gmewor}
PolYilaiN; s Processes |
forESELIEHEES Security

David Evans
http://www.cs.virginia.edu/evans =
University of Virginia
Computer Science [B}
University of Texas at San Antonio
4 October 2005

Instruction Set Randomization
[Barrantes+, CCS 03] [Kc+, CCS 03]

¢ Code injection attacks depend on knowing

the victim machine’s instruction set
e Defuse them all by making instruction sets
different and secret

— Its expensive to design new ISAs and build
new Microprocessors

- P
www.cs.virginia.edu/nvariant i Comput‘e]r Scne{;ce

ISR Defuses Attacks

Original . Randomized
Executable Randomizer Executable

Malicious
Injected Code

www.cs.virginia.edu/nvariant fii Computer Science

Security Through Diversity

¢ Today’s Computing Monoculture

— Exploit can compromise billions of machines
since they are all running the same software

e Biological Diversity

— All successful species use very expensive
mechanism (sex) to maintain diversity

o Computer security research: [Cohen 92],
[Forrest* 97], [Cowan* 2003], [Barrantes+
2003], [Kct 2003], [Bhatkar+2003], [Just* 2004],
[Bhatkar, Sekar, DuVarney 2005]

- -
wuiw.cs.virginia,edu/nvariant iy Computer Science |

Automating ISR

Original . Randomized
Executable Randomizer Executable

Processor
Derandomizer

- P
www.cs.virginia.edu/nvariant 4 i Comput‘e]r Scne{;ce

ISR Designs

Randomization | XOR or XOR
Function 32-bit transpositio

32 bits (same key program length (each
Key Size used for all location XORed with
locations) different byte)
Time

www.cs.virginia.edu/nvariant g

Computer Science

How secure is ISR?

Slows down an attack about 6 minutes!

Under the right circumstances...

Y ;
www.cs.virginia.edu/nvariant fii Computer Science

Memory Randomization Attack

e Brute force attack on memory address
space randomization (Shacham et. al.
[CCS 2004]): 24-bit effective key space

e Can a similar attack work against ISR?
— Larger key space: must attack in fragments
— Need to tell if partial guess is correct

- P
www.cs.virginia.edu/nvariant i Comput‘ej\r“ §g\1&&fs\

Server Requirements

¢ Vulnerable: buffer overflow is fine
e Able to make repeated guesses
— No rerandomization after crash
— Likely if server forks requests (Apache)
e Observable: notice server crashes
¢ Cryptanalyzable
— Learn key from one ciphertext-plaintext pair
— Easy with XOR

www.cs.virginia.edu/nvariant fii Computer Science

Where’s the

_ FEEB?

b Effectiveness of
Instruction Set

Randomization

In USENIX Security Symposium, August 2005.
Ana Nora Sovarel, David Evans and Nathanael Paul.

ISR Attack

Attack Client %
ISR-protected

Server

1 Crash!

Attack Client % ISR-protected

Server

Observab\e Behavior

- P
www.cs.virginia.edu/nvariant i Comput‘ej\r“ §g\1&&fs\

Two Attack Ideas

e RET (0xC3): return from procedure
— 1-byte instruction: up to 256 guesses
— Returns, leaves stack inconsistent

» Only works if server does something observable
before crashing

e JMP -2 (OXEBFE): jump offset -2
— 2-byte instruction: up to 216 guesses
— Produces infinite loop
e Incorrect guess usually crashes server

www.cs.virginia.edu/nvariant il Computer Science

Vulnerable Buffer

Jump Attack

216 possible
guesses for
2-byte
instruction

SySep umouyun

Correct guess
produces
infinite loop

0xEB (JMP)
OXFE (-2)

]
]
Overwritten Return Address

- -
wuiw.cs.virginia,edu/ nvariant iy Computer Science |

Vulnerable Buffer

Incremental Jump Attack

SYSeW umouxun

SySep umouyun

OXEB (JMP)

OxEB (JMP) Guessed OXFE (-2

OXFE (-2) D Masks 0XCD (INT)
]]
]]
]]

Guessing first 2 byte masks Guessing next byte: < 256 attempts

—~ :
. csvirginia,edu/nvariant i Computer Science

Guess Outcomes

Observe
“Incorrect”
Behavior

False Negative

Observe
“Correct”
Behavior

Success

Correct Guess
Incorrect Guess | False Positive Progress

www.cs.virginia.edu/nvariant

False Positives

e Injected bytes produce an infinite loop:
-IMP -4
—-INZ -2

e Injected bytes are “harmless”, later
executed instruction causes infinite loop

e Injected guess causes crash, but timeout
expires before remote attacker observes

www.cs.virginia.edu/nvariant

False Positives — Good News

Can distinguish correct

mask using other

instructions

Try injecting a “harmless”

one-byte instruction 0x90 (NOOP)

— Correct: get loop Guessed

— Incorrect: usually crashes @

Difficulty: dense opcodes]
]

= No pair that differs in only
dd
last bit are reliably different overwr'tte" Return Address

in harmfullness

SYSeW umouxun

www.cs.virginia.edu/nvariant g

Computer Science

False Positives — Better News

e False positives are not random
—Conditional jump instructions
—Opcodes 01110000-0111111

e All are complementary pairs:
0111xyza not taken < 0111xyza is!

¢ 32 guesses always find an infinite loop

e About 8 additional guesses to
determine correct mask

www.cs.virginia.edu/nvariant g

Computer Science

Extended Attack

0xCD (INT.
0xCD (INT
0xCD (INT
0xCD (INT.
0XCD (INT normally
gxcg INT — No infinite loops
.
— e OxCD 0xCD is
! interrupt instruction
€ &*% guaranteed to crash

www.cs.virginia.edu/nvariant

e Near jump to return
location
— Execution continues

w
o
S

N

<
G
(O]

1%

!'IEI‘! Computer Science

Experiments

e Implemented attack against constructed
vulnerable server protected with RISE
[Barrantes et. al, 2003]

—Memory space randomization works!
¢ Turned of Fedora’s address space randomization
—Needed to modify RISE

¢ Ensure forked processes use same randomization key
(other proposed ISR implementations wouldn't need
this)

e Obtain correct key over 95% of the time
— Sometimes can't because unable to inject NULLs

- .
www.cs.virginia.edu/nvariant fiily Computer Science

Total Time

4000 40%6-bytekey

4-byte key (Columbia in 48 minutes

implementation) in < 372

. /+ H Lk

2000

200

100

40

Si2 1e24 8 4096

Attacker: “Is this good enough?” Defender: “Is this bad enough?”

- .
Www.csvirginia.edu/nvariant il Computer Science

Expected Attempts

~ 157 to find first

jumping

instruction

to determine

correct mask
23> expected

{ attempts

=) per byte

]

www.cs.virginia.edu/nvariant

“Crash Zone”

+~8

32-bit

offset
original

return

Computer Science

Attempts

4339
attempts
to get first
2 bytes

10000

101,651
attempts

to get
T 4096
bytes

4000

1000

400

200

www.cs.virginia.edu/nvariant

How many key bytes needed?

e Inject malcode in one ISR-protected
host
—Sapphire worm = 376 bytes

e Create a worm that spreads on a
network of ISR-protected servers
—Space for FEEB attack code: 34,723 bytes
—Need to crash server ~800K times

www.cs.virginia.edu/nvariant Computﬁr Science

push dword ebp mov ebp, WORM_ADDRESS + WORM_REG_OFFSET
pop dword [ebp + WORM_DATA_OFFSET]
Xor eax, eax s WormlIP = 0 (load from ebp + eax)
read_more_worm: ; read NUM_BYTES at a time until worm is done
cld XOr eCX, ecx mov byte cl, NUM_BYTES
mov dword esi, WORM_ADDRESS ; get saved WormIP
add dword esi, eax mov edi, begin_worm_exec
rep movsb ; copies next Worm block into execution buffer
add eax, NUM_BYTES ; change WormIP
pushad ; save register vals
mov edi, dword [ebp] ; restore worm registers
mov esi, dword [ebp + ESI_OFFSET] mov ebx, dword [ebp + EBX_OFFSET]

Maybe less...?

e VMWare: 3,530,821 bytes
LNEVERVIE 135,328 bytes
e Minsky’s UTM: 7 states, 4 colors

mov edx, dword [ebp + EDX_OFFSET] mov ecx, dword [ebp + ECX_OFFSET]
mov eax, dword [ebp + EAX_OFFSET]
begin_worm_exec: ; this is the worm execution buffer
nop Nop nop nop nop nop Nop Nop nNop nop nop nop
nop Nop nNop nNop nop nop Nop Nop nNop nop nop nop
mov [ebp], edi ; save worm registers
mov [ebp + ESI_OFFSET], esi mov [ebp + EBX_OFFSET], ebx
mov [ebp + EDX_OFFSET], edx mov [ebp + ECX_OFFSET], ecx
mov [ebp + EAX_OFFSET], eax
popad ; restore microVM register vals
jmp read_more_worm

e MicroVM: 100 bytes

()
o
Q
O
=
>
)
—
=
=
)
1
l;
c
]

www.cs.virginia.edu/nvariant Computﬁr Science www.cs.virginia.edu/nvariant il Computﬁr Science

MicroVM
[WomPPeo0 |

WormIP « 0
Learned update WormIP
Key Bytes
76 bytes of code
+ 22 bytes for execution

+ __2 bytes to avoid NULL execution buffer

= 100 bytes is enough
% of the ti save worm registers
> 99% of the time load MicroVM registers
jmp to read next block

Worm code must be coded SRy

in blocks that fit into

execution buffer (pad with host key masks
noops so instructions do not - [Fgucceed (target) masks

cross block boundaries
) other worm data

www.cs.virginia.edu/nvariant

Making Jumps

o Within a block - short relative jump is fine
e Between worm blocks

—From end of block, to beginning of block

— Update the WormIP stored on the stack

— Code conditional jump, JZ target in worm as:

22-byte worm

INZ +5 , if opposite condition, skip
MOV [ebp + WORMIP_OFFSET] target

www.cs.virginia.edu/nvariant

Preventing Attack:
Break Attack Requirements

¢ Vulnerable: eliminate vulnerabilities
— Rewrite all your code in a type safe language
e Able to make repeated guesses
— Rerandomize after crash
e Observable: notice server crashes
— Maintain client socket after crash?
¢ Cryptanalyzable
— Use a strong cipher like AES instead of XOR

Deploying a Worm

e Learn 100 key bytes to inject MicrovM

— Median time: 311 seconds, 8422 attempts

— Fast enough for a worm to spread effectively
e Inject pre-encrypted worm code

— XORed with the known key at location

— Insert NOOPs when necessary to avoid NULLs
¢ Inject key bytes

— Needed to propagate worm

www.cs.virginia.edu/nvariant www.cs.virginia.edu/nvariant

H Jefferson’s
Better Solution Polygraphing peiieing

Processes:
N-Variant
Systems for
Secretless
Security

work with Ben Cox,

Jack Davidson, Adrian Filipi,
Jason Hiser, Wei Hu,

John Knight,

Anh Nguyen-Tuong,
Jonathan Rowanhill

e Avoid secrets!
—Keeping them is hard
—They can be broken or stolen

e Prove security properties without
relying on assumptions about secrets
or probabilistic arguments

Hoover’s Polygraph

: -
wuiw.cs.virginia,edu/ nvariant fii Computer Science

www.cs.virginia.edu/nvariant il Computﬁr Scie\r;ce

N-Version N-Variant

Programming Systems
[Avizienis & Chen, 1977]

e Multiple teams of Transformer
programmers automatically produces
implement same spec diverse variants
Voter compares Monitor compares
results and selects results and detects
most common attack
No guarantees: teams Guarantees: variants
may make same behave differently on
mistake particular input classes

2-Variant System

Server
Variant

Input
(Possibly

Malicious) Variant

1

irgini s =0 Sci irgini y &0 Sci
www.cs.virginia.edu/nvariant iy Computer Science www.cs.virginia.edu/nvariant iy Computer Science

N-Variant System Framework Variants Requirements

e Detection Property

Any attack that compromises Variant
0 causes Variant 1 to “crash” (behave
in a way that is noticeably different to
the monitor)

e Normal Equivalence Property

Under normal inputs athe ¥asiarts stay

in equivalent states: diferent, but abstract
states are equivalent

www.r<.vir jinia. xdu/r variant il

¢ Polygrapher

— Replicates input to all
variants

¢ Variants
— N processes that implement
the same service :
— Vary property you hope * Monitor
attack depends on: memory ~ — Observes variants

locations, instruction set, — Delays external effects

file names, system call . until all variants agree
numbers, scheduler, calling R _f
convention, ... nitiates recovery I

variants diverge

- 5
www.cs.virginia.edu/nvariant i Comput‘e‘\rﬁc 1ce | Comput‘ehr‘”%c‘\levg“cg\

Memory Partitioning

e Variation
— Variant 0: addresses all start with 0
—Variant 1: addresses all start with 1

¢ Normal Equivalence
— Map addresses to same address space
¢ Detection Property

— Any absolute load/store is invalid on one of
the variants

- -
wuiw.cs.virginia,edu/ nvariant iy Computer Science |

Instruction Set Tagging

Variation: add an extra bit to all opcodes
— Variation 0: tag bitisa 0

— Variation 1: tag bitisa 1

— At run-time check bit and remove it

* Low-overhead software dynamic translation using Strata
[Scott, et al., CGO 2003]

Normal Equivalence: Remove the tag bits
Detection Property

— Any (tagged) opcode is invalid on one variant

— Injected code (identical on both) cannot run on both

- P
www.cs.virginia.edu/nvariant i Comput‘e]r Scne{;ce

Indirect Code Injection Attack

« Inject bytes into data buffer

¢ Original code transforms contents of
that buffer (XORing every byte with a
different value on P, and P,)

 Relative jump to execute injected,
transformed code

¢ What went wrong?

Normal Equivalence property violated: need to know that
data manipulated differently is never used as code

— -
wwiw.cs.virginia,edu/nvariant iy Computer Science |

Instruction Set Partitioning

JMP
CALL
JO
JNO

JB

1z

Variant A Variant B

www.cs.virginia.edu/nvariant il Computﬁr Sciegce

Composing Variations

Must preserve normal equivalence property

Detect memory attack
Detect direct code injection

Memory
Space

Instruction
Tags

www.cs.virginia.edu/nvariant

Implementing N-Variant Systems

e Competing goals:
— Isolation: of monitor, polygrapher, variants

— Synchronization: variants must maintain normal
equivalence (nondeterminism)

— Performance: latency (wait for all variants to
finish) and throughput (increased load)
e Two implementations:
— Divert Sockets (prioritizes isolation over others)
— Kernel modification (sacrifices isolation for others)

— -
wwiw.cs.virginia,edu/nvariant iy Computer Science |

Implementation:

Divert Sockets [Adrian Filipi] 3-Variant System

e Process intercepts traffic (nvpd) P
¢ Uses divert sockets to send copies to B

isolated variants (can be on different Tnput &

machines) from Client =

a o a o

e Waits until all variants respond to Outout o

request before returning to client . E‘Iigflt
¢ Adjusts TCP sequence numbers to each

variant appears to have normal S

connection
www.cs.virginia.edu/nvariant !'IIIEI‘! Comp’lrlnt‘e‘\r“ 'Sbc‘\iensg\ www.cs.virginia.edu/nvariant a4 !'Illzl‘! Comp’lrlnt‘e‘\r“ 'Sbc‘\iggss‘\

Wrapping System Calls
e I/O system calls (process interacts with
external state) (e.g., open, read, write)
— Make call once, send same result to all variants

e Process system calls (e.g, fork, execve, wait)

Implementation:
Kernel Modification [Ben Cox]

» Modify process table to record variants
¢ Create new fork routine to launch variants
e Intercept system calls:

— Make call once per variant, adjusted accordingly
e Special:

—mmap: each variant maps segment into own
address space, only allow MAP_ANONYMOUS
(shared segment not mapped to a file) and
MAP_PRIVATE (writes do not go back to file)

— 289 calls in Linux

— Check parameters are the same for all
variants

— Make call once
e Low overhead, lack of isolation

www.cs.virginia.edu/nvariant www.cs.virginia.edu/nvariant Comput‘e]r Scie{;ce

System Call Wrapper Example

ssize_t sys_read(int fd, const void *buf, size t count) {
if (hasSibling (current)) {
record that this variant process entered call
if (!inSystemCall (current->sibling)) { // this variant is first
save parameters
sleep // sibling will wake us up
get result and copy *buf data back into address space
return result;
} else if (currentSystemCall (current->sibling) == SYS_READ) {
// this variant is second, sibling is waiting
if (parameters match) { // match depends on variation
perform system call
save result and data in kernel buffer
wake up sibling
return result;
} else {

Current Status

¢ Can run apache with address and instruction tag
variations
— Thwarts any attack that depends on referencing an
absolute address or executing injected code
¢ Open problems
— Non-determinism, persistent state
— Establishing normal equivalence
e Cost
— nvpd implementation, https, 4x machines: Latency x 2.3
— Kernel modification (hopefully better, no numbers yet)

}
} else { // sibling is in a different system call!

P}

www.cs.virginia.edu/nvariant il www.cs.virginia.edu/nvariant Computﬁr Science

Computer Science

Summary

¢ Producing artificial diversity is easy
— Defeats undetermined adversaries
¢ Keeping secrets is hard

Diversity
depends on

— Remote attacker can break ISR-protected
server in < 6 minutes
¢ N-variant systems framework offers
provable (but expensive) defense

— Effectiveness depends on whether
variations vary things that matter to attack

your
perspective

- Sci iralnk . Y6 Sci
www.cs.virginia.edu/nvariant e Comp}lht‘ey\rwﬁle{,l‘fg\ www.cs.virginia.edu/nvariant Hiili °“‘P},‘ES\'H.N$\‘?&£E\

BES- I O3

CyberTrust, DARPA SRS

