
60	 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 	 	 1540-7993/11/$26.00 © 2011 IEEE� MAY/JUNE 2011

On the Horizon
Editors: Vijay Varadharajan, vijay@ics.mq.edu.au
Fred Cohen, fc@all.net

such laws would be wonderful, no
clear consensus exists as to whether
they even exist for system security.
Nevertheless, efforts to find them
would be useful, even if those ef-
forts lead to a clearer understand-
ing of why they don’t exist.

The third is the methodological
sense: science as a way to conduct
research by forming hypotheses
and carrying out experiments. For
certain areas of computer secu-
rity, experiments seem useful, and
the community will benefit from
better experimental infrastruc-
ture, datasets, and methods. For
other areas, it seems difficult to
do meaningful experiments with-
out developing a way to model a
sophisticated, creative adversary.
From this perspective, there are
several promising directions for
research and engineering leading
to a stronger scientific basis for
computer security. Here, we fo-
cus on the one aspect that’s both
essential to becoming a legiti-
mate science and the most lacking
in our current understanding of
computer security: metrics.

Cybersecurity Metrics
Despite Lord Kelvin’s oft-repeated
maxim that you can’t really claim
to understand something until
you can measure it, few mean-
ingful tools exist for measuring
computing-system security. With-
out such tools, measuring progress
scientifically and making practical
decisions are difficult. Metrics can
be either analytical or experimen-
tal; we need to develop and ex-
plore the value of both types for
computer security.

devise suitable metrics for objec-
tively comparing and evaluating
the security of system designs and
organizations.

For example, managers must
have the tools they need to answer
these fundamental questions: Is my
organization secure? Are the per-
sonnel sufficiently educated and
trained to minimize the risks to
the organization? Is my organiza-
tion complying with regulations on
managing and safeguarding sensi-
tive data? How do I measure the
security risk of a new technology or
service provided to our customers?

These and many other related
questions are often answered qual-
itatively and retroactively, if at all.
Rarely do we have hard measure-
ments to objectively and scien-
tifically answer them in ways that
allow meaningful predictions. It
is especially important to answer
these questions longitudinally to
understand whether a new tech-
nology or policy has improved an
organization’s security posture.
With formal metrics, we could
automate much of a system’s life-
cycle maintenance by measuring
the system’s successes and isolating
its shortcomings. These desiderata
all depend on developing security
as a science.

Interpretations
of Science
The meaning of science has at
least three senses. The first is the
weak sense: science as the system-
atization and generalization of
knowledge. In recent years, much
research has provided a strong un-
derstanding of a particular vul-
nerability or the security issues
involved in designing a given sys-
tem. However, we’ve seen little
success in collecting the knowl-
edge from this research into a gen-
eral, systematic framework. That
is, although there are a few broad
classes of vulnerabilities—buffer
overflows, injection attacks, and
so on—details frequently differ
enough that developers have little
useful guidance other than the
usual high-level guidance: check
array bounds, sanitize inputs, and
so on. Computer security would
benefit from more research on this
problem. One goal is to establish a
common framework for classes of
defenses, categorized according to
the policies they can enforce and
the classes of attacks those policies
can thwart.

The second is the strong sense:
science as a way to develop univer-
sal laws we can use to make strong,
quantitative predictions. Although

T
he field of computer and communications se-

curity begs for a foundational science to guide

system design and to reveal the safety, secu-

rity, and possible fragility of the complex sys-

tems we depend on today. To achieve this goal, we must

Sal Stolfo
and Steven
M. Bellovin

Columbia
University

David Evans

University of
Virginia

Measuring Security

On the Horizon

	 www.computer.org/security� 61

The fundamental challenge for
any computer security metric is
that metrics inherently require as-
sumptions and abstractions. A met-
ric aims to take a complex system
and produce a scalar value that de-
scribes some important property of
that system. For computer security,
any assumptions embedded in a
metric are potential vulnerabili-
ties. In some sense, what we really
need is a metametric—a way to mea-
sure the risks associated with all
the assumptions. One interesting
direction is to devise new design
approaches that focus on design-
ing for measurable security proper-
ties. Another is to devise challenge
problems to investigate metrics.

Relative Metrics
Although constructing an abso-
lute security metric for a given
system might be impossible, rela-
tive metrics might be feasible. For
example, a metric might be able to
measure how much more secure a
system f ′ is than a system f, where
f ′ is some transformation of the
original system.

For security, we could note
that a system with m independent
defenses is f(m) times as secure.
Conversely, a system that accepts
m times as many different inputs
will be g(m) less secure. In a dif-
ferent vein, we can scale a mod-
ule’s relative security value by
a function that depends on the
module’s development and test-
ing environment.

For each proposed type of met-
ric, we can consider both absolute
and differential metrics. For ex-
ample, for experimental metrics, a
differential metric might be able to
determine how much less vulner-
able a site is with an intrusion detec-
tion system (IDS) than without one.

Computational-
Complexity Metrics
Over the past two decades, cryp-
tology has built a strong theoreti-
cal foundation by defining classes

of adversaries on the basis of the
amount of information (for ex-
ample, a chosen-ciphertext at-
tacker) and computational power
(for example, a polynomial-time
adversary) available to them.
In cryptology, certain ciphers
are argued to be strong because
breaking them requires solving a
problem believed to be hard (for
example, RSA and factoring).

Challenges. In some cases, analo-
gous computational-complexity
metrics seem promising for system
security but pose two main chal-
lenges. The first is the difference
between mathematical abstrac-
tions and real implementations.
The gap between theoretical
cryptography results and practi-
cal cryptanalysis illustrates this:
although no one has found a fast
factoring algorithm, RSA imple-
mentations are regularly broken
because of side channels (such as
timing and power consumption),
poor random-number generation,
insecure key storage, message for-
mats and padding, and program-
ming bugs.1 For system security,

the gap between models simple
enough to use for metrics and
actual implementations is even
larger. To make progress, we need
metrics that work on more con-
crete models of actual systems, or
ways to build systems that refine
models without introducing secu-
rity vulnerabilities.

The second problem is that it
seems unlikely that we can reason
well about adversary creativity. This
argues for metrics that assume that
adversaries can efficiently search
the entire space of possible actions.
Perhaps we can develop complexity
metrics that analyze that space and
the maximum effectiveness of dif-
ferent search strategies.

An example metric: automated di-
versity. Computational-complexity
metrics are promising for evaluat-
ing security techniques based on
automatically generated diversity.
One example is address space random-
ization, which most modern OSs,
including Windows 7 and Linux,
incorporate in some form. This
technique uses a cryptographic
key to randomize the placement

On the Horizon

62	 IEEE SECURITY & PRIVACY� MAY/JUNE 2011

of objects, so we might be able to
measure an attack’s difficulty on the
basis of the amount of entropy in
this key.

In practice, however, such a met-
ric depends on many assumptions
about how much of the entropy an
attacker must break to launch a suc-
cessful attack and whether attackers
have other ways to learn the ran-
domized state. Many implementa-
tions of randomization techniques
have proven much weaker than
would be estimated by this simple
security metric.2,3

One research direction is to
use randomization more system-
atically, eliminating some of the
assumptions needed for previ-
ous security arguments or, in the
case of N-variant systems, elimi-
nating the need to keep the ran-
domization key secret.4 Promising
approaches in this area include
developing metrics that capture
the implementation issues beyond
just the randomization entropy,
and understanding how compos-
ing and dynamically adapting
randomization techniques impacts
system security.

Economic and
Biological Metrics
An alternative is metrics based
on economic or biological ap-
proaches. A research community
has emerged around economic ap-
proaches (embodied by the annual
Economics of Information Secu-
rity workshops). Metrics based
on the expected cost required to
compromise a system can help
guide system designers. However,
for most computing systems, these
metrics’ parameters are somewhat
arbitrary. Regarding biological
approaches, metrics for network
vulnerability can be based on epi-
demiology, but they depend on
abstract models of network nodes.

An example economic metric:
cost-based IDS. IDSs have become
critical in securing computer sys-

tem infrastructures. IDS developers
strive to maximize the detection ac-
curacy and bandwidth of deployed
systems in realistic environments.
The goal is to develop efficient de-
tectors with high true-positive rates
while minimizing false-negative
and false-positive rates.

However, even after many years
of development, IDSs still have
marginal detection rates and high
false-positive and false-negative
rates, especially when detecting
novel intrusion attempts—zero-
day attacks. The goal of detecting
all true intrusions while minimiz-
ing false alerts is complicated by
time and processing-speed con-
straints, especially for high-speed
networks. So, it’s desirable to focus
detection on the costliest, most
important attacks while ignoring
as much benign traffic as possible.

Toward this goal, researchers
have defined cost-based detec-
tion metrics for IDSs.5 For each
network event determined to be
an attack, this approach estimates
a response cost and a damage cost
on the basis of factors such as the
criticality of the targeted system
component. If the damage cost is
greater than the response cost, the
system might initiate a response.
These metrics in total define a
cost-based metric for system de-
fense that’s closely related to “stop
loss” metrics employed in fraud
and risk management systems for
financial-transaction systems.

An example biological metric:
polymorphic-engine  strength.
Code injection attacks have tradi-
tionally received much attention
from both security researchers and
the black hat community, and re-
searchers have proposed a variety
of defenses. For example, many ap-
proaches capture a representation
of the exploit to create a signature
for use in detecting and filtering
future versions of the attack.

Contemporary polymorphism
techniques have rendered these de-

fenses all but obsolete,6 due largely
to the sophisticated obfuscation
techniques embodied in a number
of publicly available (via Metasploit)
polymorphic engines that stress
various defenses’ limits. These en-
gines essentially mimic biological
processes of mutation and diversity
in evolutionary contexts at a macro
level, and of diversity in the injec-
tion vectors at the micro level.

Judging different polymorphic
engines’ relative strength is dif-
ficult. To evaluate their relative
strength, and hence the relative
effort to defend against the wide
range of malware variants they
produce, researchers have estab-
lished a set of metrics that capture
the variability and distinctiveness
of samples they generate. Two
metrics are particularly promising.

The first is variation strength.
An engine’s variation strength
measures its ability to generate se-
quences of length n that span a suf-
ficiently large portion of n-space.
This metric offers insight into the
magnitude of the set of signatures
that might be needed to accurately
encapsulate all malware that a par-
ticular engine generates.

The second metric is propa-
gation strength. For the sequence
of malware samples that an en-
gine can generate, the engine’s
propagation strength character-
izes its efficacy in making any
two samples look different from
one another. This metric aims to
quantify the information gain ob-
tained by isolating a few samples
from a particular engine.

Using a hybrid metric com-
bining these two metrics, we can
analyze polymorphic engines and
measure their relative obfuscation
utility. This yields a scaled score
for each engine that we call the
relative polymorphism strength score or
p-score. We then rank-order each
engine, identifying the most chal-
lenging to defend against.

These metrics aren’t just useful
for judging an exploitation’s ef-

On the Horizon

	 www.computer.org/security� 63

fectiveness. Polymorphic engines
might aid defenses by generating a
range of diversified code to thwart
adversarial analysis and exploita-
tion of a target system.

Empirical Metrics
There’s also value in developing
empirical metrics based on care-
fully structured experiments. This
is analogous to how mechanical
safes are rated on the basis of their
ability to withstand different class-
es of attacks over a given time pe-
riod. (For example, a TL-30 safe
can withstand 30 minutes of at-
tacks involving various mechani-
cal and electrical tools.)

Red-team exercises are some-
times used to evaluate system
security. However, current red-
team exercises are too ad hoc to
produce a meaningful measure-
ment beyond knowing how eas-
ily a particular red team could
compromise a given system. So,
they’re used primarily to iden-
tify apparent weaknesses in a par-
ticular deployment. Perhaps we
can develop more systematic ap-
proaches to adversarial metrics.

Modeling adversaries. The main
challenge in doing meaningful
computer security experiments is
modeling adversaries. Better ex-
periments require improvements
in adversary models, as well as in
designing more reproducible ex-
periments that don’t depend so
much on accurate models of adver-
sary behavior. One way to improve
adversary models is to systematize
current knowledge about real ad-
versaries and use it to develop
experimental adversary models.
Perhaps this approach could help
us develop a canonical attacker
model that we could use in a wide
class of experiments, rather than
rely on ad hoc models created by
individual experimenters.

Generally, however, using ex-
periments to evaluate new security
mechanisms seems extraordinarily

difficult. There’s little cause for
optimism that we could develop a
useful model of a creative adver-
sary attacking a new design.

An example metric: decoy prop-
erties. Decoy documents are
honeyfiles that detect system com-
promise by adversaries, especially
those with insider privileges. They
aim to confuse and deceive adver-
saries by leveraging uncertainty to
reduce the knowledge the adver-
saries ordinarily have. According-
ly, they can serve as effective bait
in a trap-based defense system.

We can aid the design of
decoy-based systems by evaluating
certain key properties of decoys,
such as enticement, believability,
variability, and conspicuousness.7
Each property is measurable and
can serve as a guide for alternative
decoy designs. For example, you
can measure believability through
a human subject study.

Borrowing the cryptography
community’s idea of perfect se-
crecy, we define a perfectly be-
lievable decoy as one that’s chosen
with a probability of 1/2 over all
trials. That is, a perfect decoy is
completely indistinguishable from
one that isn’t perfect. Although in
practice, automatic construction of
perfect decoys might be unachiev-
able, this metric gives us a goal to
strive for when designing and im-
plementing deception systems.

An example metric: fuzzing com-
plexity. Protocol fuzzing has proven
extraordinarily powerful for find-
ing implementation flaws. Fuzzing,
though, isn’t a matter of feeding
purely random data to a target. It’s
guided randomness, with the guid-
ance based on the input-language
specification. A more complex in-
put language, then, requires more
complex guidance. Given that code
complexity correlates well with
the number of bugs (and hence the
number of security holes), we could
use the size of the fuzzing guidance

input to measure a specification’s
inherent insecurity, independent of
any implementations.

The Case for a Metrics
Research Program
The fundamental problem with
any security metric is that most
security holes are due to buggy
code. For example, our cryptog-
raphy is very strong. However,
more than a decade ago, a US Na-
tional Academies study noted that
85 percent of reported vulner-
abilities couldn’t be fixed through
cryptography; they were due to
configuration or coding errors.8
Nor are errors confined to imple-
menters; as Carl Landwehr and his
colleagues noted, many security
problems are in the specifications.9

Any attempt to measure secu-
rity, then, must confront another
problem: we have no way to mea-
sure the residual bugs—and hence
vulnerabilities—in a given body of
code. Traditional methods, such as
looking at the reported error rates
over time and extrapolating, don’t
account for the adversarial process.
Finding holes isn’t a purely stochas-
tic process but is driven by the ef-
fort expended, and you never really
know an adversary’s goals, capabili-
ties, or resources. A useful metric,
then, must account for varying de-
grees of damage of an attack against
a code base of unknowable quality.

Systematization has its own re-
lated challenges. Without a general
theory of bugs—and hence of se-
curity holes—systematization can
reduce to a large catalog, with only
a few generally useful categories.
Again, though, bugs are too varied.

Finally, even gathering empiri-
cal data is challenging. It must be
a large, uniformly selected col-
lection. Open source software
change logs are one useful input,
but commercial code has very dif-
ferent properties. Unfortunately,
concerns about proprietary in-
formation can inhibit the release
of data. More fundamentally, the

On the Horizon

64	 IEEE SECURITY & PRIVACY� MAY/JUNE 2011

raw data isn’t very useful without
a great deal of context information
and analysis. When was the code
written? What’s the design and re-
vision history of the module and
its callers? What development and
testing practices were followed?
How experienced were the pro-
grammers? These questions and
more must be answered for each
data point gathered.

Securing Legacy Software
Clearly, the development of a
science of security, and particu-
larly of security metrics, is a very
hard problem. If an accurate se-
curity metric were possible, de-
fense would be moot. A formal
means of measuring the security
of a large legacy software system
would imply that every vulner-
ability was identifiable and quanti-
fiable. So, we would simply repair
the system to drive that metric to
0. Problem solved!

Several major research pro-
grams are dealing with securing
legacy software, recognizing that
perfect identification of all vul-
nerabilities is unrealistic. Over the
next few years, these programs
will likely produce demonstrably
more secure software by combin-
ing static and dynamic analyses
with runtime diversification and
compartmentalization. The strate-
gy is largely to prevent many more
attacks than we can today and to
contain whatever damage a suc-
cessful attack might make. Time
will tell how successful these ap-
proaches will be.

Layers of Defense
for Resiliency
We posit an alternative strategy that

•	extends the principle of defense
in depth and

•	provides a pathway to secur-
ing legacy systems with metrics
that can adequately evaluate the
safety, security, and resiliency of
the mission the legacy software
supports.

We conjecture that we can apply
metrics to layers of defenses that
manage and control the interac-
tion of different kinds of adversar-
ies with a target system.

Any system we design involves
many layers, such as

•	physical layers, such as the
boundary between hardware
and firmware, which control the
movement of code and data;

•	 communication layers, which
manage the movement of bits
from network to host;

•	 access control layers, which
manage users and their credentials
and the access to applications and
data; and

•	management layers, which con-
trol people’s access to critical
systems and resources.

These layers will be composed and
combined into one system that sup-
ports the mission we seek to defend.

The goal is to devise measurable
systems that are resilient to failure
under reasonable estimates of ad-
versary effort. So, we believe we

can measure resiliency by designing
layers of defense that provide a low-
er bound on the resources adversar-
ies need to pass through each layer
to achieve their ultimate goals.

In a naive system, the strength
is roughly proportional to the
number of layers and can be mea-
sured as such.10 Today’s security,
then, is linear and could thus be
overcome by an adversary with
linearly increasing resources. In
the physical world, though, we can
bond together materials, even dis-
similar ones, to achieve far greater
strength than a simple linear in-
crease. Unfortunately, many of
today’s security mechanisms aren’t
readily composable. If we can
build layers in the physical world
that reinforce each other, perhaps
by repairing flaws, we can do the
same in the cyberworld. We can
then develop a composition rule
for each layer’s security metrics.

Different Adversaries,
Different Layers
At least three kinds of adversaries
might interact with a system. The
remote, nation-state actor might
have numerous network paths to
reach a target system. A correspond-
ing defense would force the adver-
sary to traverse a number of layers,
each designed to adequately esti-
mate how much effort the adversary
might employ to successfully attack
a system. We can design cost-based
IDSs that limit the rate of informa-
tion flow, using an estimate of how
much data might be lost.

An expert operator adversary
would presumably know all the
target system’s features and ca-
pabilities. In this case, operator
behavior models might serve as a
layered defense by specifying and
limiting how users interact with
mission-critical systems.

The insider expert developer
who contributed to the design,
specification, and implementation
of the target system is probably the
most dangerous adversary. Vari-

Related Reading

F or more background (with significant skeptical analysis), see Steven M. Bellovin’s 2006

IEEE Security & Privacy article “On the Brittleness of Software and the Infeasibility of

Security Metrics” (http://doi.ieeecomputersociety.org/10.1109/MSP.2006.101) and his 2010

PowerPoint presentation “The Cybersecurity Challenge” (www.cs.columbia.edu/~smb/talks/

bellovin_onassis_challenge.pdf).

Also of interest is the JASON program’s 2010 report, the Science of Cybersecurity (www.fas.

org/irp/agency/dod/jason/cyber.pdf).

On the Horizon

	 www.computer.org/security� 65

ous randomization strategies that
create diversified system code and
layout might serve as another layer
limiting the damage that even a
developer might mount.

In each case, we assume the
adversary has a certain level of
knowledge of his or her quarry,
and access to the system through
different paths. Some of these
paths might be monitored and
defended; in other cases, no such
defense might exist. Given a par-
ticular threat and adversary model,
we envision alternative layered de-
fenses that proactively manage and
control access to a target system
from any possible path. In many
cases, we might need to design
and implement new infrastruc-
tures and layers. For example, we
might need host monitoring in-
frastructures to force internal users
through a layer that manages their
access to only a single compart-
ment in a larger, critical system.

Measurable
Defense in Depth
The key goal is measurable defense in
depth. We must design each layer
with measurement in mind. In
some cases, prior research results
or previous successful penetrations
by particular kinds of adversaries
might guide these measurements.

Generally, specifying a useful,
verifiable metric will require con-
siderable research. For example,
for cost-based IDS metrics, the
cost of traversing a layer protected
by an IDS requires considerable
knowledge of the target system,
the data it hosts, and the relative
value of the targeted system’s dif-
ferent components. This knowl-
edge is largely in the minds of the
system designers, who might be
adversarial. So, the metrics that
we apply to each layer must be
verifiable and defensible.

A research program that devel-
ops clear, concise, and useful

security metrics in the context of
layered defenses would considerably
help to establish security as a science
and guide security engineering as a
formal professional discipline. The
technical impediments are great,
but the payoff would be transfor-
mative. Much work remains, but
the metrics we’ve described might
point the way to successful out-
comes. Even if these metrics are
unsuccessful, understanding deep-
ly why our current models and
metrics don’t adequately capture
our modern and legacy systems’
security properties will help teach
us how to build better, more mea-
surable systems.

Acknowledgments
This article is based partly on the
workshop report for the 2008 US
National Science Foundation / Intel-
ligence Advanced Research Projects
Activity / National Security Agency
Workshop on the Science of Security.
This meeting brought together 43
leading researchers in computer secu-
rity and other relevant fields to con-
sider the state of scientific research in
computer security and to identify steps
toward establishing a stronger scien-
tific basis for computer system security.
Slides from most of the presentations
are available at the workshop website,
http://sos.cs.virginia.edu/agenda.html.

References
1.	 J.P. Degabriele, K.G. Paterson,

and G.J. Watson, “Provable Secu-
rity in the Real World,” IEEE Se-
curity & Privacy, vol. 9, no. 3, 2011,
pp. 33–41.

2.	 H. Shacham et al., “On the Effec-
tiveness of Address-Space Ran-
domization,” Proc. 2004 ACM
Conf. Computer and Communica-
tions Security (CCS 04), ACM
Press, 2004, pp. 298–307.

3.	 A.N. Sovarel, D. Evans, and N.
Paul, “Where’s the FEEB? The
Effectiveness of Instruction Set
Randomization,” Proc. 14th Use-
nix Security Symp., Usenix Assoc.,
2005, pp. 145–160.

4.	 B. Cox et al., “N-Variant Sys-
tems: A Secretless Framework for
Security through Diversity,” Proc.
15th Usenix Security Symp., Usenix
Assoc., 2006, pp. 105–120.

5.	 W. Lee et al., “Toward Cost-
Sensitive Modeling for Intrusion
Detection and Response,” J. Com-
puter Security, vol. 10, nos. 1–2,
2002; pp. 5–22.

6.	 Y. Song et al., “On the Infeasi-
bility of Modeling Polymorphic
Shellcode,” Proc. 14th ACM Conf.
Computer and Communications
Security (CCS 07), ACM Press,
2007, pp. 541–551.

7.	 B.M. Bowen et al., “Baiting In-
side Attackers Using Decoy Doc-
uments,” Security and Privacy in
Communication Networks, Springer,
2009, pp. 51–70.

8.	 F.B. Schneider, ed., Trust in Cyber
space, National Academy Press,
1999.

9.	 C.E. Landwehr et al., “A Tax-
onomy of Computer Program Se-
curity Flaws,” Computing Surveys,
vol. 26, no. 3, 1994, pp. 211–254.

10.	 S.M. Bellovin, “On the Brittle-
ness of Software and the Infeasi-
bility of Security Metrics,” IEEE
Security & Privacy, vol. 4, no. 4,
2006, p. 96.

Sal Stolfo is a professor in Columbia Uni-

versity’s Department of Computer Sci-

ence. Contact him at sal@cs.columbia.

edu; www.cs.columbia.edu/~sal.

Steven M. Bellovin is a professor

in Columbia University’s Depart-

ment of Computer Science. Contact

him at smb@cs.columbia.edu; www.

cs.columbia.edu/~smb.

David Evans is an associate professor

in the University of Virginia’s Depart-

ment of Computer Science. Contact

him at evans@virginia.edu; www.

cs.virginia.edu/evans.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

