(A Somewhat , Solint Pre-Hi
Self-Indulgent) | plint Pre-History
Splint .

* Pre-history
1973: Steve Ziles — algebraic specification of sc.

1975: John Guttag’s PhD thesis: algebraic specifications
for abstract datatypes

1983: Jeanette Wing’s PhD thesis: two-tiered

specifications — separate program interface from
underlying semantics

* 1993: John Guttag/leanette Wing seminar
Larch family specification, theorem prover
interface specification languages (including LCL)

“Retrospective;

David Evans iz
University of Virginiaz
25 October 2010

Formal verifiers are

) : . Splint offers a low-effort Alternative
too expensive and time consuming...
all all
Formal Verifiers Formal Verifiers
o ©
3 3
2 2
()] (0]
[a)] [a)]
80 80
=) =)
o o
none none
Low Effort Required Unfathomable Low Effort Required Unfathomable
. £ Joh
Security Flaws Cppl for John
. Y (Atmest) Everyone Hates Specifications
Other Overflows
16% A
FW Format ¢ Hard to understand
Bugs .
Malformed [6% * Lots of strange notations
Input

16% /’
Access!

16%

WRZOECG Don’t match what the code does
.‘ 6% Can’t even run them
Pathnames

10%

Symboli 190 Vulnerabilities
If?% Only 4 having to do with crypto

108 of them could have been
Reported flaws in Common Vulnerabilities and . .
Exposures Database, Jan-Sep 2001. detected with simple
[Evans & Larochelle, IEEE Software, Jan 2002.] static ana|yse5!

1 March 2004 Static Analysis

(Almost) Everyone Likes Types

Easy to Understand
* Easyto Use

Quickly Detect Many Programming Errors

Useful Documentation

* ...even though they are lots of work!
— 1/4 of text of typical C program is for types

Type of reference

checking rules

One type per

Y 0\
&

Types Attributes

State changes along

never changes program paths

Language defines System or programmer

defines checking rules

Many attributes per

reference reference
e

"\(‘-\C}\hr X S)'

o>

Approach

* Programmers add “annotations” (formal
specifications)
— Simple and precise
— Describe programmers intent:

* Types, memory management, data hiding, aliasing,
modification, null-ity, buffer sizes, security, etc.

¢ Splint detects inconsistencies between
annotations and code
— Simple (fast!) dataflow analyses
— Intraprocedural: except for annotations
— Unsound and incomplete

Sample Annotation: only

extern/’g’nle‘/char *gptr;
extern’*‘&nlWé‘ift null void *malloc (int);

Reference (return value) owns storage
No other persistent (non-local) references to it
Implies obligation to transfer ownership

Transfer ownership by:
— Assigning it to an external only reference
— Return it as an only result
— Pass it as an only parameter: e.g.,
extern void free (only void *);

Example
extern void *mallog (int); in library

1 int dummy (void) {

2 int *ip= (int *) malloc (sizeof (int));
3 *ip=3;

4 return *ip;

5}

Splint output:
dummy.c:3:4: Dereference of possibly null pointer ip: *ip
dummy.c:2:13: Storage ip may become null
dummy.c:4:14: Fresh storage ip not released before return
dummy.c:2:43: Fresh storage ip allocated

Example: Buffer Overflows

Most commonly exploited security vulnerability
— 1988 Internet Worm

— Still the most common attack
* Code Red exploited buffer overflow in IIS
* >50% of CERT advisories, 23% of CVE entries in 2001

Attributes describe sizes of allocated buffers
Heuristics for analyzing loops

Found several known and unknown buffer
overflow vulnerabilities in wu-ftpd

Adding Data Abstraction to C

typedef /*@abstract@*/ /*@immutable@*/ char *mstring;

* Warnings if code depends on the
representation of an abstract type

* Biggest payoff in maintainability for minimal
effort

Defining Properties to Check

* Many properties can be described in terms of
state attributes
— Afile is open or closed
* fopen: returns an open file
* fclose: open — closed
« fgets, etc. require open files

— Reading/writing — must reset between certain
operations

Defining Openness

attribute openness
context reference FILE *
oneof closed, open
—_—
annotations
==> open ==> closed

)
transfers]g Co-

Oéc: cannot be open

merge open + closed ==> error ~— onone path, dfosed on

open as closed ==> error
closed as open ==> error

losereference another
open ==> error "file not closed"

defaults ™~ Cannot abafdon FILE

reference ==> open in open state

end

Specifying I/O Functions

/*Qopen@*/ FILE *fopen
(const char *filename,

const char *mode);

int fclose (/*Qopen@*/ FILE *stream)
/*QRensures closed stream@*/ ;

char *fgets (char *s, int n,
/*@open@*/ FILE *stream);

Checking

* Simple dataflow analysis

* Intraprocedural — except uses annotations to
alter state around procedure calls

* Integrates with other Splint analyses (e.g.,
nullness, aliases, ownership, etc.)

Splint Success/Failure

4 Visits splint.org visits (last 12 months) 8=

sep22 Now3 Decs Jan 14 Feb 18 Mar27 May 2 Jun 7 Jul 13 Aug 18

Site Usage

dnjmmes 82,779 Visits desiemal 54.72% Bounce Rate
s 189,257 Pageviews warkauwed 00:02:23 Avg. Time on Site
Sromstemina 2,20 Pages/Visit T 69.81% % New Visits

Academic impact: over 1000 citations (4 papers with > 200 each)
Practice impact:
still used, mostly in embedded software development (C)
incorporated in popular Linux distributions, commercial products
“Splint-inspired” tools are widely used: PREfix/PREfast, Fortify, FindBugs
Failures:
no slippery slope to more advanced uses of formal methods
did not build a self-maintaining open source community

FindBugs

http://findbugs.sourceforge.net

JavaOne =
Mistakes Mistakes
That That
Matter Don't

Unit Testing

System/Integration Testing

Deployment

QSun Static Analysis

Slide from Bill Pugh’s talk (2009)

Static/Dynamic Analysis:
Past, Present and Future

Verification Grand Challenge Workshop
SRI Menlo Park
22 February 2005

Original slides: with updates in orange boxes

David Evans ,,/‘ = ‘\
University of Virginia { ‘ ‘ ‘

. N\ /!

Computer Science a2

9p0D) 924N0S JO Saul]

The Past: Trends

100000000

*
10000000 -
Splint,
1000000 - N —*
LCLint_, o .
100000 < “Faster Machines”
10000 .
1000 hd “Loss of Ambition”|
100 - . /
*
10 a«—FL Proofs
1

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Static/Dynamic Analysis 21

The Present

e Microsoft PREfix/fast, SLAM—SDV
+ ASTREE (Cousot) — Airbus A380

Acquired by MathWorks, 2007

PolySpace
FORTIFY | ASASecurtty Analyzer R
$ © Fl$41Min 2008 ° - _ -
.“'
CD cigital

Reflective

SECURE SOFTWARE OUNCE LABRS

Acquired by IBM, 2009

Static/Dynamic Analysis 2

Stati

The Present
Static Analysis: good at checking generic
requirements (types, buffer overflows, ...)
Dynamic Analysis: good at checking assertions
inserted by programmer
Bad at knowing what properties to check
— Automatic inference techniques
— Grand Challenge Repository

No good techniques for combining static and

dyna miC ana |ySES A few since 2005!
Concolic Testing [Sen et al., 2007], SAGE (MSR)

ic/Dynamic Analysis 23

The Future: Predictions for 2015

1. Software vendor will lose a major lawsuit
because of a program bug | has this happened?

2. Someone will come up with a cool name like
“VerXifiedProgramming” and sell a lot of books

on program verification
Still waiting...but 5 years left!

3. No more buffer overflows in major commercial
software
— Brian Snow at 20t Oakland conference (1999)
predicted we will still be talking about buffer
overflows in 2019 SANS list 2010: Buffer overflows are still #3
but...not in OWASP top ten

Static/Dynamic Analysis 24

Predictions for 2015

Standard compilers prevent most concurrency
pr‘oblems Still a long way off...but lots of work going on

Programmers will still make dumb mistakes
and resist change

“Good” CS degree programs will:

Incorporate verification into their first course

Include a course on identifying and checking
program properties

Making Predictions

Never make predictions, especially about the future.
— Casey Stengel

The best way to predict the future is to invent it.
— Alan Kay, 1971

Our plan and our hope was that the next generation of
kids would come along and do something better than
Smalltalk around 1984 or so... But a variety of different
things conspired together, and that next generation
actually didn’t show up.

— Alan Kay, 2005

