

Dynamically Inferring Temporal Properties
 Jinlin Yang David Evans

Department of Computer Science
University of Virginia
Charlottesville, VA

{jinlin, evans}@cs.virginia.edu

ABSTRACT
Model checking requires a specification of the target system’s
desirable properties, some of which are temporal. Formulating a
temporal property of the system based on either its abstract model
or implementation requires a deep understanding of its behavior
and sophisticated knowledge of the chosen formalism. This has
been a major impediment to documenting and verifying temporal
properties. We propose a dynamic approach to automatically
infer a program’s temporal properties based on a set of property
pattern templates. We describe a preliminary implementation of
this approach, and report on our experience using it to discover
interesting temporal properties of a small program.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]

General Terms
Experimentation, Verification.

Keywords
Invariants, temporal properties, concurrent programming,
dynamic analysis, property patterns.

1. INTRODUCTION
Satisfying certain temporal properties is essential for the
correctness of many programs. A temporal property defines the
sequence in which events take place [16]. For example, one of the
key properties for a program manipulating pointers is that a
pointer must be initialized before it can be dereferenced.
Temporal properties are especially important in concurrent
programs in which threads interact through shared objects and
messages. Writes from different threads to a shared object are
mutually excluded using mechanisms such as locks to ensure that
events are ordered consistently. The progression of different
threads is also synchronized using programming constructs. For
example, the classic producer-consumer problem involves two
threads sharing a finite data buffer. The producer creates new data
and inserts them into the buffer, while the consumer reads and
removes data from the buffer. If the buffer is full, the producer

should wait before inserting a new element. Similarly, the
consumer should block when reading from an empty buffer until
the producer adds new data to it.

While such properties are fundamental to the correctness of an
implementation, it is extremely hard to assure them by inspection
or testing due to the huge number of ways threads might
interleave with each other. Static analysis techniques like
software model checking work on a closed model of the system.
They can examine a temporal property on all possible execution
paths with certain constraints (e.g. the range of variables) to find
faults in a system that are hard to detect using traditional methods.
Software model checkers [3, 4, 6, 10, 12] have been successfully
applied to check many real world systems.

Model checkers require specifications of properties to check such
as assertions about valid states of the system and temporal
properties. Temporal properties are represented using some
formalism such as Linear Temporal Logic (LTL) [16]. The
specification language is usually different from the language in
which the system is written, and is often difficult to understand.
Further, the specification is usually defined on the model, whereas
it is best understood in terms of the implementation. As a result,
to define a temporal property, one must be familiar with the
formalism and be able to translate and redefine properties based
on the structure of the model. This process can be very
challenging and error-prone, even for experienced users.
Holzmann showed how tricky and difficult it is to define a simple
temporal property using LTL [11].

We propose to automatically infer interesting temporal properties
from execution traces. The key contributions of our work are the
development of a set of extensions to the response property
pattern [8] and an algorithm that can automatically infer the
strictest pattern a set of events satisfies. Section 3 describes the
steps of our approach. Section 4 describes our results applying a
preliminary implementation of our approach to a version of the
producer-consumer problem and a faulty version of the same
program. Our approach was able to effectively infer important
and interesting temporal properties.

2. RELATED WORK
Our work is mainly inspired by Ernst’s work on dynamically
inferring program invariants [9, 14]. The distinction between their
work and ours is that their work focuses on the value relationships
among variables which are more relevant to dataflow, while ours
focuses on a program’s temporal properties such as the execution
sequences of methods which are more relevant to control flow.

Specification mining [1, 2] is a machine learning approach that
discovers temporal specifications a program must satisfy when
interacting with an application programming interface (API) or
abstract data type (ADT). It extracts scenarios from execution
traces based on a dependency analysis to make their approach
tractable for realistic programs and then uses a probabilistic finite
automaton (PFSA) learner to infer specifications from the
scenarios. Our approach is distinguished from specification
mining in several aspects: (1) Our techniques target general types
of events whereas specification mining is limited to API and ADT
events. Although these events are important and interesting,
programs may have many interesting temporal properties not
related to such events. (2) Specification mining requires
substantial guidance from an expert (e.g. to define which
attributes of interactions may define objects, select seed events for
dependency analysis, and to identify which attributes may use
objects). Our goal is to develop techniques that are as automatic
as possible. (3) We use a template matching approach so that a
large number of long execution traces can be analyzed, whereas
their PFSA learner is limited to fairly short traces. (4) The
temporal properties discovered by our approach are guaranteed to
be consistent with the traces used to discover them. We plan to
use a static checker to further verify them to gain more
confidence. Specification mining produces specifications that
may be inconsistent with the execution traces, and they use a
dynamic checker to verify the specification against those
execution traces.

Whaley et al. developed two techniques, one static and the other
dynamic, for inferring sequencing models of methods of a
component [17]. They also built a dynamic model checker to
check if the code conforms to the models discovered. By slicing
on methods accessing the same field of a class, they are able to
discover a precise sub-model for such methods. They did not
attempt to develop techniques to find the strictest pattern any two
methods can have. Their dynamic approach adds a transition to
the model upon finding one instance of such a transition. Ours
only considers a temporal property to be valid if all the traces
have it. Further, we focus on finding the precise relationship
between a few (i.e. two or three) events by systematically
examining all possible candidate patterns.

Cook et al. developed statistical techniques to discover patterns of
concurrent behavior from event traces [5]. Their techniques first
extract a thread model out of the event traces, and then infer
points of synchronization and mutual exclusion based on that
model. Our approach is distinguished from theirs in the following
aspects: (1) the temporal properties inferred by our method are
more general, (2) our event traces include identification of the
executing thread, whereas theirs does not; hence, we do not need
to build a model to determine the threads; (3) the effectiveness of
their thread discovering technique requires recurrence in a single
event trace, whereas our technique does not have such a
restriction; and (4) their approach only uses a single event trace,
while ours is based on many event traces.

Dwyer et al. developed a set of temporal property patterns based
on a case study of hundreds of real property specifications [8].
They integrated those patterns into their Bandera toolset [6] so
that users can express a temporal property in the Bandera
Specification Language [7]. That property is mapped into the
underlying formalism the chosen model checker accepts. Their

patterns are too imprecise to describe some interesting properties.
We derived a number of variations of their patterns by adding
more constraints. To ease the task of formulating a property, we
developed techniques to automatically search the strictest pattern
matching the event traces. Inferred properties can then be
subjected to validation by users or model checkers.

Havelund used information obtained from runtime analysis to
guide model checking of Java programs [13]. Two dynamic
analysis algorithms to detect race conditions and deadlocks run
first. If those analyses report any warnings, the Java PathFinder
model checker [12] is used to check the suspected threads
specifically. Their approach showed that runtime analysis
information can be used to pinpoint the problematic point in the
program such that the state space for large program can be
significantly pruned. Our approach is more systematic and
general in that a broad category of temporal properties can be
automatically derived and checked along a program’s control
flow.

Our work is focused on automatically deriving properties to check.
Another input to the model checker is a model of the system to be
checked. Traditionally, the model is written manually in a
specifically-designed language different from the one in which
the system is implemented. Constructing the model requires
programmers be very familiar with both the target system and the
modeling language and limits the use of model checking in
standard development processes. Much recent research has
focused on automatically extracting models from code. For
example, Bandera [6], Java PathFinder [12], and SLAM [3] can
work directly on Java or C code. Such techniques greatly
facilitate the adoption of model checking, and are complimentary
to our work.

3. APPROACH
Our approach begins by instrumenting either the whole program
or its key aspects (e.g. shared objects). Next, we execute a test
suite on the instrumented program and collect execution traces.
Then, we instantiate candidate temporal property patterns. We
compute the satisfaction ratio table for each candidate pattern
based on the execution traces. From these ratios, we infer the
strongest pattern satisfied by each set of events. Finally, we
subject the inferred properties and the program to validation either
by manual inspection or by using a model checker. Subsections
3.1 to 3.6 discuss each step in more detail.

To illustrate our approach, we will use a Java implementation of a
simplified Producer-Consumer problem (adapted from the
pipeline example in Bandera’s distribution) shown in Figure 1. It
has two threads: Producer and Consumer. These two threads
share one object buf of type Buffer. In this simplified version,
Buffer can only hold one value. The add method inserts a new
element into the buffer and the take method removes an element
and returns it to the caller. The Producer iteratively inserts the
integers from 1 to n (as designated by user input) into buf, while
the Consumer takes those numbers from buf and prints them out.
After adding the final value, the Producer thread calls the stop
method which writes 0 to buf. When the Consumer reads a 0, it
exits the run loop and terminates.

One desirable temporal property is that adding an element to buf
and removing an element from buf alternate. This ensures that a

new element will not be overwritten by the Producer before being
taken by the Consumer and that the Consumer cannot take an
element from an empty buffer. Another important property is that
once the Producer calls the stop method, the Consumer must
eventually stop. The implementation shown in Figure 1 satisfies
both properties.

3.1 Instrumentation
We instrument the target program at all method entry and exit
points. An event consists of the current thread’s identifier, a
method name, and a location: either E for entering a method or X
for exiting the method (multiple exit points can be identified by
line numbers). For the program in Figure 1, we use W (writer) to
represent the Producer thread and T (taker) the Consumer thread.
When the Producer calls the add method, we collect the event
W_add_E. Running the program with input 3 produces this trace
(which we will refer to as “Event Trace 1”):
W_main_E, T_run_E, W_add_E, W_add_X, T_take_E, T_take_X,
W_add_E, W_add_X, W_stop_E, T_take_E, T_take_X,
W_stop_X, T_take_E, W_main_X, T_take_X, T_run_X.

3.2 Testing
To generate execution traces, we need to execute the program. If
the target program has a set of test cases, we could just use them.

Otherwise, we can generate a test suite either by some automated
test generator or manually. For our example problem, the only
input is a single integer so automatically generating tests is easy.

3.3 Instantiating Property Patterns
A property pattern [8] is an abstraction of a set of commonly used
temporal properties. We are interested in the Response pattern
describing the cause-effect relationships between two abstract
events P and S: P’s occurrence must be followed by the
occurrence of S. For example, SPPSS is a valid string satisfying
this pattern, but SPPSSP is not because no S responds to the last P.
We can use a Quantified Regular Expression (QRE) [15] to
describe the Response pattern: [-P]*; (P; [-S]*; S; [-P]*)*. QREs
are similar to regular expressions: ; is the concatenation operator
(P;S represents P followed by S), [-] is the exclusion operator ([-
P,S] specifies any event in the alphabet except P and S). The *
(Kleene star) and () (grouping) operators have their normal
meanings.
We obtain a concrete property by replacing each abstract event
with a monitored event. For example, if we select P = W_add_X
and S = T_take_X, we get the property: [-W_add_X]*; (W_add_X;
[-T_take_X]*; T_take_X; [-W_add_X]*)*. We can get a set of
concrete properties by replacing the abstract events with those
monitored events of interest to us (e.g. those events of the buf
object). If a pattern is parameterized by m abstract events and we
monitor n events, there are nm possible instance properties.

3.4 Computing Property Satisfaction
For each concrete property, we determine if an event trace
matches it. Table 1 shows the results for two execution traces
(the first is Event Trace 1 introduced in Section 3.1; the second is
another plausible trace of the example program). Note that
W_main_X (as P) and T_take_E (as S) satisfies the Response
pattern for the first trace but not for the second one.
For each event trace, we first compute its satisfaction table as in
Table 1. Then we calculate the satisfaction ratio for each property
by averaging the values for all traces. The result is a table whose
cells represent the percent of event traces satisfying the
corresponding properties. Table 2 shows the satisfaction ratios of
the two traces. For instance, the Response pattern for W_main_X
(as P) and T_take_E (as S) is satisfied in trace 2 but not in trace 1.
Hence, the satisfaction ratio of this property is .5 for the two
traces.

class Heap { static Buffer buf; }

class Producer {
 static public void main (String[] args) {
 Heap.buf = new Buffer ();
 (new Consumer ()).start ();
 for (int i = 1; i < Integer.valueOf (args[0]).intValue (); i++)
 Heap.buf.add (i);
 Heap.buf.stop ();
 }
}

final class Buffer {
 int queue = -1;
 public final synchronized int take () {
 int value;
 while (queue < 0)
 try { wait (); } catch (InterruptedException ex) {}
 value = queue; queue = -1; notifyAll ();
 return value;
 }
 public final synchronized void add (int o) {
 while (queue!= -1)
 try { wait (); } catch (InterruptedException ex) {}
 queue = o; notifyAll();
 }

 public final synchronized void stop () {
 while (queue!=-1)
 try { wait (); } catch (InterruptedException ex) {}
 queue = 0; notifyAll ();
 }
}

final class Consumer extends Thread {
 public void run () {
 int tmp = -1;
 while ((tmp = Heap.buf.take ()) != 0)
 System.err.println ("Result: " + tmp);
 }
}

Figure 1. Example code.

Event Trace 1 Event Trace 2 S
P

T_take_E T_take_X T_take_E T_take_X
W_add_E 1 1 1 1
W_add_X 1 1 1 1

W_main_X 0 1 1 1
Table 1. Property satisfaction for two traces.

 S
P T_take_E T_take_X

W_add_E 1 1
W_add_X 1 1

W_main_X 0.5 1
Table 2. Property satisfaction ratios for Trace 1 and 2.

3.5 Inferring and Synthesizing Properties
We infer properties based on the satisfaction ratio table. We
deem a property as true if its satisfaction ratio is greater than a
pre-defined threshold. For now we simply set the threshold to 1
(meaning the property is true for all traces). All the properties
shown in Table 2 are true except for the W_main_X/T_take_E
property.
In future work, we intend to explore properties with thresholds
less than 1. These could reveal bugs in the program, or properties
that hold for only a subset of the input space.
The Response pattern is very imprecise in that it allows several
causing events (P) to share one effect event (S), one causing event
to have multiple effect events, and effect events to happen before
any causing event. As a result, knowing two events satisfying this
property does not give us much useful insight into a program’s
temporal behaviors.
To solve this problem, we developed the variations on the original
Response pattern shown in Table 3. Let L(A) represent all event
traces satisfying pattern A. Given two patterns A and B, if
L(A)<L(B) (that is, all event traces that satisfy B satisfy A, but at
least one event trace that satisfies B does not satisfy A) we say A
is stricter than B.
The eight patterns form a partial order in terms of their strictness
as shown in Figure 2. The following relationships among the
above patterns hold:
(1) L(Alternating) =L(CauseFirst) ∩ L(OneCause)

 ∩ L(OneEffect)
(2) L(MultiEffect) = L(CauseFirst) ∩ L(OneCause)
(3) L(MultiCause) = L(CauseFirst) ∩ L(OneEffect)
(4) L(EffectFirst) = L(OneCause) ∩ L(OneEffect)

To determine the strictest pattern satisfied by a pair of events, we
first determine which of the CauseFirst, OneCause and OneEffect
patterns they satisfy. Then we can use the above relationships to
infer the strictest pattern. For example, for the events W_stop_X
(as P) and T_take_X (as S) the Event Trace 1 satisfies OneCause
and OneEffect but not CauseFirst. Using the above relationships,

we find it satisfies EffectFirst but not Alternating, MultiEffect, or
MultiCause. So, we conclude the strictest pattern between the
two events this event trace satisfies is EffectFirst which gives us
more information than Response. If we combine this with the
knowledge that W_stop_X only appears once, we know that the
execution ends with the Producer sending the stop signal followed
by the Consumer exiting.
Another way to extend a pattern is to vary its scope [8]. Pattern
scopes define the region where a pattern holds. The scope of all
the above patterns is global since satisfying the pattern requires
that the whole event trace matches it. We can modify patterns by
adding scopes that limit when the pattern must hold. For example,
the before R scope below specifies P’s occurrence must be
followed by the occurrence of S before R’s occurrence:

[-R]* | [-P,R]*; (P; [-S,R]*; S; [-P,R]*)*; R; .*
In addition to the before R scope, [8] shows three other scopes of
the Response pattern. All the patterns in Table 3 can be adjusted
to the before R scope. For example, CauseFirst with before R
scope is as follows.

CauseFirst|R = [-R]* | [-P,S,R]*; (P; [-S,R]*; S; [-P,R]*)+; R; .*

(We use + (one or more instances) here to filter false results. For
example, if R is an event always appears at the beginning of every
trace, using * would result in a pattern that is satisfied by any two
monitored events, which is not what we want.)
Fixing R, we can find the strictest pattern between two events P
and S by following the same procedure we did for the global
scope. If we replace R with all monitored events, we can find the
strictest pattern before each event. The problem now is how to
choose from them. First, since our goal is to find if two events
can satisfy a stricter pattern under a different scope, we will only
consider a pattern with a before R scope if we can find a stricter
pattern by using the scope restriction. The later an R appears in
the event traces, the larger the scope is. So, we always prefer a
later R to make the scope as large as possible. Thus, our goal is to
find the latest R before which the strictest pattern is still satisfied.
We sort all events according to their average relative positions.
We calculate the average relative position of an event R as is a
number between 0 and 1 defined as

Average relative position of R =
n

lm
Ln

i

m

j ii

ji
i

∑∑
= = ⋅1 1

,

Where Li,j is the position of the jth occurrence of R in the ith event
trace (where positions just count the events), mi is the total
number of occurrences of R in the ith event trace, li is the length of
the ith event trace, and n is the total number of event traces.

Figure 2. Partial order among patterns.

Name QRE Valid Examples Invalid Examples
Response [-P]*; (P; [-S]*; S; [-P]*)* SPPSS SPPSSP

Alternating [-P,S]*; (P; [-P,S]*; S; [-P,S]*)* PSPS PSS, PPS, SPS
MultiEffect [-P,S]*; (P; [-P,S]*; S; [-P]*)* PSS PPS, SPS
MultiCause [-P,S]*; (P; [-S]*; S; [-P,S]*)* PPS PSS, SPS
EffectFirst [-P]*; (P; [-P,S]*; S; [-P,S]*)* SPS PSS, PPS
CauseFirst [-P,S]*; (P; [-S]*; S; [-P]*)* PPSS SPSS, SPPS
OneCause [-P]*; (P; [-P,S]*; S; [-P]*)* SPSS PPSS, SPPS
OneEffect [-P]*; (P; [-S]*; S; [-P,S]*)* SPPS PPSS, SPSS

Table 3. Temporal property patterns.

MultiEffect MultiCause EffectFirst

Alternating

OneCause OneEffect CauseFirst OneCause

Suppose that we only have Event Trace 1: T_take_X appears three
times at positions 6, 11, and 15 respectively. The length of that
trace is 16. So the average relative position of T_take_X is 0.6667.
If we rank those events in the order of their average relative
positions, we get:

(W_main_E, T_run_E, W_add_E, W_add_X, T_take_E,
T_take_X, W_stop_E, W_stop_X, W_main_X, T_run_X).

Figure 3 shows the pseudo-code of our algorithm. To compute the
satisfaction ratio table for the CauseFirst|R, OneCause|R, and
OneEffect|R patterns, start from the latest event R, and compute
the strictest pattern with before R scope. If the new pattern is
stricter than the one computed for the larger scope, select the new
pattern. Continue for the preceding event until all events have
been tried or the Alternating pattern (strictest possible pattern) is
reached. We keep the result the same as the global pattern if we
cannot find a stricter pattern using any event as R. In this way,
we find the strictest pattern W_add_X (as P) and T_take_X (as S)
can satisfy is the Alternating pattern before W_main_X (as R),
whereas the strictest pattern these two events satisfy in the global
scope is MultiEffect. Both results are informative and useful. The
first one reveals the alternating relationship between the two
events before the Producer stops. The latter one indicates that
there are multiple T_take_X’s responding to at least one W_add_X.
In our preliminary experiments, we have only investigated the
Response pattern and before R scope. We plan to explore the
usage of other patterns like Precedence and other scopes. We
also need ways to prioritize properties. Currently, we show those
properties relevant to the shared objects and between two events
from different threads first, and give higher priority to the stricter
properties.

3.6 Validation
To gain more confidence in the correctness of inferred properties,
we subject them to validation manually by programmers. We
plan to automate this by a model checker in future. The benefits
of validation are twofold: first, disproving any desirable property
could lead us detecting faults in a program; second, disproving
any undesirable property could not only give us more confidence
but also reveal the inadequacy of the test suite. In our
experiments to date, we have only inspected properties by hand.
For larger programs and more complex properties, it will be
essential to use a model checker to automate the validation
process.

4. RESULTS
We built a prototype implementation and evaluated our approach
on the Java program shown in Figure 1. Our prototype
implementation is 630 lines of Perl code, and automates all the
steps in our approach except for instrumentation and validation
which are done manually.

We executed an instrumented version of that program with 100
randomly generated inputs within the range from 1 to 10000.
Table 4 shows the strictest pattern with before R scope. If a cell
does not have “|R”, it means this pattern is the strictest within
global scope and cannot be improved by changing to any before R
scope. The rank of events according to their average relative
positions is same as the ordering in Section 3.5. An entry of 0
means that the corresponding two events satisfy only the
Response pattern or do not satisfy any pattern listed in Table 3.

We found several interesting properties. Globally W_stop_X (as
P) and T_run_X (as S) have an alternating pattern. Considering
the fact that each event occurred only once, we concluded that
after the Producer thread sent out the stop signal and the
Consumer thread eventually stopped. This corresponds to one of
the two properties we expect the program to have.

Globally every W_add_X has at least one response event
T_take_X, and W_add_X starts the chain (indicated by the pattern
MultiEffect). This results from the Consumer calling the take
method in response to the Producer calling the stop method.
Before W_main_X (as R), these two events have a one-to-one
correspondence. This corresponds to another property we
expected.

The second experiment we did is applying our approach to a
faulty program. We removed the synchronization lines (the while
statements in add and stop in Figure 1) in the add and stop
methods of the Buffer class. In the new program, it is possible for
the Producer thread to add multiple times before the Consumer
thread reads the previously inserted values, thus losing some
values.

We instrumented the new program and executed it with another
100 randomly generated inputs within the range from 1 to 10000.
Table 5 shows the strictest patterns with before R scope. We

rank = Rank all events;
foreach combination of two events {

compute their globally strictest pattern;
}
foreach combination of two events {

rank2 = rank;
while (pattern != Alternating) and (rank2 is not empty){

R = remove the latest event from rank2;
new_pattern = compute the strictest pattern before R;
if (new_pattern is stricter than pattern) {

pattern = new_pattern|R;
}

}
}

Figure 3. The prototype algorithm

 S
P T_take_E T_take_X T_run_E T_run_X

W_main_E Alternating|R1 Alternating|R1 Alternating Alternating
W_main_X 0 EffectFirst 0 Alternating
W_add_E CauseFirst CauseFirst 0 MultiCause
W_add_X Alternating|R1 Alternating|R2 0 MultiCause
W_stop_E EffectFirst EffectFirst 0 Alternating
W_stop_X EffectFirst EffectFirst 0 Alternating

Table 4. The strictest pattern with before R scope.
R1 = T_take_X, R2 = W_main_X

 S
P T_take_E T_take_X T_run_E T_run_X

W_main_E Alternating|R1 Alternating|R1 Alternating Alternating
W_main_X 0 EffectFirst 0 Alternating
W_add_E 0 CauseFirst 0 MultiCause
W_add_X 0 CauseFirst 0 MultiCause
W_stop_E 0 EffectFirst 0 Alternating
W_stop_X 0 EffectFirst 0 Alternating

Table 5. The strictest pattern with before R scope for
faulty program. R1 = T_take_X.

found that the strictest property that holds for W_add_X (as P)
and T_take_X (as S) is only that the first W_add_X always
appeared before any T_take_X. This clearly indicates the lack of
an alternating pattern resulted from the inadequate synchroniza-
tion. We found that the faulty program still has one of the
desirable properties: as long as the Producer called the stop
method, the Consumer eventually stopped itself.

5. CONCLUSION
One of the biggest challenges in effective adopting of model
checking is determining useful properties to check. We have
described an approach for automatically inferring interesting
temporal properties of programs by analyzing execution traces.
We built a prototype implementation, and demonstrated its
effectiveness on a simple program. The results are promising, but
a number of challenges remain before our technique can be
applied to realistic programs including extracting interesting
properties with a large number of possible events, developing
good strategies for testing that produce useful event traces for
longer executions, and handling more complex thread interactions.

ACKNOWLEDGMENTS
This work has been funded in part by the National Science
Foundation through NSF CAREER (CCR-0092945) and NSF ITR
(EIA-0205327) grants.

REFERENCES
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL '02), January
2002

[2] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus.
Debugging temporal specifications with concept analysis. In
SIGPLAN Conference on Programming Language Design
and Implementation, June 2003.

[3] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In 8th International
SPIN Workshop on Model Checking of Software, May 2001.

[4] G. Brat, K. Havelund, S. Park, and W. Visser. Model
checking programs. In 15th IEEE International Conference
on Automated Software Engineering, September 2000.

[5] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf. Discovering models
of behavior for concurrent systems. New Mexico State
University Technical Report, NMSU-CSTR-2002-010.

[6] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu,
Robby, H. Zheng. Bandera: extracting finite-state models
from Java source code. In 22nd International Conference on
Software Engineering, June 2000.

[7] J. Corbett, M. Dwyer, and J. Hatcliff, and Robby. Expressing
checkable properties of dynamic systems: the Bandera
specification language. KSU CIS Technical Report 2001-04,
Kansas State University, 2001.

[8] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property
specifications for finite-state verification. In 21st International
Conference on Software Engineering, May 1999.

[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. In IEEE Transactions on Software
Engineering, February 2001.

[10] G. J. Holzmann. The model checker Spin. In IEEE
Transactions on Software Engineering, May 1997.

[11] G. J. Holzmann. The logic of bugs. In 10th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, November 2002

[12] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. In International Journal on
Software Tools for Technology Transfer, September 1999.

[13] K. Havelund. Using runtime analysis to guide model checking
of Java programs. In 7th International SPIN Workshop on
Model Checking of Software, August/September 2000.

[14] J. W. Nimmer and M. D. Ernst. Invariant inference for static
checking: an empirical evaluation. In ACM SIGSOFT 10th
International Symposium on the Foundations of Software
Engineering, November 2002.

[15] K. M. Olender and L. J. Osterweil. Cecil: a sequencing
constraint language for automatic static analysis generation.
In IEEE Transactions on Software Engineering, March 1990.

[16] A. Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science,
October/November 1977.

[17] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. In
International Symposium on Software Testing and Analysis,
July 2002.

