

general enough to catch all
similar attacks but specific
enough not to generate
false positives…

– We can solve this by finding
patterns in the patterns

Doesn’t ISR pose a problem?

• Not really, you just need to do two scans
for signatures:
– The first is the normal scan, and it

picks up unencrypted things like static
strings and the target buffer address

– The second is on a special de-
ISR’d version of the requests:

Yeah, yeah, but does it work?

• Well, sort of…
– Tested using:

• 4,388 randomly generated 64-to-512 byte ‘good’
requests (512 byte buffer, did 1,000 at startup),

• 275 simple buffer-overflow attacks straight out of
Smashing the Stack for Fun and Profit tweaked for
16-bit XOR ISR, and

• 337 attacks of my own
devious design

• A minimum of 6-byte keys

And???

• The good news:
– The algorithm detected all but

4 of the stack smashing attacks
and blocked them, and

– Not one false positive!
• The bad news:

– My devious test was a
bit too devious—the
algorithm failed to block
a single instance

How devious is devious?

• The devious requests need
only 6 non-random bytes:
– Two bytes of code: EB FE
– Four bytes of data: the location

of the injected code, partially randomizable
– The rest of the attack buffer can be

completely randomized—no patterns to find!
– Note: this only tells you what the

randomization key is, it doesn’t get you in

Can we block the devious case?

• Probably not with this algorithm
– Tried reducing the minimum

key size to 4 bytes
– Algorithm blocked 150

of 347 attack attempts
(that’s 43% and its still
better than nothing)

– BUT at the cost of a false positive
• 0.02% false positives, but may still be too much

Any performance impact?

• Some:
– Loading the data sets took

~15 ms and didn’t seem to
scale badly (and that’s good)

– Requests examined in no time at
all (well, in no time that could be measured
on my Wintel box…)

– What about signature identification speed?

Signature identification speed

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

Number of 'good' samples

Ti
m

e
(s

)

Signature identification speed

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

Number of 'bad' samples

T
im

e
(s

)

Signature identification speed

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Number of existing signatures

Ti
m

e
(s

)

So what now?

• Well, the signature detection algorithm
isn’t perfect, but it may still be useful
– Need to try this on other kinds of attacks

• Should try a return-to-libc on a Fedora box…

– Need to try this with real requests
• Actual sever requests may be more or less similar

to the attack patterns than my random generations

– Need to experiment with techniques for
managing the size of the good and bad sets

Any questions???

?

