
A SYSTEM FOR SYNTHESIZING SWARM PROGRAMS

A Thesis
in TCC402

Presented to

The Faculty of the

School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

by

Errol Charles McEachron

March 26, 2002

On my honor as a University student, on this assignment I have neither given nor
received unauthorized aid as defined by the Honor Guidelines for Papers in TCC
Courses.

 __

(Full signature)

Approved __ (Technical Advisor)
 Dave Evans (Signature)

Approved __ (TCC Advisor)
 Kathryn Neeley (Signature)

PREFACE

The original motivation for undertaking this project stemmed from my perpetual

interests in the latest and greatest technologies. I first learned of swarm programming

from a talk given by my technical advisor, Dave Evans. Professor Evans discussed some

of the many applications of swarm technology, but it was the application to simulated

soccer that first captivated my attention. After talking with Professor Evans, I learned

that swarm programming at the University of Virginia was in its beginning stages and

that there were many research opportunities available. During this time, I thought

anything with the words swarm programming sounded interesting, but I was especially

intrigued by the idea of automatically generating swarm programs based on some high-

level description. This idea formed the basis for my research and concluded in the

project presented by this technical report.

The development of this project was initially based on the work performed by the

Swarm Development Group (SDG) in Santa Fe. SDG had already developed an

infrastructure for creating and interpreting swarm programs. The swarm structure

provided by SDG was initially implemented with the Objective C programming

language, and later an interface was created for Java users, which somewhat complicated

the semantics of the Java programming language. Other researchers expressed their

displeasure with the Sante Fe system and one gentleman in particular, Mike Hogye, took

it upon himself to begin developing an entirely new swarm framework. Mike Hogye

implemented the swarm framework in C++ and designed it to use the Raptor Simulator,

which is a general network simulator capable of simulating the dynamic network

environments associated with swarm programming. Since the Raptor Simulator project is

Chapter 1: Introduction

 ii

located here, at the University of Virginia, it would be relatively easy to make

modifications that would accommodate swarm development. Hence, the Swarm project

was moved from the Santa Fe simulator to the Raptor simulator in late January. The

creation of the swarm framework and the relocation of the project provided a more

flexible approach for developing swarm programs.

I commend Mike Hogye for his extraordinary efforts in developing the swarm

framework. I would also like to thank my technical advisor, Dave Evans for, first,

providing me the opportunity to research swarm technology, and, secondly, for his time

and suggestions that all contributed to the success of this project. Lastly, I express my

sincerest appreciations to my TCC advisor, Kathryn Neeley, for her support and expert

guidance in the development of this report. I hope that this project serves as a testament

to the efforts of all those who helped along the way, and basis for all those to come in the

future.

Chapter 1: Introduction

 iii

TABLE OF CONTENTS

Preface i
Table of Contents iii
List of Figures iv
Glossary of terms v
Abstract vii

CHAPTER 1: INTRODUCTION 1

1. Programming the Swarm 1
2. The Difficulties Associated with Swarm Programming 3
3. A System to Facilitate Swarm Development 6
4. Document Overview 7

CHAPTER 2: SYNTHESIZING A SWARM PROGRAM 8

1. An Overview of the Software System 8
2. Swarm Behaviors 9

CHAPTER 3: DESIGN AND IMPLEMENTATION 11

1. Object-Oriented Swarm Programming 11
2. The Swarm Framework 12
3. The Swarm Generator 13

CHAPTER 4: TESTING 21

1. Swarm Simulation Methods 21
2. Performance 22

CHAPTER 5: CONCLUSIONS 23

1. Summary 23
2. Interpretation 23
3. Recommendations 24

Bibliography 26
Appendix A: The Swarm Generator Class Files 1
Appendix B: Main.cpp 17
Appendix C: The Template Construct Files 19
Appendix D: LowPowerNewBehaviorAgent Class Files 22
Appendix E: The Disperse, Converge, and Rescue Class Files 24
Appendix F: Relative Files from the Swarm Framework 33

Chapter 1: Introduction

 iv

LIST OF FIGURES

Figure 1. A Long-Range Goal of Swarm Programming 2

Figure 2. The Disperse Behavior 5

Figure 3. The Software System Model 9

Figure 4. An Object’s State and Behavior 12

Figure 5. Generating a NewBehaviorAgent 17

Chapter 1: Introduction

 v

GLOSSARY OF TERMS

• abstraction - the process of focusing upon the essential characteristics of an
object

• acceptable swarm program – a swarm program is acceptable if it exhibits the

intended behavior during operation, for a reasonably large number of operations

• agent – a computational component with limited capabilities for maintaining and

modifying internal data representations (memory or state) while interacting with
the environment

• base class – the most generalized class in a class structure from which other

classes are inherited

• behavior – a description of the global dynamics that emerge from the collected

interactions of individual devices

• class – a set of objects that share a common structure and a common behavior (.h

and .cpp files)

• derived class – a class that inherits from one or more generalized base classes

• device – synonymous with agent (see agent)

• environment – the dynamic physical context in which the swarm exists and

operates

• generate – the process used by the swarm generator to create a swarm program

• information hiding – the process of keeping the implementation details of an

object hidden

• inheritance – a relationship among classes, wherein one class shares the structure

or behavior defined in one (single inheritance) or more (multiple inheritance)
other classes. Inheritance defines an "is-a" hierarchy among classes in which a
subclass, or derived class, inherits from one or more generalized base classes.

• instance – the creation of an object in the program

• member functions – an operation upon an object, defined as part of the

declaration of a class

• object – defined by a class, it has state, behavior, and identity

Chapter 1: Introduction

 vi

• pure virtual function – a member function that must be defined by a derived class

• software system – synonomous with the swarm generator

• swarm – a collection of devices

• swarm framework – the swarm code library, or structure, that interfaces with the

Raptor Simulator and provides the infrastructure for which this project was
developed.

• swarm generator – a software class that accepts a high level behavioral

descriptions and synthesizes an acceptable swarm application

• swarm program – the computer code that runs on an individual swarm device

• swarm programming – programming a collection of autonomous swarm devices

• synthesizing – the overall process of creating a swarm program from a set of

high- level behaviors

Chapter 1: Introduction

 vii

ABSTRACT

Recent ly, advancements in comput ing technology have revolutionized the traditional

concept of computer programming. Future programs will operate on collections of

mobile processors that communicate over wireless networks and function in dynamic

environments. These collections can be viewed as computational swarms, similar to

those swarms found in nature, such as ants or bees. As with any swarm, its behavior

emerges from the collective behaviors of its individual members. Thus, a swarm’s

behavior must be resilient to the misbehavior of a few individual members. This concept

marks the fundamental difference between swarm programming and traditional

programming.

Swarm programming requires a flexible system that can handle the dynamic nature

of swarm environments and the random failure of swarm devices. This requirement

makes swarm programming rather time consuming and quite tedious. This project

addressed this issue by developing a software system to generate swarm programs from a

set of high- level descriptions.

The software system was tested with an example search-and-rescue application,

which includes the disperse, converge, and rescue swarm behaviors. Although the

software system successfully assimilated the three behaviors into an acceptable swarm

program, the test results indicate that the system may not handle all variations of the same

swarm application equally well. Studying this issue and making any appropriate

modifications to the software system could be an interesting application of future

research.

Chapter 1: Introduction

CHAPTER 1: INTRODUCTION

Swarm programming is a process for creating computer programs to control

collections of autonomous computing devices with limited individual resources.

Presently, the process for programming these collections, or swarms, is time consuming

and requires significant attention to detail. This project produced a software system to

generate swarm programs from a set of high- level descriptions and, thereby, increased the

efficiency associated with the swarm programming process.

1. PROGRAMMING THE SWARM

In the last decade, there have been major advancements in computing technology

that will largely influence the design, implementation, and interpretation of computer

programs in the near future. Programming will evolve to operate on clusters of

autonomously distributed systems that communicate over ad hoc networks [Evans, 2000].

The inherent properties of such collections are similar to those of the biological swarms

found in nature. Consider a colony of ants recovering food left over from a picnic, or a

swarm of bees searching for an acceptable location for a new hive. In both situations,

each insect is interacting with the environment and relaying information throughout the

rest of the swarm. The result is the swarm functioning as a single entity in order to

achieve a desired behavior. In this way, one can view a collection of interdependent,

mobile, communicating devices as a swarm, and the notion of programming them as

swarm programming.

The single most important concept governing swarm programming is that the

behavior of the swarm emerges from the collective behavior of the individual devices

[Evans, 2000]. This means that the behavior of the swarm must be resilient to the

Chapter 1: Introduction

 2

misbehavior of a few individual devices. This fundamental concept will not only provide

a basis for developing present swarm technologies, but will persist to govern the very

complex applications of these technologies into the future.

For example, consider the distant application of swarm programming to the

construction of a new bridge for a highway transportation system. The construction of a

bridge by current methods is a monumental task that involves many engineering

disciplines and many different people. However, in the future, swarm technologies could

be used to build this same bridge in what amounts to the press of a single button. A

simplified view of this goal is displayed in Figure 1 [Evans, 2000].

Figure 1. A Long-Range Goal of Swarm Programming: This represents one of the long-range goals
of swar m programming. The idea is to achieve great complexity from collections of extreme
simplicity. “Swarm Programming: How to Program a Micronet” http://www.cs.virginia.edu/~evans
/talks/index.html

Instead of purchasing materials like concrete and steel beams, construction

companies would purchase billions of swarm devices, which would serve as both the

Cement
10 GFlop

Programming the Swarm:
Long - Range Goal

Chapter 1: Introduction

 3

materials and resources required to build the new bridge. Swarm devices could be

constructed such that they fit together in the same manner that a bolt would fit a screw,

thus, giving swarms a method for interconnection. Additionally, swarm devices could be

mixed with materials like paint and concrete, which automates the use of these materials

in construction. Each device would contain a swarm program tha t is responsible for

governing the overall behavior of the swarm, just as a superintendent or site foreman

would be responsible for coordinating the efforts of the company workers. In this sense,

a swarm program is analogous to an architectural plan for a specific bridge, as well as the

collective administration that dictates its construction. Hence, the procedure for

constructing a bridge using swarm technology would require the devices to interact with

one another and their environment based on a set of predefined rules provided by the

swarm program. It is within the development of those rules that the difficulties of

programming the swarm exist.

2. THE DIFFICULTIES ASSOCIATED WITH SWARM PROGRAMMING

The computing infrastructure for programming the swarm is based on many

interdependent devices, each with the limited ability to communicate, process and store

information, as well as change position [Evans, 2000]. The dynamic and unpredictable

nature of such an infrastructure makes traditional programming methodologies

inadequate for the use with swarm technology. While time and memory are the most

limited resources in traditional programming, swarm programs require the adaptive

management of a limited source of power allocated to device processing, communication,

and mobility [Evans, 2000]. The efficient use of resources is a fundamental aspect of

swarm programming. It will often require the approximation of a specific swarm

Chapter 1: Introduction

 4

function in order to conserve resources and acceptably accomplish the intended overall

objective. These inherent requirements of swarm programming have hindered the ability

to efficiently create swarm programs and require the development of new programming

methodologies.

Presently, the technology for designing and machining the computer hardware

necessary to build swarms greatly exceeds our ability to program them in a useful

manner. This follows from a lack of well- formed methodologies for designing,

implementing, and reasoning about swarm programs. The design aspect of a swarm

program is complicated by the numerous possibilities surrounding the formal definition

of a swarm behavior. In other words, how does one formally describe a swarm’s

behavior in such a way that facilitates the development of swarm programs? Although a

complete answer to this question is many years away, assume for a moment that adequate

methodologies for formally defining a swarm behavior already exist. Then the next

question and the focus of this project is:

Given a high-level description of a swarm’s behavior can we generate an

acceptable swarm program?

The answer to this question follows from the ability to determine what is acceptable

for a given high- level swarm behavior and how to translate it into an acceptable swarm

program. For the purposes of this project, an acceptable swarm program is one in which

the intended behavior of the program emerges from the collective behaviors of the

individual swarm devices an acceptable amount of the time. In other words, an

acceptable swarm program is only required to exhibit the desired swarm behavior some

acceptable percentage of the time. The development of a software program, or swarm

Chapter 1: Introduction

 5

generator, addressed these questions by successfully generating an acceptable swarm

program from a high- level behavioral descrip tion. This project began where the

developed framework for reasoning about swarm programs le ft off, and concluded by

improving the efficiency in relation to the development of such programs.

However, developing methodologies for reasoning about swarm programs is only

part of the programming problem. Currently, many of the difficulties facing computer

scientists involve the development of efficient methods for rapidly creating swarm

programs. For example, consider the situation in which a collection of swarm devices

initially begin in a tightly formed group and then disperse or spread out over a particular

environment. This dispersion behavior is illustrated below in Figure 2.

Figure 2. The Disperse Behavior: The devices begin in a clustered state and move randomly to
spread apart some arbitrary distance r from one another and some distance d away from the
environment perimeter.

Swarm Behavior: Disperse

device

environment

d r
s

Clustered swarm
devices

Begin End

Dispersed swarm
devices

Chapter 1: Introduction

 6

Now suppose the behavioral requirements have changed to perform a more complex

action. Assume that the swarm must now locate and rescue a particular object in the

environment. Since the situation changed, it requires the swarm programmer to

implement a new swarm program to provide the new desired swarm behavior. Hence the

problem: swarm programs are specified by manually programming the desired behavior

for each new situation. However, situations are constantly changing and new behaviors

are always desired, which makes swarm programming a very time consuming and

inefficient process.

In order to improve the efficiency associated with swarm programming, this project

implemented a software system that allows swarm developers to create swarm programs

at a much higher level of design.

3. A SYSTEM TO FACILITATE SWARM DEVELOPMENT

This project designed and implemented a software system that generated an

acceptable swarm program for a given description of a high- level swarm behavior. It

successfully accomplished the following objectives:

• Produced a software system to generate an acceptable swarm program from a

high- level description of a swarm’s behavior

o Specified the high- level behavioral description as a combination of disperse,

converge, and rescue, yielding the desired behavior of search and rescue

o Developed the disperse, converge, and rescue behaviors for the high- level

behavior descriptions

• Verified and Validated the functionality of the software system

o Used a display simulator to interpret the behavior of the new swarm program

Chapter 1: Introduction

 7

The result of this project provides a basis for developing swarm programs more

efficiently. Instead of manually implementing every new swarm program, this project

automates the programming process by generating swarm programs from a set of high-

level swarm descriptions. This increases the efficiency of swarm programmers by

transferring much of the development burden from the programmer to the actual

program. The completion of this project has contributed to the infrastructure necessary to

facilitate future advancements in swarm programming.

4. DOCUMENT OVERVIEW

The remaining chapters of this report focus on the underlying principles, design, and

implementation of the software system, as well as the test procedure, results, and

conclusion. Chapter 2 provides an overview of the software system and an introduction

to the swarm behaviors pertinent to synthesizing a swarm program. Chapter 3 focuses on

the design and implementation details of the software system in addition to the use of

C++ in its development. The simulation methods used to test the software system, along

with the results, are given in Chapter 4. In conclusion, the report summarizes and

interprets the results, and makes recommendations to facilitate the future development of

this project.

Chapter 2: Synthesizing a Swarm Program

 8

CHAPTER 2: SYNTHESIZING A SWARM PROGRAM

The principles for synthesizing a swarm program require a software system that is

capable of fusing multiple swarm behaviors into a single new swarm behavior, and from

that, synthesizing an acceptable swarm program. The essence of the system is to

automate the process that a swarm programmer would perform in order to implement a

new swarm program. This chapter provides an overview of the software system, as well

as an introduction to swarm behaviors and their application to this project.

1. AN OVERVIEW OF THE SOFTWARE SYSTEM

The software system created in this project serves as an interface for swarm

programmers, allowing them to create new swarm programs by simply selecting a set of

swarm behaviors from an already existing code library. The code library currently

possesses a limited number of simple swarm behaviors. The idea is to combine behaviors

from this library to create a high- level description of the desired swarm behavior. The

system will then combine the behaviors in the appropriate order to generate an acceptable

swarm program. The model for this system is presented in Figure 3 on the next page.

Chapter 2: Synthesizing a Swarm Program

 9

Figure 3. The Software System Model: The disperse, converge, and rescue behaviors are selected to
form a high-level description, which is used by the Swarm Program Synthesizer to generate an
acceptable swarm program for each device.

As mentioned previously, the software system accepts a high- level description of the

desired swarm behavior as input. This description contains the source code for each of

the selected swarm behaviors. A second input file, in addition to the high- level

behavioral description, is also required. This second input file, is a text file, and serves as

a template for the generation of the new swarm behavior. Once the code is generated

successfully, it is compiled and output as a new swarm program for each device.

2. SWARM BEHAVIORS

A swarm behavior is a description of the global behavior that emerges from the

collective interactions of individual swarm devices. Consider a colony of ants that are

building a new anthill. If each ant performs the same individual behavior by piling its

grain of sand in a specific location, then the swarm behavior that emerges is the creation

Chapter 2: Synthesizing a Swarm Program

 10

of an anthill. However, if the ant colony misbehaves, and each ant drops its grain of sand

in some random location, no clear swarm behavior emerges. Thus, a large enough

collection of devices exhibiting the same behavior dictates the behavior of the swarm.

Let us consider some of the swarm behaviors as they pertain to this project. The

example application for this project was to synthesize a search-and-rescue swarm

behavior. The idea is to search for a particular object, and then, once that object is found,

the swarm should converge to its location and rescue it. The first, and one of the simplest

behaviors that will be used, is called disperse. Disperse provides a method for a clustered

collection of swarm devices to spread out over an existing area. Its objective is to

achieve some acceptable distribution of devices over a given area, which will serve as an

adequate method for searching the environment. While the devices are dispersing over

the environment, it is beneficial to have some method for moving toward the object once

it is found. The converge swarm behavior does just that; it enables swarm devices to

scan for a particular object and close in on its position. The last behavior is rescue, which

causes a swarm device to rescue a particular target once it is within range. The proper

combination of these three behaviors into a single swarm program will serve as the

search-and-rescue example application in the design and implementation of this project.

Chapter 3: Design and Implementation

 11

CHAPTER 3: DESIGN AND IMPLEMENTATION

This chapter presents the programming details for synthesizing a swarm program

from a set of high- level behaviors. It also provides a discussion of the object-oriented

design methodology and its application to swarm programming, as well as a class-by-

class explanation of the software system created to generate an acceptable swarm

program.

1. OBJECT-ORIENTED SWARM PROGRAMMING

In swarm programming, a swarm is viewed as a collection of devices where each

device is represented by an object. In the C++ code for this project, the device object is

defined by a class, which contains the necessary data and operations to describe the

device. For example, in an ant colony, a class that describes an ant as an object might

include information about the ant’s color, vision, hearing, and speed. Hence, the class

describes the properties that define an ant and provides operations, or member functions,

that act on those properties to define a behavior. Each device object maintains its own

state and behavior and is instantiated from a class definition. The program is then

defined by an instantiated collection of these interacting device objects. This relationship

is seen more clearly in Figure 4 presented on the next page.

Chapter 3: Design and Implementation

 12

Figure 4. An Object’s State and Behavior: The state and behavior is maintained within the object.
The objects interact with one another in a program. http://www.santafe.edu/projects/swarm/
swarmfest99-tutorial/

2. THE SWARM FRAMEWORK

The Swarm Programming Project here at the University of Virginia uses the Raptor

Simulator for interpreting swarm programs. The Raptor Simulator is a general network

simulator capable of simulating the dynamic network environments associated with

swarm programming. The development of this thesis project was based on the concurrent

development of the swarm framework that interfaces with the Raptor Simulator. The

swarm framework is essentially a group of C++ classes that provide a model for a

swarm’s devices, behavior, and environment, as well as a me thod for viewing the swarm

simulation. Development in this framework relies heavily on inheritance and information

hiding OO design principles. For example, in this framework, the swarm programmer

specifies a new device by first inheriting the properties of a basic device class and then

Chapter 3: Design and Implementation

 13

implementing the remaining details specific to the new device. Once the swarm program

has been completed and compiles successfully, it is executed and its output is streamed to

the framework’s display component. The display interprets the output from the swarm

program and shows the interactions of swarm devices with the surrounding environment.

This framework served as the platform for the development of this thesis project.

3. THE SWARM GENERATOR

The purpose of this software system is to synthesize an acceptable swarm program

from a high- level description of swarm behaviors. Specifying swarm behaviors at a high-

level means selecting the name of the class behaviors that will be input into the software

system. This project synthesized a search-and-rescue behavior using three behaviors:

disperse, converge, and rescue. Each class behavior was created by inheriting its class

from the base class BasicAgent. The class BasicAgent is included in the swarm

framework to provide the fundamental structure for any inherited device or agent class.

Every BasicAgent, or any class derived from it, contains a set of member functions that

serve as a basis for defining the agent’s behavior. The majority of a derived agent’s

behavior is implemented by specifying how a message is interpreted and what action is

performed. This is done by implementing the basic_agent_received_transmission()

and the basic_agent_post_action() functions, respectively. The code for the BasicAgent

class along with other relevant code from the swarm framework is presented in Appendix

F.

A discussion of the disperse, converge, and rescue behaviors was given in Chapter 2.

This section describes the implementation of each behavior.

Chapter 3: Design and Implementation

 14

Disperse
The derived class, DisperseAgent, defines a simple method for swarm devices to

move away from one another. The dispersion algorithm for this class is based completely

on random movement. The class maintains the following two data members:

• m_dispersing – This value is either true or false and signifies if the agent is

dispersing.

• m_last_direction – This variable specifies the (x, y) coordinates for a relative

position

The basic_agent_post_action() function is overloaded to create a random relative

position and move in that direction. Since devices cannot move into an already occupied

area, another position is randomly chosen until an unoccupied area is found. Once an

acceptable location is found, the device moves into this new position. This makes for an

extremely simple, however, acceptable DisperseAgent class. The code for the

DisperseAgent class is provided for review in Appendix E.

Converge
The specification of the ConvergeAgent class requires message processing and some

notion of relative direction. Thus, the ConvergeAgent class maintains the following

member variables:

• m_converging – This value is either true or false and signifies if the agent is

moving in the correct direction.

• m_power_current_msg – This is a floating-point number that indicates the

signal strength of the most recently received message.

• m_power_of_last_received_msg – This is a floating-point number that indicates

the signal strength of the previously received message.

Chapter 3: Design and Implementation

 15

• m_last_direction – This variable specifies the (x, y) coordinates for a relative

position

The basic_agent_received_transmission() function is overloaded to process

messages by determining if the signal strength of the newly received message is stronger

than that of the previous one. If the new signal is stronger, meaning m_power_current_

msg is greater than m_power_of_last_received_msg, then the device is moving closer to

the signal source, or converging on its target. The convergence algorithm specifies that

the device move in the same direction if the signal gets stronger; if the single gets

weaker, the device must adjust its position. This behavior is defined in the

basic_agent_post_action() function. The code for the ConvergeAgent class is provided

for review in Appendix E.

Rescue
The class definition for RescueAgent is relatively simple and does not really rescue

anything at all. The behavior for rescue actually makes the device objects stop moving

once they are within specific range of their target. This is done by overloading the

basic_agent_received_transmission() function to determine whether the signal strength

of a message was strong enough for the target to be considered within rescue range. If

the target is within range, the device stops, which for our purposes means it is rescuing

the target. This is accomplished by setting the single member variable, m_rescuing, to

true if the signal strength of the received message crosses a certain threshold. The code

for the RescueAgent class is provided for review in Appendix E.

Chapter 3: Design and Implementation

 16

Generating Swarm Programs
After each class behavior was created, the software system to generate a new

synthesized behavior was developed. In general, the software system, or swarm

generator, accepts any number of swarm behaviors as input, combines them in some

logical order, and generates a new swarm program for each swarm device as output. The

swarm generator is based on file processing and includes the iostream and fstream C++

class libraries. The iostream class is defined for standard input and output operations,

whereas fstream is a file class, derived from iostream, for both reading and writing

operations. In the example application for this project, the swarm generator accepts three

behavioral class definitions – disperse, converge, and rescue –as input. Additionally, it

requires two constant text files, HeaderConstruct.txt and ClassConstruct.txt, to serve

as templates for the class structure of the new behavior. The behavior classes are then

combined by selectively inserting code segments into the appropriate locations of the

templates. Once the new class behavior, NewAgentBehaviorAgent, is generated, it is

compiled into a swarm program, which is then tested for correctness and acceptability.

The NewBehaviorAgent class definition is a logical compilation of the DisperseAgent,

ConvergeAgent, and RescueAgent class files that produces a swarm program with the

desired search-and-rescue behavior. This process is illustrated by Figure 5 on the next

page. The procedure for combining the three behaviors is controlled in the main.cpp file

of the swarm generator project. In this file, a swarm generator object, called generator, is

instantiated. The generator object invokes its class member functions to build the

NewBehaviorAgent. The code for this file is given in main.cpp presented in Appendix B.

Chapter 3: Design and Implementation

 17

Figure 5. Generating a NewBehaviorAgent: The NewBehaviorAgent class definition is created by
combining code segments from the DisperseAgent, ConvergeAgent, and RescueAgent class files in
some logical order.

The Swarm Generator Class
The swarm generator object in main.cpp was instantiated from the SwarmGenerator

class definition, which is the major component and focus of this project. The

SwarmGenerator class provides file input and output operations specific to the swarm

framework.

Upon execution of the program, the user is prompted to enter the names of the

swarm behaviors files that will be combined in the program. The SwarmGenerator class

provides this functionality with the prompt_for_behavior_files() member function. The

function collects the behavior file names from the user and passes them to another

function to be validated and stored within the program. If an incorrect filename is

entered, the user is informed which filename is invalid and the program is terminated.

Chapter 3: Design and Implementation

 18

Once the filenames are valid and stored, the new behavior’s class file construction may

begin.

This procedure begins with a call to the combine_cpp_function(), which combines

the contents of some specified function across the class definition files (.cpp file) of all

behaviors. The combine_cpp_function() method assumes that each behavior has its own

implementation of the specified function. This is an acceptable assumption because each

swarm behavior was derived from the same base class and thus, contains a set of pure

virtual functions, which requires each derived class to include its own version of all of

those function definitions. After the combine_cpp_function() is invoked for each

member function in the derived class definitions, the end_combine_cpp() routine is called,

which completes file construction process for the new behavior’s class definition.

A similar procedure is used to process the class header files, which maintains the

same assumptions about file structure made earlier. First, the combine_header_file() is

called, which combines portions of the class header files based on the start and end

parameters passed to the function. Then, by invoking the end_combine_h() function, the

process for combing the header file is completed.

Delving further into the implementation of the SwarmGenerator class reveals a few

other important member functions. The main functionality of this class deals primarily

with seeking to a particular point in a file and copying the code from that file to a

particular point in another file.

The seek_function_content() member allows the swarm generator to prepare a file

for processing at a particular location. Data from a specified point in the input file is

copied to the appropriate point in the output file using the copy_cpp_function_content()

Chapter 3: Design and Implementation

 19

and copy_header_file_content() functions. Most of the swarm generator’s complexity

exists in these two files.

The copy_cpp_function_content() first calls the seek_function_content() member

to prepare the input file for processing. Then, once the input file pointer is positioned in

the proper location, the content of the function is copied. This member function uses the

code block structure of a C++ function (function definitions are enclosed by open and

close curly braces) to determine when the end of the function has been reached and, thus,

when it can stop copying the file. The algorithm for this procedure is simple; it maintains

separate counts for all open and close curly braces encountered while processing the

function, and, when the number of open curly braces equals the number of close curly

braces, the end of the function has been reached.

However, there is a problem because not every line of the input file’s function should

always be copied to the output file. The reason is that the output file’s function may

already contain that particular line, in which case a duplicate will cause an error in the

final program. Thus, the copy_cpp_function_content() restricts the insertion of

duplicate lines by maintaining what lines already exist in the output file’s function and

then comparing those lines to the potential line coming from the input file. If the

potential line already exists in the output file, or it is not inserted into a separate code

block, then that line is discarded and the next line is processed.

The implementations of the copy_cpp_function_content() and copy_header_file

_content() are very similar. The only major difference is that the copy_header_file

_content() takes an additional parameter to determine which parts of the header file to

copy. It copies the contents of the header input file – delimited by the start and end

Chapter 3: Design and Implementation

 20

parameters – into the proper location of the output file. Once again, this function restricts

duplications for the same reason presented earlier.

The code for the SwarmGenerator class discussed in this section is presented in

Appendix A. The comments located in these class files provide an explanation for every

function and explain some of the more program specific implementation details. After

the swarm generator class and the example search-and-rescue application were

constructed, simulation methods were used to test the results.

Chapter 4: Testing

 21

CHAPTER 4: TESTING

The software system was tested using swarm simulation methods based on the

Raptor Simulator developed at the University of Virginia. The goal of the test was to

combine three high- level swarm behaviors, disperse, converge, and rescue, in order to

create an acceptable swarm program that exemplified a new search-and-rescue behavior.

The software system was successful in synthesizing an acceptable swarm program from

high- level swarm behaviors. This chapter discusses the simulation methods used to test

the results, as well as the overall performance of the software system

1. SWARM SIMULATION M ETHODS

The correctness of the software system was tested primarily on two levels. First, did

the behavior generated by the software system compile? Secondly, if the behavior

compiled successfully, was it an acceptable swarm program? The first question or level

of testing requires a simple yes or no answer. However, the second question requires

some interpretation of the swarm program. The swarm program’s acceptability is

interpreted visually, using the display component of the swarm framework. The display

component is a C++ implementation that uses the OpenGL and GLUT code libraries. It

interprets the output of a swarm program and creates a visual representation of the

behavior. The small grey spheres represent the swarm devices, and the window frame

encapsulates the swarm environment. The display component gives a simple, yet

effective method for visually interpreting a swarm program.

The interpretation of a swarm program is based on the fact that the behavior of the

swarm emerges from the collective behaviors of the individual devices. As mentioned

earlier, this principle refers to the idea that the swarm behavior must be resilient to the

Chapter 4: Testing

 22

misbehavior of a few individual devices. However, the question is then, how many

devices are allowed to misbehave before the behavior is no longer acceptable? The

answer is simple: a behavior is deemed unacceptable once it is no longer clear what

behavior was originally intended.

2. PERFORMANCE

The software system was successful in synthesizing a swarm program on both levels

of testing. The original question and focus of this project was:

Given a high-level description of a swarm’s behavior can we generate an

acceptable swarm program?

The answer is yes, the software system succeeded in generating an acceptable swarm

program from the given high- level specification. During the simulation of the swarm

program, the search-and-rescue behavior emerged, showing the devices disperse until the

target was located, converged on, and then rescued.

The major strengths of the software system are that it proves that the synthesis of

swarm programs from high- level programs is possible and its implementation details are

fairly simple and easy to understand. Simple implementation methods make the system’s

functionality easily extendible, which will facilitate future swarm development.

However, a weakness of the software system is that even though it generated an

acceptable swarm program it is not flexible enough to deal with the many ways to specify

the same swarm program. In othe r words, the software system does not handle all

implementations of the same swarm program equally well.

Chapter 5: Conclusions

 23

CHAPTER 5: CONCLUSIONS

1. SUMMARY

This project developed a software system for synthesizing swarm programs and

proved that the generation of an acceptable swarm program from a set of high- level

swarm behaviors is possible. The system, or swarm generator, produced a search-and-

rescue program from the disperse, converge, and rescue behaviors that exhibited the same

behavior as the swarm program developed manually by the programmer.

2. INTERPRETATION

The significance of generating a swarm program that behaved the same as the

manually programmed version is that it proves the automation of the swarm

programming process is certainly possible. However, there are some important points to

consider when interpreting the results of this project. The first issue deals with the

structure of the behaviors combined in the search-and-rescue test application. The

disperse, converge, and rescue behaviors all share a common class file structure due to

the fact that each behavior was derived from the same base class. This means that the

member functions in the three class behaviors all have the same function names. For

example, each of the three swarm behaviors contains a function with the name,

basic_agent_start(). The swarm generator is heavily dependent on this property,

somewhat limiting its ability to combine behaviors derived from different base classes.

Another issue affecting the performance of the swarm generator follows from a

programmer’s ability to implement the same program in many different ways. This

means that variations in the implementation of a swarm behavior may produce functional

variations in the swarm program generated by the software system. Although in some

Chapter 5: Conclusions

 24

cases these issues may hinder the generation of an acceptable swarm program, the

software system provides methods for accommodating the changes required by a swarm

programmer to circumvent these obstacles. Hence, the current weaknesses in the

software system are not major limitations and provide an excellent entry point for

additional research on this project.

3. RECOMMENDATIONS

This project provides a strong basis for which future research can begin to build.

The intent of the recommendations given in this section is to create a spiral development

process to increase the functionality of the software system through the testing and

modifications provided by future projects.

The recommendations for future researchers are to analyze the limitations of the

software system and expand its current functionality to be more flexible. The researcher

should develop a test harness, including multiple applications, to explore in detail the

limitations of the software system. For instance, at the time of this project, the swarm

framework provided only one base class, BasicAgent, from which all other swarm

behaviors were derived. Thus, the software system was not tested with behaviors derived

from different base classes. It would be beneficial to expand the swarm framework to

include multiple base classes and then develop a test application to generate a swarm

program from a set of behaviors inherited from a set of different base classes.

Another area of this project that needs to be investigated is the software system’s

ability to handle multiple implementations of the same swarm behaviors. The disperse,

converge, and rescue behaviors are very basic and were developed as an example

application to prove that the generation of a swarm program from a set of high- level

Chapter 5: Conclusions

 25

behaviors was feasible. Researchers should enhance the functionality of these behaviors

and then test their synthesis using the swarm generator. A comparison of the test results

with the results of this project should provide valuable information regarding the current

limitations of the software system. Based on these findings, the researcher should make

the appropriate modifications to the swarm generator, increasing its overall functionality.

Chapter 5: Conclusions

 26

BIBLIOGRAPHY

[1] American Philosophical Society “The first stored program for a computer.”
Retrieved September 2001 from <http://www.amphilsoc.org/library/exhibits/
treasures/vonneuma.htm>

[2] Barber, K. and Martin, C. (2001, June). “Dynamic Reorganization of Decision-

Making Groups.” International Conference on Autonomous Agents. Proc. of the
Fifth International Conf. on Autonomous agents, May 28-June 1 2001, Montreal,
Quebec, Canada. Association for Computing Machinery

[3] Barber, K., McKay, r., MacMahon, M., Martin, C., Lam, D., Goel, A., Han, D., and

Kim, J. (2001, June). “Sensible Agents: An Implemented Multi-Agent System
and Testbed.” International Conference on Autonomous Agents. Proc. of the
Fifth International Conf. on Autonomous agents, May 28-June 1 2001, Montreal,
Quebec, Canada. Association for Computing Machinery

[4] Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999, July). Swarm Intelligence:

From Natural to Artificial Systems. :Oxford University Press

[5] Coelho, A., Weingaertner, D., and Gomide, F. (2001, June). “Evolving

Coordination Strategies in Simulated Robot Soccer.” International Conference
on Autonomous Agents. Proc. of the Fifth International Conf. on Autonomous
agents, May 28-June 1 2001, Montreal, Quebec, Canada. Association for
Computing Machinery

[6] DeLoach, S. (2001, June). “Specifying Agent Behavior as Concurrent Tasks.”

International Conference on Autonomous Agents. Proc. of the Fifth International
Conf. on Autonomous agents, May 28-June 1 2001, Montreal, Quebec, Canada.
Association for Computing Machinery

[7] Evans, D. (2000, July). “Programming the Swarm.” Retrieved September, 2001

from <http://www.cs.virginia.edu/~evans/swarm/nsf-proposal.pdf>

[8] Evans, D. (2000, July). “Swarm Programming: How to program a Micronet”

Retrieved October, 2001<http://www.cs.virginia.edu/~evans/talks/index.html>

[9] Fatima, S. and Wooldridge, M. (2001, June). “Adaptive Task and Resource

Allocation in Multi-Agent Systems.” International Conference on Autonomous
Agents. Proc. of the Fifth International Conf. on Autonomous agents, May 28-June 1
2001, Montreal, Quebec, Canada. Association for Computing Machinery

[10] Hodges, A. (2001) “The Alan Turing Internet Scrapbook.” Retrieved September

2001 from <http://www.turing.org.uk/turing/scrapbook/computer.html>

Chapter 5: Conclusions

 27

[11] Horling, B., Benyo, B. and Lesser, V. (2001, June). “Using Self-Diagnosis to
Adapt Organizational Structures.” International Conference on Autonomous
Agents. Proc. of the Fifth International Conf. on Autonomous agents, May 28-June 1
2001, Montreal, Quebec, Canada. Association for Computing Machinery

[12] Jim, K. and Giles, C. (2001, June). “How Communication Can Improve the

Performance of Multi-Agent Systems” International Conference on Autonomous
Agents. Proc. of the Fifth International Conf. on Autonomous agents, May 28-June 1
2001, Montreal, Quebec, Canada. Association for Computing Machinery

[13] Kalin, M. (1999). Applications Programming in C++. Upper Saddle River, New

Jersey: Prentice Hall

[14] Kennedy, J. and Eberhart R. (2001). Swarm Intelligence. San Diego, CA:

Academic Press.

[15] Koeing, S. and Yaxin, L. (2001, June). “Terrain Coverage with Ant Robots: A

Simulation Study.” International Conference on Autonomous Agents. Proc. of
the Fifth International Conf. on Autonomous agents, May 28-June 1 2001, Montreal,
Quebec, Canada. Association for Computing Machinery

[16] Lawlor, S. C. (1998). The Art of Programming: Computer Science with C++. 20

Park Plaza, Boston, Massachusetts: PWS Publishing Company

[17] Lita, L., Jamieson, S., and Thrun, S. (2001, June). “A System for Multi-Agent

Coordination in Uncertain Environments.” International Conference on
Autonomous Agents. Proc. of the Fifth International Conf. on Autonomous agents,
May 28-June 1 2001, Montreal, Quebec, Canada. Association for Comput ing
Machinery

[18] Müller, P., Introduction to Object-Oriented Programming Using C++ (1997)

Retrieved January 2002 from <http://www.zib.de/Visual/people/mueller/Course/
Tutorial/tutorial.html>

[19] Multi-agent World, MAAMAW ’94, Odense, Denmark, August 3-5, 1994. Berlin

Heidelberg: Springer-Verlag

[20] Schildt, H. (1998). The Complete Reference: C++ Third Edition. Berkley,

California: Osborne McGraw-Hill

[21] The Swarm Development Group “The Swarm Development Group.” Retrieved

December 2001 from ht tp://www.swarm.org

APPENDIX A: THE SWARM GENERATOR CLASS FILES

/*===*/
/* SWARMGENERATOR.H */
/* --- */
/* This class uses the C++ file I/O libraries to combine */
/* multiple class files specific to the structure of a swarm */
/* program. */
/* --- */
/* The following resource files should accompany the use of */
/* the SwarmGenerator class. */
/* ClassConstruct.txt -- Template for swarm .cpp file */
/* HeaderConstruct.txt -- Template for swarm .h file */
/* LowPowerNewBehavior.cpp -- see comments in file */
/* LowPowerNewBehavior.h -- see comments in file */
/* --- */
/* Author: Errol McEachron Date: 03/20/2002 */
/* --- */
/*===*/

#ifndef SWARM_GENERATOR_H
#define SWARM_GENERATOR_H

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>

using namespace std;

class SwarmGenerator
{
public:
 SwarmGenerator(int iNumBehaviors);
 ~SwarmGenerator();

 void prompt_for_behavior_files();

 void combine_cpp_function(char* strFunctionName);

 2

 void combine_header_file(const char *strStart, const char *strEnd);

 void end_combine_cpp();
 void end_combine_h();

protected:
 bool function_is_allowed(char *function);
 bool duplicate_is_allowed(char *duplicate);
 bool substr(char* source, const char* substr);

 void set_behavior_names(string strName, int index);
 void set_behavior_cpp_filenames(string strFilename, int index);
 void set_behavior_header_filenames(string strFilename, int index);
 void set_behavior_function_names(char* strFunctionName);

 void seek_function_content(fstream &fin, const char *strDelimiter);

 void copy_cpp_file_until(fstream &fin, ofstream &fout, const char *strDelimiter);
 void copy_header_file_until(fstream &fin, ofstream &fout, const char *strDelimiter);
 void copy_cpp_function_content(fstream &fin, ofstream &fout, const char *strFunctionName);
 void copy_header_file_content(fstream &fin, ofstream &fout,const char* strStart, const char *strEnd);

private:
 SwarmGenerator(const SwarmGenerator &swarm_generator);

 int m_number_of_behaviors;

 char **m_behavior_name;
 char **m_behavior_filename_cpp;
 char **m_behavior_filename_h;
 char **m_behavior_function_name;

 fstream **m_fin_behavior_cpp;
 fstream **m_fin_behavior_h;
 fstream m_fin_construct_cpp;
 fstream m_fin_construct_h;

 ofstream m_fout_behavior_cpp;
 ofstream m_fout_behavior_h;

 stringstream m_sstream_container_cpp;
 stringstream m_sstream_container_h;

 3

};
#endif

 4

/*===*/
/* SWARMGENERATOR.CPP */
/* --- */
/* This class uses the C++ file I/O libraries to combine */
/* multiple class files specific to the structure of a swarm */
/* program. */
/* --- */
/* The following resource files should accompany the use of */
/* the SwarmGenerator class. */
/* ClassConstruct.txt -- Template for swarm .cpp file */
/* HeaderConstruct.txt -- Template for swarm .h file */
/* LowPowerNewBehavior.cpp -- see comments in file */
/* LowPowerNewBehavior.h -- see comments in file */
/* --- */
/* Author: Errol McEachron Date: 03/20/2002 */
/* --- */
/*===*/

#include "SwarmGenerator.h"

// SwarmGenerator(): Constructor
SwarmGenerator::SwarmGenerator(int iNumBehaviors)
 : m_number_of_behaviors(iNumBehaviors)
{
 m_behavior_name = new char*[m_number_of_behaviors];
 m_behavior_filename_cpp = new char*[m_number_of_behaviors];
 m_behavior_filename_h = new char*[m_number_of_behaviors];
 m_behavior_function_name = new char*[m_number_of_behaviors];

 m_fin_behavior_cpp = new fstream*[m_number_of_behaviors];
 m_fin_behavior_h = new fstream*[m_number_of_behaviors];

 m_fin_construct_cpp.open("ClassConstruct.txt", ios::in);
 m_fin_construct_h.open("HeaderConstruct.txt", ios::in);

 m_fout_behavior_cpp.open("NewBehaviorAgent.cpp", ios::trunc | ios::in);
 m_fout_behavior_h.open("NewBehaviorAgent.h", ios::trunc | ios::in);
}

 5

// prompt_for_behavior_files(): Prompts user for behavior class
// names and sets the corresponding filenames
void SwarmGenerator::prompt_for_behavior_files()
{
 cout << "Enter the filename of all desired behaviors" << endl;
 cout << "(excluding file extensions) beginning with" << endl;
 cout << "the default behavior and concluding with the" << endl;
 cout << "terminating behavior." << endl << endl;

 string strTemp;
 for (int i = 0; i < m_number_of_behaviors; i++)
 {
 cout << "Enter the name of behavior #" << i + 1 << endl;
 cin >> strTemp;

 set_behavior_names(strTemp, i);
 set_behavior_cpp_filenames(strTemp, i);
 set_behavior_header_filenames(strTemp, i);
 }

}

// combine_cpp_functions(): Controls the program flow for combining the // .cpp behavior files for a specific function
(strFunctionName)
// (Insertion points in the ClassConstruct.txt file are denoted by @)
void SwarmGenerator::combine_cpp_function(char* strFunctionName)
{
 set_behavior_function_names(strFunctionName);
 copy_cpp_file_until(m_fin_construct_cpp, m_fout_behavior_cpp, "@");
 for (int i = 0; i < m_number_of_behaviors; i++)
 {
 copy_cpp_function_content(*m_fin_behavior_cpp[i], m_fout_behavior_cpp, m_behavior_function_name[i]);
 }
}

 6

// combine_header_files(): Controls the program flow for combining the // .h behavior files from strStart to strEnd
(Insertion points in the
// HeaderConstruct.txt file are denoted by @)
void SwarmGenerator::combine_header_file(const char *strStart, const char *strEnd)
{
 copy_header_file_until(m_fin_construct_h, m_fout_behavior_h, "@");
 for (int i = 0; i < m_number_of_behaviors; i++)
 {
 copy_header_file_content(*m_fin_behavior_h[i], m_fout_behavior_h, strStart, strEnd);
 }
}

// end_combine_cpp(): Completes the .cpp file copy process by copying
// the remaining portion of the ClassConstruct.txt template file
// ($ is used to denote the end of the ClassConstruct.txt file)
void SwarmGenerator::end_combine_cpp()
{
 copy_cpp_file_until(m_fin_construct_cpp, m_fout_behavior_cpp, "$");
}

// end_combine_h(): Completes the .h file copy process by copying
// the remaining portion of the ClassConstruct.txt template file
// ($ is used to denote the end of the ClassConstruct.txt file)
void SwarmGenerator::end_combine_h()
{
 copy_header_file_until(m_fin_construct_h, m_fout_behavior_h, "$");
}

// set_behavior_names(): Initializes m_behavior_name array to
// corresponding class behavior names
void SwarmGenerator::set_behavior_names(string strName, int index)
{
 m_behavior_name[index] = new char[strName.size() + 1];
 strcpy(m_behavior_name[index], strName.c_str());
}

 7

// set_behavior_cpp_filenames(): Initializes m_behavior_filename_cpp
// array to corresponding class behavior names and initializes
// m_fin_behavior_cpp array file pointers to the corresponding filenames
void SwarmGenerator::set_behavior_cpp_filenames(string strFilename, int index)
{
 string strTemp = strFilename + ".cpp";
 m_behavior_filename_cpp[index] = new char[strTemp.size()+1];
 strcpy(m_behavior_filename_cpp[index], strTemp.c_str());

 m_fin_behavior_cpp[index] = new fstream(m_behavior_filename_cpp[index]);
 if(!m_fin_behavior_cpp[index]->is_open())
 {
 printf("File %s is not found.\n", m_behavior_filename_cpp[index]);
 exit(1);
 }
}

// set_behavior_header_filenames(): Initializes m_behavior_filename_h
// array to corresponding class behavior names and initializes
// m_fin_behavior_h array file pointers to the corresponding filenames
void SwarmGenerator::set_behavior_header_filenames(string strFilename, int index)
{
 string strTemp = strFilename + ".h";
 m_behavior_filename_h[index] = new char[strTemp.size() + 1];
 strcpy(m_behavior_filename_h[index], strTemp.c_str());

 m_fin_behavior_h[index] = new fstream(m_behavior_filename_h[index]);
 if(!m_fin_behavior_h[index]->is_open())
 {
 printf("File %s is not found.\n", m_behavior_filename_h[index]);
 exit(1);
 }
}

 8

// set_behavior_function_names(): Prepends the behavior class names to
// strFunctionName and initializes m_behavior_function_name
void SwarmGenerator::set_behavior_function_names(char* strFunctionName)
{
 int strPos = 0;
 string strTemp;

 for (int i = 0; i < m_number_of_behaviors; i++)
 {
 strTemp = m_behavior_filename_cpp[i];
 strPos = strTemp.find(".cpp");
 strTemp.replace(strPos, 4, strFunctionName);
 m_behavior_function_name[i] = new char[strTemp.size() + 1];
 strcpy(m_behavior_function_name[i], strTemp.c_str());
 }
}

// seek_function_content(): Sets file pointer to first char immediately
// after strDelimiter
void SwarmGenerator::seek_function_content(fstream &fin, const char *strDelimiter)
{
 char strCompare[256];
 int offset = 0;

 do
 {
 fin.getline(strCompare,256);
 } while (!substr(strCompare, strDelimiter) && !fin.eof());

 offset = (int)fin.tellg();
 fin.seekg(offset, ios::beg);
}

 9

// copy_cpp_file_until(): Copies contents of fin to fout until strDelimiter
// is reached in fin and stores copy of contents in m_sstream_container_cpp
// for duplicate checking later
void SwarmGenerator::copy_cpp_file_until(fstream &fin, ofstream &fout, const char *strDelimiter)
{
 char buffer[256];
 string line;
 stringstream temp_stream;

 fin.getline(buffer, 256);
 line = buffer;
 while ((strDelimiter != line) && !fin.eof())
 {
 temp_stream << line << endl;
 fout << line << endl;
 fin.getline(buffer, 256);
 line = buffer;
 }
 m_sstream_container_cpp << temp_stream.str() << endl;
}

// copy_header_file_until(): Copies contents of fin to fout until strDelimiter
// is reached in fin and stores copy of contents in m_sstream_container_h
// for duplicate checking later
void SwarmGenerator::copy_header_file_until(fstream &fin, ofstream &fout, const char *strDelimiter)
{
 char buffer[256];
 string line;
 stringstream temp_stream;

 fin.getline(buffer, 256);
 line = buffer;
 while ((strDelimiter != line) && !fin.eof())
 {
 temp_stream << line << endl;
 fout << line << endl;
 fin.getline(buffer, 256);
 line = buffer;
 }
 m_sstream_container_h << temp_stream.str() << endl;
}

 10

// copy_cpp_function_content(): Copies the contents of fin (the .cpp member
// function specified by strFunctionName) to fout (the new .cpp file)
void SwarmGenerator::copy_cpp_function_content(fstream &fin, ofstream &fout, const char *strFunctionName)
{
 // Positions fin's file pointer to the first byte
 // after the strFunctionName
 seek_function_content(fin, strFunctionName);

 // Is set to true each time a new code block (left curly
 // brace { is encountered), which allows functions with
 // the same name to be called in different code blocks
 bool new_code_block = false;

 int number_left_braces = 1;
 int number_right_braces = 0;

 char buffer[256];
 string line;

 char *temp_param1;
 char *temp_param2;

 // The first { of the function is skipped (removed from the fin stream)
 // Note that this is why number_left_braces is intialized to 1
 fin.ignore(1); // Skip first "{" because it is already in fout

 fin.getline(buffer, 256);
 line = buffer;

 while (number_left_braces != number_right_braces)
 {
 string temp_string = m_sstream_container_cpp.str();
 temp_param1 = (&temp_string[0]); // convert from strings
 temp_param2 = (&line[0]); // to char*

 // Determine if the fin line can be inserted into fout
 if (new_code_block
 || duplicate_is_allowed(temp_param2)
 || !(substr(temp_param1, temp_param2)))
 {

 11

 fout << line << endl;
 m_sstream_container_cpp << line << endl;
 }

 fin.getline(buffer, 256);
 line = buffer;

 // Keep track of code blocks
 if (substr(buffer, "{"))
 {
 new_code_block = true;
 number_left_braces++;
 }
 if (substr(buffer, "}"))
 {
 number_right_braces++;
 }

 // This sets the boolean value of the new behavior agent to
 // false once the end of the terminating behavior has been reached
 string temp_name = (m_behavior_name[m_number_of_behaviors-1]);
 temp_name += "::basic_agent_post_action";
 temp_param1 = (char *)(&strFunctionName[0]);
 temp_param2 = (char *)(&temp_name[0]);
 if ((number_right_braces == 1) &&
 (substr(temp_param1, temp_param2)))
 {
 fout << "m_performing_behavior = false;" << endl;
 }
 }
}

 12

// copy_header_file_content(): Copies the contents of fin (the .h header file)
// to fout (the new .h header file) beginning at strStart and ending at strEnd
void SwarmGenerator::copy_header_file_content(fstream &fin, ofstream &fout,const char *strStart, const char *strEnd)
{
 // Positions fin's fp to the first char after the strStart
 seek_function_content(fin, strStart);

 char buffer[256];
 string line;
 string strCompare = strEnd;

 char *temp_param1;
 char *temp_param2;

 fin.getline(buffer, 256);
 line = buffer;

 // Copies file until strEnd or the end of the fin file is reached
 while (!substr(buffer, strEnd) && !fin.eof())
 {
 string temp_string = m_sstream_container_h.str();
 temp_param1 = (&temp_string[0]);
 temp_param2 = (&line[0]);

 if (function_is_allowed(temp_param2)
 && (duplicate_is_allowed(temp_param2)
 || !(substr(temp_param1, temp_param2))))
 {
 fout << line << endl;
 m_sstream_container_h << line << endl;
 }

 fin.getline(buffer, 256);
 line = buffer;
 }
}

 13

// substr(): returns true if substr is a substring of source
// else returns false (checks character by character)
bool SwarmGenerator::substr(char* source, const char* substr)
{
 char* pstr = source;
 char* psub = (char *)substr;
 char* pbtb = (char *)substr;

 int len_str = strlen(source);
 int len_sub = strlen(substr);

 for (;len_str >= len_sub;++pstr,--len_str)
 {
 char *p=pstr;

 // Compare characters in source to substr while
 // they are equal and substr not at end
 while (*p == *psub && *psub)
 {
 ++p;
 ++psub;
 }

 // If end of substr has been reached, substr must
 // exist in source so return true else try again
 if (!*psub)
 {
 return true;
 }
 // reset psub back to beginning (pbtb)
 else
 {
 psub = pbtb;
 }
 }
 // If substr is not a member of source return false
 return false;
}

 14

// duplicate_is_allowed(): if duplicate is a member of
// the valid duplicate set return true else false
bool SwarmGenerator::duplicate_is_allowed(char *duplicate)
{
 char *valid_duplicate1 = "{";
 char *valid_duplicate2 = "}";

 if(substr(duplicate, valid_duplicate1)) return true;
 if(substr(duplicate, valid_duplicate2)) return true;
 return false;
}

// function_is_allowed(): if function is a member of the
// behavior name set return false else true
bool SwarmGenerator::function_is_allowed(char *function)
{
 for (int i = 0; i < m_number_of_behaviors; i++)
 {
 if(substr(function, m_behavior_name[i])) return false;
 }
 return true;
}

//~SwarmGenerator(): Destructor
SwarmGenerator::~SwarmGenerator()
{
/*--*/
 m_fout_behavior_cpp.close();
 m_fin_construct_cpp.close();
 m_fout_behavior_h.close();
 m_fin_construct_h.close();

/*--*/
 for (int i = 0; i < m_number_of_behaviors; i++)
 {
 if(m_fin_behavior_cpp[i] != NULL)
 {
 m_fin_behavior_cpp[i]->close();
 }
 }

 15

 delete [] m_fin_behavior_cpp;

/*--*/
 for (i = 0; i < m_number_of_behaviors; i++)
 {
 if(m_fin_behavior_h[i] != NULL)
 {
 m_fin_behavior_h[i]->close();
 }
 }

 delete [] m_fin_behavior_h;

/*--*/
 for(i = 0; i < m_number_of_behaviors; i++)
 {
 delete [] m_behavior_function_name[i];
 m_behavior_function_name[i] = NULL;
 }

 delete [] m_behavior_function_name;

/*--*/
 for(i = 0; i < m_number_of_behaviors; i++)
 {
 delete [] m_behavior_filename_cpp[i];
 m_behavior_filename_cpp[i] = NULL;
 }

 delete [] m_behavior_filename_cpp;

/*--*/
 for(i = 0; i < m_number_of_behaviors; i++)
 {
 delete [] m_behavior_filename_h[i];
 m_behavior_filename_h[i] = NULL;
 }

 delete [] m_behavior_filename_h;

/*--*/

 16

}

 17

APPENDIX B: MAIN.CPP

/*===*/
/* MAIN.CPP */
/* --- */
/* This file uses the Swarm Generator class to build a swarm */
/* program from three seperate swarm entity classes. The */
/* specific classes used in this example are DisperseAgent, */
/* ConvergeAgent, and RescueAgent. */
/*===*/

#include "SwarmGenerator.h"
#include <iostream>
#include <string>

using namespace std;

int main()
{
 // The SwarmGenerator class constructor requires an integer
 // specifying the number of behavior files that will be
 // combined.
 int numBehaviors = 0;
 cout << "Enter the number of behaviors \n";
 cin >> numBehaviors;

 SwarmGenerator* generator = new SwarmGenerator(numBehaviors);

 // Prompt user for behavior class names (exluding file extensions)
 generator->prompt_for_behavior_files();

 // Generate the NewBehaviorAgent.cpp file by copying the functions
 // of the corresponding classes (this process makes use of
 // ClassConstruct.txt -- a .txt file, which serves as a template
 generator->combine_cpp_function("::basic_agent_start");
 generator->combine_cpp_function("::basic_agent_pre_action");
 generator->combine_cpp_function("::basic_agent_received_transmission");

 18

 generator->combine_cpp_function("::basic_agent_answer_query");
 generator->combine_cpp_function("::basic_agent_post_action");
 generator->combine_cpp_function("::basic_agent_stop");
 generator->end_combine_cpp();

 // Generate the NewBehaviorAgent.h file by copying the data members
 // of the corresponding class header files
 generator->combine_header_file("private:", "};");
 generator->end_combine_h();

 generator->~SwarmGenerator();

 return 0;
}

 19

APPENDIX C: THE TEMPLATE CONSTRUCT FILES

/*===*/
/* HEADERCONSTRUCT.TXT */
/* --- */
/* This text file is used by the swarm generator to guide the */
/* construction of the swarm program. The structure of the */
/* template file is based of the structure of the base class */
/* BasicAgent.h */
/*===*/

#ifndef NEW_BEHAVIOR_AGENT_H
#define NEW_BEHAVIOR_AGENT_H

#include "BasicAgent.h"
#include "Position.h"

class NewBehaviorAgent : public virtual BasicAgent
{
public:
 NewBehaviorAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity);

protected:
 void basic_agent_start();
 void basic_agent_pre_action();
 void basic_agent_received_transmission(ReceivedTransmissionMessage *msg);
 void basic_agent_answer_query(int observer_addr, QueryMessage *msg);
 void basic_agent_post_action();
 void basic_agent_stop();

private:
 NewBehaviorAgent(const NewBehaviorAgent &New_Behavior_agent);

 const unsigned int m_random_seed;
 bool m_performing_behavior;
@
};
#endif
$

 20

/*===*/
/* CLASSCONSTRUCT.TXT */
/* --- */
/* This text file is used by the swarm generator to guide the */
/* construction of the swarm program. The structure of the */
/* template file is based of the structure of the base class */
/* BasicAgent.cpp */
/*===*/

#include "NewBehaviorAgent.h"
#include "Debug.h"

NewBehaviorAgent::NewBehaviorAgent(int my_addr, int world_addr, const Gate &world_gate,
 double sensor_sensitivity)
 : BasicAgent(my_addr, world_addr, world_gate, sensor_sensitivity), m_random_seed(rand())
{

}

void NewBehaviorAgent::basic_agent_start()
{
 srand(m_random_seed);
 m_performing_behavior = true;
@
}

void NewBehaviorAgent::basic_agent_pre_action()
{
 listen();
@
}

void NewBehaviorAgent::basic_agent_received_transmission(ReceivedTransmissionMessage *msg)
{
 if (m_performing_behavior)

 21

 {
@
 }
}

void NewBehaviorAgent::basic_agent_answer_query(int observer_addr, QueryMessage *msg)
{
@
}

void NewBehaviorAgent::basic_agent_post_action()
{
 if (m_performing_behavior)
 {
@
 }
}

void NewBehaviorAgent::basic_agent_stop()
{
@
}
$

 22

APPENDIX D: LOWPOWERNEWBEHAVIORAGENT CLASS FILES

/*===*/
/* LOWPOWERNEWBEHAVIORAGENT.H */
/* --- */
/* This class uses multiple inheritence to instantiate a new */
/* low power behavior agent (LowPowerNewBehviorAgent) from */
/* the NewBehaviorAgent generated by the SwarmGenerator and */
/* the LowPowerAgent included in the swarm library. */
/* --- */
/* */
/* Example: BasicAgent */
/* | */
/* +---------+---------+ */
/* | | */
/* LowPowerAgent NewBehaviorAgent */
/* | | */
/* +---------+---------+ */
/* | */
/* LowPowerNewBehaviorAgent */
/* */
/* --- */
/* Author: Errol McEachron Date: 03/20/2002 */
/* --- */
/*===*/

#ifndef LOW_POWER_NEWBEHAVIOR_AGENT_H
#define LOW_POWER_NEWBEHAVIOR_AGENT_H

#include "LowPowerAgent.h"
#include "NewBehaviorAgent.h"

class LowPowerNewBehaviorAgent : public LowPowerAgent, public NewBehaviorAgent
{
public:
 LowPowerNewBehaviorAgent(int my_addr, int world_addr, const Gate &world_gate,
 double sensor_sensitivity);
};
#endif

 23

/*===*/
/* LOWPOWERNEWBEHAVIORAGENT.CPP */
/* --- */
/* This class uses multiple inheritence to instantiate a new */
/* low power behavior agent (LowPowerNewBehviorAgent) from */
/* the NewBehaviorAgent generated by the SwarmGenerator and */
/* the LowPowerAgent included in the swarm library. */
/* --- */
/* */
/* Example: BasicAgent */
/* | */
/* +---------+---------+ */
/* | | */
/* LowPowerAgent NewBehaviorAgent */
/* | | */
/* +---------+---------+ */
/* | */
/* LowPowerNewBehaviorAgent */
/* */
/* --- */
/* Author: Errol McEachron Date: 03/20/2002 */
/* --- */
/*===*/

#include "LowPowerNewBehaviorAgent.h"

LowPowerNewBehaviorAgent::LowPowerNewBehaviorAgent(int my_addr, int world_addr,
 const Gate &world_gate, double
sensor_sensitivity)
 : BasicAgent(my_addr, world_addr, world_gate, sensor_sensitivity),
 LowPowerAgent(my_addr, world_addr, world_gate, sensor_sensitivity),
 NewBehaviorAgent(my_addr, world_addr, world_gate, sensor_sensitivity)
{ }

 24

APPENDIX E: THE DISPERSE, CONVERGE, AND RESCUE CLASS FILES

#ifndef DISPERSE_AGENT_H
#define DISPERSE_AGENT_H

#include "BasicAgent.h"
#include "Position.h"

class DisperseAgent : public virtual BasicAgent
{
public:
 DisperseAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity);

protected:
 void basic_agent_start();
 void basic_agent_pre_action();
 void basic_agent_received_transmission(ReceivedTransmissionMessage *msg);
 void basic_agent_answer_query(int observer_addr, QueryMessage *msg);
 void basic_agent_post_action();
 void basic_agent_stop();

private:
 DisperseAgent(const DisperseAgent &disperse_agent);
 const unsigned int m_random_seed;

 bool m_dispersing;
 Position m_last_direction;
};

#endif

 25

#include "DisperseAgent.h"
#include "Debug.h"

DisperseAgent::DisperseAgent(int my_addr, int world_addr, const Gate &world_gate,
 double sensor_sensitivity)
 : BasicAgent(my_addr, world_addr, world_gate, sensor_sensitivity), m_random_seed(rand())
{

}

void DisperseAgent::basic_agent_start()
{
 srand(m_random_seed);
 m_dispersing = true;
}

void DisperseAgent::basic_agent_pre_action()
{
 listen();
}

void DisperseAgent::basic_agent_received_transmission(ReceivedTransmissionMessage *msg)
{

}

void DisperseAgent::basic_agent_answer_query(int observer_addr, QueryMessage *msg)
{

}

 26

void DisperseAgent::basic_agent_post_action()
{
 if (m_dispersing)
 {
 //Disperse
 double x = ((((double) rand()) / RAND_MAX) - 0.5);
 double y = ((((double) rand()) / RAND_MAX) - 0.5);
 m_last_direction = Position(x, y);
 move(m_last_direction);
 }
}

void DisperseAgent::basic_agent_stop()
{

}

 27

#ifndef CONVERGE_AGENT_H
#define CONVERGE_AGENT_H

#include "BasicAgent.h"
#include "Position.h"

class ConvergeAgent : public virtual BasicAgent
{
public:
 ConvergeAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity);

protected:
 void basic_agent_start();
 void basic_agent_pre_action();
 void basic_agent_received_transmission(ReceivedTransmissionMessage *msg);
 void basic_agent_answer_query(int observer_addr, QueryMessage *msg);
 void basic_agent_post_action();
 void basic_agent_stop();

private:
 ConvergeAgent(const ConvergeAgent &converge_agent);
 const unsigned int m_random_seed;

 bool m_converging;
 double m_power_current_msg;
 double m_power_of_last_received_msg;
 Position m_last_direction;
};

#endif

 28

#include "ConvergeAgent.h"
#include "Debug.h"

ConvergeAgent::ConvergeAgent(int my_addr, int world_addr, const Gate &world_gate,
 double sensor_sensitivity)
 : BasicAgent(my_addr, world_addr, world_gate, sensor_sensitivity), m_random_seed(rand())
{

}

void ConvergeAgent::basic_agent_start()
{
 srand(m_random_seed);
 m_converging = false;
}

void ConvergeAgent::basic_agent_pre_action()
{
 listen();
}

void ConvergeAgent::basic_agent_received_transmission(ReceivedTransmissionMessage *msg)
{
 m_power_of_last_received_msg = m_power_current_msg;
 m_power_current_msg = msg->get_power();

 if (m_power_current_msg > m_power_of_last_received_msg)
 {
 m_converging = true;
 fprintf(DEBUG, "message stronger\n");
 }
}

void ConvergeAgent::basic_agent_answer_query(int observer_addr, QueryMessage *msg)
{

}

 29

void ConvergeAgent::basic_agent_post_action()
{
 if (m_converging)
 {
 //Converge
 m_converging = false;
 fprintf(DEBUG, "message adjust.\n");
 }
 else
 {
 //Adjust
 double x = ((((double) rand()) / RAND_MAX) - 0.5);
 double y = ((((double) rand()) / RAND_MAX) - 0.5);
 m_last_direction = Position(x/5, y/5);
 move(m_last_direction);
 }
}

void ConvergeAgent::basic_agent_stop()
{

}

 30

#ifndef RESCUE_AGENT_H
#define RESCUE_AGENT_H

#include "BasicAgent.h"

class RescueAgent : public virtual BasicAgent
{

public:
 RescueAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity);

protected:
 void basic_agent_start();
 void basic_agent_pre_action();
 void basic_agent_received_transmission(ReceivedTransmissionMessage *msg);
 void basic_agent_answer_query(int observer_addr, QueryMessage *msg);
 void basic_agent_post_action();
 void basic_agent_stop();

private:
 RescueAgent(const RescueAgent &rescue_agent);

 const unsigned int m_random_seed;
 bool m_rescuing;
};

#endif

 31

#include "RescueAgent.h"
#include "Debug.h"

RescueAgent::RescueAgent(int my_addr, int world_addr, const Gate &world_gate,
 double sensor_sensitivity)
 : BasicAgent(my_addr, world_addr, world_gate, sensor_sensitivity), m_random_seed(rand())
{

}

void RescueAgent::basic_agent_start()
{
 srand(m_random_seed);
 m_rescuing = false;
}

void RescueAgent::basic_agent_pre_action()
{
 listen();
}

void RescueAgent::basic_agent_received_transmission(ReceivedTransmissionMessage *msg)
{
 if (msg->get_power()/200 > .99)
 {
 m_rescuing = true;
 }
}

void RescueAgent::basic_agent_answer_query(int observer_addr, QueryMessage *msg)
{

}

 32

void RescueAgent::basic_agent_post_action()
{
 if (m_rescuing)
 {
 //Rescue -- Not sure what that means so just do nothing (stop).
 fprintf(DEBUG, "message RESCUE.\n");
 }
}

void RescueAgent::basic_agent_stop()
{

}

 33

APPENDIX F: RELATIVE FILES FROM THE SWARM FRAMEWORK

#ifndef BASIC_AGENT_H
#define BASIC_AGENT_H

#include "Entity.h"
#include "ReceivedTransmissionMessage.h"
#include "QueryMessage.h"
#include "Position.h"

class BasicAgent : public Entity
{

public:
 BasicAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity);

 double get_sensor_sensitivity() const;

protected:
 // Behavior.
 void entity_start();
 void entity_pre_action();
 void handle_message(int sender_addr, Message *receive_msg);
 void entity_post_action();
 void entity_stop();

 void answer_query(int observer_addr, QueryMessage *msg);

 virtual void basic_agent_start() = 0;
 virtual void basic_agent_pre_action() = 0;
 virtual void basic_agent_received_transmission(ReceivedTransmissionMessage *msg) = 0;
 virtual void basic_agent_answer_query(int observer_addr, QueryMessage *msg) = 0;
 virtual void basic_agent_post_action() = 0;
 virtual void basic_agent_stop() = 0;

 // Stuff with non-functional properties.
 virtual void move(const Position &position) = 0;
 virtual void transmit(const char *data, double power, double frequency) = 0;
 virtual void listen() = 0;

 34

 virtual bool listening() const = 0;

 double m_battery_level;

private:
 BasicAgent(const BasicAgent &basic_agent);

 double m_sensor_sensitivity;

};

#endif

 35

#include "BasicAgent.h"
#include "BatteryLevelMessage.h"

#include "Debug.h"

BasicAgent::BasicAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity)
 : Entity(my_addr, world_addr, world_gate), m_sensor_sensitivity(sensor_sensitivity)
{
 add_observable_info_type(BATTERY_LEVEL_INFO);
}

double BasicAgent::get_sensor_sensitivity() const
{
 return m_sensor_sensitivity;
}

void BasicAgent::entity_start()
{
 m_battery_level = 100.0;

 basic_agent_start();
}

void BasicAgent::entity_pre_action()
{
 basic_agent_pre_action();
}

 36

void BasicAgent::handle_message(int sender_addr, Message *receive_msg)
{
 switch (receive_msg->get_type())
 {
 case RECEIVED_TRANSMISSION_MSG:
 if (listening())
 {
 basic_agent_received_transmission((ReceivedTransmissionMessage *) receive_msg);
 }
 break;
 case QUERY_MSG:
 answer_query(sender_addr, (QueryMessage *) receive_msg);
 basic_agent_answer_query(sender_addr, (QueryMessage *) receive_msg);
 break;
 default:

fprintf(DEBUG, "BasicAgent::handle_message - WARNING - don't understand message type
%d.\n", receive_msg->get_type());

 break;
 }
}

void BasicAgent::answer_query(int observer_addr, QueryMessage *msg)
{
 if (msg->get_info_types() & BATTERY_LEVEL_INFO)
 {
 Message *battery_level_msg = new BatteryLevelMessage(m_battery_level);
 m_mailbox->send(m_mailbox->getHandle(observer_addr), &battery_level_msg, sizeof(battery_level_msg));
 }
}

void BasicAgent::entity_post_action()
{
 basic_agent_post_action();
}

void BasicAgent::entity_stop()
{
 basic_agent_stop();
}

 37

#ifndef LOW_POWER_AGENT_H
#define LOW_POWER_AGENT_H

#include "BasicAgent.h"

class LowPowerAgent : public virtual BasicAgent
{

public:
 LowPowerAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity);

protected:
 void move(const Position &position);
 void transmit(const char *data, double power, double frequency);
 void listen();
 bool listening() const;

private:
 LowPowerAgent(const LowPowerAgent &low_power_agent);

 int m_listen_time;

 const double m_listen_cost; // per unit time
 const double m_transmit_cost; // per unit power
 const double m_move_cost; // per unit distance

};

#endif

 38

#include "LowPowerAgent.h"
#include "MoveEntityMessage.h"
#include "TransmitMessage.h"

LowPowerAgent::LowPowerAgent(int my_addr, int world_addr, const Gate &world_gate, double sensor_sensitivity)
 : BasicAgent(my_addr, world_addr, world_gate, sensor_sensitivity), m_listen_time(-1),
 m_listen_cost(0.001), m_transmit_cost(0.001), m_move_cost(1.0)
{ }

void LowPowerAgent::move(const Position &position)
{
 double cost = m_move_cost * position.distance();
 if (m_battery_level >= cost)
 {
 Message *move_msg = new MoveEntityMessage(position);
 m_mailbox->send(m_mailbox->getHandle(m_world_addr), &move_msg, sizeof(move_msg));
 m_battery_level -= cost;
 }
}

void LowPowerAgent::transmit(const char *data, double power, double frequency)
{
 double cost = m_transmit_cost * power;
 if (m_battery_level >= cost)
 {
 Message *transmit_msg = new TransmitMessage(data, power, frequency);
 m_mailbox->send(m_mailbox->getHandle(m_world_addr), &transmit_msg, sizeof(transmit_msg));
 m_battery_level -= cost;
 }
}

 39

void LowPowerAgent::listen()
{
 double cost = m_listen_cost;
 if (m_battery_level >= cost)
 {
 m_listen_time = m_mailbox->getTime();
 m_battery_level -= cost;
 }
}

bool LowPowerAgent::listening() const
{
 return (m_listen_time == m_mailbox->getTime());
}

