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such laws would be wonderful, no 
clear consensus exists as to whether 
they even exist for system security. 
Nevertheless, efforts to find them 
would be useful, even if those ef-
forts lead to a clearer understand-
ing of why they don’t exist.

The third is the methodological 
sense: science as a way to conduct 
research by forming hypotheses 
and carrying out experiments. For 
certain areas of computer secu-
rity, experiments seem useful, and 
the community will benefit from 
better experimental infrastruc-
ture, datasets, and methods. For 
other areas, it seems difficult to 
do meaningful experiments with-
out developing a way to model a 
sophisticated, creative adversary. 
From this perspective, there are 
several promising directions for 
research and engineering leading 
to a stronger scientific basis for 
computer security. Here, we fo-
cus on the one aspect that’s both 
essential to becoming a legiti-
mate science and the most lacking 
in our current understanding of 
computer security: metrics.

Cybersecurity Metrics
Despite Lord Kelvin’s oft-repeated 
maxim that you can’t really claim 
to understand something until 
you can measure it, few mean-
ingful tools exist for measuring 
computing-system security. With-
out such tools, measuring progress 
scientifically and making practical 
decisions are difficult. Metrics can 
be either analytical or experimen-
tal; we need to develop and ex-
plore the value of both types for 
computer security.

devise suitable metrics for objec-
tively comparing and evaluating 
the security of system designs and 
organizations.

For example, managers must 
have the tools they need to answer 
these fundamental questions: Is my 
organization secure? Are the per-
sonnel sufficiently educated and 
trained to minimize the risks to 
the organization? Is my organiza-
tion complying with regulations on 
managing and safeguarding sensi-
tive data? How do I measure the 
security risk of a new technology or 
service provided to our customers?

These and many other related 
questions are often answered qual-
itatively and retroactively, if at all. 
Rarely do we have hard measure-
ments to objectively and scien-
tifically answer them in ways that 
allow meaningful predictions. It 
is especially important to answer 
these questions longitudinally to 
understand whether a new tech-
nology or policy has improved an 
organization’s security posture. 
With formal metrics, we could 
automate much of a system’s life-
cycle maintenance by measuring 
the system’s successes and isolating 
its shortcomings. These desiderata 
all depend on developing security 
as a science.

Interpretations  
of Science
The meaning of science has at 
least three senses. The first is the 
weak sense: science as the system-
atization and generalization of 
knowledge. In recent years, much 
research has provided a strong un-
derstanding of a particular vul-
nerability or the security issues 
involved in designing a given sys-
tem. However, we’ve seen little 
success in collecting the knowl-
edge from this research into a gen-
eral, systematic framework. That 
is, although there are a few broad 
classes of vulnerabilities—buffer 
overflows, injection attacks, and 
so on—details frequently differ 
enough that developers have little 
useful guidance other than the 
usual high-level guidance: check 
array bounds, sanitize inputs, and 
so on. Computer security would 
benefit from more research on this 
problem. One goal is to establish a 
common framework for classes of 
defenses, categorized according to 
the policies they can enforce and 
the classes of attacks those policies 
can thwart.

The second is the strong sense: 
science as a way to develop univer-
sal laws we can use to make strong, 
quantitative predictions. Although 
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The fundamental challenge for 
any computer security metric is 
that metrics inherently require as-
sumptions and abstractions. A met-
ric aims to take a complex system 
and produce a scalar value that de-
scribes some important property of 
that system. For computer security, 
any assumptions embedded in a 
metric are potential vulnerabili-
ties. In some sense, what we really 
need is a metametric—a way to mea-
sure the risks associated with all 
the assumptions. One interesting 
direction is to devise new design 
approaches that focus on design-
ing for measurable security proper-
ties. Another is to devise challenge 
problems to investigate metrics.

Relative Metrics
Although constructing an abso-
lute security metric for a given 
system might be impossible, rela-
tive metrics might be feasible. For 
example, a metric might be able to 
measure how much more secure a 
system f ′ is than a system f, where 
f ′ is some transformation of the 
original system.

For security, we could note 
that a system with m independent 
defenses is f(m) times as secure. 
Conversely, a system that accepts 
m times as many different inputs 
will be g(m) less secure. In a dif-
ferent vein, we can scale a mod-
ule’s relative security value by 
a function that depends on the 
module’s development and test-
ing environment.

For each proposed type of met-
ric, we can consider both absolute 
and differential metrics. For ex-
ample, for experimental metrics, a 
differential metric might be able to 
determine how much less vulner-
able a site is with an intrusion detec-
tion system (IDS) than without one.

Computational-
Complexity Metrics
Over the past two decades, cryp-
tology has built a strong theoreti-
cal foundation by defining classes 

of adversaries on the basis of the 
amount of information (for ex-
ample, a chosen-ciphertext at-
tacker) and computational power 
(for example, a polynomial-time 
adversary) available to them. 
In cryptology, certain ciphers 
are argued to be strong because 
breaking them requires solving a 
problem believed to be hard (for 
example, RSA and factoring).

Challenges. In some cases, analo-
gous computational-complexity 
metrics seem promising for system 
security but pose two main chal-
lenges. The first is the difference 
between mathematical abstrac-
tions and real implementations. 
The gap between theoretical 
cryptography results and practi-
cal cryptanalysis illustrates this: 
although no one has found a fast 
factoring algorithm, RSA imple-
mentations are regularly broken 
because of side channels (such as 
timing and power consumption), 
poor random-number generation, 
insecure key storage, message for-
mats and padding, and program-
ming bugs.1 For system security, 

the gap between models simple 
enough to use for metrics and 
actual implementations is even 
larger. To make progress, we need 
metrics that work on more con-
crete models of actual systems, or 
ways to build systems that refine 
models without introducing secu-
rity vulnerabilities.

The second problem is that it 
seems unlikely that we can reason 
well about adversary creativity. This 
argues for metrics that assume that 
adversaries can efficiently search 
the entire space of possible actions. 
Perhaps we can develop complexity 
metrics that analyze that space and 
the maximum effectiveness of dif-
ferent search strategies.

An example metric: automated di-
versity. Computational-complexity 
metrics are promising for evaluat-
ing security techniques based on 
automatically generated diversity. 
One example is address space random-
ization, which most modern OSs, 
including Windows 7 and Linux, 
incorporate in some form. This 
technique uses a cryptographic 
key to randomize the placement 
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of objects, so we might be able to 
measure an attack’s difficulty on the 
basis of the amount of entropy in 
this key.

In practice, however, such a met-
ric depends on many assumptions 
about how much of the entropy an 
attacker must break to launch a suc-
cessful attack and whether attackers 
have other ways to learn the ran-
domized state. Many implementa-
tions of randomization techniques 
have proven much weaker than 
would be estimated by this simple 
security metric.2,3

One research direction is to 
use randomization more system-
atically, eliminating some of the 
assumptions needed for previ-
ous security arguments or, in the 
case of N-variant systems, elimi-
nating the need to keep the ran-
domization key secret.4 Promising 
approaches in this area include 
developing metrics that capture 
the implementation issues beyond 
just the randomization entropy, 
and understanding how compos-
ing and dynamically adapting 
randomization techniques impacts 
system security.

Economic and  
Biological Metrics
An alternative is metrics based 
on economic or biological ap-
proaches. A research community 
has emerged around economic ap-
proaches (embodied by the annual 
Economics of Information Secu-
rity workshops). Metrics based 
on the expected cost required to 
compromise a system can help 
guide system designers. However, 
for most computing systems, these 
metrics’ parameters are somewhat 
arbitrary. Regarding biological 
approaches, metrics for network 
vulnerability can be based on epi-
demiology, but they depend on 
abstract models of network nodes.

An example economic metric: 
cost-based IDS. IDSs have become 
critical in securing computer sys-

tem infrastructures. IDS developers 
strive to maximize the detection ac-
curacy and bandwidth of deployed 
systems in realistic environments. 
The goal is to develop efficient de-
tectors with high true-positive rates 
while minimizing false-negative 
and false-positive rates.

However, even after many years 
of development, IDSs still have 
marginal detection rates and high 
false-positive and false-negative 
rates, especially when detecting 
novel intrusion attempts—zero-
day attacks. The goal of detecting 
all true intrusions while minimiz-
ing false alerts is complicated by 
time and processing-speed con-
straints, especially for high-speed 
networks. So, it’s desirable to focus 
detection on the costliest, most 
important attacks while ignoring 
as much benign traffic as possible.

Toward this goal, researchers 
have defined cost-based detec-
tion metrics for IDSs.5 For each 
network event determined to be 
an attack, this approach estimates 
a response cost and a damage cost 
on the basis of factors such as the 
criticality of the targeted system 
component. If the damage cost is 
greater than the response cost, the 
system might initiate a response. 
These metrics in total define a 
cost-based metric for system de-
fense that’s closely related to “stop 
loss” metrics employed in fraud 
and risk management systems for 
financial-transaction systems.

An example biological metric: 
polymorphic-engine  strength. 
Code injection attacks have tradi-
tionally received much attention 
from both security researchers and 
the black hat community, and re-
searchers have proposed a variety 
of defenses. For example, many ap-
proaches capture a representation 
of the exploit to create a signature 
for use in detecting and filtering 
future versions of the attack.

Contemporary polymorphism 
techniques have rendered these de-

fenses all but obsolete,6 due largely 
to the sophisticated obfuscation 
techniques embodied in a number 
of publicly available (via Metasploit) 
polymorphic engines that stress 
various defenses’ limits. These en-
gines essentially mimic biological 
processes of mutation and diversity 
in evolutionary contexts at a macro 
level, and of diversity in the injec-
tion vectors at the micro level.

Judging different polymorphic 
engines’ relative strength is dif-
ficult. To evaluate their relative 
strength, and hence the relative 
effort to defend against the wide 
range of malware variants they 
produce, researchers have estab-
lished a set of metrics that capture 
the variability and distinctiveness 
of samples they generate. Two 
metrics are particularly promising.

The first is variation strength. 
An engine’s variation strength 
measures its ability to generate se-
quences of length n that span a suf-
ficiently large portion of n-space. 
This metric offers insight into the 
magnitude of the set of signatures 
that might be needed to accurately 
encapsulate all malware that a par-
ticular engine generates.

The second metric is propa-
gation strength. For the sequence 
of malware samples that an en-
gine can generate, the engine’s 
propagation strength character-
izes its efficacy in making any 
two samples look different from 
one another. This metric aims to 
quantify the information gain ob-
tained by isolating a few samples 
from a particular engine.

Using a hybrid metric com-
bining these two metrics, we can 
analyze polymorphic engines and 
measure their relative obfuscation 
utility. This yields a scaled score 
for each engine that we call the 
relative polymorphism strength score or 
p-score. We then rank-order each 
engine, identifying the most chal-
lenging to defend against.

These metrics aren’t just useful 
for judging an exploitation’s ef-
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fectiveness. Polymorphic engines 
might aid defenses by generating a 
range of diversified code to thwart 
adversarial analysis and exploita-
tion of a target system.

Empirical Metrics
There’s also value in developing 
empirical metrics based on care-
fully structured experiments. This 
is analogous to how mechanical 
safes are rated on the basis of their 
ability to withstand different class-
es of attacks over a given time pe-
riod. (For example, a TL-30 safe 
can withstand 30 minutes of at-
tacks involving various mechani-
cal and electrical tools.)

Red-team exercises are some-
times used to evaluate system 
security. However, current red-
team exercises are too ad hoc to 
produce a meaningful measure-
ment beyond knowing how eas-
ily a particular red team could 
compromise a given system. So, 
they’re used primarily to iden-
tify apparent weaknesses in a par-
ticular deployment. Perhaps we 
can develop more systematic ap-
proaches to adversarial metrics.

Modeling adversaries. The main 
challenge in doing meaningful 
computer security experiments is 
modeling adversaries. Better ex-
periments require improvements 
in adversary models, as well as in 
designing more reproducible ex-
periments that don’t depend so 
much on accurate models of adver-
sary behavior. One way to improve 
adversary models is to systematize 
current knowledge about real ad-
versaries and use it to develop 
experimental adversary models. 
Perhaps this approach could help 
us develop a canonical attacker 
model that we could use in a wide 
class of experiments, rather than 
rely on ad hoc models created by 
individual experimenters.

Generally, however, using ex-
periments to evaluate new security 
mechanisms seems extraordinarily 

difficult. There’s little cause for 
optimism that we could develop a 
useful model of a creative adver-
sary attacking a new design.

An example metric: decoy prop-
erties. Decoy documents are 
honeyfiles that detect system com-
promise by adversaries, especially 
those with insider privileges. They 
aim to confuse and deceive adver-
saries by leveraging uncertainty to 
reduce the knowledge the adver-
saries ordinarily have. According-
ly, they can serve as effective bait 
in a trap-based defense system.

We can aid the design of 
decoy-based systems by evaluating 
certain key properties of decoys, 
such as enticement, believability, 
variability, and conspicuousness.7 
Each property is measurable and 
can serve as a guide for alternative 
decoy designs. For example, you 
can measure believability through 
a human subject study.

Borrowing the cryptography 
community’s idea of perfect se-
crecy, we define a perfectly be-
lievable decoy as one that’s chosen 
with a probability of 1/2 over all 
trials. That is, a perfect decoy is 
completely indistinguishable from 
one that isn’t perfect. Although in 
practice, automatic construction of 
perfect decoys might be unachiev-
able, this metric gives us a goal to 
strive for when designing and im-
plementing deception systems.

An example metric: fuzzing com-
plexity. Protocol fuzzing has proven 
extraordinarily powerful for find-
ing implementation flaws. Fuzzing, 
though, isn’t a matter of feeding 
purely random data to a target. It’s 
guided randomness, with the guid-
ance based on the input-language 
specification. A more complex in-
put language, then, requires more 
complex guidance. Given that code 
complexity correlates well with 
the number of bugs (and hence the 
number of security holes), we could 
use the size of the fuzzing guidance 

input to measure a specification’s 
inherent insecurity, independent of 
any implementations.

The Case for a Metrics 
Research Program
The fundamental problem with 
any security metric is that most 
security holes are due to buggy 
code. For example, our cryptog-
raphy is very strong. However, 
more than a decade ago, a US Na-
tional Academies study noted that 
85 percent of reported vulner-
abilities couldn’t be fixed through 
cryptography; they were due to 
configuration or coding errors.8 
Nor are errors confined to imple-
menters; as Carl Landwehr and his 
colleagues noted, many security 
problems are in the specifications.9

Any attempt to measure secu-
rity, then, must confront another 
problem: we have no way to mea-
sure the residual bugs—and hence 
vulnerabilities—in a given body of 
code. Traditional methods, such as 
looking at the reported error rates 
over time and extrapolating, don’t 
account for the adversarial process. 
Finding holes isn’t a purely stochas-
tic process but is driven by the ef-
fort expended, and you never really 
know an adversary’s goals, capabili-
ties, or resources. A useful metric, 
then, must account for varying de-
grees of damage of an attack against 
a code base of unknowable quality.

Systematization has its own re-
lated challenges. Without a general 
theory of bugs—and hence of se-
curity holes—systematization can 
reduce to a large catalog, with only 
a few generally useful categories. 
Again, though, bugs are too varied.

Finally, even gathering empiri-
cal data is challenging. It must be 
a large, uniformly selected col-
lection. Open source software 
change logs are one useful input, 
but commercial code has very dif-
ferent properties. Unfortunately, 
concerns about proprietary in-
formation can inhibit the release 
of data. More fundamentally, the 
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raw data isn’t very useful without 
a great deal of context information 
and analysis. When was the code 
written? What’s the design and re-
vision history of the module and 
its callers? What development and 
testing practices were followed? 
How experienced were the pro-
grammers? These questions and 
more must be answered for each 
data point gathered.

Securing Legacy Software
Clearly, the development of a 
science of security, and particu-
larly of security metrics, is a very 
hard problem. If an accurate se-
curity metric were possible, de-
fense would be moot. A formal 
means of measuring the security 
of a large legacy software system 
would imply that every vulner-
ability was identifiable and quanti-
fiable. So, we would simply repair 
the system to drive that metric to 
0. Problem solved!

Several major research pro-
grams are dealing with securing 
legacy software, recognizing that 
perfect identification of all vul-
nerabilities is unrealistic. Over the 
next few years, these programs 
will likely produce demonstrably 
more secure software by combin-
ing static and dynamic analyses 
with runtime diversification and 
compartmentalization. The strate-
gy is largely to prevent many more 
attacks than we can today and to 
contain whatever damage a suc-
cessful attack might make. Time 
will tell how successful these ap-
proaches will be.

Layers of Defense  
for Resiliency
We posit an alternative strategy that

•	extends the principle of defense 
in depth and

•	provides a pathway to secur-
ing legacy systems with metrics 
that can adequately evaluate the 
safety, security, and resiliency of 
the mission the legacy software 
supports.

We conjecture that we can apply 
metrics to layers of defenses that 
manage and control the interac-
tion of different kinds of adversar-
ies with a target system.

Any system we design involves 
many layers, such as

•	physical layers, such as the 
boundary between hardware 
and firmware, which control the 
movement of code and data;

•	 communication layers, which 
manage the movement of bits 
from network to host;

•	 access control layers, which 
manage users and their credentials 
and the access to applications and 
data; and

•	management layers, which con-
trol people’s access to critical 
systems and resources.

These layers will be composed and 
combined into one system that sup-
ports the mission we seek to defend.

The goal is to devise measurable 
systems that are resilient to failure 
under reasonable estimates of ad-
versary effort. So, we believe we 

can measure resiliency by designing 
layers of defense that provide a low-
er bound on the resources adversar-
ies need to pass through each layer 
to achieve their ultimate goals.

In a naive system, the strength 
is roughly proportional to the 
number of layers and can be mea-
sured as such.10 Today’s security, 
then, is linear and could thus be 
overcome by an adversary with 
linearly increasing resources. In 
the physical world, though, we can 
bond together materials, even dis-
similar ones, to achieve far greater 
strength than a simple linear in-
crease. Unfortunately, many of 
today’s security mechanisms aren’t 
readily composable. If we can 
build layers in the physical world 
that reinforce each other, perhaps 
by repairing flaws, we can do the 
same in the cyberworld. We can 
then develop a composition rule 
for each layer’s security metrics.

Different Adversaries, 
Different Layers
At least three kinds of adversaries 
might interact with a system. The 
remote, nation-state actor might 
have numerous network paths to 
reach a target system. A correspond-
ing defense would force the adver-
sary to traverse a number of layers, 
each designed to adequately esti-
mate how much effort the adversary 
might employ to successfully attack 
a system. We can design cost-based 
IDSs that limit the rate of informa-
tion flow, using an estimate of how 
much data might be lost.

An expert operator adversary 
would presumably know all the 
target system’s features and ca-
pabilities. In this case, operator 
behavior models might serve as a 
layered defense by specifying and 
limiting how users interact with 
mission-critical systems.

The insider expert developer 
who contributed to the design, 
specification, and implementation 
of the target system is probably the 
most dangerous adversary. Vari-
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ous randomization strategies that 
create diversified system code and 
layout might serve as another layer 
limiting the damage that even a 
developer might mount.

In each case, we assume the 
adversary has a certain level of 
knowledge of his or her quarry, 
and access to the system through 
different paths. Some of these 
paths might be monitored and 
defended; in other cases, no such 
defense might exist. Given a par-
ticular threat and adversary model, 
we envision alternative layered de-
fenses that proactively manage and 
control access to a target system 
from any possible path. In many 
cases, we might need to design 
and implement new infrastruc-
tures and layers. For example, we 
might need host monitoring in-
frastructures to force internal users 
through a layer that manages their 
access to only a single compart-
ment in a larger, critical system.

Measurable  
Defense in Depth
The key goal is measurable defense in 
depth. We must design each layer 
with measurement in mind. In 
some cases, prior research results 
or previous successful penetrations 
by particular kinds of adversaries 
might guide these measurements.

Generally, specifying a useful, 
verifiable metric will require con-
siderable research. For example, 
for cost-based IDS metrics, the 
cost of traversing a layer protected 
by an IDS requires considerable 
knowledge of the target system, 
the data it hosts, and the relative 
value of the targeted system’s dif-
ferent components. This knowl-
edge is largely in the minds of the 
system designers, who might be 
adversarial. So, the metrics that 
we apply to each layer must be 
verifiable and defensible.

A research program that devel-
ops clear, concise, and useful 

security metrics in the context of 
layered defenses would considerably 
help to establish security as a science 
and guide security engineering as a 
formal professional discipline. The 
technical impediments are great, 
but the payoff would be transfor-
mative. Much work remains, but 
the metrics we’ve described might 
point the way to successful out-
comes. Even if these metrics are 
unsuccessful, understanding deep-
ly why our current models and 
metrics don’t adequately capture 
our modern and legacy systems’ 
security properties will help teach 
us how to build better, more mea-
surable systems. 
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