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Abstract— When remote command injection attacks succeed
at the entry points of a cloud (servers exposed to the outside
Internet), attackers targeting a specific asset in the cloud will
pursue further exploration to find their targets. Attack targets,
such as database servers, are often running on separate machines,
forcing an extra step for a successful attack. However, com-
promising two or three machines is all an attacker needs to
reach an isolated database through a simple attack path. The
goal of this paper is to investigate the possibility of frustrating
attackers by constructing a cloud network architecture that hides
the path to a target asset in the network, utilizing multiple moving
decoy virtual machines and confusing firewall configurations.
A deceiving cloud network architecture can significantly delay
attacks (by stretching the attack path from a handful of steps to
thousands), providing time for system administrators to intervene
and resolve the intrusion. This paper introduces the concept
of misery digraphs, which provide a theoretical foundation for
creating intrusion deception in clouds. This paper describes the
necessary steps to convert a cloud to one that includes a misery
digraph, and evaluates the feasibility and effectiveness of using
the approach with Amazon Web Services. Our simulation results
demonstrate that for a cloud implementing misery digraphs with
a simple attack path of length five, there is a 91% probability
that an attack requires at least 1000 steps to reach the target.

Index Terms— Network security, security management, data
security, tree graphs.

I. INTRODUCTION

REMOTE code execution attacks [28] exploit vulnerable
network services for transferring malicious commands to

the host’s operating system. In vulnerable applications, attack-
ers often exploit unfiltered parameters [26], such as the ones
passed to require or exec in a PHP script to execute a com-
mand that could be powerful enough to modify authentication
policies, creating permanent unauthorized access to the host.
Besides vulnerable applications, widely used network services
potentially increase the vulnerable surface. For example, even
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though key-based SSH authentication is a well-established
practice, system administrators can still choose to enable both
key-based and password-based authentication, enabling attacks
that target passwords. An analysis of Amazon EC2 instances
revealed attackers’ interest in brute force SSH attacks [1].

Remote code execution attacks can be harmful when an
attacker is motivated to reach a specific target within a cloud-
based virtual network. To succeed, the attacker searches for a
vulnerable entry point in the virtual network’s external-facing
hosts and uses a compromised edge host to launch an attack
on the target asset. As target assets are isolated from public
Internet gateways, the attacker must repeat the attack process
by finding and exploiting vulnerable machines that have direct
access to the target. In common cloud network architectures,
successful attacks require only a few steps (compromising
two or three hosts). The goal of this work is to increase the
number of steps needed and make each step more difficult for
the attacker.

We investigate a pure architectural solution, utilizing unique
services provided by cloud computing platforms, to mitigate
remote code execution attacks. Our approach is to contin-
uously change the structure of the virtual network. This
confusing architecture provides parallel support for the intru-
sion detection systems, transforming the firewall rules of the
cloud into a complementary line of defense. Our goal is not
necessarily to detect or eliminate the attack, but to confuse
and deceive attackers in ways that impose severe delays on
the attack process.

Several previous works have advocated for creating decep-
tion or using moving target strategies to combat intrusions
either in a virtual network or in a physical network. Several
works focused on physical networks, developing a number
of deception strategies based on network overlays, proxying,
and secret IP addresses [4], [16], [23], [27]. Other proposals
progressed closer to the present goals by leveraging the
elasticity provided by cloud computing platforms to distract
distributed denial of service attacks (DDoS) [8], [17], [34].
For example, to prevent DDoS attacks on specific targets,
Jia et al. [17] proposed creating replicas on the fly and
assigning network traffic to new replicas. Although this work,
as well as Brezeczko et al.’s [5], provide innovative techniques
to utilize cloud resources against remote attacks, they do not
consider attacks that continue to intrude into the network and
search for isolated targets. This paper addresses the question of
how to combine attack deception and a moving target strategy.
In particular, we present and analyze a mathematical cloud
architectural model for significantly delaying intrusion attacks
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that go beyond DDoS and propagate through a cloud-based
virtual network aiming to compromise a target asset.

The key insight here is to introduce myriad dynamically
changing redundant attack paths that hide the real attack path
from an attacker and create confusion about the steps that an
attacker must take to reach a target database server. We use a
cloud’s firewall rules as the basis for an abstract model of the
cloud’s security architecture. Then, we transform the resulting
model into a set of misery digraphs, graph theoretic models for
confabulating the real attack paths. This transformation main-
tains the original intention of the cloud designers, does not
impose modifications on the core application logic, and incurs
a prohibitive delay to attacks while causing minimal delay
to legitimate application traffic. A virtual network containing
misery digraphs forces a targeted attack to traverse a longer
path to a target, requiring multiple blind decisions to finding
the true path to target. Misery digraphs possess a symmetric
structure for confusing attackers, while neutrally multicasting
the legitimate traffic throughout the virtual network. The
dynamic behavior of attack paths in the misery digraph causes
a continuously changing virtual network structure that repeat-
edly wastes an attacker’s efforts by modifying and relocating
redundant machines that are necessary to compromise before
reaching the target.

Transforming basic virtual networks into misery digraphs
faces several challenges. First, the main challenge is that
misery digraphs should provide consistent and complex paths
towards target assets without leaking side-channel information
that would provide attackers with path-pruning opportunities.
Second, misery digraphs must require minimal modifica-
tions to the underlying application. Third, the structure of
misery digraphs must have financial efficiency, measured in
the increased hourly cost of the cloud. Section II provides
background on cloud applications and details on these chal-
lenges. Section III describes the design of misery digraphs
and shows how it addresses these changes for state-of-the-
art cloud architectures. Section IV presents the algorithms
for constructing misery digraphs, along with a cost analysis
leading to a formula to estimate the cost of our defense.
Section V provides a security analysis and demonstrates the
various scenarios in which misery digraphs are useful and also
discusses limitations of our approach. Section VI evaluates the
effectiveness of misery digraphs using an extensive simulation,
showing that a minimal misery digraph can extend attack paths
to thousands of steps. Our evaluation also considers using
misery digraphs to protect an Amazon Web Services web
application, demonstrating that misery digraphs can be applied
in practice with reasonable cost. The main contributions of the
work are:

1) developing a rigorous graph-theoretic model for creat-
ing deception in a cloud network of virtual machines
(Section III-A),

2) designing a moving target strategy in the model where
the true path to a target machine is continuously moved
around the network (Section III-B),

3) presenting algorithms for automatically generating con-
fusing clouds using existing cloud settings (consistent
with practical cloud computing models) (Section IV),

4) analyzing the results of a deep simulation of an attack
on a cloud with a misery digraph (Section V), and

5) demonstrating the practicality of the approach and a
concrete cost analysis by creating a prototype AWS
virtual network containing misery digraphs (Section VI).

Misery digraphs achieve a high level of deception. Simulat-
ing an attacker, our results demonstrate that with a reasonably
fast changing misery digraph, for a network of two machines
(an application and a database server), there is a 91% probabil-
ity that the attacker must compromise 1000 virtual machines
before successfully connecting to the target server.

The presented model is tested using the core and stable
technology provided by Amazon Web Services (AWS). Misery
digraphs require customized virtual machines, virtual internal
networks, Internet gateways, and intermachine firewall rules.
Thus, the model is consistent with cloud computing practice
and does not assume abstract computing or special security
services available in major cloud providers.

II. OVERVIEW OF THE PROBLEM

This section provides background on current cloud comput-
ing platforms, and motivates the requirements for our design.

A. Background

Cloud providers, such as Amazon Web Services (AWS),
facilitate virtual private clouds, networks of virtual instances,
and virtual subnets with features resembling physical networks
along with other unique features such as security groups,
software-based load balancers, and elastic IP addresses. With
a fresh virtual private cloud, a system administrator chooses
from a range of virtual instance types (virtual machines that
may or may not map to physical machines), managed database
instances, or specialized instances (such as a machine learning
service).

One of the sixteen reference cloud architectures proposed
by AWS1 is the Web Application Hosting architecture depicted
in Figure 1. This architecture is an example of a possible target
for remote intruders who may be motivated to attack web
applications and gain unauthorized access to their data. The
Web Application Hosting architecture employs software-based
load balancers that route requests to a basket of IP addresses
and provide no other public interface. The cloud user—the
system administrator that manages the cloud—creates a num-
ber of virtual instances to execute the application logic. The
cloud user has to use SSH servers on the virtual instances since
there is no physical access to the machines. By connecting
to these entry point instances with SSH, the cloud user can
walk through the network and manage internal instances. In the
architecture of Figure 1, only the web servers face the external
Internet, the application servers process requests and mediate
access to the database server, which contains the sensitive data.

B. Motivation

Equifax data breach and the 2014 Target data breach are
examples of vulnerabilities that allowed for arbitrary code

1https://aws.amazon.com/architecture/
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execution by exploiting web servers and executing commands
on them. In these incidents, attackers did not directly query
the data through vulnerable applications, for example by using
SQL injection attacks. Instead, in a more complex attack
process, a remote code execution vulnerability allowed for
some limited exploitation of a server that was facing the
Internet. Then, the exploited entry point server, running a
vulnerable version of the web server software allowed access
to the attacker, which was subsequently used to gain access
to other machines that would have direct access to data.

The Equifax data breach was reported [9] to have been
a consequence of a vulnerablity in Apache Struts 2.1.2 and
before 2.3.34 [10], which allowed for arbitrary code execution.
In this attack, a decerialization flaw allows for unsanitized data
to be converted into Java objects. Using these vulnerabilities,
the attacker aims for executing code within the program’s
context, eventually leading to executing commands on the
target system. Moreover, in the 2014 Target data breach,
the attackers used island hoping, compromising and exploiting
multiple machines to reach internal Target servers [7]. Unlike
many SQL injection attacks that depend only on vulnera-
ble applications, usually through unfiltered POST or GET
requests, island hopping attacks use remote code execution
vulnerabilities to gain access to intermediate machines and
hop through the network to reach their targets.

The main ingredient of these attacks is the requirement and
ability of the attacker to quickly move across the network by
connecting to entry point and intermediate machines to find a
direct access path to a valuable target. Specifically, a successful
attack is bound to a set of conditions:

1) Hijacking normal HTTP requests from clients to inject
malicious queries without compromising the server is
not possible or will only yield limited results, making
the attack impractical.

2) The attack targets valuable data or application logic
that are not directly accessible from the entry point
machines, which face the Internet. Therefore, attacks
cannot commit in a single step.

3) The exact structure of the internal topology of the cloud-
based virtual network isn’t visible to the attacker. Thus,
the attacker has to incorporate a search strategy to
reconstruct an abstract image of the target network.

Throughout this article, we use an example cloud-based
virtual network architecture that includes a valuable tar-
get to which the attackers wish to gain direct access.
Sections II-C and II-D present the details of the problem and
the capabilities of attackers and defenders.

C. Problem Statement

Our goal is to delay the time to success of remote network
attacks motivated to compromise the source of data within
a cloud application. The attacker’s ultimate goal is either to
corrupt or query the target database. To gain access to a data-
base server, the attacker must compromise an entry point in the
cloud and propagate through the cloud. The benefit of delaying
an attacker in a confusing cloud architecture is providing a
larger response time window when an intrusion is detected.

Fig. 1. An example Web Application Hosting architecture recommended
by AWS. The architecture includes a cluster of EC2 instances (virtual
machines in AWS) hosting the application, isolating a cluster of database
machines that are only internally accessible. This example architecture has
four EC2 instances as web servers, four EC2 instances as application servers,
and a main and a replicated database server. DB-SYNC is used to synchronize
the two database instances.2

Fig. 2. A chain of steps that an attacker must take towards a target database
server, requiring two steps to reach the target database.

A long enough delay may cause enough frustration or cost
to the attacker to be sufficient to thwart the attack. Note that
providing the architectural support for delaying the attacks is
an orthogonal problem to detecting the intrusion within the
cloud and utilizing the delayed and complicated attack path
for preventing unauthorized access to the database server. It is
also orthogonal and complementary to the goal of eliminating
the vulnerabilities in the first place. The best defense would,
of course, be to remove those vulnerabilities, leaving the
attacker with no starting point for the attack. But, eliminating
vulnerabilities from complex applications remains an elusive
goal, motivating our work on mitigating their exploitation.

Figure 2 demonstrates one possible chain of steps to
compromise the database server of Figure 1. In this chain,
the attacker will compromise an EC2 instance that has an
elastic IP address, which is a public IP address service
provided by Amazon Web Services. Next, with shell access
to the compromised machine, the attacker will either use a
stored credential to connect to the next EC2 instance or use
another vulnerability to take control of the next EC2 instance.
Finally, once the attacker controls the EC2 instance with direct
access to the database, the attacker can access and manipulate
the database directly.

The architecture of Figure 1 is modeled in a graph of
firewall rules extracted from within a cloud, capturing the
connectivity structure among virtual instances. Two machines
are connected if there is a network path between the two
machines and the firewall rules allow traffic to pass through
the path. In AWS, the firewall rules are explicitly defined in

2Figures 1 and 2 are created using AWS Simple Icons:
https://aws.amazon.com/architecture/icons/
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Fig. 3. A connectivity digraph for Figure 1. Each vertex represents a machine
in Figure 1 and each edge corresponds to the connectivity of the machines.
Internet traffic (represented by vertex A and dotted lines) flows to the load
balancer u0, which forwards HTTP requests to u1, . . . , u4. u0 is a HTTP entry
point while u1, . . . , u4 are SSH entry points. Load balancers are dashed, entry
points are in blue, and target machines have double circles and are in red.
The edge labels capture the protocols used for the connection. Access to u10
is assumed to be through HTTP for the hosted application. Edges labelled as
{SS H, H T T P} indicate two services allowed to pass through.

security groups. Formally, machine connectivity is defined by
a labelled digraph.

Definition 1: A connectivity-labelled digraph, L=(V , A, �),
is a digraph where v ∈ V represents a vertex corresponding to
an instance in the cloud, A is a set of (u, v) pairs representing
directed edges from u to v in the digraph, and � : A → 2S

gives the set of possible connections in A. For some service
protocol s ∈ S, s ∈ �(u, v) means u can establish connections
to v and v accepts connections from u on s.

Figure 3 shows an example connectivity digraph G for the
cloud of Figure 1. In this digraph, machines from Figure 3
including load balancers, web servers, application servers,
and database servers are all represented by vertices. The
undirected edges represent inbound and outbound traffic (arcs)
between two vertices as set by firewall rules. These rules
correspond to the lines connecting the machines in Figure 3.
The main network traffic passes through the load balancer,
u0. However, u0 is not the only entry point in the digraph.
Vertices u1, . . . , u4 also represent entry points as they are
open to SSH traffic. System administrators open access to
these vertices because u1, . . . , u4 are virtual machines with
no physical access.

A successful attack in G is capable of compromising
one of u1, . . . , u4 and propagating through a path towards
u11 or u12 depending on the attack’s motivation. Although u0
is also an entry point, it plays no role in facilitating the attack
except for forwarding the requests to u1, . . . , u4. Similarly,
the load balancer, u5, acts as a forwarder enabling a malicious
request to travel through u6, . . . , u9.

The cloud of Figure 3 allows an attack path with only four
steps to reach the target. For example,

π = A SSH−−→ u1
SSH−−→ u6

HTTP−−−→ u10
DB-SYNC−−−−−→ u11.

Even with a significantly larger digraph, with the same archi-
tecture, the size of the shortest attack path remains unchanged,
and the more possible paths to the target, the more opportuni-
ties for the attacker. The intent of this work is to ensure there
are no short paths to reach the target available to the adversary.

D. Threat Model

We assume a trusted and uncompromised cloud computing
platform, and focus on protecting an application running on
that cloud from a sophisticated and motivated adversary who
aims to gain unauthorized access to a targeted data asset within
the cloud.

We assume a powerful attacker with the ability to compro-
mise hosts along a path (such as π in Section II-D) through the
application. Such an attacker can find an entry point machine,
perhaps by using an IP scan of a range of the hosting cloud,
and compromise that host to launch attacks on other hosts
with the goal of reaching the target. We assume other hosts
also have vulnerabilities that can be exploited by the adversary.

We assume the attacker has no control over the cloud
settings that determine the number and the types of instances,
the network structure, and global firewall rules that control
access to the virtual private cloud. An attacker who can
compromise the cloud provider or the application owner’s
configuration access is beyond the scope of this work. Since
the attacker has no control over the cloud, we assume that the
attacker’s knowledge about the connectivity structure of the
internal network in the cloud is not complete. Specifically,
the attacker does not know the number of virtual machines and
their security groups within the internal network. This infor-
mation can only be incrementally revealed by attacking the
virtual network. When the cloud is first created, the attacker
only knows that for some i , ui ∈ V is vulnerable and open to
Internet traffic, and a target instance t ∈ V , accessible from ui ,
exists.

1) Defender’s Capabilities: The defender’s goal is to create
a cloud network of virtual machines that preserves the original
functionality with minimal additional cost, while frustrating
attacks. The defender achieves this by having full control
on the cloud settings and all the virtual machines. In a
trusted cloud computing platform, only the defender can
control the security groups, providing or revoking access to
individual virtual machines. For example, in AWS the cloud
user adds or removes machines, changes access control among
the machines, and has full access to all virtual machines. The
attacker cannot tamper with virtual machine access control
rules from within a compromised virtual machine (for exam-
ple, by changing iptable rules) as the access control rules will
be firmly overridden by the cloud.

III. DESIGN OF MISERY DIGRAPHS

The strategy for delaying a remote command injection
attack is (i) to create a large network of decoy virtual machines
to confuse the attacker, and (ii) dynamically relocate and mod-
ify the decoys to waste the attacker’s resources and frustrate
the attacker. Increasing attack complexity and duration starts
with expanding an initial connectivity digraph of an existing
virtual network into one containing misery digraphs.
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TABLE I

A TABLE OF SYMBOLS USED IN DEFINITION 2

A. Defining Misery Digraphs

A misery digraph contains the original virtual network
combined with additional deceiving structure. In a misery
digraph, at each point in time, only a single path has bidi-
rectional access to the target server. As a random function
of time, uniformly selected pairs of decoy virtual machines
are replaced and switch positions within the misery digraph.
As a result, misery digraphs change the true path to the target,
disabling the attacker from learning the structure of the virtual
network.

We first define a generic misery digraph, building on our
definition of a connectivity-labelled digraph from Section II-C.
Then, we define canonical misery digraphs, which instantiate
the generic misery digraphs, and discuss the main two prop-
erties of misery digraphs, which is a periodic relocation of
machines and hiding the true path towards the target. A symbol
reference is provided in Table I.

Definition 2: Let L be a connectivity-labelled digraph with a
path π = (u1, ui1 , . . ., uim , uk+1) connecting an entry vertex
u1 to a target vertex uk+1 and containing the reverse path
π R = (uk+1, uim , . . ., ui1 , u1). π is enlarged to a path of
length k in the digraph

G =
(
{ui }k+1

i=1 ,
{
(ui , ui+1), (ui+1, ui )

}k
i=1

)

consisting of a single path p = (u1, . . ., uk+1) from the entry
vertex u1 to the target vertex uk+1, and the reverse path pR =
(uk+1, . . ., u1). A misery digraph, G∗, for π contains G as a
subdigraph, exactly b paths q( j ) = (

u1, v
( j )
2 , . . ., v

( j )
k

)
, j = 1,

. . ., b, of maximal length k−1, as well as the arcs
(
uk+1, v

( j )
k

)
and reverse paths

(
q( j )

)R , j = 1, . . ., b. The paths q( j ), j = 1,

. . ., b, mirror p in that id u� = id v
( j )
� (in degrees) for � = 2,

. . ., k and od u� = od v
( j )
� (out degrees) for � = 2, . . ., k− 1.

Note that G∗ has depth k, some of the v
( j )
� may equal u�,

and G∗ can be constructed in many different ways.
Two example misery digraphs are created for the virtual

network in Figure 1 and depicted in Figure 4. The connectivity
digraph of Figure 3 can have multiple misery digraphs, one
for each path to target, which can be constructed in various
ways. In this scenario, two original paths to u10 (through
SSH and HTTP) are replicated in completely redundant paths.
The example shown in Figure 4 captures one possible format
of misery digraphs created for a path that uses the SSH
service (Figure 4-A) and a similar path that uses the HTTP
service (Figure 4-B). In both misery digraphs A and B, only
u15 sends outbound requests to u10. There are three other
alternative misery digraphs with a different vertex that has
direct SSH or HTTP access to u10.

Fig. 4. Two misery digraphs with extra paths and vertices to confuse the
attacker about the true path to the target u10. The misery digraph A is for SSH
and the misery digraph B is for HTTP. To prevent side-channel information,
all requests from the entry point are multicast to all paths. Misery digraphs
A and B change in time by changing the vertex that has an outgoing arc
towards u10.

B. Canonical Misery Digraphs

Misery digraphs can take many forms and produce strategies
with various implications. Our goal is to find designs that
maximize the cost for the attacker relative to the additional
cost for the application owner. These requirements drive our
strategy:

1) A misery digraph should not include vertical shortcuts.
That is, a misery digraph should not include arcs that
lead to pruning entire subgraphs.

2) A misery digraph cannot connect the target server to
more than one vertex in the entire digraph. Violating
this requirement will make the misery digraph easier to
traverse.

3) Target servers (known to the cloud user) should be
pushed to the deepest layer in the graph, making them
only accessible by paths of at least length k.

Minimally fulfilling the requirements above are canonical
misery digraphs:

Definition 3: The canonical misery digraph, G̃∗, is a layered
digraph with d + 1 layers. Layer 1 contains only the entry
point a, layer d + 1 contains only the target point t , and
the underlying undirected graph of layers 1, 2, . . ., d is a
complete balanced k-ary tree rooted at a, with each edge {r, s}
corresponding to arcs (r, s) and (s, r) in G̃∗. For each leaf
node w in this k-ary tree (each node w at level d) there is an
arc (t, w) in G̃∗, and exactly one arc (w, t) from level d to t
in G̃∗.

Canonical misery digraphs contain k-ary trees that are bal-
anced and complete, giving the attacker no clue for preferring
one path over another. As the attacker traverses the graph,
the structure of the digraph only reveals alternative paths that
all appear equivalent to the attacker. Since the target is also
moving, between two points in time the true path towards
the target changes, making some of the attacker’s discoveries
obsolete.

C. Relocating the Decoys

Definition 2 defines the structure of misery digraphs, which
provides a platform for deceiving intruders. For an increased
deception in misery digraph, two mechanisms are introduced.
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First, misery digraphs change in time, moving the true path to
target and resetting decoy machines using a random process.
Second, misery digraphs hide the true path to target by
replicating the traffic towards it. In the remainder of this
section, we first present the relocation process for misery
digraphs. In Section III-D, we present a method for hiding
the true path to target.

Relocating machines in the network involves a random
relocation process, which interchanges two pairs of vertices
within a single layer in a misery digraph. As a random function
of time, the current active arc among

{(
uk, uk+1

)
,
(
v

(1)
k , uk+1

)
, . . . ,

(
v

(b)
k , uk+1

)}

is interchanged for a different arc to the target vertex uk+1.
This ensures that access to the target machine is not static and
changes in time. For random 1 ≤ i < j ≤ b and 2 ≤ m < k
the pair of arcs

(
v

(i)
m , v

(i)
m+1

)
,
(
v

( j )
m , v

( j )
m+1

)
is replaced by the

pair
(
v

(i)
m , v

( j )
m+1

)
,

(
v

( j )
m , v

(i)
m+1

)
, which randomizes G∗. The

randomness ensures that at each point in time two entire paths
in the digraph are modified by replacing the chosen machines
with new virtual machine images and switching their positions
in the digraph. Even if the attacker had already compromised a
large portion of the selected paths, the attacker’s effort is lost.

For example, misery digraphs A and B of Figure 4 change
in time to create a moving target. Randomly chosen pairs of
edges must be relocated as a function of time, dynamically
modifying the paths to target, and refreshing the corresponding
decoy virtual machines. (u6, u14) may be chosen to switch
with (u12, u15), resulting in a lost attack effort, if the attacker
had chosen a path containing any of the four nodes.

In a real cloud-based virtual network, relocating the decoys
takes place by modifying the cloud’s firewall rules that define
the accessibility of machines. For example, in Amazon Web
Services, a security group of machines defines firewall rules
and controls the network reachability of member machines
based on the protocol and the port number. As discussed
later in Section VI-B, by dynamically modifying security
groups, machines can change location in the misery digraphs.
Also, another requirement of the relocation process is to reset
machines that were relocated. Machines are shutdown using
remote APIs available to the cloud owner, and are replaced
with new machines using a diversified system configuration
(for example, running a different operating system).

D. Hiding the Path to Target

The effectiveness of misery digraphs depends on the
attacker not being able to distinguish correct guesses for the
next host from incorrect ones. To maintain an exponential
advantage over the attacker, it is important that the attacker
has no way to determine if the attack is on the right path until
that path has been followed all the way to the target.

The attacker is assumed to have full access to each com-
promised host, so can fully observe (and alter) that machine’s
behavior and the flow of requests. Hence, it is important
that the attacker who has fully compromised a node at one
layer, can only determine which nodes at the next layer are
connected to the compromised node, without learning if the

compromised node is on the real path. To resolve this potential
problem, at each layer of the misery digraph a user’s request
is multicast to all nodes in the successive layer. That is, each
decoy forwards the requests to all others it is connected to in
the following layer. On the way back from the target server,
all data responses must also be sent back along all paths
connected to the target server. For example, in Figure 4 only
the arc (u15,u10) carries actual HTTP requests to the target
vertex u10, but the decoy nodes all send the same requests.
Decoys must be indistinguishable from path nodes, so need
to fully duplicate all the computation and communication that
would be done on the actual path.

We assume that all request traffic go along a path from
the entry points to the target virtual machine from which the
responses are sent back. Internal decoy virtual machines only
generate responses to requests from the previous layer. Decoys
do not modify the responses and do not maintain internal
states. Also, it is assumed that the application does not require
maintaining internal states throughout the network.

E. Handling Fault Tolerance

Major cloud providers include load balancer services and
recommend architectures that use replicas of web, applica-
tion, or database servers. Misery digraphs are designed to
integrate with load balancers as demanded by the architecture.

As shown in Figure 3, the load balancer u0 induces four
main paths to the target u10, which are further split into
16 paths as the four paths pass through the second load
balancer u5. According to Definition 2, each of the 16 paths
to the target requires a separate misery digraph, which can be
expensive to implement. Optimizing misery digraph generation
for paths that include load balancers involves the design of a
load balancer system and splitting the connectivity digraph
paths that involve load balancers.

First, the requirement for load balancers to function in a
misery digraph is to balance the request traffic towards the
least occupied successor machine, and multicast the response
traffic back to all predecessor machines. For example, u5
in Figure 3 must send the request to the least occupied machine
in {u6, . . . , u9}, and multicast the response to all machines in
{u1, . . . , u4}.

Second, since load balancers create overlapping paths
towards the target server (as they must connect to multiple
machines for fault tolerance), misery digraph redundancy is
avoided by splitting paths at load balancers into subpaths.
A load balancer is treated as a target for the incoming subpath,
and as the predecessor to a machine that is treated as the entry
point to an outgoing subpath. With this splitting technique,
misery digraphs provide redundancies to frustrate attackers for
each subpath without duplication from overlapping paths. The
example depicted in Figure 5 demonstrates splitting of a path
starting at the user A and ending at the target database u10,
passing through the load balancers u0 and u5. The subpath
(A, u0) is unchanged, and one misery digraph appears before
u5 and a second appears after u5. The requests will only travel
through one subtree of u5 (only one shown in Figure 5) while
responses are multicast back to all the vertices connected to
u5 in the layer above it.
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Fig. 5. Two misery digraphs are created for the HTTP path (A, u0, u1, u5,
u6, u10) for the connectivity digraph of Figure 3.

Load balancers are either part of the cloud provider or could
be implemented as virtual machines. We do not assume that
attackers cannot compromise load balancers. A compromised
load balancer does not provide useful information to attackers.

IV. CONSTRUCTION OF MISERY DIGRAPHS

As defined in Section III, misery digraphs enlarge individual
attack paths of a connectivity digraph that connects entry
points to the target. A practical solution must combine misery
digraphs into a new connectivity digraph (hereafter referred
to as the final connectivity digraph) that can be deployed in
the cloud, by first constructing an initial connectivity digraph
given a cloud’s firewall and network connection rules, and
then generating misery digraphs that contain k-ary trees with
d + 1 layers.

Assume that the connectivity digraph for an application only
contains the necessary arcs for ensuring delivery of application
requests and responses. At a high level, the construction of the
final connectivity digraph for an initial connectivity-labelled
digraph G involves:

1) generating a set � containing simple connectivity-
labelled digraphs Gs for each service s,

2) computing a set P of subpaths of all paths connecting
the entry vertex to a target vertex in G,

3) converting each p ∈ P to a misery digraph, and
4) combining all the misery digraphs in a final connectivity

digraph.
Next, we present the algorithms for executing the steps

above and develop a cost analysis as a metric for establishing
a baseline to evaluate the economic impact of using misery
digraphs in a cloud.

A. Constructing the Initial Graphs

The first step is to construct the initial connectivity-labelled
digraph, G, from the application’s architecture. We start by
preparing a stack of machine IP addresses M and a set
of firewall inbound and outbound rules R as (m1, m2, s)
indicating that the machine with IP address m1 can access the
machine with IP address m2 on protocol s. This information
is available from the cloud’s console in platforms such as

Algorithm 1 Split a Connectivity Digraph G = (V , A, �)

1: for each s ∈ S do
2: Set As ← ∅, �s ← ∅
3: for each u ∈ V do
4: for each v �= u ∈ V do
5: if (u, v) ∈ A and s ∈ �(u, v) then
6: As ← As ∪ {(u, v)}
7: �s ← �s ∪ {((u, v), {s})}
8: end if
9: end for

10: end for
11: �← � ∪ {(V , As, �s)}
12: end for
13: return �

Amazon Web Services and Google Cloud Platform. Once the
rules are gathered from the cloud’s console, we construct a
connectivity-labelled digraph G by assigning a vertex to every
m ∈ M and adding a labelled arc (ui , v j , Li j ) where

Li j =
⋃

(ui ,v j ,s)∈R

{s}.

There will likely be labels involving multiple services.
To increase the efficiency of misery digraph construction, we
split the cloud’s connectivity digraph G into simple connec-
tivity digraphs in which every label �(u, v) is the same single
service {s}. Algorithm 1 splits a connectivity-labelled digraph
G into a set of simple connectivity-labelled digraphs, �. Each
Gs ∈ � is defined for a service s ∈ S, where S is the set of
all services appearing in G = (V , A, �).

B. Computing Paths to Target

The next step finds the paths for constructing misery
digraphs. Recall that a misery digraph replaces a single path
from an entry point to a target (Definition 2). Assuming the
digraphs, Gs ∈ �, do not include unnecessary arcs and are
not complete, finding all paths from each entry point to each
target machine can be done efficiently using repeated calls to
Dijkstra’s shortest path algorithm.

Algorithm 2 examines the vertices in each Gs to decide
if a vertex is an entry point, which heads a subset of paths
to the target. The function nextpath(Gs, u, v) finds the next
unique shortest path from u to v in Gs . In practice, entry
point vertices can be stored in a list that includes all vertices
that allow inbound access on an elastic IP address (accessible
from outside the cloud) on the service s for which the simple
connectivity digraph Gs is constructed.

Let Ls ⊆ Vs be the set of load balancer vertices in As ,
Os ⊆ Vs denote the set of all entry point vertices in As ,
and Ts ⊆ Vs denote the set of all target vertices in As .

The output of Algorithm 2 is the input to the final construc-
tion, which converts every (sub)path in P to a misery digraph
containing a canonical misery digraph. The union of the result-
ing misery digraphs will form the final connectivity digraph
that can replace the original cloud connectivity digraph G.
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Algorithm 2 Find All Paths and Subpaths Between Entry
Points, Load Balancers, and Targets in Each Gs =
(Vs, As , �s) ∈ �

1: Set P ← ∅
2: for each Gs ∈ � do
3: for u ∈ Os (entry point vertices) do
4: for each v ∈ Ts (target vertices) do
5: loop
6: p← nextpath(Gs,u,v)
7: if p = ∅ then
8: Break
9: end if

10: if p contains b1, . . ., b j ∈ Ls then
11: split p at b1, . . ., b j into j + 1 subpaths (as

described in III.C): p1, p2, . . ., p j+1
12: P ← P ∪ {p1, . . . , p j+1}
13: else
14: P ← P ∪ {p}
15: end if
16: end loop
17: end for
18: end for
19: end for
20: return P

C. Constructing the Final Connectivity Digraph

The final construction takes each path p ∈ P (an original
path from an entry point to a target in the connectivity digraph
G or a subpath from the splitting in Algorithm 2) and replaces
it with a misery digraph. Before the replacement, we expand
all paths to be at least the minimum path length d ≥ min

p∈P
|p|,

where |p| denotes the length of path p. We choose the fanout
k ≥ 2 of the canonical misery digraphs. Thus, this construction
replaces every path in P with a misery digraph containing a
canonical misery digraph of d + 1 layers and fanout k.

The enlargement requires at most max{0, d − |p|} new
vertices, and the canonical misery digraph requires another
(kd − 1)/(k − 1) − d new vertices. The final result, after
processing each p ∈ P and taking the union of all these
misery digraphs, is the misery digraph G∗ for the original
connectivity digraph G.

D. Additional Cost of Misery Digraphs

To evaluate the feasibility of misery digraphs as a defense,
we need to understand the costs required by the defender
relative to the increase in adversary cost. The main cost for
the defense is the need for the decoy virtual machines, which
must appear indistinguishable from the real hosts to intruders.
We analyze the extra cost in terms of the increase in the hourly
rate for the entire cloud-based network as a result of applying
misery digraphs.

The cost of a cloud is modeled as a summation of the cost
of all services used to operate the cloud. Let si be a service in
the cloud, including virtual machines, load balancers, storage
instances, or database instances. For M services, the total

hourly cost of a cloud is:

M∑
i=1

h(si )+ n(si )+ d(si ),

where h is the direct cost of the service (e.g., hourly rent of
a virtual machine), n is the networking cost of the service
(e.g., hourly traffic usage of the service), and d is the identity
cost of the service (e.g., reserved IP addresses for facing the
Internet).

With the current technology in major cloud providers (AWS
and Google Cloud Platform), a misery digraph only increases
the hourly direct cost of the cloud by

M+N∑
i=M+1

h(si ),

where N is the number of added decoy vertices in the misery
digraph. The network n(si ) and identity costs d(si ) are zero
for all decoy vertices as they only use internal networking
without Internet traffic charges or the cost of reserving public
IP addresses.

Note that the choice of decoy virtual machines must be
relative to the choice of machines in the original cloud. For
example, when the original cloud runs virtual machines of
medium capability (two cores and 4GB of memory), decoy
servers in each path to target should have at least two cores
and 4GB of memory. This is to avoid saturating the decoy
virtual machines with a high number of requests received from
more capable virtual machines in the network.

When using misery digraphs, the number of requests and
responses in the network do increase (and must, as necessary
for eliminating side-channel attacks). Thus, the original virtual
machines and the decoy machines require extra networking
capabilities. For example, for every request in an original
path p to the target, a user’s request is represented once at
the application layer. When using a misery digraph, the same
request is multicast to all subsequent branches, and thus
generates multiple responses (to hide the actual path). When
implementing the multicasting service, each vertex will only
wait for a single response and discard the rest. While this
operation consumes extra bandwidth, since the networking is
internal (within one data center), the extra cost is zero.

Finally, the total increased cost of a cloud with a mis-
ery digraph depends on the expansion parameters used for
each canonical misery digraph. For each attack (sub)path p,
the number of extra vertices is

e(p) = max{0, d − |p|} + kd − 1

k − 1
− d (1)

and the total extra cost is proportional to
∑
p∈P

e(p). (2)

Note that misery digraphs consider only unique paths from
entry points to the target machines. Thus, clearly, paths with
overlapping vertices will not require additional decoy vertices.
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V. SECURITY ANALYSIS

Including a canonical misery digraph in every subpath
guarantees that every path connecting an entry point vertex
to a target machine vertex has length at least d vertices and
a misery fanout of at least kd−1. The enlarged connectivity
digraph will add complexity and time to an attack targeting
a server that is required to be accessible only by a leaf of a
k-ary tree in a misery digraph.

Recall that the attacker’s goal is to compromise the database
server by finding vulnerabilities in vertices along paths to a
target. In a cloud that contains misery digraphs, assuming
the attacker has no prior knowledge about the structure of
the cloud, an attacker is likely to either attack the network
by performing a depth-first attack or a breadth-first attack,
because reaching the target server requires finding a path
through which the intrusion can proceed. This section analyzes
both attack strategies and estimates the delay incurred as a
result of misery digraphs. Section V-D describes some attacks
which are not mitigated by our approach.

A. Resilience Against Reconnaissance Attempts

Reconnaissance attacks including DNS and IP scanning,
operating system fingerprinting, examination of the cloud
computing provider, and exploring the internal network archi-
tecture of a cloud are effective ways for attackers to launch
informed attacks. When an intruder gains access to the cloud’s
entry point, launching an effective attack on the next layer of
decoy machines includes two major steps.

1) Collecting System Details: The attacker collects tech-
nical systems-level visible details of the machines accessible
from the entry points. The knowledge of the hosting cloud
computing provider is necessary to predict the range of
regional elastic IP addresses. Elastic IP addresses can identify
decoy machines in misery digraphs but are not static. Periodic
switching of attack paths (Section III-C) imposes a shuffling
of these addresses, which is shown to be an effective general
moving target strategy [15]. Further, the attacker is assumed
to collect operating system signatures and configurations. The
attacker sniffs the traffic when a node is compromised to view
the flow of traffic, provided enough privileges are gained.

Reconnaissance information collected from details are nec-
essary for the attacker to proceed. This information does not
undermine the security provided by misery digraphs. This is
because misery digraphs provide an architectural solution that
does not rely on the specific functionality of machines. Further,
misery digraphs allow for the probability that decoy machines
are exploited by attackers. At each time period, when a
switching occurs, any reconnaissance information or exploited
machines on the switched machines are rendered obsolete.

2) Reconstructing the Network Architecture View: Once
gained access to an entry point machine, the attacker attempts
to construct an architectural view of the internal virtual cloud-
based network. This search is itself a reconnaissance activity
in which the attacker must use a graph search strategy to find
the moving target.

Misery digraphs, as specified in Section III, are designed
to provide identical paths towards any destination. This is to

prevent attackers from pruning tree branches within a misery
digraph’s k-ary tree, thus, gaining a shortcut towards the target.
The identical paths are provided using three critical design
decisions:

1) The initial structure of misery digraphs provides equal
numbers of vertices accessible from any vertex. No path
in the digraph is distinctly identifiable in terms of its
proximity to the target.

2) The network traffic maintained by misery digraphs also
follows an identical distribution of requests. That is, each
decoy forwards the requests to all successive machines
without prioritizing or neglecting any machine. Simi-
larly all responses are forwarded back up to the parent
vertices.

3) Connections from any vertex ui to any other vertex u j

cannot occurs unless ui is a direct parent of u j . Accord-
ingly, no vertex ui shall establish connections to a
vertex u j if ui is more than one layer away. As this
property is enforced by the rules set using the cloud
computing provider, it ensures that attackers cannot
construct shortcuts towards the target.

In Section V-B, two attack strategies are described for
conducting an effective search against misery digraphs. Later
in Section V-C, the probability of success for reaching a
particular vertex is assessed, and finally in Section VI-A.1,
a simulation evaluates the overall security of misery digraphs
against these strategies.

B. Attack Strategies

We first examine the available attack strategies, which
provide the basis for a probabilistic analysis of attack suc-
cess. These strategies are designed to search the structure
of misery digraphs and outpace the moving target defense
provided by the cloud. A depth-first attack (DFA), inspired by
depth of stack routing [12], uses a depth-first search strategy
to construct a single path towards a target starting with a
vulnerable entry point. Next, the attacker is faced with a choice
of machines to (i) test for vulnerabilities and (ii) craft an
attack. To continue with a pure DFA, the attacker repeats the
previous step by choosing one of the available IP addresses
to attack. These repeated “compromise and choose” steps will
continue until the attacker reaches a vertex that has an arc
towards the target database. A key guarantee of clouds made
with misery digraphs is that by examining the structure of the
cloud, the attacker will not be able to make intelligent guesses
about the next vertex to exploit.

A better approach is a breadth-first attack (BFA), inspired
by breadth-first search algorithms for network routing (such
as [2]), using which the attacker performs a breadth-first search
to construct a path towards a target starting from a vulnerable
entry point. Assuming the attacker has a set of IP addresses
to invade next, the strategy in BFA will involve a per layer
attack of all vertices in the graph until a leaf is found that
has a direct arc to the target (which provides access to the
target server). A BFA systematically explores the IP ranges
available to the attacker. As misery digraphs contain k-ary
tree structures, the available IP addresses will only enable a
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layered attack. In a breadth-first attack, the attacker searches
for an attack path by discovering the entire structure of the
misery digraph.

C. Swiching Probability

Consider a trivial connectivity digraph with one entry point
and one target, replaced by a canonical misery digraph with
(kd − 1)/(k − 1) vertices and n = (kd − 1)/(k − 1) − 1
edges in the embedded k-ary tree. This probability analysis
considers a breadth-first attack that randomly chooses a vertex
to compromise at each level.

We analyze the probability that a breadth-first attack to
reaches level d (one step from the target) in a cloud with a
randomized misery digraph. Let D (delay) be the time required
to compromise a vertex, and r the period at which two random
pairs of arcs at the same (random) level are interchanged
(Definition 2). After each time period, we assume the vertices
at the heads and tails of these arcs are reset to uncompromised
states (which the attacker must compromise again).

For the time interval D after an edge switch, the probability
that a given edge {u, v} is not switched is

(
n − 1

n

)�D/r

, (3)

and the probability of not switching m distinct given edges
(required to maintain a path containing those m edges for
time D, so as to continue the attack from the last vertex in
that path) is

(
n − m

n

)�D/r

. (4)

For example, with a delay D = 0.5, an edge switch period
r = 0.01 (relative to some time unit), a misery digraph with
k = 2 and d = 5 (n = 30), and a target compromising path of
length m = 4, the probability of success would be 0.00078.
If D = 1.0, that probability drops to 6 · 10−7. The expected
delay is roughly the reciprocal of this probability times D.
Furthermore, note that even if the attacker is successful in
reaching the target, access to the target is fleeting as it is only
a matter of time before a path edge required by the attacker
is switched and the machines on the two end points are reset
(disrupting the attack and requiring repeated effort from the
attacker).

The edge switch mechanism combined with the confound-
ing architecture of the misery cloud significantly lowers the
probability of reaching a vertex with direct access to the target.
As a result, attacks are delayed depending on the ratio D/r ,
and by the misery digraph itself even without the random-
ization. In practice, the edge switch can be implemented in
seconds, as fast as sending a request to the cloud provider and
initiating a machine reset, thereby eliminating an entire path
constructed by the attacker.

D. Limitations

The goal of misery digraphs is to significantly delay an
attack when the attacker’s purpose is mainly to gain access to
a database server in a cloud. Misery digraphs by themselves do

not directly mitigate other types of attacks, but are generally
complementary with defenses for other attacks.

1) SQL Injection: Misery digraphs do not target attacks
that can only succeed using SQL injections into vulnerable
applications. Such attacks do not rely on the structure of
the network and cannot be defended against solely using an
architectural solution like misery digraphs. However, misery
digraphs can potentially couple with a parallel strategy that
introduces diversity in various layers of the digraph. For
example, if a vulnerable server in the entry point allows for a
wide data query such as SELECT * FROM t, a diversified
server in the next layer of the digraph can detect this. Thus,
introducing diversity at each layer of the misery digraph can
be a solution for attacks that succeed with simple requests.

2) Denial of Service: An attacker compromising a machine
at any layer of the misery digraph may attempt denial
of service by modifying the application, stopping the ser-
vices, or similar approaches. Misery digraphs do not provide
a solution for denial of service attacks, which have been
heavily studied in the literature (Section VII). Because of the
additional network traffic caused by multicasting between the
layers, misery digraphs may even provide attackers with some
additional opportunities for denial of service attacks.

3) Compromised Cloud: Misery digraphs depend on the
integrity of the cloud. If the credentials for a cloud console
are stolen, all security measures can be subverted. A misery
digraph premise is that vertices will be compromised, but
doing so takes significant time for each vertex along a path.
Thus cloud users should avoid sharing credentials among
machines.

VI. EVALUATION

This section aims to examine the effectiveness and prac-
ticality of misery digraphs. We first present an extensive
simulation of the breadth-first attack against a changing misery
digraph, showing that an estimated high delay in the attack.
Then, we present a discussion on a prototype AWS misery
digraph and the needed configuration. We implemented misery
digraphs and the switching mechanism (Section III-C) using
AWS Developer tools.3 Finally, we demonstrate a concrete
cost analysis based on running our prototype AWS misery
digraph for a complete billing cycle.

The example network used in this section is based on
a simplified network, having a web server and a database
server. The network is then expanded using the construction
algorithms in Section IV to create a misery digraph network.

A. Measuring the Attack Success

Definition 2 requires that misery digraphs change over time.
For example, in the misery digraph of Figure 6, as a function of
time, the (underlying graph) edge {u4, u10} is randomly chosen
(using the cloud provider’s tools) to switch with {u6, u13},
while the machines on both ends of each edge are reset and
replaced with newly created machines on the fly. Given a
misery digraph G, at any time, the attacker cannot guarantee

3https://aws.amazon.com/tools/
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Fig. 6. A misery digraph with k = 2 and d = 5 used for simulating and
measuring attack success.

that the observed structure of G remains intact. Even if the
attacker manages to predict the structure of G by discovering
the first few levels, as the edges are switched, the attacker’s
understanding of the misery digraph is soon obsolete. The edge
switching mechanism modifies the path to the target, resulting
in a loss of effort for an attack on the modified path.

1) Attacker’s Success in Outpacing the Defense: To mea-
sure the expected delay caused by misery digraphs we imple-
mented a discrete event simulation of an attack on a simple
cloud architecture. The attack simulation’s goal is to estimate
the attack success metric, the number of hosts that must be
compromised (or re-compromised) before an attack succeeds.

Simulation results are in two parts. The first part imple-
ments the attack strategies of Section V-B. The second part
incorporates a branch pruning oracle, allowing the attacker
to occasionally gain insider information indicating that the
current path does not lead to the target.

a) Attacking without pruning: The simulation uses the
misery digraph of Figure 6. A client attacker starts with
vertex 0, which is assumed to be exploitable. The attacker
builds a current understanding of the misery digraph G A,
which initially has V = {A}. The cloud is modeled as a server
and has the initial misery digraph G, and also modifies G
every r units of time. The attacker spends a constant D units
of time to compromise a vertex. When the attack starts, after
spending time D, the attacker sends the path (A, 0) to the
cloud, indicating that 0 is compromised. To prove that the
attacker has compromised the current 0 (before 0 is reset
and replaced by a new machine), the cloud also requires the
attacker to send 0’s key. The cloud verifies the key and the path
and responds with the vertices in the next layer of the misery
digraph, that is, {1, 2} along with their keys.

This interaction continues between the cloud and the
attacker until time r has elapsed and a change occurs in
the misery digraph, which modifies a pair of edges and the
machines on their ends. After the change to the digraph, if the
attacker sends the cloud a path that was modified, the cloud
detects this modification by either failing to verify a key or the
path itself, responding to the attacker with an empty list. When
the attacker receives an empty list, the attacker knows that G A

is no longer consistent with G and tries another vertex that
was observed before. When all the observed vertices are tried
without success, the attacker restarts at vertex 0.

The simulation was executed with parameters (D = 0.1,
r = 0.05) and (D = 0.2, r = 0.05). Each experiment is
repeated 1000 times, each time executing a complete cycle

Fig. 7. Histogram of simulation results in which (a) the cloud is about
twice faster than the attacker, and (b) the cloud is about four times faster
than the attacker. The x-axis shows the attack success metric, the number
of vertices the attacker tried until reaching the target. The y-axis shows the
sample probability of the attack success metric.

of attack reaching the target. Although system configurations
may prohibit actual repeated attacks, we did not implement
this prohibition to test the strength of misery digraphs.

With D = 0.1, as the histograms of Figure 7 show, there is
a 0.41 probability that the attack requires at least 1000 vertices
before it reaches the target. In this case, during the 1000 iter-
ations, the attack succeeded only four times with ten or fewer
vertices. With D = 0.2, there is a 0.912 probability that
the attack requires at least 1000 vertices to reach the target.
The observed minimum number of attack steps increases from
seven to twelve, with only a single time in 1000 iterations in
which the attack succeeded with 20 or fewer steps.

The conclusion from the simulation results is that given a
reasonably fast cloud modification procedure, the attack can
take thousands of steps in a digraph where the actual shortest
path to target consists of only five steps. Even a breadth
first attack with a brute force strategy would only require
30 steps; however, with the misery digraph’s structure and
switching mechanism, these minimums are highly unlikely
to occur.

b) Attacking with pruning: One might wonder if the
attacker could use an oracle, which represents some leakage
of the exploited machines, to decide if the current path will
not lead to the actual target.
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B. Are Misery Digraphs Practical?

To test whether current technology permits creation of
misery digraphs, we developed a tool that can connect
to an Amazon Web Services cloud, download machine,
connectivity, and firewall information, and create a con-
nectivity digraph. The tool can transform an applica-
tions’s connectivity digraph to a misery digraph. We have
released the code under an open source license, available at
https://github.com/kussl/mdg. This section empir-
ically evaluates our misery digraph approach with respect to
Amazon Web Services (AWS) using our tool.

AWS provides elastic virtual machines, IP addresses, virtual
private clouds, customized routing rules, software-based fire-
walls, and load balancers, which all can help in building an
application architecture that includes misery digraphs. AWS
was used to create a cloud misery digraph with parameters
k = 2 and d = 3, hosting a web application that queries a
database and provides summary data.

The prototype misery digraph is created using basic AWS
tools, mimicking a simplified web application architecture
similar to the one in Figure 1. One EC2 instance (an AWS
virtual machine), N1, is responsible for receiving requests
from the Internet, and so is created with a subnet with an
Internet gateway. In AWS, machines join security groups and
the firewall rules can be configured for services provided by
the machines in the group. Host N1 is in a single group
that has the inbound HTTP rule allowing traffic from all
IP addresses. As an externally-facing host, N1 does not include
any credentials for the database. Instead, it will forward
all database requests to the following layer containing two
EC2 instances, N2 and N3. The EC2 instances N2 and N3
each include an Apache server and are only responsible for
receiving and forwarding HTTP requests. These nodes are in
a security group that allows inbound HTTP and SSH traffic
only from N1. The hosts are configured so N2 forwards all
requests to N4 and N5 while N3 forwards all requests to
N6 and N7. Similar to the first internal layer (N2 and N3),
N4 and N5 are in a security group that only allows inbound
HTTP and SSH traffic from N2 while N6 and N7 are in
a security group that only allows inbound HTTP and SSH
traffic from N3. The reverse of all of the above traffic is
allowed, but no traffic is allowed between N1 and N7. Only
one of the four second-layer nodes (say N4 for this example)
actually forwards its requests to N8, the target node. When
N8 receives an HTTP request it processes it with a local
MySQL database. Regardless of which second-layer node
sent the request, N8 broadcasts the response on HTTP to all
the second-layer nodes (N4–N7). N8 allows inbound HTTP
and SSH traffic only with N4, and outbound HTTP traffic
to N4–N7. The outbound rules for all machines are limited to
only the necessary destinations.

1) Relocating Decoys in Misery Digraphs: As required
by Definition 2 (in Section III-A), the incoming connec-
tion to the target machine (N8 in the implemented cloud)
should be continuously interchanged between the final internal
layer machines N4–N7. This randomness requirement can
be implemented in AWS by dynamically modifying firewall

security groups. That is, a single security group, which will
have exactly one machine as a member at any time, can have
access to N8. Each time period (whose length is determined by
a time parameter set by the user and can be randomized), this
security group is reset to contain one of the four machines
N4–N7, chosen randomly. The other misery digraph arc
switching described in Definition 2 was not implemented.

Another requirement is to reset the two machines at the
heads and tails of a randomly chosen pair of arcs between two
nodes within the underlying k-ary tree of a canonical misery
digraph. To implement this we create a large set of configured
machine images to choose from. To reset two machines,
a cron task randomly chooses one of the machine images and
launches two new instances using the AWS command line tool,
run_instances. When the two instances are started, they are
assigned to the security groups of the two old instances to be
replaced (each pair of old and new instances will be matched).
Finally, a call to delete_instances given the identifier for the
two old instances terminates the old instances.

2) Accommodating Existing Applications: Existing applica-
tions can be deployed to use misery digraphs with minimal
changes. Applications can continue to issue database requests
to a mediating proxy machine that appears to the applica-
tion server as the database server. The proxy machine will
perform the broadcasting to the underlying misery digraph
and forward the responses back to the application server. The
proxy machine implements a simple proxy server, for exam-
ple, Apache’s mod_proxy. Using a proxy machine, drastic
changes to the application are avoided. On the database server
side, no changes will be necessary as the database server will
continue to serve the requests coming from a leaf node (node
in layer d) of a canonical misery digraph.

3) A Concrete Cost Analysis: The additional cost of misery
digraphs is due to the use of decoy vertices, added to the
network, which are realized as AWS EC2 instances. Misery
digraphs incur no additional network charges since all the
additional network traffic is within the internal network of
the cloud. Consider network of five hosts with two entry
points, two application servers, and a target. The connectivity
digraph for the considered example cloud in Figure 8-a has
two distinct paths and the digraph in Figure 8-b has four
paths with overlapping vertices. Note that, misery digraphs
are only created for distinct paths. That is, for both networks
in Figure 8-a and 8-b an identical misery digraph will
be created. This is because the overlapping paths (1, 4, 5)
and (2, 4, 5) in Figure 8-b will share decoy vertices.

The original network of Figure 8 costs $47.5 for a single
billing cycle of 30 days ($9.5 per machine4). We analyze
the expected cost for replacing each path in the network of
Figure 8, in Table II. In this table, we use a number of misery
digraph parameters (first and second columns) to compute the
extra vertices and cost (third and fourth columns) of each of
the two misery digraphs needed for the example network. The
extra vertices and cost are computed according to the formulas
of Section IV-D. The fifth column shows the increase ratio with
respect to the original cost of $47.5. The last two columns

4https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances/
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Fig. 8. Example networks with more than a single path each.

TABLE II

EXTRA VERTICES AND COST ARE COMPUTED USING EQUATION 2. THE
INCREASE RATIO IS RELATIVE TO THE BASE COST OF $47.5 FOR THE

ORIGINAL NETWORK BEFORE CONVERTING IT TO A NETWORK OF

MISERY DIGRAPHS. THE VALUES OF P ARE COMPUTED BASED

ON EQUATION 4, REFERRING TO THE PROBABILITY THAT A
SEQUENCE OF PATHS IS not SWITCHED DURING r UNITS

OF TIME. THE VALUES OF Q ARE COMPUTED BASED

ON THE SIMULATION OF SECTION VI-A.1, INDI-
CATING THE PROBABILITY THAT THE ATTACK

REQUIRES 500 OR MORE STEPS TO REACH

THE TARGET WITHIN A NETWORK OF

FIVE ORIGINAL MACHINES

provide the probability that a sequence of m edges are not
switched during r units of time, denoted P , and the probability
that the attacker requires 500 or more compromises to reach
the target, computed using the simulation of Section VI-A.1.

From the results of Table II, we present two conclusions.
First, although misery digraphs can be costly, one does not
need a large misery digraph for effectively confusing the
attacker. As the simulation results demonstrate, with only
seven extra vertices (per misery digraph), there is a 54%
probability that the attacker needs to compromise or re-
compromise 500 or more vertices before reaching the target.
Second, the results of the first and the second rows of the table
show that the choice of parameters can incur extra charges
without improved results. In the first row where k = d = 3,
there is an increased probability that a vertex is not switched,
compared to when k = 2 and d = 3. However, as the misery
digraph does not become long enough, the attacker can be
more successful. A systematic formulation of cost versus the
size of misery digraphs can assist system administrators to
optimize their choices, which will be left for a future work.

VII. PRIOR WORK

Misery digraphs establish a deceiving architecture in a
virtual network that also actively uses a moving target strategy
to distract powerful intrusions within the network. Prior work
in the design of network overlays and in moving target
defense has inspired and is closely related to the present
work. However, no prior work has explicitly aimed to trap
cloud intruders by delaying and complicating remote attacks.

Misery digraphs do not require secret entities, do not perform
traffic filtration, and address attacks beyond distributed denial
of service. In this section we examine network overlays,
a number of closely related moving target defense strategies
and theoretical frameworks, and embark on approaches that
have used decoys in other settings.

A. Network Overlay and Deception

In a secure network overlay [25], the target node only com-
municates with verified sources. After verifying the source,
a secret subset of nodes forward the verified traffic to the
target. Secure Overlay Services (SOS) [18] and WebSOS [23]
are classical approaches that use network overlays to defend a
target against DDoS attacks. SOS is a deceiving architecture
based on source filtration. WebSOS implements SOS replac-
ing strong client authentication with graphic Turing tests.
SOS and WebSOS target DDoS attacks and rely on secret
nodes, while misery digraphs implement a layering approach
without the need for filtration or secret nodes. Further, all
these proposals explicitly target physical networks and do not
use elastic replicas as in misery digraphs. Denial of Service
Elusion (DoSE) [34] reuses the idea of overlay networks [27]
in the cloud where virtual machines comprise overlay net-
works and a management layer repeatedly tries to distinguish
legitimate from malicious clients. Misery digraphs, in contrast,
do not use filtration or learning, and are neutral to the network
traffic.

B. Moving Targets

Moving target is an effective technique that incorporates
diversity and shuffling to achieve higher security [11], [14].
When a target machine is under attack, Migrating
OVErlay (MOVE) [27] relocates the target machine’s service
to an unaffected machine and, as opposed to SOS [18], does
not require client filtration. MOVE relies on hidden servers
and also uses an overlay network to distinguish unknown
traffic from legitimate traffic. Venkatesan et al. [30] address
intercepting exfiltrated data using a moving target defense
(backed by a probabilistic analysis) by dynamically replacing
intrusion detection sensors. Their threat model assumes the
attacker can explore the network topology and is aware of the
moving target defense. MOTAG [16], on the other hand, uses
moving secret proxies to distinguish attackers from legitimate
clients. MOTAG’s core idea is to provide a single secret IP
address to a legitimate client, at any given time. The target
servers only allow incoming traffic from designated proxies
that are meant to be reachable by legitimate clients. Comparing
to MOTAG, misery digraphs do not require secret proxies and
mainly rely on a trusted cloud console that controls the policies
and structure of the cloud’s internal network. Also, it is shown
that proxies can be subject to proxy harvesting attack, which
require continuous remapping to disrupt the attacks [29].
Badishi et al. [4] proposed random port hopping to keep a
DDoS attacker in the dark while using packet filtration to
recognize legitimate traffic. Similarly, redundant data routing
paths [19] can distract attackers from their favorable targets.
Rather than relocating the target machine as in the defenses
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against DDoS attacks, misery digraphs change the path to the
target machine as a continuous function of time.

Apart from physical distributed systems, moving target
defense promises a viable strategy for securing elastic clouds.
The work by Brzeczko et al. [5] and Jia et al. [17] are closest
to our work in using cloud technologies and moving the target
away from attacks. However, misery digraphs target intrusions
within virtual networks as opposed to those targeting the
surface. Brzeczko et al. [5] demonstrate an analytical method
that uses decoys in an elastic cloud computing platform to
attract attacker traffic. The proposed system will then learn
and redirect the malicious traffic from the production machines
by using the data collected from decoy machines. In 2014,
Jia et al. [17] presented the architecture of a system that uses
a moving target defense for Amazon Web Services. To rescue
targets in a virtual network from DDoS attacks, a defense
system creates replicas on the fly and assigns network traffic
to new replicas. A key assumption of the approach is hiding
the newly created replicas from the public and disclosing
their addresses to a select list of clients. Misery digraphs do
not directly respond to attacks and avoid problems such as
Economic Denial of Sustainability [33], which would cause
unnecessary charges on the cloud.

C. Theoretical Frameworks

Some recent work provides interesting theoretical frame-
works for various moving target defense settings. For example,
Wright et al. [35] evaluated moving defense strategies using
a game-theoretic simulation, deriving insights for scenarios
where a moving target is useful for combating DDoS attacks.
Miehling et al. [22] present Bayesian attack graphs and model
the defender’s action as a partially observable Markov decision
process in which some of the attacker’s actions are not clear.
The proposed Bayesian model limits the capabilities of an
attacker by assuming a sequence of completely random attack
steps. Our work assumes a more accurate representation of an
intelligent attacker that will take many informed attack steps.
Zhuang et al. [36], [37] also presented an inspiring theory
of moving target defense in which they proposed a general
system and an initial underlying theory for moving target
defense. While having fundamentally different goals, this work
on theoretical aspects of moving target defense is related to the
present efforts. Maleki et al. [21] described a general theory
on assessing the effectiveness of a moving target strategy,
which is useful in conjunction with the probabilistic analysis
of Section V-C.

D. Other Uses of Decoys

The core aspect of misery digraphs is the use of moving
decoys to create deception by hiding the true path towards
a target database, somewhat different from the deception
in some previous work where the use of decoys has been
heavily discussed. For example, [31] proposes the use of
multiple decoys, such as decoy HTML documents to distract
attackers. Similarly, Voris et al. [32] demonstrate how decoy
files can distract attackers from the target. Interesting work by
Araujo et al. [3] proposes honey patches that confuse attackers

about whether a software exploit has succeeded. This work
might be especially useful when deployed in conjunction
with misery digraphs. In a theoretical analysis, Pawlick and
Zhu [24] demonstrate, through cheap-talk games, that honey-
pots could be used to create deception for attackers. An earlier
game theoretic investigation of honeypots is described in [6].
A recent work by Luo et al. [20]proposes the use of dynamic
path identifiers for network routing that dynamically change to
escape DDoS attacks. Finally, Heydari et al. [13]demonstrated
the use of moving target defense in web servers, acting as
mobile nodes, to combat Internet censorship.

VIII. CONCLUSION

Misery digraphs use the cloud’s elastic and cost-effective
services to deceive and frustrate attackers. A graph theoretic
model that includes multiple redundant paths towards a cloud
target was proposed and implemented in AWS. The idea
of using redundancy to distract attackers does not intend to
completely eliminate an attack, but to force enough delay
on an aggressive attack to give system administrators time
to intercede in the attack. Thus the delay and confusion and
obscurity mechanisms provide the architectural support for a
cloud to defend itself until rescue arrives.

An overall target defense strategy would require an effective
intrusion detection mechanism that can collaborate with the
misery digraphs and a mechanism to prevent an intrusion
from reaching the target. Future extensions of this work might
enable the misery digraphs themselves to act as detectors of
intrusion, e.g., using the redundant paths as sensors to warn
an outside monitor of possible attacks. For instance, malicious
SSH connections to the redundant machines could trigger such
an alarm. Detecting intrusions using misery digraphs will be
addressed in future work.
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