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ABSTRACT 
Model checking requires a specification of the target system’s 
desirable properties, some of which are temporal.  Formulating a 
temporal property of the system based on either its abstract model 
or implementation requires a deep understanding of its behavior 
and sophisticated knowledge of the chosen formalism.  This has 
been a major impediment to documenting and verifying temporal 
properties.  We propose a dynamic approach to automatically 
infer a program’s temporal properties based on a set of property 
pattern templates.  We describe a preliminary implementation of 
this approach, and report on our experience using it to discover 
interesting temporal properties of a small program. 

Categories and Subject Descriptors 
D.2.4 [Software/Program Verification] 

General Terms 
Experimentation, Verification. 

Keywords 
Invariants, temporal properties, concurrent programming, 
dynamic analysis, property patterns. 

1. INTRODUCTION 
Satisfying certain temporal properties is essential for the 
correctness of many programs. A temporal property defines the 
sequence in which events take place [16]. For example, one of the 
key properties for a program manipulating pointers is that a 
pointer must be initialized before it can be dereferenced. 
Temporal properties are especially important in concurrent 
programs in which threads interact through shared objects and 
messages. Writes from different threads to a shared object are 
mutually excluded using mechanisms such as locks to ensure that 
events are ordered consistently. The progression of different 
threads is also synchronized using programming constructs. For 
example, the classic producer-consumer problem involves two 
threads sharing a finite data buffer. The producer creates new data 
and inserts them into the buffer, while the consumer reads and 
removes data from the buffer. If the buffer is full, the producer 

should wait before inserting a new element. Similarly, the 
consumer should block when reading from an empty buffer until 
the producer adds new data to it.  

While such properties are fundamental to the correctness of an 
implementation, it is extremely hard to assure them by inspection 
or testing due to the huge number of ways threads might 
interleave with each other. Static analysis techniques like 
software model checking work on a closed model of the system.  
They can examine a temporal property on all possible execution 
paths with certain constraints (e.g. the range of variables) to find 
faults in a system that are hard to detect using traditional methods. 
Software model checkers [3, 4, 6, 10, 12] have been successfully 
applied to check many real world systems. 

Model checkers require specifications of properties to check such 
as assertions about valid states of the system and temporal 
properties. Temporal properties are represented using some 
formalism such as Linear Temporal Logic (LTL) [16]. The 
specification language is usually different from the language in 
which the system is written, and is often difficult to understand. 
Further, the specification is usually defined on the model, whereas 
it is best understood in terms of the implementation. As a result, 
to define a temporal property, one must be familiar with the 
formalism and be able to translate and redefine properties based 
on the structure of the model. This process can be very 
challenging and error-prone, even for experienced users. 
Holzmann showed how tricky and difficult it is to define a simple 
temporal property using LTL [11].  

We propose to automatically infer interesting temporal properties 
from execution traces. The key contributions of our work are the 
development of a set of extensions to the response property 
pattern [8] and an algorithm that can automatically infer the 
strictest pattern a set of events satisfies. Section 3 describes the 
steps of our approach. Section 4 describes our results applying a 
preliminary implementation of our approach to a version of the 
producer-consumer problem and a faulty version of the same 
program. Our approach was able to effectively infer important 
and interesting temporal properties. 

2. RELATED WORK 
Our work is mainly inspired by Ernst’s work on dynamically 
inferring program invariants [9, 14]. The distinction between their 
work and ours is that their work focuses on the value relationships 
among variables which are more relevant to dataflow, while ours 
focuses on a program’s temporal properties such as the execution 
sequences of methods which are more relevant to control flow. 

 



                                    

Specification mining [1, 2] is a machine learning approach that 
discovers temporal specifications a program must satisfy when 
interacting with an application programming interface (API) or 
abstract data type (ADT).  It extracts scenarios from execution 
traces based on a dependency analysis to make their approach 
tractable for realistic programs and then uses a probabilistic finite 
automaton (PFSA) learner to infer specifications from the 
scenarios. Our approach is distinguished from specification 
mining in several aspects:  (1) Our techniques target general types 
of events whereas specification mining is limited to API and ADT 
events.  Although these events are important and interesting, 
programs may have many interesting temporal properties not 
related to such events. (2) Specification mining requires 
substantial guidance from an expert (e.g. to define which 
attributes of interactions may define objects, select seed events for 
dependency analysis, and to identify which attributes may use 
objects).  Our goal is to develop techniques that are as automatic 
as possible.  (3) We use a template matching approach so that a 
large number of long execution traces can be analyzed, whereas 
their PFSA learner is limited to fairly short traces.  (4) The 
temporal properties discovered by our approach are guaranteed to 
be consistent with the traces used to discover them. We plan to 
use a static checker to further verify them to gain more 
confidence.  Specification mining produces specifications that 
may be inconsistent with the execution traces, and they use a 
dynamic checker to verify the specification against those 
execution traces. 

Whaley et al. developed two techniques, one static and the other 
dynamic, for inferring sequencing models of methods of a 
component [17].  They also built a dynamic model checker to 
check if the code conforms to the models discovered.  By slicing 
on methods accessing the same field of a class, they are able to 
discover a precise sub-model for such methods.  They did not 
attempt to develop techniques to find the strictest pattern any two 
methods can have.  Their dynamic approach adds a transition to 
the model upon finding one instance of such a transition.  Ours 
only considers a temporal property to be valid if all the traces 
have it.  Further, we focus on finding the precise relationship 
between a few (i.e. two or three) events by systematically 
examining all possible candidate patterns. 

Cook et al. developed statistical techniques to discover patterns of 
concurrent behavior from event traces [5]. Their techniques first 
extract a thread model out of the event traces, and then infer 
points of synchronization and mutual exclusion based on that 
model.  Our approach is distinguished from theirs in the following 
aspects:  (1) the temporal properties inferred by our method are 
more general, (2) our event traces include identification of the 
executing thread, whereas theirs does not; hence, we do not need 
to build a model to determine the threads; (3) the effectiveness of 
their thread discovering technique requires recurrence in a single 
event trace, whereas our technique does not have such a 
restriction; and (4) their approach only uses a single event trace, 
while ours is based on many event traces. 

Dwyer et al. developed a set of temporal property patterns based 
on a case study of hundreds of real property specifications [8]. 
They integrated those patterns into their Bandera toolset [6] so 
that users can express a temporal property in the Bandera 
Specification Language [7].  That property is mapped into the 
underlying formalism the chosen model checker accepts.  Their 

patterns are too imprecise to describe some interesting properties. 
We derived a number of variations of their patterns by adding 
more constraints.  To ease the task of formulating a property, we 
developed techniques to automatically search the strictest pattern 
matching the event traces.  Inferred properties can then be 
subjected to validation by users or model checkers. 

Havelund used information obtained from runtime analysis to 
guide model checking of Java programs [13].  Two dynamic 
analysis algorithms to detect race conditions and deadlocks run 
first. If those analyses report any warnings, the Java PathFinder 
model checker [12] is used to check the suspected threads 
specifically. Their approach showed that runtime analysis 
information can be used to pinpoint the problematic point in the 
program such that the state space for large program can be 
significantly pruned.  Our approach is more systematic and 
general in that a broad category of temporal properties can be 
automatically derived and checked along a program’s control 
flow. 

Our work is focused on automatically deriving properties to check.  
Another input to the model checker is a model of the system to be 
checked. Traditionally, the model is written manually in a 
specifically-designed language different from the one in which 
the system is implemented. Constructing the model requires 
programmers be very familiar with both the target system and the 
modeling language and limits the use of model checking in 
standard development processes. Much recent research has 
focused on automatically extracting models from code. For 
example, Bandera [6], Java PathFinder [12], and SLAM [3] can 
work directly on Java or C code. Such techniques greatly 
facilitate the adoption of model checking, and are complimentary 
to our work. 

3. APPROACH 
Our approach begins by instrumenting either the whole program 
or its key aspects (e.g. shared objects).  Next, we execute a test 
suite on the instrumented program and collect execution traces. 
Then, we instantiate candidate temporal property patterns.  We 
compute the satisfaction ratio table for each candidate pattern 
based on the execution traces.  From these ratios, we infer the 
strongest pattern satisfied by each set of events.  Finally, we 
subject the inferred properties and the program to validation either 
by manual inspection or by using a model checker.  Subsections 
3.1 to 3.6 discuss each step in more detail. 

To illustrate our approach, we will use a Java implementation of a 
simplified Producer-Consumer problem (adapted from the 
pipeline example in Bandera’s distribution) shown in Figure 1.  It 
has two threads: Producer and Consumer.  These two threads 
share one object buf of type Buffer.  In this simplified version, 
Buffer can only hold one value.  The add method inserts a new 
element into the buffer and the take method removes an element 
and returns it to the caller.  The Producer iteratively inserts the 
integers from 1 to n (as designated by user input) into buf, while 
the Consumer takes those numbers from buf and prints them out. 
After adding the final value, the Producer thread calls the stop 
method which writes 0 to buf.  When the Consumer reads a 0, it 
exits the run loop and terminates. 

One desirable temporal property is that adding an element to buf 
and removing an element from buf alternate.  This ensures that a 



                                    

new element will not be overwritten by the Producer before being 
taken by the Consumer and that the Consumer cannot take an 
element from an empty buffer.  Another important property is that 
once the Producer calls the stop method, the Consumer must 
eventually stop.  The implementation shown in Figure 1 satisfies 
both properties. 

3.1 Instrumentation 
We instrument the target program at all method entry and exit 
points.  An event consists of the current thread’s identifier, a 
method name, and a location: either E for entering a method or X 
for exiting the method (multiple exit points can be identified by 
line numbers).  For the program in Figure 1, we use W (writer) to 
represent the Producer thread and T (taker) the Consumer thread.   
When the Producer calls the add method, we collect the event 
W_add_E. Running the program with input 3 produces this trace 
(which we will refer to as “Event Trace 1”):  
W_main_E, T_run_E, W_add_E, W_add_X, T_take_E, T_take_X, 
W_add_E, W_add_X, W_stop_E, T_take_E, T_take_X, 
W_stop_X, T_take_E, W_main_X, T_take_X, T_run_X. 

3.2 Testing 
To generate execution traces, we need to execute the program.  If 
the target program has a set of test cases, we could just use them. 

Otherwise, we can generate a test suite either by some automated 
test generator or manually.  For our example problem, the only 
input is a single integer so automatically generating tests is easy.  

3.3 Instantiating Property Patterns 
A property pattern [8] is an abstraction of a set of commonly used 
temporal properties.  We are interested in the Response pattern 
describing the cause-effect relationships between two abstract 
events P and S: P’s occurrence must be followed by the 
occurrence of S.  For example, SPPSS is a valid string satisfying 
this pattern, but SPPSSP is not because no S responds to the last P.  
We can use a Quantified Regular Expression (QRE) [15] to 
describe the Response pattern: [-P]*; (P; [-S]*; S; [-P]*)*.  QREs 
are similar to regular expressions: ; is the concatenation operator 
(P;S represents P followed by S), [-] is the exclusion operator ([-
P,S] specifies any event in the alphabet except P and S).  The * 
(Kleene star) and () (grouping) operators have their normal 
meanings. 
We obtain a concrete property by replacing each abstract event 
with a monitored event.  For example, if we select P = W_add_X 
and S = T_take_X, we get the property: [-W_add_X]*; (W_add_X; 
[-T_take_X]*; T_take_X; [-W_add_X]*)*.  We can get a set of 
concrete properties by replacing the abstract events with those 
monitored events of interest to us (e.g. those events of the buf 
object).  If a pattern is parameterized by m abstract events and we 
monitor n events, there are nm possible instance properties. 

3.4 Computing Property Satisfaction 
For each concrete property, we determine if an event trace 
matches it.  Table 1 shows the results for two execution traces 
(the first is Event Trace 1 introduced in Section 3.1; the second is 
another plausible trace of the example program).  Note that 
W_main_X (as P) and T_take_E (as S) satisfies the Response 
pattern for the first trace but not for the second one. 
For each event trace, we first compute its satisfaction table as in 
Table 1. Then we calculate the satisfaction ratio for each property 
by averaging the values for all traces. The result is a table whose 
cells represent the percent of event traces satisfying the 
corresponding properties. Table 2 shows the satisfaction ratios of 
the two traces.  For instance, the Response pattern for W_main_X 
(as P) and T_take_E (as S) is satisfied in trace 2 but not in trace 1.  
Hence, the satisfaction ratio of this property is .5 for the two 
traces. 

class Heap { static Buffer buf; } 
 
class Producer { 
  static public void main (String[] args) { 
    Heap.buf = new Buffer (); 
    (new Consumer ()).start (); 
    for (int i = 1; i < Integer.valueOf (args[0]).intValue (); i++)  
         Heap.buf.add (i);  
    Heap.buf.stop (); 
  }  
} 
 
final class Buffer { 
  int queue = -1; 
  public final synchronized int take () { 
    int value; 
    while (queue < 0) 
        try { wait (); } catch (InterruptedException ex) {} 
    value = queue; queue = -1; notifyAll (); 
    return value; 
  } 
  public final synchronized void add (int o) { 
    while (queue!= -1) 
        try { wait (); } catch (InterruptedException ex) {} 
    queue = o; notifyAll(); 
  } 
 
  public final synchronized void stop () { 
    while (queue!=-1) 
        try { wait (); } catch (InterruptedException ex) {} 
    queue = 0; notifyAll (); 
  } 
} 
 
final class Consumer extends Thread { 
  public void run () { 
    int tmp = -1; 
    while ((tmp = Heap.buf.take ()) != 0)  
        System.err.println ("Result: " + tmp); 
    }  
} 

Figure 1. Example code. 

Event Trace 1 Event Trace 2               S 
P 

T_take_E T_take_X T_take_E T_take_X 
W_add_E 1 1 1 1 
W_add_X 1 1 1 1 

W_main_X 0 1 1 1 
Table 1. Property satisfaction for two traces. 

              S 
P T_take_E T_take_X 

W_add_E 1 1 
W_add_X 1 1 

W_main_X 0.5 1 
Table 2. Property satisfaction ratios for Trace 1 and 2. 



                                    

3.5 Inferring and Synthesizing Properties 
We infer properties based on the satisfaction ratio table.  We 
deem a property as true if its satisfaction ratio is greater than a 
pre-defined threshold.  For now we simply set the threshold to 1 
(meaning the property is true for all traces).  All the properties 
shown in Table 2 are true except for the W_main_X/T_take_E 
property.  
In future work, we intend to explore properties with thresholds 
less than 1.  These could reveal bugs in the program, or properties 
that hold for only a subset of the input space.  
The Response pattern is very imprecise in that it allows several 
causing events (P) to share one effect event (S), one causing event 
to have multiple effect events, and effect events to happen before 
any causing event.  As a result, knowing two events satisfying this 
property does not give us much useful insight into a program’s 
temporal behaviors.  
To solve this problem, we developed the variations on the original 
Response pattern shown in Table 3.  Let L(A) represent all event 
traces satisfying pattern A.  Given two patterns A and B, if 
L(A)<L(B) (that is, all event traces that satisfy B satisfy A, but at 
least one event trace that satisfies B does not satisfy A) we say A 
is stricter than B.  
The eight patterns form a partial order in terms of their strictness 
as shown in Figure 2.  The following relationships among the 
above patterns hold: 
(1) L(Alternating) =L(CauseFirst) ∩ L(OneCause)  

   ∩ L(OneEffect) 
(2) L(MultiEffect) = L(CauseFirst) ∩ L(OneCause) 
(3) L(MultiCause) = L(CauseFirst) ∩ L(OneEffect) 
(4) L(EffectFirst) = L(OneCause) ∩ L(OneEffect) 

To determine the strictest pattern satisfied by a pair of events, we 
first determine which of the CauseFirst, OneCause and OneEffect 
patterns they satisfy.  Then we can use the above relationships to 
infer the strictest pattern.  For example, for the events W_stop_X 
(as P) and T_take_X (as S) the Event Trace 1 satisfies OneCause 
and OneEffect but not CauseFirst.  Using the above relationships, 

we find it satisfies EffectFirst but not Alternating, MultiEffect, or 
MultiCause.  So, we conclude the strictest pattern between the 
two events this event trace satisfies is EffectFirst which gives us 
more information than Response.  If we combine this with the 
knowledge that W_stop_X only appears once, we know that the 
execution ends with the Producer sending the stop signal followed 
by the Consumer exiting. 
Another way to extend a pattern is to vary its scope [8].  Pattern 
scopes define the region where a pattern holds.  The scope of all 
the above patterns is global since satisfying the pattern requires 
that the whole event trace matches it.  We can modify patterns by 
adding scopes that limit when the pattern must hold.  For example, 
the before R scope below specifies P’s occurrence must be 
followed by the occurrence of S before R’s occurrence: 

[-R]* | [-P,R]*; (P; [-S,R]*; S; [-P,R]*)*; R; .* 
In addition to the before R scope, [8] shows three other scopes of 
the Response pattern.  All the patterns in Table 3 can be adjusted 
to the before R scope.  For example, CauseFirst with before R 
scope is as follows. 

CauseFirst|R = [-R]* | [-P,S,R]*; (P; [-S,R]*; S; [-P,R]*)+; R; .* 

(We use + (one or more instances) here to filter false results. For 
example, if R is an event always appears at the beginning of every 
trace, using * would result in a pattern that is satisfied by any two 
monitored events, which is not what we want.)  
Fixing R, we can find the strictest pattern between two events P 
and S by following the same procedure we did for the global 
scope.  If we replace R with all monitored events, we can find the 
strictest pattern before each event.  The problem now is how to 
choose from them.  First, since our goal is to find if two events 
can satisfy a stricter pattern under a different scope, we will only 
consider a pattern with a before R scope if we can find a stricter 
pattern by using the scope restriction.  The later an R appears in 
the event traces, the larger the scope is.  So, we always prefer a 
later R to make the scope as large as possible.  Thus, our goal is to 
find the latest R before which the strictest pattern is still satisfied. 
We sort all events according to their average relative positions. 
We calculate the average relative position of an event R as is a 
number between 0 and 1 defined as  

Average relative position of R = 
n
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Where Li,j is the position of the jth occurrence of R in the ith event 
trace (where positions just count the events), mi is the total 
number of occurrences of R in the ith event trace, li is the length of 
the ith event trace, and n is the total number of event traces. 

 
Figure 2. Partial order among patterns. 

Name QRE Valid Examples Invalid Examples 
Response [-P]*; (P; [-S]*; S; [-P]*)* SPPSS SPPSSP 

Alternating [-P,S]*; (P; [-P,S]*; S; [-P,S]*)* PSPS PSS, PPS, SPS 
MultiEffect [-P,S]*; (P; [-P,S]*; S; [-P]*)* PSS PPS, SPS 
MultiCause [-P,S]*; (P; [-S]*; S; [-P,S]*)* PPS PSS, SPS 
EffectFirst [-P]*; (P; [-P,S]*; S; [-P,S]*)* SPS PSS, PPS 
CauseFirst [-P,S]*; (P; [-S]*; S; [-P]*)* PPSS SPSS, SPPS 
OneCause [-P]*; (P; [-P,S]*; S; [-P]*)* SPSS PPSS, SPPS 
OneEffect [-P]*; (P; [-S]*; S; [-P,S]*)* SPPS PPSS, SPSS 

Table 3. Temporal property patterns. 

MultiEffect MultiCause EffectFirst

Alternating 

OneCause OneEffect CauseFirst OneCause



                                    

Suppose that we only have Event Trace 1: T_take_X appears three 
times at positions 6, 11, and 15 respectively.  The length of that 
trace is 16.  So the average relative position of T_take_X is 0.6667. 
If we rank those events in the order of their average relative 
positions, we get: 

(W_main_E,  T_run_E, W_add_E, W_add_X, T_take_E, 
T_take_X, W_stop_E, W_stop_X, W_main_X, T_run_X). 

Figure 3 shows the pseudo-code of our algorithm. To compute the 
satisfaction ratio table for the CauseFirst|R, OneCause|R, and 
OneEffect|R patterns, start from the latest event R, and compute 
the strictest pattern with before R scope.  If the new pattern is 
stricter than the one computed for the larger scope, select the new 
pattern.  Continue for the preceding event until all events have 
been tried or the Alternating pattern (strictest possible pattern) is 
reached.  We keep the result the same as the global pattern if we 
cannot find a stricter pattern using any event as R.  In this way, 
we find the strictest pattern W_add_X (as P) and T_take_X (as S) 
can satisfy is the Alternating pattern before W_main_X (as R), 
whereas the strictest pattern these two events satisfy in the global 
scope is MultiEffect.  Both results are informative and useful.  The 
first one reveals the alternating relationship between the two 
events before the Producer stops.  The latter one indicates that 
there are multiple T_take_X’s responding to at least one W_add_X. 
In our preliminary experiments, we have only investigated the 
Response pattern and before R scope.  We plan to explore the 
usage of other patterns like Precedence and other scopes.  We 
also need ways to prioritize properties.  Currently, we show those 
properties relevant to the shared objects and between two events 
from different threads first, and give higher priority to the stricter 
properties. 

3.6 Validation 
To gain more confidence in the correctness of inferred properties, 
we subject them to validation manually by programmers.  We 
plan to automate this by a model checker in future.  The benefits 
of validation are twofold: first, disproving any desirable property 
could lead us detecting faults in a program; second, disproving 
any undesirable property could not only give us more confidence 
but also reveal the inadequacy of the test suite.  In our 
experiments to date, we have only inspected properties by hand.  
For larger programs and more complex properties, it will be 
essential to use a model checker to automate the validation 
process. 

4. RESULTS 
We built a prototype implementation and evaluated our approach 
on the Java program shown in Figure 1.  Our prototype 
implementation is 630 lines of Perl code, and automates all the 
steps in our approach except for instrumentation and validation 
which are done manually. 

We executed an instrumented version of that program with 100 
randomly generated inputs within the range from 1 to 10000. 
Table 4 shows the strictest pattern with before R scope.  If a cell 
does not have “|R”, it means this pattern is the strictest within 
global scope and cannot be improved by changing to any before R 
scope.  The rank of events according to their average relative 
positions is same as the ordering in Section 3.5.  An entry of 0 
means that the corresponding two events satisfy only the 
Response pattern or do not satisfy any pattern listed in Table 3. 

We found several interesting properties.  Globally W_stop_X (as 
P) and T_run_X (as S) have an alternating pattern.  Considering 
the fact that each event occurred only once, we concluded that 
after the Producer thread sent out the stop signal and the 
Consumer thread eventually stopped.  This corresponds to one of 
the two properties we expect the program to have.  

Globally every W_add_X has at least one response event 
T_take_X, and W_add_X starts the chain (indicated by the pattern 
MultiEffect).  This results from the Consumer calling the take 
method in response to the Producer calling the stop method. 
Before W_main_X (as R), these two events have a one-to-one 
correspondence.  This corresponds to another property we 
expected. 

The second experiment we did is applying our approach to a 
faulty program.  We removed the synchronization lines (the while 
statements in add and stop in Figure 1) in the add and stop 
methods of the Buffer class.  In the new program, it is possible for 
the Producer thread to add multiple times before the Consumer 
thread reads the previously inserted values, thus losing some 
values.  

We instrumented the new program and executed it with another 
100 randomly generated inputs within the range from 1 to 10000. 
Table 5 shows the strictest patterns with before R scope.  We 

rank = Rank all events; 
foreach combination of two events { 

compute their globally strictest pattern; 
} 
foreach combination of two events { 

rank2 = rank; 
while (pattern != Alternating) and (rank2 is not empty){ 

R = remove the latest event from rank2; 
new_pattern = compute the strictest pattern before R; 
if (new_pattern is stricter than pattern) { 

pattern = new_pattern|R; 
} 

} 
} 

Figure 3. The prototype algorithm 

                S 
P T_take_E T_take_X T_run_E T_run_X 

W_main_E Alternating|R1 Alternating|R1 Alternating Alternating 
W_main_X 0 EffectFirst 0 Alternating 
W_add_E CauseFirst CauseFirst 0 MultiCause 
W_add_X Alternating|R1 Alternating|R2 0 MultiCause 
W_stop_E EffectFirst EffectFirst 0 Alternating 
W_stop_X EffectFirst EffectFirst 0 Alternating 

Table 4. The strictest pattern with before R scope.   
R1 = T_take_X, R2 = W_main_X 

               S 
P T_take_E T_take_X T_run_E T_run_X 

W_main_E Alternating|R1 Alternating|R1 Alternating Alternating 
W_main_X 0 EffectFirst 0 Alternating 
W_add_E 0 CauseFirst 0 MultiCause 
W_add_X 0 CauseFirst 0 MultiCause 
W_stop_E 0 EffectFirst 0 Alternating 
W_stop_X 0 EffectFirst 0 Alternating 

Table 5. The strictest pattern with before R scope for 
faulty program.  R1 = T_take_X. 



                                    

found that the strictest property that holds for W_add_X (as P) 
and T_take_X (as S) is only that the first W_add_X always 
appeared before any T_take_X.  This clearly indicates the lack of 
an alternating pattern resulted from the inadequate synchroniza-
tion.  We found that the faulty program still has one of the 
desirable properties: as long as the Producer called the stop 
method, the Consumer eventually stopped itself. 

5. CONCLUSION 
One of the biggest challenges in effective adopting of model 
checking is determining useful properties to check.  We have 
described an approach for automatically inferring interesting 
temporal properties of programs by analyzing execution traces.  
We built a prototype implementation, and demonstrated its 
effectiveness on a simple program.  The results are promising, but 
a number of challenges remain before our technique can be 
applied to realistic programs including extracting interesting 
properties with a large number of possible events, developing 
good strategies for testing that produce useful event traces for 
longer executions, and handling more complex thread interactions. 
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