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Abstract 
Wireless sensor networks represent a new data collection 

paradigm in which adaptability plays an important role. 
Typical sensor network scenarios involve scattering a large 
number of wireless nodes from an aircraft across an area of 
interest. The nodes then form a network through which 
collected data is routed to a base station. Adaptation is 
necessary to deal with the unpredictable network topologies 
that result from sensor node scatters and to manage resources 
(energy in particular) efficiently in response to changing 
conditions and requirements. The hardware flexibility required 
for dynamic adaptation is traditionally achieved with software-
based processors or field programmable gate arrays (FPGAs), 
both of which come with significant energy, area and 
performance costs when compared to application-specific 
integrated circuits (ASICs). We therefore introduce a small-
scale reconfigurable design technique that minimizes these 
costs by efficiently integrating small amounts of application-
specific reconfigurable logic within primarily fixed-logic 
circuitry. This technique provides the flexibility necessary for 
the adaptations required of wireless sensor networks without 
the penalties associated with processors and FPGAs. This 
paper makes the case for small-scale reconfigurability by 
investigating several different types of adaptation in wireless 
sensor network applications that allow applications to deal 
with unpredictable network topologies and tradeoff between 
network longevity and fidelity, security and latency. 

I. INTRODUCTION 
In typical wireless sensor network applications, a large 

number of sensor and actuator devices (nodes) are scattered by 
an aircraft across a target area. A high power base station is 
then used by an operator to control the behavior of and receive 
data from the nodes via a wireless network. Such applications 
pose a number of design challenges for sensor networks: 
• Nodes are commonly deployed from an aircraft in a rapid, 

ad hoc manner, preventing designers from making 
assumptions about where particular nodes will be located, 
what the network topology will be, and the role of each 
node in the topology. 

• Application requirements and environmental conditions 
often change during network operation. 

• Nodes often fail during network operation, due to depleted 
energy, destruction, or movement out of transmission 
range. 

• Given that the nodes are wireless and ideally quite small, 
they have very limited energy, most of which is consumed 
by data transmission. 

• The large number of nodes in sensor networks, their 
limited lifetime, and their inherent disposability require a 
low per unit cost. 
In this paper, we explore how these challenges can be 

addressed through dynamic network adaptability and 
mechanisms for achieving certain types of adaptation at both 
the application and node levels. Section II describes the 
lifetime of a wireless sensor network and considers how 
requirements differ throughout that lifetime. Section III 
considers how adaptability can be used to deal with 
unpredictable network topologies, adjust for changing 
application requirements, recover from node failures, and 
improve energy management. In Section IV, we consider 
approaches to node design that provide the necessary 
flexibility for adaptability with low unit cost and minimum 
energy consumption. This requires the integration of hardware 
design techniques that provide high efficiency (in terms of 
cost, energy, and performance) but minimal flexibility with 
techniques providing the flexibility required for node 
adaptation but limited efficiency. 

II. WIRELESS SENSOR NETWORK LIFETIME 
Before we discuss the types of adaptations that can be 

performed in wireless sensor networks, we first explore the 
various stages at which adaptations and design for adaptability 
can be performed. We can divide the lifetime of a sensor 
network into several stages, during which application 
requirements and environmental conditions may change or 
become fixed. At different stages, designers will have the 
option to give up flexibility to reduce cost and improve 
performance. Although the network lifetime is more 
accurately continuous, we can loosely identify the following 
distinct phases: 
Device Design Time. A single node design may be used for 
many different network applications. The communications and 
data processing aspects of a node are likely to be similar even 
if the particular application changes. By designing a single 
node that can be used for many applications, the overall design 
and manufacturing costs will be reduced through amortization 
and economies of scale. At this stage, designers must predict 
the range of applications and attempt to design a single device 
that serves all of those applications adequately. To reduce 
costs and power and improve performance, flexibility can be 
sacrificed, but that will limit the possible applications. 
Companies including Crossbow Technology and Dust, Inc. are 
beginning to sell generic devices for wireless sensor networks. 
Application Design Time. After the particular desired 
application for a network is established, much of the device 
flexibility is no longer required, as the application constrains 



   

the expected data processing and communication 
requirements. For example, an application might be tracking 
moving objects in a region [1] or monitoring the temperature 
and humidity of a habitat [2]. The tracking application 
emphasizes low latency; the habitat monitoring prioritizes 
longevity. For certain applications where the scale is huge or 
the performance requirements are severe, it may be cost-
effective to design a network node specifically for the 
application. For most applications, though, this would be too 
expensive. Instead, the application will be designed around 
available generic devices that can be cheaply configured to 
particular design parameters. 
Scenario Design Time. The scenario of a wireless sensor 
network application determines the number of devices and the 
environment in which the devices will be operating. An 
example scenario might be tracking vehicles in a particular 
parking lot or monitoring the habitat in a certain bird 
migration zone. A given scenario constrains the likely 
communication and data processing requirements even more 
than an application does and may establish particular latency, 
security, fidelity and longevity requirements. 
Deployment. For many applications, the actual and relative 
locations of devices will not be determined until the network 
is deployed. Based on those locations, devices may change 
their behavior. For example, devices in high-density regions 
may enter sleep mode and wait for their neighbors to lose 
power. Other devices may adapt to act as message forwarding 
nodes instead of (or as well as) processing or sensing nodes. 
Operation. Once the network has been deployed and is 
operating, the behavior of individual devices may need to 
adapt to either changing requirements or conditions. A 
weather monitoring network operator may decide high-fidelity 
temperature readings are more important than humidity 
readings and send control messages into the network to use 
communication and data processing energy accordingly. 
Network devices may sense a possible intruder and change 
communication modes to use a higher level of encryption. 
Nodes may exhaust their energy or may otherwise malfunction 
requiring topology adaptation. 

A designer of a sensor network application must consider 
what degree of adaptability is necessary at various stages in 
the application’s lifetime. The more flexibility that is 
available, the more freedom there will be to adapt the behavior 
and properties of the nodes and network. That freedom is not 
without cost, however. Designs that provide unused flexibility 
waste resources, primarily energy and cost. These issues are 
explored in the following two sections. 

III. THE CASE FOR ADAPTATION 
In many sensor network applications, the requirements are 

not known precisely enough at deployment time to make 
tradeoffs required for maximum network utility. Even during 
operation, requirements will change in response to varying 
conditions. The challenge, then, lies in designing sensor 
network applications that can dynamically adapt to changing 
requirements by selecting different points in the design space 
for trading off resource consumption for fidelity, security and 

latency. This is inconsistent with the traditional view of 
algorithms in computer science that focuses on their functional 
properties (inputs and outputs) and characterizes their 
performance based on the time or space the algorithm requires 
for a given input size. For wireless sensor networks, it is 
important that we have algorithms whose behavior can be 
characterized in more precise ways and be parameterized in 
ways that change the properties of the algorithm. Since sensor 
networks are deployed by scattering devices over an area, it is 
important that nodes are able to adapt their behavior to their 
topological role in the network. As nodes fail or move, they 
will have to alter their behavior accordingly. Since nodes in a 
wireless sensor network are untethered and typically must run 
on small batteries, a primary factor in determining the utility 
of a network is how well it manages energy consumption. As 
nodes fail due to energy depletion, a network can quickly 
become useless. Therefore, it is often desirable to adapt energy 
consumption in ways that increase network longevity by 
sacrificing other application properties. 

Next, we describe examples showing the importance of 
adapting to network topology, and illustrate how applications 
can reduce energy consumption (and increase application 
longevity) dynamically by adapting fidelity, security and 
latency parameters according to changing application 
requirements. 

A. Network Topology 
The topology of a sensor network is normally unknown 

until deployment. For example, sensor nodes may be dropped 
out of an airplane over a large area. Designers of sensor 
network applications cannot assume they know where 
particular nodes will land, and often manufacturing and 
deployment costs will require that all of the devices are 
initially identical. 

Once the network is deployed, however, the location of the 
nodes is known (and in some cases, the devices will not move 
again once they are deployed). Based on happenstance, some 
nodes will land close to the base station and others will land 
further away; some geographical areas will have a high 
density of nodes, and others may have no nodes at all; some 
nodes will have many neighbors within communication range, 
others may have only a few. 

In order for information from the far away nodes to reach 
the base station, the nodes need to form a multi-hop routing 
tree through connecting nodes to the base station. A simple 
way to form a routing tree is for the base station to transmit a 
short-range message identifying itself. All nodes that receive 
that message are level 1 nodes: their parent is the base station 
itself. In the next step, each level 1 node transmits a message 
that identifies itself as a level 1 node. Upon hearing this 
message, a node that is not already a level 1 node, will become 
a level 2 node and select the sending level 1 node as its parent. 
(To balance the routing tree, if a node that is already a level 2 
node receives an announcement message from a level 1 node 
that is not its parent, the level 2 node will arbitrarily select one 
of the parents based on randomly assigned node identifiers.) 
This process continues until every node reachable from the 
base station has a parent node. To avoid transmission 



   

collisions, time segments are divided according to level and 
node identities. 

Figures 1a and 1b show two examples of routing trees that 
form following this protocol starting from 100 randomly 
scattered nodes. To extend the useful lifetime of a sensor 
network, nodes must adapt to their role in the routing tree, 
which cannot be predicted before deployment or even just 
based on location. A node with many children will not survive 
long if it forwards all of its children’s messages instantly and 
completely. A node with many neighbors may be able to 
coordinate with those neighbors to avoid redundant messaging 
and take turns running in sleep mode to save energy. Some of 
these behavior changes are application-specific and may need 
to be carefully designed for a particular network application. 

 

 
Figures 1a and 1b: Initial routing trees formed from random 
deployments of 100 nodes. 

A simple strategy for increasing the longevity of a network 
is to have the network routing adapt as nodes fail. When a 
node’s parent fails, the child node sends out an orphaned 
message to find a new parent node to continue sending data 
towards the base station. Any functioning node that hears the 
orphaned message responds with its level, and the orphaned 
node selects the most suitable parent. Figures 2 and 3 illustrate 
the impact of parent adaptation on network utility. Note that in 
Figure 2 many live nodes are unable to communicate with the 
base station, whereas with parent adaptation as shown in 
Figure 3 even though several aggregation point nodes have 
died, their children have found alternate parent nodes to 

maintain a path to the base station. Some live nodes are 
temporarily disconnected, but will soon find new parents in 
response to orphaned messages. 

Our simulations illustrate that adaptive routing techniques 
can maintain network connectivity even as nodes fail. To 
further improve network longevity, other adaptations may 
trade off application properties to conserve energy. 

 
Figure 2: Network from Figure 1a after transmitting 300 requests 
without adaptation. Nodes that have failed due to energy exhaustion 
are shown as circles. 

 
Figure 3: Network from Figure 1a after transmitting 300 requests 
with orphaned child routing adaptation. 

B. Fidelity 
For a simple example of the need for dynamic adaptation 

for energy management, consider a network that monitors an 
environment with cameras. Each node in the network takes 
pictures of its surrounding area, compresses each image using 
JPEG compression, and transmits the data to its parent in the 
network. While each leaf node only transmits its own images, 
a parent node must also transmit the images of all of its 
descendents. A high-level node with many children, 
grandchildren and great-grandchildren is responsible for 
transmitting a large amount of data. The nodes closest to the 
base station (and highest in the routing tree), will have the 
most data to transmit and will quickly exhaust their available 
energy. After the highest-level nodes have been depleted, 
useful information can no longer reach the base station. 



   

The JPEG compression algorithm can be parameterized to 
control the block size and tradeoff image quality for execution 
time and (more importantly) the size of the output data and the 
amount of energy required to transmit it. At the network 
topology level, the routing tree could be transformed to reduce 
the data forwarding pressure on nodes with a large number of 
descendents. Parents could use image processing techniques to 
aggregate images from their children into a single image, or 
they could use filtering to selectively forward only interesting 
images. At the node level, the image compression can be 
parameterized for different image qualities and compression 
ratios to trade off energy consumption and image fidelity. 
Nodes can remain in a low power mode (highest compression, 
lowest image quality) until the base station commands a group 
of nodes to switch to a higher resolution. 

Figure 4 shows how adapting JPEG block size affects the 
useful lifetime of such a network. JPEG 1 provides the highest 
compression and lowest image quality; JPEG 8 provides the 
least compression and best image quality. The network starts 
with 400 nodes that are all able to transmit their images to the 
base station through the routing tree. As nodes run out of 
energy, they are no longer able to transmit their own or their 
descendents’ images. When a parent’s energy is depleted, the 
routing tree automatically adapts to have its children find 
different parents to whom to send their images, but a live 
parent node is not always reachable. Given that data 
transmission dominates this application’s energy consumption, 
the smaller transmissions required for JPEG 1 images allow 
the network to keep a larger number of nodes over time. Using 
JPEG 1, the base station receives at least 100 images for each 
of the first 1400 requests, but by the 300th request using JPEG 
8, fewer than 100 images are received. An adaptable network 
could switch between JPEG 1 and JPEG 8 based on available 
energy or commands from the base station. 

 
Figure 4: Network fidelity for different image compression ratios. 
The vertical axis shows the number of nodes whose image reaches 
the base station in response to each request. Initially, there are 400 
nodes, scattered randomly throughout an area. Results are the average 
of 12 simulated executions. Our simulations are built using 
extensions to GloMoSim [3] to simulate a wireless sensor network. 
Normalizing the compressed transmitted image size at 1 for JPEG 1, 
JPEG 2 and JPEG 8 were of size 2.34 and 4.68, respectively [4]. 

As this example shows, we can sacrifice application 
fidelity to enable a network to provide meaningful readings for 
a longer time period. In other situations, it may be more 
important to provide high assurance that readings are correct 
over a short period of time. 

C. Security 
Most modern symmetric ciphers (including AES) can be 

parameterized to control the number of encryption rounds. 
Increasing the number of rounds strengthens the security of 
the cipher, but requires more computation (and hence, more 
time and energy). Figure 5 shows the effect of adjusting the 
number of encryption rounds on the longevity of a wireless 
sensor network application. Each transmission must be 
encrypted, but the number of rounds is made variable to 
tradeoff security and processing energy, just as various JPEG 
compression ratios may be used for different power modes. 
An adaptive application could use different encryption 
strengths (with their own keys) to adapt the costs associated 
with encryption to the security requirements of the transmitted 
data. 

 
Figure 5: Effect of encryption strength on sensor network longevity. 

Cryp64-n represents encryption with 
12 +n

 rounds (e.g., Cryp64-4 is 
32 rounds). The vertical axis again shows the number of nodes whose 
data reaches the base station through the routing network after a 
certain number of requests. 

D. Aggregation 
To reduce the energy consumed forwarding messages, 

sensor networks can perform calculations inside the network 
to determine aggregate results and forward those instead. 
Aggregation collects results from several nodes and calculates 
a smaller message that summarizes the important information 
from a group of nodes. For example, suppose the operator is 
interested in the average of some value in the network. An 
inefficient way to find this would be for every node to send its 
reading to the base station (often over multiple forwarding 
hops), and for the base station to calculate the average of all 
readings received. A more efficient way to collect the same 
information would be for intermediate nodes to forward the 
calculated average value of the readings they receive along 
with a count of the number of readings it incorporates. Several 



   

recent research efforts have explored different aggregation 
protocols for sensor networks assuming a trusted environment 
including directed diffusion [5], LEACH [6], greedy 
aggregation [7], Cougar [8] and TAG, an in-network 
aggregation service for TinyOS motes that supports an SQL-
like language for expressing aggregation queries over 
streaming sensor data [9]. 

In general, aggregation protocols allow wireless sensor 
network applications to reduce energy consumption in 
exchange for increased latency and possibly lower fidelity. To 
aggregate responses, inner nodes must wait until several 
readings have been received before they are able to calculate 
an aggregate result and forward it to the next node. In some 
cases, the aggregation function may lose information (for 
example, sending  averages instead of forwarding all readings 
means the base station does not receive enough information to 
construct a histogram). 

Aggregation also makes authentication more difficult. 
Aggregating nodes must be able to combine multiple results 
into a single value, but a single compromised node should not 
be able to disrupt readings from an entire subtree. We have 
developed a technique (illustrated in Figure 6) that delays 
aggregation one hop to provide some of the energy-saving 
benefits of aggregation without sacrificing the ability for the 
base station to authenticate readings [10]. Keys are revealed 
after each time step is completed (and then invalidated so they 
may not be reused), so intermediate nodes can verify message 
authentication codes used during the previous step. As shown, 
a conspiracy of two consecutive nodes is required to forge 
readings of other nodes. Delaying the aggregation additional 
hops increases the communication costs but makes the 
protocol resilient to additional classes of attacks.  

IDA | RA | MAC (KAi, RA)
| IDB | RB | MAC (KBi, RB)

| MAC (KEi, Aggr (RA, RB))

IDB | RB | MAC (KBi, RB)

IDC | RC | MAC (KCi, RC)   
| IDD | RD | MAC (KDi, RD)  

| MAC (KFi, Aggr (RC, RD))

IDA | RA | MAC (KAi, RA)

A
B

C

D

E F

G

IDE | Aggr (RA, RB) | MAC (KEi, Aggr (RA, RB)
| IDF | Aggr (RC, RD) | MAC (KFi, Aggr (RC, RD)

| MAC (KGi, Aggr (RA, RB, RC, RD))

RA is the sensor 
measurement for node A.
KAi is the ith key in a 
µTesla key chain  

Figure 6: Data aggregation with authentication. Each leaf node 
forwards its data reading and a message authentication code (MAC) 
to its parent. Parents retransmit readings and MACs, along with a 
calculated aggregate value and MAC to grandparents. Grandparents 
can verify the aggregate value and need not retransmit the individual 
data readings and MACs. 

Figure 7 illustrates the impact of authenticated data 
aggregation of network longevity. In this case, no time 
aggregation is used, so latency is not sacrificed. Aggregation 
functions may be specific to particular sensor network 
applications, but data aggregation can be generalized to many 
applications. A combination of the above techniques can be 

used to realize aggregation methods that tradeoff latency, 
security and fidelity for energy consumption. 

 
Figure 7: Effect of aggregation on network longevity. 

IV. DESIGNING ADAPTABLE NODES 
Most wireless sensor networks are composed of nodes 

implemented with embedded processors that execute software-
based instructions. For example, the MICA wireless sensor 
motes developed at UC Berkeley and marketed by Crossbow 
Technology each contain an Atmega 128L processor, which is 
a low-power microcontroller, running the TinyOS operating 
system [11]. These and other processor-based nodes are 
capable of functional adaptation simply by loading and 
executing various software programs. However, this virtually 
unlimited flexibility comes at a price, as software algorithms 
executed on processors typically consume more energy, are 
more expensive per unit for large volumes, and have lower 
performance than application-specific integrated circuit 
(ASIC) implementations of those algorithms. Given the 
limited energy, cost bounds and real-time requirements of 
many sensor nodes, ASIC-based nodes would provide 
significant benefits. However, fixed-logic ASICs do not have 
the flexibility to reap the benefits provided by dynamic 
adaptability illustrated in the previous section. Because of this 
efficiency/flexibility tradeoff inherent in node design, a wide 
range of implementation options are worth consideration. 

A. Processing Hardware 
The two efficiency extremes in implementing a single 

algorithm are direct hardware implementation using a fixed-
logic ASIC and software instructions executed on a general-
purpose processor (GPP). The custom nature of an ASIC 
makes it extremely efficient (in terms of energy, area, and 
performance) for executing a single algorithm, as it does not 
have any flexibility. GPPs allow for maximum flexibility and 
are therefore relatively inefficient per task. Since flexibility is 
expensive, finding the implementation that just satisfies the 
flexibility needs of an application will ensure highest 
efficiency. Considering that the adaptations a wireless sensor 
node must perform are limited, the excessive flexibility 
provided by the embedded processor in the MICA motes 
translates into reduced efficiency. 



   

Modern hardware implementations include a number of 
design options between GPPs and ASICs, and the proper 
implementation technique must be chosen for providing the 
necessary adaptability with maximal efficiency. Given what 
information is known at different points in a node’s lifetime, a 
hybrid device composed of several of these implementation 
types likely yields maximum efficiency. The following are 
distinct implementations of processing hardware, from the 
flexibility of GPPs to the efficiency of ASICs: 
General-Purpose Processor (GPP). A processor that is 
designed for general use, such as those used in desktop 
computers. A GPP can perform any computable function 
(except as limited by available energy, memory and time) and 
provides a general instruction set that is not targeted to any 
particular application. The processor hardware is fixed, but the 
instruction memory can be loaded and re-loaded with various 
programs. GPPs can be high performance but require large 
chip area and are extremely power hungry. 
Application-Specific Processor (ASP). A processor that is 
designed for a specific application. ASPs still execute software 
instructions, but the instruction set is designed for the 
execution of certain types of programs. They still are typically 
universal computers, but their performance on applications 
outside of their domain is reduced. Their efficiency 
performing the target applications is much higher than that for 
GPPs, but they still suffer the penalties inherent to software-
based execution. 
Digital Signal Processor (DSP). A type of ASP whose 
instruction set architecture and datapath are designed to handle 
the computationally intensive nature of digital signal 
processing. While the instructions can be changed to 
manipulate data in various ways, the strict instruction set and 
datapath cannot be easily used for non-DSP applications. 
DSPs have increased efficiency for related applications, but 
remain bounded by their execution of software instructions. 
SRAM-Based Field Programmable Gate Array (FPGA). A 
structured array of reconfigurable logic and interconnect. 
Logic functions are implemented using SRAM-based lookup 
tables, and programmable interconnections are made through 
SRAM-gated pass transistors. FPGAs can be reconfigured a 
large number of times, including in the field, and can 
implement a wide range of algorithms in hardware. However, 
their general-purpose nature results in less dense logic, longer 
delays, and higher energy consumption than the following 
implementations. 
Antifuse-Based FPGA. Similar to the SRAM-based FPGA, 
except these devices can only be programmed one time. 
Interconnections and logic functions are configured onto the 
device by blowing the appropriate set of fuses. While a non-
programmed device can be configured to implement a wide 
range of algorithms, this flexibility is lost after it is 
configured. The anti-fuse nature of these devices make them 
much more efficient (in terms of energy, cost and 
performance) than SRAM-based FPGAs. 
Application-Specific Integrated Circuit (ASIC). Fixed-logic 
hardware implementations of algorithms. They are designed to 

perform only a single task, but they perform it with the highest 
efficiency when well designed. 

The coarse granularity of this set of distinct design options 
does not offer suitable choices for the efficiency/flexibility 
tradeoff that is central to wireless sensor node design. We 
therefore explore a new heterogeneous design technique that 
maximizes the amount of fixed-logic in a node (and therefore 
the efficiency) while providing enough flexibility for node and 
network adaptation. As opposed to the general-purpose 
reconfigurable fabric of FPGAs, heterogeneous small-scale 
reconfigurability (SSR) finely integrates small amounts of 
application-specific reconfigurable logic and interconnect with 
fixed-logic, providing only the flexibility that is required for 
the nodes to enable the necessary adaptations. As a result, SSR 
provides the necessary flexibility while achieving efficiency 
approaching that of ASICs. Hybrid FPGAs containing ASIC 
cores surrounded by general-purpose reconfigurable fabric 
arose from the same principle, but SSR provides more 
application-specific and fine-grained integration between fixed 
and reconfigurable logic for even greater efficiency. 

The preservation of flexibility must be considered for the 
adaptations at different points in a node’s lifetime, as 
discussed in Section II. Increasingly more information is 
known about a node and its role in a network at each 
successive stage in its lifetime. At the node’s device design 
time, little may be known about its future network, 
application, or deployment. As a result, much of the node must 
be flexible. However, characteristics that are common to any 
wireless node can and should be implemented in fixed-logic. 
Once the network application and scenario are known, a 
significant portion of the previously flexible node can be 
permanently configured. Therefore, antifuse-based logic can 
be used in the node design and permanently configured once 
this additional pre-deployment information is known. As a 
result, this portion of the node can be made more efficient than 
would be possible with an SRAM-based reconfigurable logic 
implementation and significantly more efficient than software 
executed on a GPP. 

Once the nodes are deployed, even more information is 
known. Based on whether or not this information will remain 
constant throughout the network’s lifetime, the associated 
logic may also be permanently configured, thereby enabling 
again the use of antifuse-based logic. However, SRAM-based 
reconfigurable logic is required for portions of the node that 
may require multiple adaptations. Therefore, SRAM-based 
logic is required for operation adaptations, such as the 
different power modes in the JPEG compression example 
above, as further adaptations may always be required. 

Understanding the various parts of a node’s design that 
require adaptation at different points in its lifetime is the key 
to maximally efficient implementation. As much should be 
implemented with fixed-logic as possible; that which can be 
permanently configured once more information is available 
should be implemented using antifuse-based logic; portions of 
the node requiring multiple dynamic adaptations should be 
SRAM-based; and maximum programmability can be 



   

provided when necessary by limited support for executing 
software instructions. 

B. Cost of Excessive Flexibility 
Wireless sensor network application utility is primarily a 

function of battery life, making the efficient use of energy the 
primary consideration in node implementation, followed by 
performance for real-time considerations and area for sensor 
network applications,. 

Figure 8 shows the utility of the image collection network 
described above with various node implementations. 
Specifically considered is the implementation of the JPEG 
compression algorithm. Efficiency is necessary for energy, 
area, and performance, but flexibility is required for dynamic 
parameter adaptation. Although this particular application is 
dominated by transmission energy consumption, it is clear the 
energy required for the JPEG compression processing has an 
effect on the network fidelity, as the less energy-efficient node 
implementations (GPP and FPGA) result in reduced fidelity. 
The SSR implementation shown is based on a reconfigurable 
architecture for adaptive wireless image communication [4]. 
Of course, the ASIC provides the longest utility, but it is not 
capable of switching JPEG parameters for fidelity adaptation. 

 
Figure 8: Impact of excessive flexibility on image collection network 
lifetime. As in Figure 4, the vertical axis is the number of nodes 
whose image reaches the base station after a request. The processing 
energy consumption of SSR nodes is normalized to 1, and the ASIC, 
FPGA, and GPP node processing energy consumptions are 0.01, 2, 
and 6, respectively [4]. Each node maintains a constant compression 
ratio and performs image aggregation at a ratio of n , where n is the 
number of images at each node. 

The advantages of more efficient node implementations 
are even clearer for applications that require a significant 
amount of processing at each node and smaller transmission 
sizes than JPEG images, as shown for the data encryption 
application in Figure 9. The high energy consumption of 
nodes implemented with GPPs results in the network 
collapsing after only 200 requests. As expected, FGPA-based 
nodes perform slightly better, and the small-scale 
reconfigurable implementation introduced here maintains 
network function even longer. While ASIC-based nodes 
would consume even less energy, they would not have the 
necessary flexibility. In both network examples, small-scale 
reconfigurability provides the highest efficiency (and resulting 

fidelity) while still being capable of enabling the necessary 
parameter adaptations. 

 
Figure 9: Impact of excessive flexibility on data encryption network 
lifetime with same energy consumptions assumptions as in Figure 8. 

V. CONCLUSION 
We have shown that for wireless sensor networks to 

maintain efficiency and utility, they must have dynamic 
adaptation abilities to deal with unpredictable and changing 
application requirements and to efficiently manage limited 
resources. In particular, the energy-limited nature of distri-
buted nodes often requires the network to dynamically 
tradeoff fidelity, security or latency for network longevity. 
Changing algorithm parameters such as JPEG compression 
ratios or the number of encryption rounds, and using adaptive 
aggregation are necessary for the network’s longevity while 
still providing its desired functionality. In addition, the 
information known about a network’s application, scenario 
and deployment is limited at node design time, requiring a 
network to adapt to its configuration post-deployment. During 
operation, node failures and mobility often require dynamic 
topology adaptation to maintain network efficiency and utility. 

The flexibility required for dynamic adaptation does not 
come without a cost. The software-based processing hardware 
commonly used for adaptation is significantly less energy 
efficient, is more expensive in large quantities, and has lower 
performance than inflexible ASICs. We described a 
heterogeneous small-scale reconfigurability design technique 
that provides flexibility with ASIC-like efficiency by finely 
integrating fixed and reconfigurable logic. Simulations 
revealed that nodes implemented using this technique achieve 
significant energy savings and a corresponding increase in 
network longevity. 
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