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Project Summary

Many compelling applications involve computations that require sensitive data from two or more
individuals. As an example, consider the myriad genetics applications soon to be within reach of individuals
as the cost of personal genome sequencing rapidly plummets. An individual may wish to compare her
genome with the genomes of different groups of participants in a study to determine which treatment
is likely to be most effective for her. Such comparisons could have tremendous value, but are infeasible
because of the privacy concerns both for the individual and study participants. What is needed is a way to
compute the output of the comparison without exposing either party’s private inputs.

Theoretical solutions to this problem, known as secure multi-party computation, have been known for
several decades, including a general solution developed by Andrew Yao based on garbled circuits. Because
of its extensive memory use and computational cost, however, the garbled circuits approach has traditionally
been considered more of a theoretical curiosity than a practical mechanism for building privacy-preserving
applications. Recent developments in cryptographic techniques and new implementation approaches are
beginning to change this, however, and admit the possibility of scalable, practical secure computation.
Building on this work, we propose to develop techniques and tools to enable practical secure two-party
computations and to evaluate these tools by building several scalable privacy-preserving applications.

We will develop methods for avoiding the memory bottleneck associated with garbled circuit evaluation
by aggressively pipelining circuit generation and evaluation. We will explore a variety of techniques for
reducing the size of garbled circuits including minimizing the bit width of individual component instances
and isolating secure computation from parts of a computation that can be done independently.

Standard garbled circuits provide strong privacy properties assuming an honest-but-curious adversary
who always follows the specified protocol. Realistic adversaries, however, need not follow the protocol, and
known techniques for privacy against such adversaries are too expensive. We will develop new techniques
for dealing with malicious adversaries, improving the standard cut-and-choose and commit-and-prove
approaches by using new cryptographic tools developed by the PIs, and considering an alternate model in
which a verifiable trusted party is used to generate the circuit but not trusted with any private data.

We will integrate our approach with programming tools for defining secure computations at a high
level, based on information-flow analysis and program partitioning, to enable programmers to specify
secure computations without being experts. We will also explore the problem of determining how much
information the result itself leaks, and how to incorporate notions of privacy leakage directly into our
programming tools and circuit implementations.

Intellectual Merit. The proposed work will advance knowledge in cryptography, system security, and
privacy. It builds on recent advances in cryptographic protocols, secure computation, and information-flow
analysis (including several developed by the PIs) to tackle the key performance, security, and programming
impediments to widespread adoption of secure computation. Our preliminary results demonstrate that our
approach can produce orders of magnitude performance improvements over previous results for several
important applications, and the proposal outlines ideas for extending and generalizing our approach, as
well as for integrating it with new cryptographic protocols and information-flow based programming
language techniques. Our team includes experts in pure and applied cryptography, security, programming
languages, and genomics, and coalesces five previously successful pairwise collaborations.

Broader Impacts. Efficient secure computation is essential for preserving privacy in many critical and
emerging applications. Our work aims to make privacy-preserving computation practical and accessible
enough to be used routinely in applications such as personalized genetics, medical research, and privacy-
preserving biometrics. Our team is strongly committed to education and public outreach, and has produced
several widely-used textbooks and led the creation of two new degree programs. Our proposed work
includes public outreach and distributing and supporting open-source tools for secure computation.



Practical Secure Two-Party Computation: Techniques, Tools, and Applications
Project Description

The goal of secure two-party computation is to enable two parties to cooperatively evaluate a function that
takes both parties’ private data as input without revealing any private data to the other party. At the
end of the computation, the participants learn the output of the function but no other information is
revealed. Secure computation has many important applications such as privacy-preserving biometric
identification, secret bid auctions, and personal genetics (see Section 5). Theoretical secure computation
solutions have been known since the 1980s, but real systems are scarce because of the high costs associated
with traditional techniques, the mismatch between theoretical adversary models and realistic threats, and
the effort required to construct a secure computation. The goal of the proposed work is to make privacy-
preserving computation practical enough that it can be used routinely in important, large scale applications.
Our solutions build on Yao’s garbled circuit technique [138], but address the three fundamental impediments
to practical secure computation:

Performance (Section 1). A major problem with previous garbled circuits implementations is that they
require the entire circuit to be generated and stored in memory before evaluation begins. This limits the
applications that can be handled by previous implementations to small problems. We propose to develop
techniques for generating and evaluating garbled circuits in a pipelined fashion, and for subdividing
circuits into components that can be generated and evaluated in parallel. We will also develop techniques to
minimize the size of the circuit needed to solve a given problem by developing optimizations that eliminate
non-free gates, and by identifying parts of the computation that can be done without needing cooperative
secure computation.

Malicious Adversaries (Section 2). Secure computation research often assumes an honest-but-curious adver-
sary who follows the protocol as specified but also attempts to learn additional information. Such a threat
model provides a useful theoretical basis for designing and reasoning about private computations, but does
not provide much assurance against realistic adversaries who may violate the protocol. There are known
techniques for producing secure computations that are effective against malicious adversaries.We propose
several new ideas towards practical secure computation in the presence of malicious adversaries including
a new approach to cut-and-choose that reduces overall communication and memory usage, a new approach
for commit-and-prove based on verifiable encryption, and an alternate model which enables low-overhead
protocols by introducing a verifiable third-party trusted to produce circuits but not with any private data.

Programming (Section 3). In order for private computation to be used widely, it must be relatively easy and
straightforward to produce efficient, private computations. Fairplay [84] demonstrated that it is possible
to compile programs written in a high-level procedural language to garbled circuits. However, circuits
generated by Fairplay and its successors are too inefficient for large applications. We propose to address
the programming challenges for secure computation by adapting information flow techniques (including
program partitioning) and by developing targeted optimizations for producing efficient circuits.

One important issue in secure computation applications is determining whether the result itself leaks too
much private information. We propose to develop new techniques for auditing secure computations that
can be integrated into garbled circuits based on information-flow and information theory (Section 4).

The techniques we propose are general, but their effectiveness depends on the application. We plan
to build several applications to measure and understand the performance properties and to target our
efforts to the key challenges of important applications. We will target applications that have clear privacy
requirements including biometric identification, private encryption, and personal genetics (Section 5).

Our team brings together experts in pure cryptography, applied cryptography, system security, pro-
gramming languages, and genomics to enable a broad and systemic approach to the problem. We have a
strong commitment to education, and a track record for impact in mentoring graduate and undergraduate
students, creating new degree programs, and publishing successful textbooks. We will distribute our tools
as open-source software and provide an open platform for developing private computations (Section 6).
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1 Research Plan: Efficient Garbled Circuits
Yao’s garbled circuits provide a general mechanism for secure computation. This section provides back-
ground on garbled circuits and identifies reasons why they have not been used widely in practical ap-
plications (Section 1.1), and describes our planned research in improving the evaluation garbled circuits
(Section 1.2) and generating more efficient circuits for applications (Section 1.3). Section 1.4 reports on our
preliminary results, including more than 20x speedups over previous work on several applications.

1.1 Background
Several techniques have been developed for secure computation. The most notable are homomorphic

encryption and garbled circuits. Reasonably efficient techniques exist for additively homomorphic encryption
(systems that enable addition to be performed on encrypted values), such as Paillier’s cryptosystem [104].
Additive homomorphic encryption, however, is not sufficient to perform general-purpose computation.
Recent developments have shown that fully homomorphic (able to perform both addition and multipli-
cation, and hence arbitrary computation) encryption systems are possible [41], but the best performance
results so far are too slow for any realistic use. For example, one bootstrapping operation is required for
every level of the circuit and requires between 30 seconds and 30 minutes (depending on the size of the
security parameter) on a modern machine [42]. Hence, this proposal focuses on garbled circuits because of
their more immediate practical potential and generality.

Garbled Circuits. Yao introduced the idea of using garbled circuits (also known as Yao circuits) to perform
secure two-party computation [138]. Garbled circuits enable two honest-but-curious parties, P0 and P1,
to compute an arbitrary function f (x0, x1), where Pi has input xi, without leaking any information about
their respective inputs beyond what is revealed by the outcome itself. The idea is for one party (the circuit
generator) to represent boolean wire signals for each wire with a nonce called its wire label, and to replace
boolean signals found in each gate’s truth table with the corresponding wire labels. The output labels in
the truth table are encrypted using their corresponding input labels as keys and the encrypted truth tables
are sent to the other party (the circuit evaluator). Oblivious transfer is used to obtain the initial input wire
labels, after which the evaluator can evaluate the rest of the circuit without any further communication.

Figure 1 depicts an example. The input wires, k0
0 and k0

1 represent both possible input values for input 0.
The AND gate is a four-entry table, where each entry is the value of the appropriate output wire label
encrypted with the one of the possible input values for each input. The circuit evaluator can decrypt exactly
one of these entries using the two input wire labels she has. The garbled table is permuted randomly, so
the selected entry provides no information, other than the corresponding output wire label. Garbled gates
can be chained to compute any computable function as illustrated in Figure 2. For each binary gate, the
evaluator can decrypt one and only one entry in the garbled truth table, learning one of the output wire
labels which is used to evaluate the next gate. In the end, the circuit generator sends to the evaluator a pair
〈H(λ0

i ),H(λ1
i )〉, where 1 ≤ i ≤ n and H is a cryptographic hash function, for each of the n final output wires,

so that the evaluator can map her final output wire labels back to boolean signals.
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Figure 1: Yao’s Garbled Circuits
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Figure 2: Encoding any function as a garbled circuit.
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Oblivious Transfer. An oblivious transfer protocol involves a sender and a receiver. It allows a sender to
send one of a possible set of values to a receiver; the receiver selects and learns only one of the values, and
the sender cannot learn which value the receiver selected. A 1-out-of-2 oblivious transfer protocol (denoted
OT2

1) allows the sender, who has two bits b0 and b1, to transfer bσ to the receiver, where σ ∈ {0, 1} is a
selection bit known only to the receiver [35]. Naor and Pinkas developed an efficient OT2

1 protocol based
on Decisional Diffie-Hellman (DDH) hardness assumption [92]. Based on the random oracle assumption,
Ishai et al. devised a novel technique to reduce the cost of doing m OT2

1 transfers to k OT2
1, where k (k� m)

serves as a configurable security parameter [66]. Our prototype uses these techniques efficiently transfer
the input wire labels.

Secure Function Evaluation. Fairplay pioneered the effort to move secure function evaluation from a
theoretical result to a technique that could be used in real systems [84]. Fairplay introduced a high-level
language, Secure Function Definition Language (SFDL), for specifying a secure function, and a compiler to
transform SFDL programs into low-level circuit implementations. Many subsequent projects either used
Fairplay directly [10, 55, 76] or indirectly [71, 29, 120, 70, 110] to build privacy-preserving protocols. Several
recent works have improved aspects of secure function evaluation. The free-XOR technique [76, 75] allows
all XOR gates be executed by just XOR-ing the input wire labels, without needing any encryption operations.
Security was initially proved using the random oracle model [9], but modified by Kolesnikov et al. to use the
weaker correlation robustness assumption [76]. We exploit free XORs aggressively in the proposed work.
Pinkas et al. [110] proposed the garbled row reduction technique, which we use in our prototype. It reduces
the size of a garbled table to three entries (saving 25% of network bandwidth) for all non-free gates and is
composable the with free-XOR technique.1 TASTY [55] extended Fairplay’s SFDL to allow the programmer
to specify where in the digital circuit to integrate some arithmetic circuits (limited to addition and constant
multiplication) that are realized by homomorphic encryption schemes. They also incorporated the free-
XOR technique [76]. However, their approach still started from compiling enhanced SFDL programs, so
the programmer does not have enough control over the circuit construction to minimize bit widths or make
maximal use of free-XORs as is possible with our proposed approach.

1.2 Circuit Evaluation
A major reason for the poor performance of previous garbled circuit implementations is that the entire

circuit must be generated and loaded in memory before evaluation starts. Since garbled circuits for solving
problems can be huge, this poses a serious limit on the size of problem that can be handled. We propose
to improve the performance of circuit evaluation by pipelining generation and evaluation to avoid this
memory bottleneck, and by developing techniques for evaluating garbled circuits in parallel.

Pipelining. We can reduce the memory requirements, as well as latency, of garbled circuit protocols by
performing circuit generation and evaluation in a pipelined fashion. In our proposed framework, the
processing of the garbled truth tables is aggressively pipelined. At the beginning of the evaluation, both
the generator and evaluator instantiate the circuit structure, which is known to both and fairly small since
it can reuse components just like a non-garbled circuit. Note that the process of generating and evaluating
the circuit does not (indeed, it cannot, because of privacy) depend on the inputs, so there is no overhead
required to keep the two parties synchronized.

Our proposed framework automates the pipelined execution, so a user only needs to construct the desired
circuit. When the protocol is executed, the generator transmits garbled truth tables over the network as they
are produced, in the order defined by the circuit structure. As the client receives the garbled truth tables, it
associates them with the corresponding gate. The client determines which gate to evaluate next based on
the available output values and tables. Gate evaluation is triggered automatically when all the necessary

1Pinkas et al. [110] also presented an optimization based on secure secret sharing over finite fields that saves 50% of network
bandwidth for all kinds of binary garbled circuits. Unfortunately, this optimization cannot be combined with the free-XOR technique.
In most cases, free XORs provide more benefit than this table-size reduction, although there may be opportunities where it is better to
use the table reduction technique.
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inputs are ready, and the memory used by the table can be reclaimed after the gate is evaluated.
We have validated this approach by building a simple Java framework that supports pipelined circuit

evaluation using a variation on the Observer design pattern [40]. As described in Section 1.4, our prototype
already achieves order of magnitude improvements over previous circuit evaluation results for several
applications. We will develop a more sophisticated framework to take advantage of pipelining opportunities
while minimizing latency, modularize the circuit structure so even that need not be maintained in memory,
and conduct experiments to evaluate different ways to control the generation and evaluation processes.

Parallelization. Circuits can be evaluated in any order that follows the topological dependencies, and
subdivided into components that are evaluated separately in parallel. In addition, once the general structure
of the circuit is determined, components can be generated in parallel. We will develop techniques to take
advantage of multi-core processors to generate and evaluate circuits more efficiently. A larger opportunity
is available using the processing power available on graphic processors (GPUs). Several projects have
demonstrated substantial performance improvements by implementing AES encryption using GPUs [54,
85, 11]. Commodity GPUs today have hundreds of cores and CUDA makes these cores readily available
for general-purpose processing [101], so the main challenge is finding a way to map the operations needed
generate and evaluate large garbled circuits to GPU threads in a way that can effectively use many cores.

1.3 Circuit Generation
The resources needed to generate and evaluate a garbled circuit scale approximately linearly with the

number of non-free binary gates in the circuit. To reduce the circuit size, we propose to explore several
techniques for reducing the size of the circuit. After developing and evaluating the techniques manually,
we will also automate the most general and effective optimizations (Section 3.2).

Much effort has been spent on designing logic circuits for hardware implementations. Some of the
techniques developed for hardware circuits may be effective in garbled circuits also, but there are important
differences between hardware circuits and garbled circuits that present new challenges and opportunities:
(1) Hardware circuits are typically optimized to minimize power consumption and circuit area; with garbled
circuits, our main goal is to minimize the number of non-free binary gates. (2) Garbled circuits are built and
evaluated in software. This enables dynamic, data-specific optimizations that would not be cost-effective in
hardware. (3) Privacy requires that a particular garbled table can only be evaluated once, whereas hardware
circuit design focuses on being able to reuse physical circuits.

Component Library. We will develop a library of useful circuit components (comparator, adder, muxer,
min, etc.) designed to make the best use of free XOR techniques. We will also explore automated design
techniques to find optimal circuits for particular logical functions for a given cost metric.

Minimizing Bit Width. The dynamic use-specific nature of garbled circuits means we can generate circuits
for each operation that are specific to the actual maximum input data size. For many examples (including
all the examples in Section 1.4), a core structure is repeated many times in the circuit, but the maximum
input sizes vary. We have found that designing our components to have variable bit width and using the
minimum bit width necessary for each instance reduces the cost of typical applications by about 25%.

Symbolic Evaluation. In cases where some inputs to a garbled circuit are known, we can use symbolic
evaluation to propagate these values through the circuit, leading to opportunities to use logical inference
with symbolic values to reduce the number of non-free gates. Similarly, we can automatically propagate
known wire signals when the circuit is built.

Isolating Secure Computation. Most computations involve a mix of operations that involve no private
data, operations that involve private data from only one party, and operations that require private data from
both parties. Only the third type requires expensive secure computation; the other two can be done locally
by one of the parties without any need for evaluating garbled circuits. The challenge is that the parts of
the computation that involve private data cannot be easily separated from the rest of the computation. In
our preliminary experiments, we have found several opportunities for taking advantage of this to simplify
and reduce the cost of the circuit such as computing the key schedule for AES locally and computing the
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Application Best Previous Measurement Results Our Results Speedup
Fingerprint Matching Barni et al. [7] Closest Threshold Matcha 16s 3.5s 4.5a

Face Recognition SCiFI [103] 900-bit Hamming, Online 0.310s 0.019s 16.3
900-bit Hamming, Total 213s 0.05s 4176

Levenshtein Distance Jha et al. [71] 100 × 100b 92.4s 4.1s 22.4
200 × 200c 534s 18.4s 29.0

Smith-Waterman Jha et al. [71] 60 × 60 d 447s d

AES Encryption Henecka et al. [55] Online Time (per block) 0.4s 0.008s 50
Total Time (per block) 3.3s 0.2s 16.5

Table 1: Performance Comparison for Several Secure Computations.
All results are for 80-bit wire labels and the security parameters for the extended OT protocol [66] are (80, 80). Our results are the
average of 100 trials with the client and server each running on a Intel Core Duo E8400 3GHz; the comparisons are with results
reported in the cited papers, using similar, but not identical, machines. a. The speedup for the fingerprint matching is reported
as 4.5, but our results are for an input size 1.8 times larger than used in [7] (512x640x8 vs. 320x640x7), which cannot find the best
match but instead identifies all entries within some threshold. b. Protocol 1, a garbled-circuit only implementation that is faster
than Protocol 3, but does not scale to 200 × 200. c. Protocol 3, a hybrid protocol (the flagship protocol of [71]). d. No meaningful
comparison is possible here, although our protocol is about twice as fast, since [71] implemented a simplified Smith-Waterman
protocol [63].

gap function in the Smith-Waterman application. (One emphasis of the work proposed in Section 3 is to
automate the identification of such opportunities.)

Non-Binary Gates. The garbled circuit technique extends to gates with any number of inputs and outputs.
Because of the permute-and-encrypt technique [84] gates with multiple inputs can be evaluated with a single
encryption, so although the generation time scales with the number of inputs the evaluation time is nearly
constant. We propose to develop techniques for using non-binary gates and automating the process of
designing an efficient circuit that takes advantage of larger gates. One example where this has been useful
is implementing constant lookup tables (present in many applications such as the score matrix for Smith-
Waterman and the SBox for AES).

Using Wire Labels. The wire labels obtained during a garbled circuit evaluation are normally treated
as a worthless by-product of the evaluation, but can be used in subsequent computations. They still
contain no semantic information, but can be used in conjunction with permuted data structures to perform
additional computation without leaking any information. For example, the wire exiting each comparison
sub-circuit in a tree-structured circuit for determining the minimum value from a large set encodes the
information about each pairwise comparison. Thus, the wire labels obtained by the evaluator can be used to
evaluate a backtracking tree created by the generator to very efficiently obliviously retrieve profile information
associated with the minimum value found. We used this technique in our fingerprint matching protocol [64]
and propose to explore and develop other opportunities for exploiting obtained wire labels.

1.4 Applications and Preliminary Results
To validate our ideas we built a prototype framework for efficient circuit evaluation employing a

straightforward implementation of the pipelining technique from Section 1.2 and using several of the circuit
design ideas from Section 1.3 to develop target applications. Table 1 summarizes the results. The fingerprint
matching application is described in more detail in a forthcoming paper [64]; the other applications are
described in a paper currently under submission [63].

In privacy-preserving fingerprint matching, a client has a scanned candidate fingerprint and the server
has a database of fingerprint images with associated profile information. The system does not reveal
any information about the candidate fingerprint to the server, or about the database to the client, except
the identity of the closest match if there is a match within some threshold distance (or the non-existence
of any close match). We designed a bit-width minimizing circuit for finding the minimum difference
of the Euclidean distances (removing the random vector added in the homomorphic encryption phase),
and used a novel backtracking strategy to obliviously obtain the associated profile information. Our
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Figure 3: Straightforward Circuit. Figure 4: Optimized Circuit.

fingerprint matching protocol combines an additive homomorphic encryption phase used to compute
Euclidean distances between fingerprint vectors, and a garbled circuit phase for finding the closest match
within ε. For the other applications, we use only garbled circuit techniques.

The main operation in the privacy-preserving face recognition application is computing the Hamming dis-
tance between bit vectors representing face characteristics. Our circuit-only implementation is significantly
faster that Osadchy et al.’s results which use a combination of homomorphic encryption and 1-out-of-n
oblivious transfer. The Levenshtein Distance (edit distance) and Smith-Waterman (genome alignment) appli-
cations use a dynamic programming algorithm. In the privacy-preserving setting, each party has one of the
input strings and they wish to compute the distance between the two strings without revealing anything else
about the input strings. In considering these problems, Jha et al. concluded that garbled circuits could not
scale to solve small (200-length strings for Levenshtein distance) problems because of the memory blowup
as the circuit size increases [71]. Our pipelining approach avoids the memory problem, allowing use to
solve arbitrarily large instances. For example, we used our prototype to evaluate a 2000×10,000 Levenshtein
distance problem on commodity PCs, evaluating more than 1.29 billion non-free gates in 223 minutes. Fig-
ure 4 shows an example circuit from our implementation, resulting from applying the ideas from Section 1.2
starting from the straightforward circuit in Figure 3. The transformations preserve the logical functionality,
but along with the bit width minimization, approximately halve the number of non-free gates required.

The AES encryption application performs encryption where one party knows the key and the other
party knows the message. If it can be made reasonably efficient, two-party encryption has many potential
applications including keyword searching and blind signatures [110]. Our implementation is distinguished
from previous ones in that instead of constructing a huge circuit, we design our protocol around the structure
of a traditional program. Our guiding principle is to identify the minimal subset of the computation that
needs to be privacy-preserving, and only use expensive cooperative computation for those computations.
We also take advantage of the circuit-minimization techniques identified above including partial evaluation,
known-value propagation, and the fast table lookup primitive. We developed two versions of private AES,
one focused on on-line performance (achieving a 50x speedup over the best previous result [55]) and the
other focused on total execution time (achieving a 16x speedup).

Summary. Our preliminary results suggest that efficient garbled circuit implementations can outperform
custom-designed hybrid solutions for a wide range of applications. Despite these performance improve-
ments, however, the performance still needs to improve by at least another order of magnitude before
problems of the scale typically needed for biometric matching or personal genetics applications can be
handled. We are optimistic that such improvements can be achieved using the techniques proposed here
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including parallelizing evaluation (which has not been used at all in our preliminary results) and taking fur-
ther advantage of pipelining and opportunities for minimizing the number of non-free gates. Constructing
each application still requires a fair bit of manual work (e.g., about 3 student-weeks for the AES encryption),
so it is important to automate the construction of high-performing circuits as we propose in Section 3.

2 Research Plan: Malicious Adversaries
The previous section assumed an honest-but-curious adversary, but most application scenarios for secure
computation need to also provide privacy against malicious adversaries who do not necessarily follow
the protocol as specified. Two approaches with many variations on each have been used to achieve
security against malicious adversaries in the traditional setting: cut-and-choose [80, 98] and commit-and-
prove [45, 69, 81]. We consider both techniques in the next two subsections, and propose directions that can
enhance their practicality with our approach. In Section 2.3, we propose a new model for implementing
secure computation using a verifiable trusted party.

2.1 Cut-and-Choose
In the standard cut-and-choose method, the generator first prepares s copies of the garbled circuit and

sends them to the evaluator. The two parties then randomly select an α-fraction of the circuits (where
α ≈ 1

2 or optimally, α ≈ 3
5

ths [17]) to be opened and verified by the evaluator. Standard implementations
of these steps require the circuits to be stored and re-read several times. As noted in Section 1.2, one of
our goals is to reduce the memory required for secure computation by using pipelined execution. The
standard cut-and-choose method, however, requires multiple copies of the entire circuit. We propose to
explore techniques to make this work efficiently with pipelined evaluation. One approach we will explore
is for the generator to use a pseudo-random seed for each circuit, hash each circuit during its generation,
and send the hash to the evaluator. Goyal et al. developed an approach along these lines, but did not
consider pipelining issues or implement it in a practical system [49]. When the parties select which circuits
to reveal, the generator sends the seed for each revealed circuit to the evaluator who reproduces each circuit
and verifies the circuit and corresponding hash. After the evaluation of each circuit (which can be done in a
pipelined fashion), the evaluator store the final output; after all circuits have been evaluated, the evaluator
computes the majority output. We propose to investigate how to combine these ideas in a way that is
efficient while provably preserving the needed security properties. In particular, we must ensure that these
changes do not compromise the measures required to ensure that the generator’s inputs to all αs copies of
the circuits are consistent.

2.2 Commit-and-Prove
Aside from the original GMW paper [46], both Jarecki and Shmatikov [69] and Lindell and Pinkas [81]

considered commit-and-prove techniques. We will investigate two new approaches to commit-and-prove,
and develop a new technique that limits our reliance on the use of random-oracles.

Verifiable Encryption with Fast Zero-Knowledge Protocols. The challenge with using zero-knowledge to
prove that a garbled circuit is a proper encoding stems from the complexity of the block ciphers (such as
AES) typically used to garble gates. Proofs about such circuits are exceedingly large both because of the large
number of gates involved (e.g., ≈ 30, 000 for AES) and the size inflation induced by general reductions from
statements about such circuits to languages for which zero-knowledge protocols are known. Block-ciphers
are efficient for the honest-but-curious model, but for the malicious model it makes sense to consider slower
methods for garbling gates that permit more efficient proofs of correctness.

We propose to investigate a verifiable encryption scheme which constructs garbled gates using double-
encryption or a related scheme that permits efficient zero-knowledge proofs of consistency of garbled gate
encodings. Verifiable encryption is a type of encryption scheme which has the ability to prove (in a zero-
knowledge fashion) specific claims about messages encrypted under it [14, 13]. These two prior works on
verifiable encryption were based on the discrete log and composite residuosity hardness assumptions and
consider how to verify any general property.
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We propose to consider new ways to construct encryptions schemes—perhaps by considering new
hardness assumptions such as pairing-based Diffie-Hellman assumptions—that encode messages in the
exponents (in contrast to methods like El Gamal). The goal is to combine the exponents through the
use of the pairing. The resulting ciphertext will contain information about both encoded messages in
the exponent. This should make it possible to construct more efficient zero-knowledge proofs about the
messages. In particular, there are known Σ-protocols (see below) for showing different relations between
exponents for Diffie-Hellman and discrete log related ciphertexts. Alternately, such a scheme may also
have efficient proofs using the recently developed Groth-Sahai Non-Interactive Zero-Knowledge (NIZK)
proofs [52]. Such proofs are designed to be highly efficient, and can prove properties about the relations of
exponents in many practical signature and encryption schemes.

Any such encryption scheme will result in the computation of a number of exponentiations as opposed
to invocations of AES. Thus, it will be computationally more expensive to generate and evaluate gates.
However, the goal is to reduce the total computation involved in a secure computation in the malicious
setting. We will aim to develop a construction that will permit each garbled gate to be constructed in
isolation to allow both pipelining and the parallel creation of garbled gates.

Σ-Protocols and Seed-Incompressible Functions. In any garbled circuit solution that uses zero-knowledge
proofs, it is desirable for both efficiency and security to make the proofs non-interactive. This reduces
communication latency, and provides security benefits such as making honest prover protocols secure in
malicious models and providing for concurrent security. A traditional approach to removing interaction
has been to apply the Fiat-Shamir transform to convert a Σ-protocol (a three-round, public-coin, and honest
verifier zero-knowledge proof) into a NIZK proof [36]. However, this protocol is secure only in the random
oracle model, and actual heuristic implementations of this model are known to be incorrect [15, 47, 8].

We propose to leverage prior research, conducted by PI Myers, to help transform Σ-protocols into NIZK
arguments that can be used in garbled circuits. PI Myers has investigated methods to place random-oracle-
based constructions on a firmer theoretical footing. The challenge is to find specific “random-oracle-like”
properties, such that functions with these properties (a) can be realized in the standard model, and (b) can
be securely used in some cryptographic applications in lieu of access to a truly random function. Halevi,
Myers and Rackoff introduced the notion of seed incompressibility [53]. At a high level, this notion captures
the intuition that a random function has no structure. It seems hopeless to define an efficiently computable
function that has no structure, since the fact that the function is computed by a small circuit is itself some
structure. However, one may still hope that this small circuit is the only interesting “small property” of the
function. That is, no adversary can find a significantly smaller property that differentiates it from a random
function. Unfortunately, seed incompressible functions have been proven to not exist [53]. A slightly weaker
notion of correlation-intractability under seed-compression attacks, however, may be achievable. Further, it
is possible (in the common random string model) to use such functions to efficiently transform Σ-protocols
in to one-time NIZK arguments. PI shelat has developed a Σ-protocol compiler. We will modify it to
implement NIZK arguments, as prescribed by the correlation-intractable seed-incompressible construction,
and use it as a key component of a compiler for circuits that are secure against malicious adversaries.

Many Round Commit-and-Prove. Much cryptographic work focuses on reducing the number of rounds in
a protocol even at the cost of increased communication. We propose a protocol that does the opposite: we
increase the number of rounds with the aim of reducing the total size of all exchanged messages.

Briefly, the idea is to use a Σ-protocol to implement the “commit-and-prove” method from [45]. We can
estimate the complexity of this approach as follows. The first two players will commit their inputs using
a commitment scheme for which there exists efficient Σ-protocols (e.g., Pedersen commitment [108]). We
organize the circuit into levels where each level consists of either only XOR gates or only AND gates. In
evaluating the circuit, XOR gates can be handled locally, but the players must announce commitments of
the resulting outputs and provide Σ-protocol proofs that these commitments are correct. The AND gates
can be handled by oblivious transfer protocols recently proposed by Peikert et al. [109] in the common
random string model that require only a small constant (8) number of exponentiations in the group Zp. At
the end of the evaluation, both parties hold commitments to the shares of the inputs to the next level. This
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approach has round complexity that is related to the depth of the circuit. However, its communication
complexity is highly competitive with the best two-party protocols. In comparison, the cut-and-choose
method for compiling a Yao circuit requires roughly s copies of 4 symmetric encryptions to be exchanged
where s is a statistical security parameter that is roughly 320 for 2−80 security. Our proposed approach also
works well with the ideas from the previous section concerning the use of efficient proof systems such as
the Groth-Sahai NIZK and the seed-incompressible functions. We propose to investigate this approach and
design and implement prototypes to evaluate its performance.

2.3 A Verifiable Trusted Party Model
The role of a trusted party is to perform work on behalf of two mutually distrusting agents. If universally

trusted parties existed there would be no need for secure multi-party computation—everyone could simply
give their private data to the trusted party. In practice, however, it is unlikely that any party can be completely
trusted with everyone’s private data. The verifiable trusted party model addresses these shortcomings by
requiring that the trusted party T does (1) not learn the inputs of the other parties, (2) does not learn the
outputs of the other parties, and (3) is unable to force the parties to make errors in their computations.
Moreover, the model makes it possible to verify that T performs all of the operations requested of it by the
parties in the protocol. Izmalkov, Lepinski, and Micali [67] introduced the verifiable trusted party model in
the context of a cryptographic game theory problem. Micali and PI shelat later used the model in another
context related to game theory [89].

We propose to define a verifiable trusted party model for two-party computation, and to develop methods
for using a verifiable trusted party T to generate garbled circuits for a given function, f . One approach has
T constructing and signing the garbled circuit. The generator then asks T for the keys corresponding to the
input wires of the circuit, and the evaluator asks for just the garbled circuit. From this point, the protocol
proceeds as usual. The effect of signing the garbled circuit and description of f is to enforce culpability
on T if the garbled circuit is faulty. We imagine that T would function like a certificate-authority, selling
digitally signed garbled circuits that encode a given function. Should T ever sell an improperly encoded
garbled circuit, it would lose credibility in the marketplace, as its garbled circuit could be posted along with
its signature, showing that T was not trustworthy.

This proposal is simple and efficient, and we will implement it. However, the model raises several
research questions: (1) Is it possible for T to stream the circuit to the evaluator following the pipelining
approach from Section 1.2 such that the entire circuit does not need to be held in memory and so it is still
possible to allow proofs that T has cheated. In other words, if T cheats, is the entire circuit necessary, or
can single gates be offered as evidence of cheating. One avenue we will explore is using the notion of a
quotable signature, recently proposed by PI shelat [3]. (2) The function f is currently revealed in the case
of cheating by T. Is it possible to keep f private even during an audit showing that T has cheated? A
generic zero-knowledge approach is feasible in theory; our goal is to find a practical solution that is as fast
as a technique that proves an initial encoding of f correct. (3) Another natural question is whether one
can (efficiently, and without the use of general function evaluation) design a T that makes a garbled circuit
without learning the actual circuit f that the players wish to compute.

3 Research Plan: Programming Secure Computations
One of our goals is to enable widespread use of secure computation, which requires a high-level program-
ming language for conveniently describing secure computations. Here, we describe our plans for using
information flow to automatically partition programs into parts that need to be executed cooperatively, and
for building a compiler that produces efficient garbled circuit protocols from high level programs.

3.1 Information Flow Analysis
Security-typed languages incorporate means to specify and check the security of computations directly

in their type systems. This approach has been popularized by Jif [90, 18]. In Jif, types are annotated with
security labels that indicate which principal owns the data and what principals may read or modify the data.
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Principals also separately specify acts-for relationships, identifying principals to whom they delegate some
authority. Programs may include explicit declassification coercions at points where data may flow to a less
trusted party; these are essentially a kind of security-oriented downcast.

This approach allows programmers to focus on specifying appropriate security policies for the data being
manipulated by their program, while relying on the compiler to enforce those policies. Using security-typed
languages forces a programmer to explicitly annotate code to guide the compiler in establishing that the
computation is secure. For sound languages, successful compilation guarantees the program adheres to the
security policies indicated in the source code. Although there has been a great deal of work on information
flow in programs (e.g., see the survey by Myers and Sabelfeld [119]), work in this direction has been largely
separated from research in cryptographic protocol design. Two particularly promising synergies involve
combining secure computation with program partitioning and declassification.

Partitioning. Secure program partitioning was introduced in Jif/Split [139, 140]. Given a Jif program
annotated with security labels and a set of trust relationships, the Jif/Split compiler automatically partitions
the program to run on one or more hosts so that all security requirements are satisfied. Program partitioning
provides the same abstraction as secure computation: both aim to securely perform a computation involving
multiple independent entities that do not fully trust each other. Subsequent work examined automatic
partitioning of programs among web browser and web server [19, 24], including work by PI Hicks on
enforcing security policies across the tiers of a multi-tier web application [131, 26]. These systems are
limited, however, in that they ultimately require each host to trust some other host completely. For example,
the oblivious transfer example in Jif/Split requires a trusted third party [139]. But these computations can be
performed obliviously using secure computation. Hence, our proposed work combines the two ideas by
extending Jif/Split with the idea of a virtual host AB that is trusted by principals A and B. When a splitting
computation would require a trusted third party C, the compiler instead generates a secure computation
protocol that can be executed cooperatively by the two principals.

Declassification. Information flow programming techniques prevent accidental information leaks, but
typically need to explicitly declassify data at some points to perform useful computations. In particular,
writing some desired functionality without any explicit declassifications and then compiling it will generate
errors at exactly the points when a declassification is needed. These are the information release points
where private data is needed for the computation to proceed. Recent work has explored ways to infer
the least number of declassification points [73], but the need to declassify presents a fundamental risk of
these techniques. With secure computation, we can replace the need to declassify with secure computation.
At the end of the computation, an explicit declassification step may still be needed to reveal the result.
We propose to integrate the declassification policy into the generated program (including the information
auditing techniques we propose in Section 4).

3.2 Generating Efficient Garbled Circuits
The information flow analysis enables the compiler to determine parts of the computation that must be

computed securely; our goal is to automatically generate efficient protocols to perform those computations.
Fairplay already demonstrated the feasibility of automatically compiling a procedural program into a
secure computation protocol [84], but as noted in Section 1.1, Fairplay and its successors are not able
to take advantage of many important optimization opportunities. We propose to develop compilation
techniques to take maximal advantage of the opportunities identified in Section 1.3. For some, like symbolic
evaluation, adapting standard compiler techniques may be sufficient. For others, like bit width minimization,
new techniques will be needed that go beyond standard optimizations. We acknowledge that it may not
always be feasible to fully automate these optimizations. For these cases, we will design mechanisms for
programmers to provide additional information to the compiler to enable the optimizations. We will also
develop techniques to automatically select library components to minimize the size of the resulting circuit.

We will use the information flow analysis to separate the computation into those parts that can be
performed locally by the parties and those that must be carried by the virtual host or hosts. This may involve
automatically restructuring the computation to isolate the parts that must be computed cooperatively. For
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example, if we have some function f (x, y) that is large and complex, we may decompose it into f ′(g1(x), g2(y))
where g1 and g2 can be computed locally and only f ′ needs to be cooperatively evaluated. Garbled circuits
provide a direct way to compose secure and local computations by obliviously transferring the input
labels corresponding to the intermediate results. As an example, consider the problem of computing the
intersection of two sets of size n. The trivial O(n2)-sized circuit for this computation can be improved using
sorting networks with each party locally sorting their inputs before starting the secure computation.2

4 Research Plan: Auditing
Secure computation research typically assumes that the result can be revealed to one or both parties at
the end of the computation. Any useful result, however, must reveal some information about the other
party’s private data. To enable secure computation for sensitive applications it is necessary that participants
can have assurances limiting the amount of information leaking in the revealed results. These issues have
been studied widely in the database community, but considering how to incorporate them into secure
computation is largely unexplored.3 We propose to explore two approaches for auditing leakage in secure
computations. One uses an information flow analysis of the source program connected to a differential
privacy model; the second takes an information-theoretic approach, estimating the amount of entropy
remaining to a curious participant.

4.1 Information-Flow Auditing of Secure Protocols
There are several ways that security-typed languages can add assurance to secure computations. De-

classification points in programs are obvious candidates for logging: these are the only points at which
information is actually being released. Audits could then be conducted on logged data to examine potential
breaches, assess the rate of information leakage [83, 88, 6, 77], or even assess what may constitute a remote
party’s current belief [20]. Recent work by Reed and Pierce [117] considered programming language foun-
dations for differential privacy [27, 28] with functions written in a special-purpose language that bounds the
amount of information an adversary can learn. In ongoing work, we have found that this language can
be encoded in a dependently typed language with support for affine types [130] (extending PI Hicks’ prior
systems Fable and SELinks [131, 26]). As these languages are also able to include information flow tracking
(as in Jif) we can potentially augment the entire system to perform a secure computation as described in the
previous section while accounting more quantitatively for information release.

4.2 Measuring Leakage
In prior work, PI Evans developed an information-theoretic metric for measuring privacy loss in RFID

systems based on probability distributions [99, 100]. The secure computing setting presents many new chal-
lenges and opportunities, however. One opportunity garbled circuits provide is measuring the information
leakage as a computation is executed and designing the circuit to suppress outputs that would leak too
much information, thus preventing either party from learning the result.

We will first consider a simpler scenario where a client is sending queries to a server, for example to find
the Hamming distance between a query string and the server’s private string, both of length N. The client
and server execute a secure computation protocol that only reveals the result to the server, which then has
a choice whether or not to reveal the output to the client. For a single query, the amount of information
leaking depends only on the result (e.g., if the output is 0 the client would learn the exact value of the
server’s secret; if it is near N

2 much less information leaks) and can be easily computed. For a sequence of
queries, however, this computation quickly becomes intractable, and the server must instead use techniques
to bound the entropy remaining. Attackers may be able to design sequences of queries that reveal the private
information as a group, while each individual query appears to leak minimal information (e.g., [96, 48]).
For example, Figure 5 shows the number of possible 5-nucleotide sequences consistent with all responses

2Even in a malicious setting this can be a net win, since it is possible for each party to independently verify that the other party
correctly sorted their inputs (without leaking any other information about those inputs) more efficiently than it is to sort the inputs.

3One notable exception is Wang et al. [136], which incorporated constraint-based query auditing into a specialized privacy-
preserving computation, but did not consider auditing in general secure computation.
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Figure 5: Uncertainty Reduction.
Each line shows the number of 5-nucleotide sequences that are con-
sistent with the Levenshtein distance responses over a sequence of
queries chosen using the smallest entropy strategy. Results for 100
experiments, each with a different randomly-select secret sequence.

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
P

o
ss

ib
le

 S
eq

u
en

ce
s

Query:

Actual 
Number

Estimate

49 = 262144

Figure 6: Estimating Information Leakage.
Accuracy of leakage estimate for Hamming dis-
tance for 9-nucleotide sequence. The actual num-
ber is computed exhaustively; the estimate line
is computed using a closed equation.

over a series of queries. This type of exhaustive analysis cannot scale to large sequences so it is necessary
to develop heuristics to estimate and formula to bound the information leaked. In our preliminary work,
we have developed formulas for computing both upper bounds and tight estimates of the information
leaking over a series of queries, and tested our estimates on small inputs by running exhaustive simulations
(Figure 6). We propose to further develop techniques based on Monte Carlo sampling that take advantage
of the structure of the problem to obtain an estimate of the entropy, as well as function-specific techniques
for computing an upper bound.

5 Applications
We introduced several applications in Section 1.4 including privacy-preserving biometrics, sequence com-
parisons, and private encryption, and we intend to use those applications to evaluate our work. In addition,
we will develop several practical applications focusing on important privacy-sensitive applications in ge-
netics, which we describe in detail below. We will use the applications to evaluate the proposed techniques
from the previous sections. We will also develop manually optimized versions of many of the applications,
and compare them to versions produced automatically by our high-level programming tools.

Opportunity. The completion of the human genome sequence over ten years ago has been followed by
an ever-expanding search for the inheritable differences (or genetic variants) between human genomes that
effect disease risk. The exhilarating pace of biotechnology development has simultaneously provided the
means to now resequence thousands of new human genomes (or at least significant, variant-containing por-
tions) at great economies of scale, allowing scientists to further identify progressively rarer mutations that
might affect predisposition to complex diseases, such as type 1 diabetes, heart disease, and psychological
disorders [137]. Using panels of common variants at millions of sites across the human genome, scientists
can screen even larger patient populations to discover genes responsible for complex human traits. This
deluge of genetic information gathering is tightly balanced by ethical, legal (e.g., the Genetic Information
Nondiscrimination Act of 2008 [134]) and social ramifications to ensure patient confidentiality while allow-
ing patients to benefit from the research as they choose. Data from such studies are also tightly controlled,
safeguarded by the NCBI in a centralized database (dbGaP [82, 37]), to which individual scientific access
requires IRB approval and monitoring.

In parallel with these scientific advances has been a continuing increase in public awareness and interest
in learning one’s own genome, or at least the variants that relate to human health and well-being [23]. Direct-
to-consumer genetic testing companies are responding to this interest, providing kits to simultaneously
test for many thousands of variants related to disease-variant carrier status (e.g., the cystic fibrosis gene,
BRCA cancer mutations), increased disease risk (e.g., type 2 diabetes, Parkinson’s disease), abnormal drug
responses (e.g., Warfarin toxicity, caffeine metabolism), and other heritable traits [78]. Other variants can

D-12



be used to report ancestral mixing (e.g., an individual might learn they are 60% European, 33% African,
and 7% Asian by descent) [118]. One testing company provides a service to discover and (re)connect with
unknown or lost relatives who have also been tested [1].

Privacy-Preserving Personalized Genetic Research. With such an abundance of personal genetic informa-
tion becoming available, appropriate privacy assurances will provide an opportunity to fruitfully compare
one’s own genetic data with that of someone else’s, either in bulk or individually. For bulk studies, indi-
viduals may wish to compare their own variants to those observed in all patients participating in a clinical
drug trial to assess their own likelihood of responding to the drug. Similarly, individuals could assess
their relative genetic proximity to the cases vs. controls in a disease association study. Without preexisting-
knowledge of what the specific marker variants are for such phenotypes, the required computation amounts
to a classification problem, clustering the individual with one or the other patient population based on raw
correlation with variants in the study seen associated with disease status. For example, the individual
could be clustered using a Hamming distance metric across 10,000 common variants, weighted by the
relative ability of each variant to predict disease status (e.g., using mutual information content [5]). Such a
computation appears to be feasible using our secure computation techniques.

People might also wish to contribute their own genetic information to further scientific understanding
of a particular rare disease without directly enrolling in the study or allowing their genetic information
be centrally stored in dbGaP. Here, all the scientific association study requires is a summation of the raw
counts in a 2 × 2 contingency table, without regard to which individuals in the study harbored particular
variants [16]. In either of these scenarios, performing association of the individual to the group, while
maintaining privacy for both the individual and the groups in dbGaP, requires scalable secure computation.

Privacy-Preserving Screens for Genetic Risk. For those variant markers that have already been discovered
and validated, someone may want to compare markers to those of a prospective partner, motivated by
concerns regarding procreative compatibility as well as simple personal preferences. This comparison can
be done with a simple Hamming distance computation across thousands of genetic markers of interest,
which we have already demonstrated as a secure computation. One possible, although arguably dystopian,
application is genetic dating, a compatibility screening to privately compare genetic information, identifying
the presence of potential issues [74]. Information leakage can be controlled by limiting the result of the
comparison to boolean answers, indicating the risk of any shared recessive genetic conditions.

6 Education, Outreach, and Transfer Plan
Our team has a strong commitment to education, outreach, and to making useful tools available to the
research community, government, and industry.

Course Development. All the PIs are heavily involved in curriculum development. PI Evans is Founding
Director of the Interdisciplinary Major in Computer Science [32] (the first cross-school program of its kind
at UVa) and authored an introductory computer science textbook [31]. PI Katz is co-author of a textbook on
modern cryptography that has been used at more than 40 schools [72].PI Myers was one of two architects
of the Security Informatics MS Program at Indiana University and co-authored a textbook on phishing [68].
PI shelat is co-authoring a new cryptography textbook [105]. We anticipate opportunities to include the
ideas in this proposal in future courses at both the introductory and graduate levels as well as in future
textbooks. PIs Katz, Myers and shelat regularly teach undergraduate and graduate cryptography courses,
and will find opportunities to incorporate ideas from the proposed work into these courses. PI Mackey
co-developed a module on bioinformations for a new course on computation targeted to graduate students
in other fields.

Graduate and Undergraduate Research. Graduate students made essential contributions to developing
this proposal, and all of the PIs view mentoring graduate students as among the most important things we
do. PI Hicks recently co-authored a paper in Communications of the ACM on a new approach to managing a
research group [56]. All the PIs have strong records and serious commitments to producing PhD students
who go on to successful careers in academia, government labs, and industry. We also have successful records

D-13



for developing undergraduate researchers in our research groups. Two former undergraduate researchers
in PI Evans’ group are now faculty members (Jon McCune, now at CMU and GJ Halfond, now at USC) and
two are recent CRA Outstanding Undergraduate Research Award finalists (Salvatore Guarnieri, now a PhD
student at the U. Washington, and Adrienne Felt, now a PhD student at UC Berkeley). Two of PI shelat’s
undergraduate research advisees have been recognized with CRA Outstanding Undergraduate Research
Awards (Rachel Miller, finalist in 2009, now a graduate student at MIT; and David Noble, honorable mention
in 2010). PI Myers is key member of IU’s site-wide REU proposal for undergraduate research in Security
Informatics with its INSPIRE-Information Security Program in Informatics Research Experience.

Public Outreach. Our team is deeply involved in, and committed to, outreach to children, other research
communities, industry, and the general public. PI Evans and PI shelat contribute to the NSF-funded Tapestry
workshop at Virginia [22] which aims to assist high school teachers in attracting and motivating a diverse
group of students in their computing classes. PI Evans has developed a two-day course that introduces
cryptography to 7th and 8th graders and taught the course to over 200 students at a nearby low-income middle
school as well as to summer students in the GEAR-UP program [135] and 2nd graders. PI Myers provides
advice to a local high school Science Olympiad coach on areas relating to computing or mathematics. Our
experience with these courses indicates that cryptography can be used to make mathematics exciting and
appealing to a wide range of students. PI Katz has given several tutorials and seminars exposing a wider
research and industry computing to cryptographic research, including lectures on modern cryptography
for networking researchers at SIGCOMM 2007 and mathematicians at the AMS Joint Mathematics Meeting.

There will always be some cost associated with secure computation, and it will only be widely used as a
result of either regulatory or consumer pressures. Hence, we believe it is important to also make efforts to
inform the general public. As an example, PI Evans’ previous work on privacy for RFID systems and social
networks has been covered in hundreds of press articles (e.g., [97, 133, 12, 21] and influenced influenced
industry (e.g., NXP releasing a new version of the Mifare tag with improved security [102]) and policy (e.g.,
the Dutch government deciding not to deploy a insecure nationwide RFID system).

Tool Distribution. We will release the tools we develop as supported open-source software that includes
accessible and documented interfaces to our private programming system at several levels, including the
low-level Java framework, an annotated circuit-level description language, and a high-level programming
language. In addition, we will make a library of circuits designed to provide efficient components for
private computation available. The PIs have strong records for releasing and supporting open source tools.
PI Evans’ lightweight static analysis tool Splint is incorporated in most Linux distributions [30] and his MCL
simulator is used by many other research groups [33]; PI Hicks has released a program analysis tool for
detecting data races (Locksmith [113, 111]), a safe dialect of C (Cyclone [51, 50, 58], and tools for enhancing
the security of web applications (SELinks [25, 131] and DRuby [38, 39]); PI Mackey is an original member of
the Open Bioinformatics Foundation and has released the GLEAN and Evigan genome analysis tools and
developed public databases for genomic Malaria research.

7 Results from Prior NSF Support
PI Evans has been the PI for 5 completed, and 1 ongoing NSF grant, focusing on system security, program
analysis, and applications of cryptography. His CAREER award (CAREER: Programming the Swarm ($285K,
3/1/01-2/28/06, 0092945) and ITR: A Framework for Environment-Aware Massively Distributed Computing ($400K,
9/15/02-8/31/05, 0205327) explored programming and security issues involved in building dependable soft-
ware systems. Works from these projects have been cited over 1800 times, including work on biological
programming models [2, 43, 44], protocols for secure wireless networks [60, 62, 61], virtual machine secu-
rity [106, 107], and lightweight static analysis [79, 34]. Software developed through these grants include
Splint [30] (which is included in most Linux distributions, three commercial products, and received over
175,000 pageviews in the past year), MCL [33], Perracotta, CellSim, and the N-Variant Framework.

PI Hicks has been the PI or co-PI of 3 completed and 4 ongoing NSF grants. With NSF support he has
published 40 papers in peer-reviewed conferences and journals (garnering more than 1000 total citations),
released 10 substantial software packages (mostly analysis tools), and graduated six PhDs (with three more
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expected next year). A closely related grant is CAREER: Programming Languages for Reliable and Secure
Low-level Systems ($550K, 6/04–6/10, CNS-0346989) which explored security and reliability in low-level and
concurrent software (often written in C) [58, 116, 132, 111, 112, 57, 125, 126, 94, 115, 87, 114], and means to
achieve safe high-availability using dynamic software updating [127, 95, 128, 129, 93].

PI Katz received an NSF CAREER award in 2004 and is currently supported by two other NSF awards.
Katz’s CAREER award deals with security in large-scale decentralized systems like peer-to-peer networks.
Katz’s prior NSF support has resulted in more than 45 publications in addition to two published books, and
has been used to support several graduate students (4 of whom have graduated already) and two post-docs.

PI Mackey has no prior NSF support. PI Myers and PI Shelat are new faculty members and have no
completed NSF grants. They are co-PIs on a recent NSF award Implications of Fully Homomorphic Encryption
($500k, 09/10–08/13, 1018543) to study the cryptographic implications of fully homomorphic encryption.
Shelat also received an NSF CAREER award in 2009 for the period 2009–2014, focusing on collusion-free
protocols, optimistic methods for designing protocols, and building a compiler for Σ-protocols.

8 Impact Summary
The proposed work will develop new programming approaches and cryptographic techniques for secure
computation and use those techniques to develop frameworks, compilers, and demonstration applications
for secure computation. Selected research milestones for the project are summarized below.

Year 1

- Develop, evaluate, and release prototype framework for efficient garbled circuit evaluation.
- Design and prove security of minimal communication cut-and-choose protocol.
- Implement seed-incompressible modifications to Σ-protocol compiler.
- Develop and evaluate manual information-theoretic auditing techniques for simple applications.

Year 2

- Produce parallelized garbled circuit framework and optimize critical circuits for parallel execution.
- Develop verifiable encryption algorithm and multi-round commit-and-prove protocol.
- Integrate secure computation techniques into secure program partitioning tool.
- Produce and evaluate several full-scale applications, including a personalized genetics application.

Year 3

- Automate circuit optimization techniques including symbolic evaluation and bit width minimization.
- Analyze performance of cut-and-choose, commit-and-prove, and verifiable third party protocols.
- Incorporate secure computation into declassification points in secure program.
- Release high-level programming system for efficient honest-but-curious secure computations.

Year 4

- Automate advanced circuit optimization techniques including use of non-binary gates and
restructuring to isolate secure computations.

- Implement the two most promising malicious protocols and integrate malicious adversary protocols
into programming system.

- Develop general auditing mechanisms and incorporate them into declassification points.
- Evaluate versions of target applications implemented using the high-level programming tools.

Year 5

- Evaluate security and performance of different malicious-adversary circuit implementations.
- Incorporate general auditing techniques into circuits and programming tools, and evaluate their

precision.
- Release high-level programming system for efficient malicious-adversary secure computations.
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9 Collaboration Plan
Our team coalesces several longstanding collaborations towards a unified goal. PIs Myers and shelat
previously collaborated to prove a long-standing open question, showing that single bit CCA2-secure
encryption implies the existence of many-bit CCA2 security [91] and have joint NSF-funded project on
fully homomorphic encryption. PIs Evans and Katz crossed paths as undergraduates at MIT and have
been working together on the garbled circuits aspects of this proposal since last spring [64]. PIs Evans and
shelat are colleagues at the University of Virginia and are co-advising students as PIs on an NSF-funded
project on RFID privacy. PIs Katz and shelat have previously collaborated on collusion-free multi-party
computation [4]. PIs Katz and Hicks are colleagues at the University of Maryland who have previously
collaborated on secure sharing among distrusting parties [86] and expect to co-advise students working on
this project. Thus, our team conjoins five prior pair-wise collaborations involving the PIs. We are excited
about the opportunities the proposed work will provide to develop these collaborations as well as enable
new collaborations.

Although modern telecommunications makes long distance collaboration feasible, we firmly believe that
there is still no substitute for the depth and immediacy of face-to-face interactions. Our team is conveniently
located to enable regular in-person meetings, as shown in Figure 7. In particular, Fredericksburg, VA is
within a 90 minute drive of both the University of Virginia and the University of Maryland, enabling easy
part-day meetings at a coffee shop there which some of the PIs and our students have taken advantage of
in developing the work that forms the basis of parts of this proposal.

In addition to the fairly spontaneous sub-team meetings enabled by our geographic proximity, we will
have longer full team meetings approximately every 12 months to ensure we maximize opportunities for
collaboration across the entire team. We will start with a kick-off meeting in Charlottesville, and then rotate
among the PI sites for subsequent meetings. In addition, we also believe there is a lot of value in student
circulation and cross-pollination. We anticipate having our students having both short and extended visits
at each other’s sites to work closely with the PIs as well as other students, as well as some PIs being external
dissertation committee members for students of other PIs at different institutions.

Table 2 summarizes the roles of each of the PIs. As PI, Evans will coordinate the overall team effort,
ensuring that each sub-project maximally leverages the ideas and tools being developed by others. Each
of the major components of the proposed work each involve both theoretical advances and experimental
systems development. We believe much of the most exciting work in security has resulted from close

Indiana University 
(Myers)

University  of Virginia
(Evans, Mackey, shelat)

University  of Maryland
(Hicks, Katz)

Figure 7: Locations of the PIs.
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Area Primary PIs
Efficient Garbled Circuits (Section 1) Evans, Katz

Malicious Adversaries (Section 2) Myers, shelat, Katz, Evans
High-Level Programming (Section 3) Hicks, Evans, Katz

Auditing (Section 4) Evans, Katz, Hicks
Applications (Section 5) Mackey, Evans, Katz, Myers, shelat

Table 2: Division of Research Areas.

collaborations between theorists and experimentalists, and have designed our team around this belief. At
both the University of Virginia and University of Maryland, our team includes PIs who are more theory-
focused (shelat at UVa, Katz at UMd) and systems-focused (Evans at UVa, Hicks at UMd), although all PIs
have interests in both theoretical and practical aspects of the proposed work, as well as experience working
from both perspectives. At Indiana University, PI Myers is more theory-focused but also worked on a
number of practical systems and problems (e.g., phishing [68], ubiquitous security and malware [124, 59, 65,
121], and measurement of implemented cryptographic systems [122, 123]). This arrangement enables close
collaboration on both theory and systems at each site, as well as ensuring a substantial amount of cross-site
collaboration.

We will target real applications of secure computation. Our team includes PI Mackey, from the Public
Health Sciences department at UVa, who works on genomics. The other PIs, especially Evans and shelat
at UVa, but others on visits, will work closely with Mackey (and one of his students, partly funded by
this proposal) to identify opportunities for secure computation in personal genomics and statistical medical
research.

In addition to collaboration across our team, we all actively collaborate with other researchers and
are deeply involved in our respective research communities. PI Evans is active in the security research
community; he was Program Co-Chair for the past two IEEE Symposia on Security and Privacy (Oakland
2009 and Oakland 2010) and the lead organizer of an NSF co-sponsored workshop on the Science of Security.
He is also involved in the programming languages and software engineering research communities (e.g.,
PC member and panels chair for ICSE and external review committee for PLDI). PI Hicks is primarily
active in the programming language community; he will be Program Chair for the 39th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL 2012) and was General and Program
Chair for the 2007 ACM SIGPLAN Workshop on Programming Languages and Analysis for Security. PI Katz is
active in the cryptography research community; he is on the editorial boards for the International Journal
of Applied Cryptography, Fundamenta Informaticae, and IEE Proceedings — Information Security, was Program
Chair for Applied Cryptography and Network Security 2007, and is a program committee member for many
theory, cryptography, and security conferences. PI shelat is active in the theory and cryptography research
communities. He was on the program committees for CRYPTO 2010, Oakland 2009, and TCC 2008. PI Myers
is active in the theory, cryptography, and security communities. He was on the program committees for ACM
CCS 2008 and 2010, Financial Crypto 2007 and 2009 and Eurocrypt 2007. PI Mackey is active in the genomics
research community and an original participating member of the Open Bioinformatics Foundation. The
involvement of our team in multiple academic communities will ensure maximum exposure of our work
to a broad range of researchers, as well as enabling us to leverage work across the cryptography, security,
programming languages, theory, and genomics research communities.
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