

Secure Programming Group

Technical Report

Using Splint to Detect Buffer Overflow Vulnerabilities in Sendmail

David Friedman
5/2002

Splint's logo is Jefferson's serpentine walls on the grounds of the University of Virginia

"The walls are one brick thick, but because of their design are both strong and
aesthetic. Like a secure program, secure walls depend on sturdy bricks, solid
construction, and elegant and principled design."

From the Splint website (http://www.splint.org/faq)

 i

Abstract

Despite the intense growth of computer science research in recent decades, a simple

but significant problem in security remains: buffer overflow vulnerabilities. In this paper

we explore using static analysis to mitigate the problem.

Buffer overflow attacks exploit unsafe languages like C which do not check the

bounds on array accesses. Evidence shows that buffer overflow vulnerabilities remain a

significant problem despite the development of safer languages.

The tool we studied (Splint) attempts to detect buffer overflow vulnerabilities in

source code before deployment. However, it does not attempt to formally prove that an

implementation matches a specification. Instead we take a more lightweight approach

that allows our tool to run as fast as a compiler and still catch many vulnerabilities.

 Although the case study did not reveal any buffer overflow vulnerabilities in

Sendmail it did discover some important bugs in Splint.

 ii

Outline

Chapter 1 and 2 give background on the history of computer security, buffer overflow
vulnerabilities, formal methods, static analysis, and Splint.

Chapter 3 Describes basic Splint operation.

Chapter 4 Describes the results of the case study.

Chapter 5 Offers some suggestions for further research

 iii

Table of Contents

1 Introduction... 1

1.1 Context of the Buffer Overflow Problem ... 1
1.2 The Buffer Overflow Problem.. 2
1.3 Rationale and Scope.. 6

2 Splint and Software Development .. 7
2.1 Splint's Development .. 7
2.2 Other Security Auditing Tools using Static Analysis ... 10

3 Method .. 11
3.1 Overview... 11
3.2 Splint Warnings .. 11
3.3 Annotations ... 11

4 Sendmail Analysis .. 14
4.1 Previous Sendmail Analyses... 14
4.2 Chronological Record of Analysis.. 14
4.3 Bugs .. 15

5 Further Research ... 18
5.1 Summary... 18
5.2 Further Research ... 18

6 Appendix A: Method Details .. 22
6.1 Sendmail Source Code.. 22
6.2 Directory Structure.. 23

7 Appendix B: Analysis Log... 25

 iv

Figures and Tables

Figures

Figure 1: Design Space of Checkers (from David Evans's website) 9
Figure 2: Sendmail Analysis Directory Structure... 23

Tables

Table 1: Buffer Overflow Shopping List Analogy ... 3
Table 2: Record of Analysis ... 14

 1

1 Introduction
This report contributes toward the goal of eliminating buffer overflow vulnerabilities.

In the 1990's with the explosive growth of the Internet and the emergence of E-

commerce, computer security became more important and researchers began to focus on

methods to prevent intruders from breaking into systems.

Malicious crackers often exploit a weakness in software called a buffer overflow

vulnerability. A buffer overflow vulnerability is exploited by sending the computer more

input than it expects. If the software does not correctly check the bounds of the input

attackers can get the program to execute their code. Section 1.2 describes buffer

overflow vulnerabilities in more detail.

This report focuses on a method to detect vulnerabilities using Splint, a software tool

developed at the University of Virginia. The report describes a case study investigating

the performance of the tool on Sendmail, a program that handles the details of the e-mail

protocol.

1.1 Context of the Buffer Overflow Problem
During the 1940's and the 1950's no scientist researched computer security.

Governments, large corporations, and major universities owned all the large mainframe

machines and system administrators did not need to worry about somebody tampering

with a machine behind a locked door.

In 1969 UCLA established a network link with Stanford. The first attempted message

logon failed to reach its destination, but networking changed computing forever [Gromov

2002]. No longer did an attacker need to get through a locked door to break into a

computer.

 2

Few researchers predicted the growth of the Internet, and they designed protocols

with little consideration for security. Researchers made decisions in the 1970's and 1980's

which cause security vulnerabilities today.

Language designers did not consider security a high priority, either. Brian W.

Kernighan, Dennis M. Ritchie, and other researchers at Bell Labs developed the C

programming language in the early 1970's for development of the Unix operating system.

Their design emphasized portability, flexibility, and efficiency, but not safety.

Today programmers write software to control everything from medical devices to

web servers in C. Linus Torvalds (and others) wrote the Linux kernel in C. Programmers

at Microsoft wrote parts of the Internet Information Server and Windows XP in C.

Programmers use C because it gives them the freedom to write fast code. However, that

freedom makes it easier for programmers to "shoot themselves in the foot".

1.2 The Buffer Overflow Problem
Thou shalt check the array bounds of all strings (indeed, all arrays), for surely where thou typest

"foo'' someone someday shall type "supercalifragilisticexpialidocious''.

 —Fifth Commandment of the Ten Commandments for C programmers

C makes it easy for programmers to write code with buffer overflow vulnerabilities.

For example, in C a programmer can declare an array large enough to hold five

characters, but because C does not perform bounds checking the user entering ten

characters will overwrite the next sequential locations in memory. By choosing those

additional characters carefully, attackers can coax a program into executing their code.

To understand buffer overflow vulnerabilities an analogy may help [ZDNet 2000].

Suppose somebody could fill out their tax form in a special way. Instead of just filling out

the fields and sending it to the IRS they could write past the fields, and change the text on

 3

the form itself. They could change the equations on the form computing how much they

owe.

Another analogy may help clarify the details. Suppose a program asks the user what

to buy at the store. Its memory looks like:

Memory

Location

Contents

1 Ask user what he wants a store.

2 Put user input into memory starting

at location 3 and then jump to the

instruction at memory location 105

3 <allocated for user input> "0"

4 <allocated for user input> "0"

... ...

104 <allocated for user input> "0"

105 Go to store and buy the item at

memory location 3. Keep buying the

next sequential item in memory if it

is not "0".

106 Return items to user.

Table 1: Buffer Overflow Shopping List Analogy
Normal users would enter something like: "bread", "milk", "cheese",

and the program will work correctly. But a malicious user could enter: "spam",

"spam", "spam", "spam", "spam", ... "spam", (102 times), and then

"Give user my wallet". The instruction "Give user my wallet"

overwrites the old instruction at memory location 105 and the computer will execute it

 4

instead of the original instruction. The program should have checked that the user did not

enter more than 102 items.

1.2.1 Seriousness of the Buffer Overflow Problem
Buffer overflow vulnerabilities jeopardize computer systems. Experts from academia,

government, and industry have identified the importance of the problem. Gary McGraw

of Cigital referred to buffer overflow vulnerabilities as the single biggest threat to

software security and Crispin Cowan of Oregon Graduate Institute for Technology called

them the "vulnerability of the decade" [McGraw 2000, Cowan 2000].

Statistics show the prevalence of the problem. Both Computer Emergency Response

Team (CERT) advisories from 2002 at the time of this report and 18 of the 37 advisories

from 2001 involve buffer overflow vulnerabilities [CERT 2002]. David Wagner and

others analyzed three different vulnerability databases and found that buffer overflows

accounted for 23%, 27%, and 29% of entries [Wagner 2000]. Evans found that buffer

overflow vulnerabilites account for 19% of entires in Mitre's Common Vulnerabilities

and Exposure List [Evans 2002].

Recent incidents have demonstrated the severity of the problem. In December of 2001

researchers at eEye digital security found a buffer overflow vulnerability in Microsoft's

new operating system Windows XP. In late January 2002 researchers found a buffer

overflow vulnerability in the popular instant messenger software American Online ICQ

[CERT 2002]. The Code Red worm, which CNN reported caused $2 billion worth of

damage, exploited a buffer overflow vulnerability in Microsoft's Internet Information

Server [CNN 2001].

 5

Buffer overflow vulnerabilities are a serious problem worthy of attention and

resources.

1.2.2 Related Work
Researchers have reacted to the severity of the problem by taking different

approaches. Some have looked at run-time solutions which work by inserting checks into

the executable machine code. Because none of the source code must be modified, these

solutions make the programmer's work easier. They have the disadvantage that a

performance penalty negates somewhat the efficiency of using C [Larochelle 2001].

Our approach will use static analysis which works by examining lines of source code.

Static analysis has the advantage of detecting errors before deployment, but the

disadvantage of making the programmer do more work.

Some buffer overflow vulnerabilities may be found through safer software

engineering practices including code inspections. Nevertheless, humans will always miss

some subtle errors. A computer user found a buffer overflow vulnerability in a program

even after the code had been specifically inspected for security errors [Bug 1998].

By using a safer language (e.g. Java or ML) programmers could avoid writing buffer

overflows. However, some applications have strict performance requirements and

developers must use a low-level language like C. Some programmers must also maintain

C legacy code, so eliminating C can never be an encompassing solution [Cowan 2000].

 6

1.3 Rationale and Scope
As discussed in section 1.2.1 (Seriousness of the Buffer Overflow Problem) buffer

overflow vulnerabilities pose a real hazard to computers and the humans who use them.

No individuals other than the people who wrote Splint have performed a case study of

the tool. This work provides insight into the research direction Splint will go in and more

specifically the valuable improvements the Secure Programming Group can make.

 7

2 Splint and Software Development
In this chapter we trace through the relationship between formal methods, static

analysis, software development, and Splint. Examining Splint's history will help to relate

to the tool more fully, and not just its operation.

2.1 Splint's Development
The original name of Splint was LCLint. David Evans completed the first

implementation in June of 1994 for his Masters Thesis [Evans 1994]. Two of the people

Evans worked with, John Guttag and Jim Horning, were investigating the effectiveness of

a formal specification language (Larch C Language, LCL). The word LCLint comes from

concatenating "LCL" and "lint." The "lint" parts comes from the program S.C. Johnson

developed in 1978 named for the undesirable "bits of fluff" it helped to remove [Johnson

1978].

2.1.1 Formal Methods
Civilized debate in the computer science community has the capacity to become

bickering. Issues like the best operating system (Windows vs. Unix), the best text editor

(Emacs vs. VI), the use of goto, and the effectiveness of object-oriented programming,

all have gone at times beyond the point of scholarly discussion.

Formal methods have occupied this same territory [Young 1991]. Tony Hoare, the

inventor of quicksort and others advocated that everything about a program can be

deduced statically [Hoare 1969]. In theory an analyst can verify formally that a piece of

software does what it should do only by looking at the source code. A formal methods

approach includes writing a mathematically precise specification and then running a

 8

checker which attempts to prove the source code satisfies the specification. Advocates of

formal methods claim it decreases software errors and helps computer scientists reason

more effectively about programs. Critics of formal methods point out that it takes

substantial effort to write both the tool and the specification while both could have errors.

 Guttag, Horning, and Evans conceived of LCLint as a tool for checking the

consistency of C programs and LCL specifications.

2.1.2 Source Code Annotations
The conflict over formal methods centers on whether they actually apply to real

software or just to academic toy programs.

Whatever the future may bring, today most software companies, if they use formal

methods at all, use them only for small modules [Jalote 1991].

Source code annotations offer a compromise. Although most industry developers did

not know, and were not willing to learn a formal specification language like LCL,

programmers might be willing to learn something simpler: source code annotations.

Programmers could add annotations to their code that Splint could use to understand their

intentions [Evans 2000].1

1 Section 2.1.3 describes the name change.

 9

Source code annotations offered a "lightweight" approach in comparison to formal

methods because they required less computing resources, and more importantly less

human resources.

Figure 1: Design Space of Checkers (from David Evans's website)
The graph demonstrates how different tools require differing levels of effort.

Developers of a medical application would choose to use a formal verifier if the

program must work correctly or people will die. On the other hand, video game

developers would only use a compiler.

2.1.3 Splint and Memory Bounds Checking
Larochelle and Evans added memory bounds checking and extensible checks to

Splint in 2001 [Larochelle 2001, Larochelle 2002a]. In January of 2002, Evans renamed

the software Splint to reflect the improvements. The name has three different

interpretations: Secure Programming Lint, to reflect the buffer overflow checking,

 10

Specifications Lint, to reflect the programmer added annotations, and the literal meaning

of Splint as "first aid for programmers" [Evans 2002a].

2.2 Other Security Auditing Tools using Static Analysis
Several tools are available that use static analysis techniques to find security

vulnerabilities. Flawfinder, RATS, and ITS4 are source code scanners that perform less

sophisticated checking but take less effort to learn and run faster [LinuxJournal 2002].

Hence, they are nearer to compilers on the graph of the previous page.

 11

3 Method

3.1 Overview
Checking source code works in an iterative fashion: run Splint, compare Splint's

output with the source code, take appropriate action, and repeat. Keep checking while

Splint still produces warnings. This chapter describes the process in more detail.

3.2 Splint Warnings
A typical buffer overflow warning looks like:

headers.c:1881:2: Possible out-of-bounds store:
 *tail Unable to resolve constraint:
 requires: : maxSet((&ret @ headers.c:1871:24)) >= (0)
 needed to satisfy precondition:
 requires: : maxSet((tail @ headers.c:1881:3)) >= (0)

Splint raised a warning about the 1881st line in the file headers.c. An analyst would

attempt to figure out why Splint raised the warning by examing the code in the file at that

location. After determining the problem he would determine the appropriate action to

take: add an annotation, add a control comment, or modify the code.

3.3 Annotations
Splint's buffer overflow annotations fall into two forms: requires and ensures

clauses. Ensures clauses state the function postconditions:

 12

/* this function allocates a 24 byte buffer
 which is the size of an IP packet header */
void *alloc_iph()
/*@ensures maxSet(result) == 23@*/
{
 return malloc(24);
}

This ensures annotation tells Splint that the return value of this function is a

pointer to a 24 byte buffer (in C arrays are zero indexed).

 The malloc call returns the size requested in bytes or a NULL pointer if the

request cannot be fulfilled.

Requires clauses state the function preconditions:

void fill_with_digits(char *ptr)
/*@requires maxSet(ptr) >= 9@*/
{
 int i;
 for(i = 0; i < 10; i++)
 ptr[i] = '0' + i;
}

This annotation states that the buffer pointer to by parameter ptr must have at least

enough space to store ten bytes.

Annotations can both suppress warnings, and generate them. In the case of an

ensures annotation Splint will generate a warning if it cannot verify that the function

actually ensures the post-condition. An ensures annotation can also suppress a

warning since it tells Splint that a condition will hold after the call. A requires

annotation will generate a warning if Splint cannot verify that the condition holds before

the call.

3.3.1 Adding a Control Comment
When there is no appropriate annotation to add the analyst can suppress the

warning with a control comment:

 13

/* dkf: don't think this is an error because controladdr is
allocated correctly (statically) */
/*@-boundswrite@*/
memset(&controladdr, '\0', sizeof controladdr);
/*@=boundswrite@*/

In this example we suppress checking for the memset call. Note that we also add a

human comment describing the rationale.

This option is not as desirable as adding an annotation because it provides less

information to Splint. Also the analyst could make a mistake. Nevertheless, control

comments help to manage the complexity of checking thousands of lines of code.

3.3.2 Modify the Code
Analysts should not change the code lightly when checking well established code like

Sendmail. If they do think there is a mistake they should verify the change with a

colleague or the author. Analysts checking their own code or a project in the early

development stages may change the code more freely.

For the following function:

char *strip(char *ptr)
{
 while(*ptr = ' ') ptr++;
 return ptr;
}

Splint reports a warning for the while loop because it uses an assignment as the test

expression. In this case the programmer made the common mistake of confusing = and

==, and should change the code.

 14

4 Sendmail Analysis

4.1 Previous Sendmail Analyses
David Wagner found buffer overflow vulnerabilities in Sendmail version 8.7.5 using

a static analysis tool. However, he did not find any exploitable vulnerabilities in the

current version (8.9.3) at that time [Wagner 2000]. In 1995, 1996, and 1997 various

people found vulnerabilities in the current version at that time [CERT]. We choose

arbitrarily to analyze version 8.11.4.

4.2 Chronological Record of Analysis
The following table shows how the number of warnings decreased throughout the

analysis as we added more annotations:

Date Warnings Annotations2

0 Tue 3/12 439 0

1 Tue 3/12 438 1

2 Tue 3/12 436 3

3 Thu 3/14 238 9

4 Thu 3/14 206 93

5 Fri 3/15 160 28

Table 2: Record of Analysis
The analysis did not find any bugs in Sendmail. However, we did find a few

significant bugs in Splint. We describe these bugs in more detail in section 4.3.

2 These numbers were not obtained in a strict fashion, but are still representative of how
the analysis went. Also see the log in appendix B.

3 Modified the standard library annotation for memset

 15

4.2.1 Analysis Process
Splint took only 1 minute to check all 70,000 lines of code on a 1200 MHz machine

with 1 GB of RAM. The initial steps succeeded in addressing many spurious warnings by

adding the appropriate control comments. For example, Splint reported a warning for

every occurrence of the newstr macro:

#define newstr(s)\

strcpy(malloc(strlen(s) + 1), s)

Splint could not determine that the calls to newstr cannot overflow a buffer since

malloc allocates exactly the necessary space to hold s. Since this macro occurred in

many places throughout the source code adding the correct control comment succeeded in

addressing about 200 of the warnings.

We achieved the next significant decrease by removing the requires annotation from

the memset prototype. Since memset copies a constant into a buffer an attacker cannot

exploit it to inject his own code.

The final winnowing in warnings was achieved by adding annotations and by putting

Splint in a different analysis mode. That mode is not fully debugged so Splint may have

suppressed some non-spurious warnings.

The annotations usually worked as expected. When they did not we made a note of

the problem so somebody could later fix it. The next section describes the bugs we found

in Splint during the analysis.

4.3 Bugs
This section describes the most important bugs we found in Splint. The most serious

problem is the erroneous loop checking.

 16

4.3.1 Segmentation Violation
When Splint tried to parse the Sendmail source code it generated a segmentation

violation for the file stats.c. After discussing it with a colleague we decided to make

a note of the problem and continue the analysis without that file. Since it only contains

174 out of the 70,000 lines of code Splint could analyze the rest of the source without it.

4.3.2 Loop Heuristics
Splint has trouble analyzing loops correctly. It raises a spurious warning for the

following piece of code:

void test()
{
 int i;
 double arr[10];
 for (i = 0; i < 10; i++)
 arr[i] = 0.0;

}
 Splint should recognize the common for(i=start; i < end; i++) idiom.

More importantly Splint fails to find buffer overflow vulnerabilities in code with

loops. Splint fails to generate a warning for this write beyond the end of the buffer:

int main()
{
 char* char_array[40];
 int i = 0;
 char* p = malloc(1);
 *p = 'c';

 for(i = 0; i < (int) sizeof(char_array); i++)
 char_array[i] = p;
 return 0;
}

Here the programmer wrote: i < sizeof (char_array)when he meant: i <

(sizeof (char_array)) / (sizeof (char_array[0]))

Sizeof (char_array) is 160 bytes yet in each iteration the program is not

going through the individual bytes but the pointers themselves, so the upper limit should

be 40.

 17

This problem appeared when we attempted to analyze a program with a known buffer

overflow vulnerability. Splint could not find the vulnerability because it could not check

loops correctly [Security 2001, Bugzilla 2001].

 18

5 Further Research

5.1 Summary
In many cases Splint worked correctly. However, it still has some significant bugs in

the loop heuristics. We are aware of these problems and will try to fix them.

5.2 Further Research
The following are possible ways to continue research:

• Check to see if Splint can find known vulnerabilities -- Find a known

vulnerability on one of the full disclosure lists like BugTraq and see if Splint can find

it (similar to the work described in section 4.3.2.).

• Analyze a simpler program.

• Analyze Splint's source code using Splint.

• Fix some of the bugs.

 19

References

[Bug 1998] Chris Evans. Nasty Security Hole in lprm. Bugtraq mailing list. April 18,

1998. http://www.securityfocus.com/

[Bugzilla 2001] Man 1.5h1-10 has an exploitable overflow. May 13, 2001. Bugzilla Bug

40400. https://bugzilla.redhat.com/bugzilla/

[CERT 2002] See http://www.cert.org/advisories

[CERT] See http://www.cert.org and search for "Sendmail".

[CNN 2001] Cost of 'Code Red' rising. August 8, 2001

http://www.cnn.com/2001/TECH/internet/08/08/code.red.II/

[Cowan 2000] Crispin Cowan, Perry Waggle, Calton Pu, Steve Beattie, and Jonathan

Walpole. Buffer Overflows: Attacks and Defenses for the Vulnerability of the

Decade. DARPA Information Survivability Conference and Exposition. January

2000.

[Dictionary] Dictionary.com http://dictionary.com

[Evans 1994] David Evans. Using Specifications to Check Source Code, MIT/LCS/TR-

628, MIT Laboratory for Computer Science, June 1994.

[Evans 2000] David Evans. Annotation Assisted Lightweight Static Checking. The First

International Workshop on Automated Program Analysis, Testing and

Verification (ICSE 2000). Feb 25, 2000.

[Evans 2002] David Evans and David Larochelle. Improving Security Using Extensible

Lightweight Static Analysis. IEEE Software. Jan/Feeb 2002.

[Evans 2002a] David Evans. Splint FAQ. Available at:

http://www.splint.org/faq.html

 20

 [Gromov 2002] Gregory G. Gromov. The Roads and Crossroads of Internet History.

http://www.netvalley.com/intval.html

[Hoare 1969] C. A. R. Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12(3):335-355, 1969

[Jalote 1991] Pankaj Jalote. An Integrated Approach to Software Engineering. New

York: Springer-Verlag New York, Inc., 1991

[Jargon] The Jargon File. http://www.tuxedo.org/~esr/jargon/

[Johnson 1978] S.C Johnson (1978). Lint, a C Program Checker Unix Programmer's

Manual, AT&T Bell Laboratories: Murray Hill, NJ.

[Larochelle 2001] David Larochelle and David Evans. Statically Detecting Likely Buffer

Overflow Vulnerabilities. In Proceedings of the 2001 USENIX Security

Symposium, Washington D.C., August 13-17, 2001.

[Larochelle 2002a] David Larochelle and David Evans. Improving Security Using

Extensible Lightweight Static Analysis 2001. IEEE Software, Jan/Feb 2002.

[Larochelle 2002b] David Larochelle and David Evans. Splint Users Manual. Available

at: http://www.splint.org/manual

[LinuxJournal 2002] Linux Journal. Source Code Scanners for Better Code. January 26,

2002.

[McGraw 2000] Gary McGraw, John Viega. Get reacquainted with the single biggest

threat to software security. March, 2000

http://www-106.ibm.com/developerworks/library/overflows/

[NASA 1999] NASA. Basic COCOMO Web Calculator available at:

http://www.jsc.nasa.gov/bu2/COCOMO.html

 21

[Paulson 2002] Linda Dailey Paulson. Wanted: More Network-Security Graduates and

Research. IEEE Computer. February, 2002. Available at:

http://www.cs.virginia.edu/misc/wulfnews.pdf

[Security 2001] Security Focus Vulnerability Database. June 12, 2001. Linux Man Page

Source Buffer Overflow Vulnerability. BugTraq ID: 2872.

http://online.securityfocus.com/

[Splint] The Splint website. http://www.splint.org

[Wagner 2000] David Wagner, Jeffrey S. Foster, Eric A. Brewer and Alexander Aiken.

A First Step Towards Automated Detection of Buffer Overflow Vulnerabilities.

Network and Distributed Systems Security Symposium. February 2000.

[Webopedia] Webopedia. http://webopedia.internet.com/

[Young 1991] William D. Young. Formal Methods versus Software Engineering: Is

there a Conflict? Proceedings of the Symposium on Software Testing and

Analysis. October 1991.

[ZiffDavis 2000] ZDNet. Tech View: How 'buffer overflow' attacks work. July 20, 2000

http://techupdate.zdnet.com/techupdate/stories/main/0,14179,26505669,00.html

 22

6 Appendix A: Implementation Details
This appendix describes the procedure we used to analyze Sendmail. This method

includes a scheme to keep track of the various stages of the analysis.

We worked in a Unix (specifically RedHat Linux 7.2) environment. The Sendmail

consortium does not produce a Windows version of Sendmail.

There exist many ways to use Splint to analyze source code, and programmers may

want to adapt this method for their task or may decide on a different structure. A single

person conducted this analysis relying only on simple scripts and Unix utilities. A team

of developers may want to use a more sophisticated version control system that supports

multiple analysts working simultaneously (CVS for example).

6.1 Sendmail Source Code
First we downloaded and examined the Sendmail source code (available at

http://www.sendmail.org). For RedHat Linux 7.2 the Sendmail source consists of eighty

files totaling about seventy-thousand lines of code. Because the project faced limited time

and resources, it was not possible to analyze every line of code. Nevertheless, knowing

our configuration could prove helpful to someone seeking to perform a similar analysis.

 23

6.2 Directory Structure
Here is the directory structure:

Figure 2: Sendmail Analysis Directory Structure

00
(sendmail
source
files)

current
headers.c
parseaddr.c
sendmail.h
….
(sendmail source
files)
run_splint
splint_output

sendmail_analysis
take_snapshot
TODO

02
(sendmail
source
files)

01
(sendmail
source
files)

~dkf5k include
(other files
sendmail
needs)

archives
log

include

include

include

bugs
(files or subdirectories
demonstrating bugs in
Splint)

 24

The analyst spends the bulk of his time working in the current directory. He runs

Splint (using the run_splint Perl script) and compares Splint output with the code.

The other branch of the directory tree is the archives. Here is where we store

periodic "snapshots" of the current analysis state numbered sequentially starting from 00.

The take_snapshot script automates the snapshot process. When the analyst wants to

take a snapshot he runs the program which copies the current directory and all of its

subdirectories to the next sequentially numbered archive directory. Subdirectory 00

contains the unannotated code downloaded from the Sendmail web site. The program

then prompts the user to enter a log entry which has the following form:

04:Thu Mar 14 14:03:27 EST 2002
Finished checking --- 206 code warnings
Made a change to the
annotation in the standard library
function memset.

The run_splint script automatically generates the subdirectory number, date, and

number of warnings Splint generated for the snapshot in that archive. The analyst then

enters a brief log entry.

The other subdirectory bugs contains code demonstrating bugs in Splint.

 25

7 Appendix B: Analysis Log

00:Tue Mar 12 18:33:11 EST 2002
Finished checking --- 439 warnings.

Started the analysis. Inside this
directory is the original sendmail
source code.

01:Tue Mar 12 19:43:54 EST 2002
Finished checking --- 438 warnings.

Ignored the first warning. Can't
be a buffer overflow vulnerability
since it strcpys a string literal.

02:Tue Mar 12 21:10:41 EST 2002
Finished checking --- 436 code warnings

All of the warnings in alias.c
involved the same issue where
there was a macro named
newstr:

#define newstr(s) strcpy(xalloc(strlen(s) + 1), s)

which splint thought could be
a buffer overflow
vulnerability because of the
call to strcpy, but is in fact spurious

03:Thu Mar 14 00:14:37 EST 2002
Finished checking --- 238 code warnings

Great. With a very simple annotation
to the

#define newstr(s)\
 /*@-boundswrite@*/ strcpy(xalloc(strlen(s) + 1), s)
/*@=boundswrite@*/

macro we got rid of a whole lot of warnings.
Also, from
now on any annotations or code added
will be preceeded by /* dkf */
so somebody can grep for all the stuff
I add.

04:Thu Mar 14 14:03:27 EST 2002
Finished checking --- 206 code warnings

Made a change to the
annotation in the standard library
function memset:

 26

void /*@alt void *@*/ memset
(/*@out@*/ /*@returned@*/ void *s, int c, size_t n)
/*@modifies *s@*/
/*requires maxSet(s) >= (n - 1)*/
/*@ensures maxRead(s) >= (n - 1) @*/ ;

Got rid of the requires clause.

This is okay since memset
is copying a constant
byte into a buffer.

This step
got rid of two dozen or so warnings
related to memset.

Note: change made to the standard
library saved in the subdirectory lib/
within the source directory and appropriate
change made to the Makefile.

05:Fri Mar 15 20:35:09 EST 2002
Finished checking --- 160 code warnings

Using the implictconstraint flag eliminated
40 or 50 errors.

Working with David Larochelle we annotated
the parseaddr.c file till Splint no longer
produced any errors for that file.

