
Insecure by Default?
Authentication Services in Popular Web Frameworks

Hannah Li and David Evans, University of Virginia
〈hannahli, evans〉@virginia.edu

According to BuiltWith.com, 37% of Alexa’s top 10K
websites are built using one of the 7 most popular web
frameworks (http://hotframeworks.com/). Hence, we hy-
pothesize that the default authentication templates, tuto-
rials, and documentation provided by these frameworks
has a major impact on the security of many websites.
This work studies how different design choices made by
web frameworks impact the security of web applications
built by typical developers using those frameworks. Our
long-term goal is to understand the usability and perfor-
mance trade-offs that lead frameworks to adopt insecure
defaults, and develop alternatives that lead to better se-
curity without sacrificing the needs of easy initial devel-
opment and deployment.

Our initial focus is on server-side frameworks that pro-
vide default authentication templates, documentations,
or packages to help the developers get started. Of the 7
most popular frameworks, this excludes AngularJS (the
second most popular) because it does not provide a na-
tive authentication package, reducing the percentage of
top 10K sites covered to 30%.

Each of the three levels of aid—template, tutorial,
documentation—from the framework expect increasing
knowledge and expertise from the developer; for now,
we do not consider third-party tutorials or templates. Our
goal for this work is to identify factors that make a frame-
work less secure than is possible following best known
practices, and to understand why framework designers
choose less secure options.

In addition to studying the frameworks and their doc-
umentation directly, we are building a tool called Auth-
Scan to conduct automated large-scale scans of websites
built with each framework to measure how well authen-
tication is actually implemented for deployed web ap-
plications. Borrowing ideas from OpenWPM’s structure
(https://github.com/citp/OpenWPM/), AuthScan will use
browser drivers and heuristics to automate the login and
registration processes, which will check for authentica-
tion misuses in the web applications.

The rest of this abstract highlights preliminary find-
ings from our manual analysis of popular frameworks.

Documentation and Templates. Although the settings
added to default templates are obvious, directions writ-
ten in tutorials and documentation are easier to miss. For
example, while there is a page for Ruby on Rails on web

security, it only provides descriptions of attacks and gen-
eral steps to fix them, but it leaves it up to the devel-
oper to do things correctly. Additionally, documentation
sometimes fails to provide clear cut directions to avoid
some of the vulnerabilities. On the other hand, frame-
works that provide login templates allow us to assess the
security of web apps built using that template. A devel-
oper with limited security expertise is unlikely to change
the default choices for password encryption and creden-
tial error messages. Those default choices are also influ-
enced by trade-offs between security and functionality or
convenience.

Security vs. Ease of Development. While most frame-
works turn the HTTP-Only cookie flag on by default, the
Secure flag has to be set manually. This is undesirable
for security, but convenient from a development perspec-
tive because most websites are developed and tested us-
ing localhost. With the Secure flag turned on, cook-
ies would not work because localhost does not have en-
crypted connection.

Security/Usability Tradeoffs. Frameworks also make
decisions that may not be perceived as insecure, such as
the choice of login error message and whether to include
brute-force protection and login failure logging. For ex-
ample, the code examples for Django and Meteor respec-
tively give ”inactive account” and ”User not found” er-
rors. While such specific error messages help the de-
veloper and user distinguish between non-existent user
accounts and invalid passwords, accepted security prac-
tices encourage hiding this information for potential at-
tackers. Other examples include brute-force protection
and login failure logging, which are not widely adopted
in the examined frameworks, although they have signif-
icant security benefits with minimal downsides. On the
other hand, CRSF protections appear to be provided by
all frameworks when applicable.

Conclusion. We expect most of the insecure aspects of
current web frameworks are not due to ignorance or care-
lessness on the parts of their designers, but difficult trade-
offs between security, functionality, usability, and ease
of development. We are optimistic, though, that better
understanding of these issues will lead to alternative de-
signs that can offer improved security within easy-to-use
web frameworks.


