PASSAT 2011, Boston, MA Oct11, 2011

Auditing Information Leakage for Distance Metrics

Yikan Chen David Evans

www.securecomputation.org

Motivating Scenario

From the Attacker's View

Contribution

Target: class of distance functions

An **efficient query auditor** to estimate maximum information leakage

Technique for **single bit** information auditing

Strategy

Determine # of secrets consistent with all queries

- For a special class of functions:

Reduce to 0-1 integer programming

Too expensive to compute exhaustively

- Use heuristics [find a meaningful bound]

Assumption

- clients are authenticated by the server
- clients cannot share information with each other

Additively Decomposable Functions

Definition

A function, f (A, B), where A, $B \in \Sigma^N$, is *additively decomposable* if:

 $\forall i \in [0, N], f(A, B) = f(A_{0:i}, B_{0:i}) + f(A_{i:N}, B_{i:N})$

Hamming distance

 $|i \in N : A_i \neq B_i|$ Squared Euclidean distance $\sum (A_i - B_i)^2$ Manhattan distance

 $\sum |A_i - B_i|$

Edit distance Ins,del and sub Chebyshev distance $max(|A_i - B_i|)$ Lee distance $min(|A_i - B_i|, k - |A_i - B_i|)$

Influence Function

Influence function for any sequence X': $g(\Delta i)$

 Δi : changes made on *i*th bit of X

For *additively decomposable* functions, $g(\Delta i)$ for each bit is *independent* and for any consistent sequence over a set of queries:

$$\sum g(\Delta i) = 0$$

Hamming distance: $g(\Delta i) = \begin{cases} 1, & X_i = Q_i \\ -1, & X_i \neq Q_i \end{cases}$

Reduction for Hamming Distance

Convert a Hamming distance sequence leakage problem to:

*AK=***0**

where
$$A_{ij} = \begin{cases} 1, & X_j = Q_{ij} \\ -1, & X_j \neq Q_{ij} \end{cases}$$
 $K \in \{0, 1\}^N$
Example: X=1111 Q_1=1100 Q_2=1110
 $k_1 + k_2 - k_3 - k_4 = 0$
 $k_1 + k_2 + k_3 - k_4 = 0$
find the number of possible 0-1 solutions for K

Computing Number of Solutions

Exact methods: exponential growth

Exhaustive Search Gröbner Basis ([Bertsimas, 2000])

Lower bound is good enough!

Divide-and-merge algorithm

Divide-and-merge Algorithm

X, {Q_i} Find # of 0-1 solutions for the equation set: **AK=0**

Divide and exhaustive search

- Divide matrix A into small blocks
- Analyze each output exhaustively

Sort and select

- Sort output
- Select r best combinations

Merge

• Merge adjacent blocks

Evaluation

Implementation experiment settings Matlab R2010b, 4 GB RAM 2.13 GHz CPU

Experiment settings

- Averaging from 5 experiments
- Scalability
- Tightness
- Real Application Performance (Iris Recognition)

Evaluation

Evaluation

See the paper for detailed results and performance on iris application

Related Work

Estimating Information Leakage

- No auditor ([Goodrich, Oakland 2009])
- Weak auditor ([Wang, Wang et al., CCS 2009])

Differential Privacy

 Add noise to protect secret information ([Dwork, ICALP 2006])

Auditing Aggregate Queries

 Auditing SUM, MEAN or MAX queries over a set of private entries in a database ([Elshiekh, 2008],[Nabar et al., VLDB 2006], [Wang, Li et al., CCS 2009])

Summary

- Query auditor for the server
 - Fast
 - Performance adjustable
 - Single-bit leakage (see paper)
- Challenges
 - Non-additive decomposable functions
 - Secure two-party computation protocol

Thanks!

www.securecomputation.org

Single Bit Information Leakage

Motivation

One bit leakage can also be crucial:

SNP (single nucleotide polymorphism)

Assumptions

- The client knows nothing
- Any single bit information is leaked only when this bit is 100% determined

Single Bit Information Leakage

Straightforward idea

AK=0

Bit fully determined = corresponding k_i can only be 1

Check if there is a non-zero solution when $k_i=0$

Make it quicker.....

Build pre-computed libraries containing all possible combinations

Libraries can be pre-computer since they are not related to sequence length (N), X and Q

Without libraries:ØWith libraries:Ø

 $C_{1000-1}^{6-1} = 8.2 imes 10^{12}$ checks 9632 checks