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Abstract

Swarm computing involves devices operating like a swarm of insects.  A swarm device is a small mobile robot with sensing capabilities.  Therefore, swarm computing is significantly different from traditional computing methods in that swarm programs must be able to handle unknown environments and nodes that are capable of moving.  Because swarm computing differs so drastically from traditional computing, traditional programming techniques will not work in swarm computing.  Before such techniques can be developed for swarm computing, a better understanding needs to be gained of a swarm of computing devices.  Through experimentation, I sought to gain an understanding of the basic principles of swarm computing.  I used the libraries in the Swarm Development Group’s package to create multiple programs implementing the same swarm behavior (primitives).  Having wrote these programs, I ran them in the Swarm simulator and compare characteristics such as the power consumption of nodes.  Having completed this project, I delivered a set of swarm primitives and information that I have gathered on basic swarm behavior.  These primitives are not particularly useful by themselves but they can be combined and integrated to form swarm applications that actually perform a useful task.  Ideally, other researchers can use my insights to develop future swarm programs.  The researchers can then write programs for swarms of computational devices to accomplish such tasks as the exploration of Mars, clearing the blockage in arteries or other tasks that require the coordination of a multitude of devices.
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1.0 
SWARM COMPUTING NOW AND IN THE FUTURE

1.1 A Potential Scenario

In December of 1999, the Mars Polar Lander was supposed to land on the surface of Mars and analyze the soil at the South Pole.  NASA scientists believe that a malfunctioning sensor caused the lander to miscalculate its altitude and crash into the surface.  The failure of one sensor caused the failure of a $165 million project [7].

In the future, instead of deploying a solitary unit to survey a planet or other inaccessible area, a multitude of devices might be employed.  These devices would be rather small in size, but they would have locomotion, sensing and significant processing capabilities.  Furthermore, they would be able to communicate and coordinate their activities to maximize the use of their resources (power being the most important).  For example, if one device detected an area of interest, it could signal others in its area to assist it in investigating the region.  Another important advantage that this solution has over the single lander is that even if some devices fail, the remaining units can still accomplish the mission’s goals.

1.2 What is Currently Possible

While current hardware technology allows for the construction of devices similar to those mentioned above, the software does not yet exist to coordinate these devices.  For example, in “Next Century Challenges: Mobile Networking for ‘Smart Dust,’” Kahn, et. al. discuss how sensors and the corresponding signal processing circuitry can be embedded onto a device that is less than a cubic millimeter.  

The Smart Dust project is essentially a group of microsensors that report their readings to a Base-Station Transceiver or BTS.  In the simplest situation, the pieces of dust (nodes) simply relay the information they collect to the BTS using lasers.  The primary problem with this method is that it depends on line-of-sight, so if a node can’t see the BTS, it will be unable to transmit its data.  The Smart Dust devices are currently unable to move themselves around like the devices in my scenario; however, there are still similarities.  For example, Kahn, et. al. describe a scenario where the Smart Dust model changes from a group of autonomous sensors to a collection of coordinated groups.  Instead of each “dust particle” having multiple sensors, each device will specialize and call on the other particles when needed.  The main problem inherent in this scenario is communication between nodes.  If a node wants to communicate with another one, it can attempt to send its message to the BTS and have it act as a relay.  Unfortunately, if the sending node cannot see the BTS, there is no way for the message to be delivered.  Kahn et al believe that the solution to this problem is to implement a multihop system where the message is either passed to the BTS or to the destination node.  Because of the dynamic nature of the dust’s operating environment and the fact that links between nodes are not necessarily bi-directional or symmetric, conventional routing methods will not work with smart dust.  New routing algorithms are being constructed that work with asymmetric links, but none are being developed that consider unidirectional links [5:277].

1.3 Definition of Swarm Computing

The cost of microelectronic mechanical components has decreased to the point where they can be placed on the same chip with microprocessors and communication
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Figure 1: [1:45]

devices [2:74].  As Figure 1 indicates, it is projected that only 150 million of the 8-billion microcontroller solutions produced in the year 2000 will be used in traditional computers [1:45].  As more and more devices are equipped with microcontrollers and sensors, a new class of computational devices will emerge.   These devices fall into a class of computing sometimes referred to as swarm computing, because they operate in a manner that can be likened to a swarm of insects.  The devices exploring Mars in my scenario are an example of a swarm.

1.4 What is Needed

Swarm computing is significantly different from traditional computing methods in that swarm programs must be able to handle unpredictable physical environments and execute on nodes that move.  Consequently, many of the techniques used to create and verify traditional programs will not work in swarm computing.  Techniques that are applicable to swarm computing can begin to be developed once the behavior of a swarm of computing devices is better understood.

1.5 The Work Done in this Project

The main objective of this project was to write and understand the properties of swarm primitives (basic swarm behaviors).  Most of these primitives have analogs in the insect world such as swarm (all the nodes going in one direction) and cluster (all the nodes gathering together).  

2.0 
TOOLS USED AND DEFINITION OF PRIMITIVES

2.1 The Swarm Simulator

Early on, professor Evans and I considered extending an existing network simulator to support the functionality necessary to simulate a swarm and to support visualization.  Once I had extended the simulator, I could then write Swarm primitives and experiment with them.  After some further investigation, we decided that modifying the simulator would entail quite a bit of work and could probably be considered a thesis project in its own right.  Consequently, we decided to use the Swarm Development Group’s (SDG) Swarm simulator.  The Swarm Simulator already has support for visualization and simulation programs can be written in Java.  I have spent the last two summers programming with Java, so I am comfortable with it.  An example program that came with the simulator referred to the nodes in the simulator as bugs, and Professor Evans and I have begun to call the nodes bugs too.  Throughout this paper, when I use the term bug, I mean a node.  One characteristic of SDG’s simulator that should be noted is the way that the bugs execute.  A list of the bugs is maintained and this list is iterated through with each bug’s action function being called.  This means that in the simulator the bugs execute sequentially instead of simultaneously as they would in reality.  It would be too difficult for me to modify the simulator to model simultaneous execution, and for my purposes sequential execution should be sufficient.

2.2 Description of the Cluster and Disperse Primitives

The disperse primitive is where all the nodes in the simulation attempt to situate themselves so that they are not adjacent to any other nodes.  In the context of the swarm simulator, adjacent means any square that is touching the square in question. 

Here is the generalized pseudocode for disperse:

DisperseProgram(swarm){

if is_Dispersed(swarm)



done


else



Disperse(swarm)

}

is_Dispersed(swarm) {


for all bugs



if bug has neighbors




return false


return true

}

Disperse(swarm) {


for all bugs



if bug has neighbors




move()

}

The cluster primitive is essentially the opposite of disperse.  Each node attempts to situate itself so that it is adjacent to at least one other node.  The pseudocode for cluster is very similar to disperse’s:

ClusterProgram(swarm){

if is_Clustered(swarm)



done


else



Cluster(swarm)

}

is_Clustered(swarm) {


for all bugs



if bug has no neighbors




return false


return true

}

Cluster(swarm) {


for all bugs



if bug has no neighbors




move()

}
The only portion of the code that is variable is the implementation of the move function.  In this project, I have basically written different implementations of the move function and examined their behavior.

2.3 Major Difference between Cluster and Disperse

While Cluster and Disperse may seem very similar, there is one major difference that makes Disperse more difficult to implement.  In Cluster, once a bug has moved adjacent to another bug, it will never move again.  In Disperse, however, a bug may satisfy the disperse criteria and stop moving, but at some later time be forced to move again by another bug moving adjacent to it.
3.0 
ONE SQUARE AWARE VERSUS TWO SQUARE AWARE

3.1 Explanation of structure of Technical Report

In undertaking this project, the direction that I took was often dictated by the results of the current code I was working on.  Consequently, I decided that it made more sense to present the description of algorithms and their results together instead of putting them in separate chapters.

3.2 Description of how the One Square Aware algorithms were implemented

When I first started to work with the Swarm simulator, I wanted to try and write a simple implementation of a primitive in order to familiarize myself with the package.  A popular example swarm application (for the Java version) is the Heatbug simulation.  Basically, each bug is represented by an instance of a class.  These instances are maintained in a linked list in an ObserverSwarm.  The ObserverSwarm constantly iterates over the list and calls each bug’s Action function.  In the standard Heatbug simulation, the map that the bugs reside on has heat values assigned to each grid location.  When a bug’s action function is invoked, it moves so that it minimizes its heat.  The first modification that I made was to remove all heat considerations from the action function.  For the disperse primitive, I modified the code so that if a bug was adjacent to the current bug, the current bug moved randomly to an open adjacent location (if possible).  For the cluster primitive, I modified the code so that if the current bug was not adjacent to any other bugs, the current bug moved randomly to an adjacent location.

3.3 Description of how the Two Square Aware algorithm was implemented

3.3.1 Assumptions made about the devices’ abilities

After implementing the One Square algorithms and viewing their performance, I began to think of ways to enhance their efficiency.  This led me to develop a set of assumptions about the bugs.  The first assumption that I made is that the bugs have the ability to “sense” what is around them.  This assumption was actually used in the One Square Aware implementations of disperse and cluster.  If the bugs did not have the ability to sense, they would not know when they satisfied the criteria of the respective primitives.  The next assumption that I made is that moving a bug is more expensive than having the bug do a computation.  This means that an extra computation would usually be preferred to an extra move.

3.3.2 Modifications to the Heatbug Class
The Two Square Aware algorithms assume that the bugs have the ability to sense any square that can be reached in two moves.  This means that the bugs can see further in the diagonal directions (NE, SW, etc.) than in the regular directions (N, S, etc.).  This may seem odd at first, but there is no way to ensure that a circular area is sensed.  Squares are atomic, and you either see all of one or none of it.  As long as the current bug is not adjacent to any other bugs (first level sensing), the Two Square Aware cluster algorithm checks the second level of squares in every direction, and moves the bug in the first direction that has a bug in its second square (see Figure 2).  For the Two Square Aware disperse algorithm, I tried a similar tactic: the first two squares in every direction were checked, and the bug was moved in the first direction that did not have a bug in its squares.  This implementation had some problems that will be discussed in a later section.
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Figure 2: Sensing in the 2-Square Aware Algorithm

3.4 Comparing the Algorithms

3.4.1 Explanation of how Algorithms were Compared

After I developed the Two Square algorithms, I needed some means to compare their efficiency to that of the One Square ones.  I decided to use the total amount of moves made by the bugs as my primary metric.  As previously mentioned, movement is assumed to be the main consumer of power. The amount of power that processing and communication consume is negligible when compared with movement.

3.4.2 Description of modifications necessary to support movement measurement

I wanted an overall view of the efficiency of the algorithm, so I decided to aggregate the movement of all the individual bugs into one variable.  This idea lent itself well to a static class variable in the Bug class.  Each time a bug makes a move, it increments the class variable.  Also, every time a bug makes a move, the value of this variable is displayed to the console.  

3.4.3 Comparison of Two Square Aware and One Square Aware Algorithms

	 
	Number of Moves

	Number of
	Cluster
	Disperse

	Bugs
	One Sq Aware
	Two Sq Aware
	One Sq Aware
	Two Sq Aware

	200
	2655
	1270
	8
	*

	400
	1754
	916
	332
	*

	800
	755
	396
	3083
	*

	1000
	695
	321
	24445
	*

	1600
	291
	191
	*
	*


* Did not complete after > 106 moves

Table 1: One Square Aware versus Two Square Aware

3.5 Analysis of Results

As I expected, the Two Square Aware implementation of Cluster was significantly more efficient than the One Square Aware implementation.  The trend seems to be that as more bugs are placed on the map, the difference between the One Square Aware and Two Square aware implementations diminishes.  This makes sense intuitively, because with more bugs, there is less free space and therefore a random move (One Square Aware) has a greater likelihood of moving a given bug next to another one. 

My Two Square Aware disperse implementation was not capable of reaching the final disperse state for any amount of bugs.  The reason for this is outlined in the next section.  The One Square implementation was able to complete for all number of bugs except for 1600.  This fit one of my observations: if the number of cells in a square grid is divisible by 4, then the quotient is the maximum number of nodes that can be placed on the grid without violating the disperse criteria.  For a given square grid whose number of cells is not evenly divisible by 4, take the square root of the number, add 1 and square it.  Finally, divide by 4.  The grid used in these experiments was 80x80, which by my observation means that the maximum number of nodes that can successfully disperse is 1600.  In fact, anything over around 1100 bugs does not complete.  Stated more formally:

If (NumOfCells % 4) == 0

Then MaxBugsToDisperse = NumOfCells / 4

Else MaxBugsToDisperse = ((Sqrt(NumOfCells) + 1)2) / 4

These two grids may help visualize the two situations:
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Figure 3: Sample square grids 

3.6 Hybrid Implementation of Two Square Aware

3.6.1 Problem with Two Square Aware Disperse

As mentioned above, the Two Square Aware disperse had some unforeseen problems that led to its performance actually being worse than the One Square Aware implementation.  The main problem stems from the fact that I attempted to reuse large portions of the Two Square aware cluster code in the Two Square aware disperse implementation.  In the cluster algorithm, the bugs are seeking out other bugs, and usually there are far more empty spaces than bugs.  This means that a given bug only has a few movement options to choose from.  In such a situation, the bugs move in a somewhat random fashion.  With disperse, however, the bugs are seeking empty space.  This means that a given bug has many movement options to choose from.  I implemented the checking of the various directions in a switch statement in the bug class.  Since the bugs had so many options, they were all choosing the first case.  This led to all the bugs moving in the same direction in an approximation of the swarm algorithm.

3.6.2 Explanation of Hybrid Disperse Algorithm

As the name indicates, the hybrid disperse algorithm combines elements of the One Square Aware algorithm and the Two Square Aware algorithm.  First the directly adjacent squares are scanned.  If there is a bug next to the current bug, a direction is chosen at random, and if the two squares in that direction are clear, the bug will move.  If either square is not clear, another direction is chosen at random.  This process of choosing random directions continues for a fixed number of iterations.

	 
	Number of Moves

	Number of
	Disperse

	Bugs
	One Sq
	Hybrid

	200
	68
	99

	400
	332
	283

	800
	3083
	3679

	1000
	24445
	23001

	1600
	*
	*


* Did not complete after > 106 moves
Table 2: One Square Aware versus Hybrid

3.7 Analysis of Hybrid Algorithm

The hybrid implementation is slightly more efficient than the One Square Aware implementation in most cases.  I would like to develop an aware disperse algorithm that has the same kind of performance improvement that the Two Square Aware cluster algorithm has.  

4.0 
N-SQUARE AWARE ALGORITHM

4.1 General Description of Algorithm

Based upon the observations that I made while writing and experimenting with the Two Square Aware algorithm, Professor Evans and I came up with a more general algorithm – the N-Square Aware Algorithm.  N-Square is similar to the Two Square algorithm, with the primary difference being that each square surrounding a given location is fully evaluated; that is all of its surroundings are checked.  
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Figure 4:  A bug and its candidate squares

In Figure 4, the numbered squares surrounding the Bug are called candidate squares, because they are locations where the bug can potentially move.  For every bug that can be gotten to in N moves from a given candidate square, a fixed number is added to the running total.  The square with the best total is picked as the bug’s move.  For example, in the situation shown in Figure 4, with N = 1, candidate squares 1 and 3 would be evaluated as indicated in Figure 5 (all the colored squares are being examined):
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Figure 5: Evaluation of candidate squares 3 and 1

N can be set to different values to increase the sensing radius of the algorithm.  Setting N to a value higher than 1 does not mean that only squares at radius N are examined.  All radii from 1 to N are considered and added to a square’s running total.  Here is the pseudocode for the N-Square algorithm:

move(Square,N) {


for currSquare = all the candidate squares of Square



for radius = 1 to N




check for bugs radius away from currSquare




increase currSquare’s score by # bugs found

move to candidate square with the best score

} 



4.2 Description of how the N-Square Algorithm was Implemented

4.2.1 Assumptions

Several assumptions were necessary in translating the N-Square algorithm from pseudocode to Java code that would work in the Swarm simulator.  These assumptions are mainly due to the fact that a Swarm map is a finite environment (like the real world).  The first assumption necessary was that a wall does not count as a bug and therefore does not affect a location’s running total.  Next, a location’s total will be calculated using all valid locations; that is, out of range locations will not be considered. 
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Figure 6: Evaluation of a candidate square adjacent to a wall

In Figure 6, the thick black vertical line represents a wall.  Only squares 4, 5, 6, 7 and 8 will be used to determine the score for candidate square A.  Squares 1, 2 and 3 (which do not actually exist) will not be used.  This assumption brings up the issue of weighting, which will be discussed in Section 4.3.

4.2.2 Modifications to the Base Heatbug Class

The implementation of the N-Square algorithm required significant modifications to the base Heatbug class.  Because there were many possible situations for a bug to be in (in a corner, against the wall, in the middle of the map, etc.), it was necessary to add functions to calculate the number of bugs in a given direction (top, bottom, left, right and diagonals).  Additionally, a function had to be added that could determine which combination of the directional functions needed to be called for a given bug.  A fairly involved function was also added to maintain scoring information for each possible candidate square of the current bug. While I was testing the N-Square algorithm, I noticed that it was exhibiting swarm behavior.  This behavior was subtler than in the Two Square Aware disperse, but it was still noticeable that the bugs were favoring the lower left direction and congregating in that area of the map.  I applied what I learned in writing the Two Square Aware algorithm, and selected a location at random if several locations had the same score.  The Java code for the N-Square algorithm can be found in Appendix A.

4.3 Weighting

After the initial implementation of the N-Square Aware algorithm, it became evident that some form of weighting would be necessary.  Because the same number of locations is not checked for all candidate locations, it is necessary to normalize each location’s score by dividing by the number of locations actually examined.  In Figure 6, the score for square A with N=1 is divided by 5 before being added to the running total.

It also became evident, that for all N greater than 1, additional weighting is necessary.  As N increases, locations further and further away from the bug are being considered, and the values obtained in these iterations should affect the totals less and less.  I initially (somewhat naively) believed that a single function that dependent upon N could be used to scale down the weights.  After some experimentation and discussion with Professor Evans, I decided that the ideal weighting for each N would have to be determined experimentally.

I used the results for when N=1 to determine suitable weightings for the other Ns.  Basically for a given value of N, I attempted to find the weighting that would consistently outperform the algorithm using lower values of N.  For example, for N=2, I determined that dividing each candidate square’s score by 5 (after normalizing the score by dividing by the number of squares considered) provided the best results.  Therefore whenever N=2, 1/5 is used as the weighting.

	N
	Weight

	1
	1

	2
	1/5

	3
	1/11

	4
	1/15


Table 3: Weights used in N-Square Aware

4.4 Result and Analysis of N-Square Algorithm

4.4.1 Starting Configuration of the Bugs
Throughout most of this project, I used the Swarm Simulator’s built-in random function to randomly situate bugs on the map.  In reality, bugs will not always be situated randomly. For instance, if they are dropped in a box from a plane, there is a good chance that they will be clustered together.  After writing the N-Square algorithm, I decided to also test an initial configuration where the bugs are clumped together.
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Figure 7: Clumped initial configuration versus random initial configuration

4.4.2 Performance of N-Square Compared to Hybrid and One Square Aware Algorithms:

	 
	Number of Moves

	Number of
	

	Bugs
	One Sq
	Hybrid
	N-Square N=1

	200
	12989
	5731
	1063

	400
	274451
	60837
	5776

	800
	1812225
	718067
	60217

	1000
	4349943
	1484105
	123534

	1600
	*
	*
	*


* Did not complete after > 5*106

Table 4: Comparison of disperse algorithms with clumped initial configuration

	 
	Number of Moves

	Number of
	

	Bugs
	One Sq
	Hybrid
	N-Square N=1

	200
	68
	99
	31

	400
	332
	283
	112

	800
	3083
	3679
	496

	1000
	24445
	23001
	1063

	1600
	*
	*
	 *


* Did not complete after > 5*106
Table 5: Comparison of disperse algorithms with random initial configuration

	 
	Max Number of Move Made by a Bug

	Number of
	Cluster
	Disperse

	Bugs
	One Sq
	Two Sq
	One Sq
	Hybrid
	N-Square N=1

	200
	238
	121
	4
	7
	1

	400
	77
	53
	11
	5
	2

	800
	64
	24
	29
	35
	3

	1000
	36
	23
	88
	88
	8

	1600
	19
	6
	*
	*
	*


* Did not complete after > 5*106
Table 6: Comparison of the maximum number of moves made by a bug, starting from a random initial configuration.

As can be seen from the Tables 4, 5 and 6, the N-Square Aware algorithm performs significantly better than either of the previous algorithms.

4.4.3 Performance of N-Square with  1 <= N <= 4

	Number of
	Number of Moves

	Bugs
	N=1
	N=2
	N=3
	N=4

	200
	31
	31
	31
	31

	400
	112
	112
	113
	111

	800
	496
	480
	475
	466

	1000
	1063
	986
	926
	939

	1600
	*
	*
	*
	*


* Did not complete after > 5*106
Table 7: N-Square aware algorithm with different values of N, starting from a random initial configuration

Increasing the value of  N produced better results from N=1 to N=3, but for N >= 4, the performance of the algorithm was not consistently better than lower values of N.  

4.5 Situations where the N-Square algorithm will not terminate:

When there are many bugs (1200+ in an 80x80 grid), it is possible for a bug to get “trapped” between other bugs and the wall.  The bug will oscillate indefinitely in the area it is in.  A more intelligent weighting system (probably involving giving the walls some weighting) may prevent this situation from occurring.  Additionally, when there are 1200+ bugs, it is possible for two bugs to infinitely rotate around each other.  Such behavior occurs in a region in the middle of symmetrically situated bugs as shown in Figure 8.  This is because the squares in the region always have a lower score than the squares that lie between the other bugs (these in-between squares are the “escape route” that the bugs need to take to get to an area where they can properly disperse).  This problem is far more evident for values of N>1.

[image: image3.jpg]



Figure 8: A situation where two bugs rotate around each other indefinitely

Another situation where the algorithm will not terminate is when there are more bugs than can successfully disperse for a given map size.

4.6 Computational Issues:

As the value of N gets larger and larger, the algorithm will obviously take longer and longer to complete (assuming that this is possible).  In calculating the scores for various scores, there is a significant amount of overlap in the regions that are examined.  By taking advantage of this overlap, the N-Square algorithm could be significantly optimized. 

5.0 
THE FUTURE OF MY PRIMITIVES AND SWARM COMPUTING


5.1 Observations

The principle that was evident throughout this project is that increasing the local area examined by a bug provides better global results.  In Table 1, the Two Square Algorithm that examines squares further away than the One Square Algorithm provides better Cluster results.  Also, in table Tables 4 and 5, the N-Square Algorithm provides much better results than the One Square and Hybrid Algorithms.  Furthermore, as seen in Table 7, increasing the value of N in the N-Square Algorithm (increasing the area examined) also yields increasingly better results.  After a certain point, however, increasing the area examined no longer reduces the moves that the algorithm makes.  In fact, the performance of the algorithm might actually worsen.  An example of this can be seen in Table 7 with N=4.  Additionally, as N increases, the amount of squares that must be investigated increases by 8N, and  the algorithm performs slower and slower.

In implementing the Two Square Algorithm and the N-Square Algorithm, I also noticed that randomness is useful.  When bugs must choose their action from a list of options (a switch statement for example) and many of the options are valid, a large number of the bugs will choose the same one. In such a situation, undesirable swarming behavior (many bugs moving in one direction) will result.  By having bugs randomly choose from the list of valid options, swarm behavior can be avoided.

Throughout this project, I was constantly made aware of the difficulty involved in predicting swarm behavior.  When I implemented the Two Square Aware Disperse, I was fairly confident that I would have an algorithm that outperformed the One Square Aware.  I did not at all expect to end up with a pseudo-swarming primitive.  Later, when I implemented the N-Square Aware algorithm, I expected the efficiency to increase with N at least to values of 10.  Instead, I saw a drop-off in efficiency at the low value of N=4.  Regardless of the weight used, the N-Square algorithm with N=4 cannot consistently outperform the N=3 version. 

5.3 Improvements to my Primitives

Throughout the course of this project, Professor Evans and I thought of many improvements that could be made to my primitives, but due to time constraints many of these were not implemented.  The most important improvement that can be made is the ability to pass messages between bugs.  With message passing, primitives such as cluster and disperse can be implemented without assuming sensing capabilities.  I made some attempts to implement a type of simple broadcasting between bugs, but my solution involved bugs activating each other’s member functions, and it was not a very natural or clean implementation.  Additionally, I was not sure how to represent the direction where a message was originating.

With the addition of broadcast capabilities, it would also be useful to have some means to measure time.  Bugs could assign timestamps to the messages they receive from other bugs and use them to determine which message to give the most priority to.  This might require a modification of the Swarm simulator, because currently all the bugs execute sequentially.

Walls are not given any weight in the N-Square algorithm, and I believe this lead to some situations where a bug moves indefinitely in a region between bugs and a wall.  If the walls had weight, then the bug might be forced to move out of the area they are oscillating in.

5.4 Use of Primitives by Future Researchers

The primitives I wrote in the course of this project provide little use by themselves.  However, future researchers can use the primitives developed in this project to create more complicated swarm programs for applications such as the planetary exploration scenario I presented earlier.

Another use of the primitives by researchers is to experimentally gather data that will allow them to create formal mathematical models about swarm computing.  The observations I have made in this project are general empirical observations that are not rigorous.  Having formal mathematical models will aid in the development of swarm applications.

5.5 The Future of Swarm Computing

Several long-term positive impacts are also possible due to the size and intelligence of a swarm.  Nanotechnology is already being applied to medicine, and the addition of swarm technology would allow for the robots to work closely together for a common objective, such as clearing blockage in an artery.  Another potential application is exploration.  In the past, robots have been used to explore areas that were either too dangerous or too distant for humans.  In most cases a solitary robot would be deployed; however, as evidenced by the lost Mars’ Polar Lander, this method is not very fault tolerant.  If instead, a swarm of robots was used, the area could be surveyed intelligently and with a higher chance of success.  That is, the mission could still be completed successfully even with some of the robots failing.  Professor Evans also sees the methods used in governing a swarm’s behavior as having applications in the field of e-commerce.  Computerized agents who essentially represent a consumer in his online transactions have to be able to coordinate their efforts.  [3:3]
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Appendix A: N-Square Algorithm Implementation

public class Heatbug {

  //moves this bug has made

  public int locmoves = 0;

  //maximum amount of moves any bug has made

  public static int locmax = 0;

  //number of square examined in a given iteration

  public int squares = 0;

  //total amount of moves made by the swarm

  public static int moves = 0;

  //spatial coordinates

  public int x, y;

  //size of the world

  public int worldXSize, worldYSize;

  //Calculates the weighting of the bottom portion of the square surrounding a

  //candidate square

  public int Bottom(int a, int b, int n) {

    int sum = 0;

    int start = a - (n - 1);

    int stop = a + (n - 1);

    if (start <  0)

    
start = 0;

    if (stop > worldXSize)

    
stop = worldXSize;

    for (int j = start; j <= stop; j++) {

      if (world.getObjectAtX$Y (j, b + n) != null)

        sum += bugValue;

      squares++;

    }

    return sum;

  }

  //Calculates the weighting of the left portion of the square surrounding a

  //candidate square

  public int Left(int a, int b, int n) {

    int sum = 0;

    int start = b - (n - 1);

    int stop = b + (n - 1);

    if (stop > worldYSize)

    
stop = worldYSize;

    if (start < 0)

    
start = 0;

    for (int k = start; k <= stop; k++) {

      if (world.getObjectAtX$Y (a - n, k) != null)

        sum += bugValue;

      squares++;

    }

    return sum;

  }

  //Calculates the weighting of the right portion of the square surrounding a

  //candidate square

  public int Right(int a, int b, int n) {

    int sum = 0;

    int start = b - (n - 1);

    int stop =  b + (n - 1);

    if (start < 0)

    
start = 0;

    if (stop > worldYSize)

    
stop = worldYSize;

    for (int k = start; k <= stop; k++) {

      if (world.getObjectAtX$Y (a + n, k) != null)

        sum += bugValue;

      squares++;

    }

    return sum;

  }

  //Calculates the weighting of the upper-left corner of the square surrounding

  //a candidate square

  public int LeftTop(int a, int b, int n) {

    int sum = 0;

    if (world.getObjectAtX$Y (a - n, b - n) != null)

        sum += bugValue;

    squares++;

    return sum;

  }

  //Calculates the weighting of the upper-right corner of the square surrounding

  //a candidate square

  public int RightTop(int a, int b, int n) {

    int sum = 0;

    if (world.getObjectAtX$Y (a + n, b - n) != null)

        sum += bugValue;

    squares++;

    return sum;

  }

  //Calculates the weighting of the lower-left corner of the square surrounding

  //a candidate square

  public int LeftBottom(int a, int b, int n) {

    int sum = 0;

    if (world.getObjectAtX$Y (a - n, b + n) != null)

        sum += bugValue;

    squares++;

    return sum;

  }

  //Calculates the weighting of the lower-right corner of the square surrounding

  //a candidate square

  public int RightBottom(int a, int b, int n) {

    int sum = 0;

    if (world.getObjectAtX$Y (a + n, b + n) != null)

        sum += bugValue;

    squares++;

    return sum;

  }

  //Determines which regions of the square surrounding a candidate square should

  //be investigated and determines the total weight for the candidate square

  public int GetWeight(int a, int b, int n) {

    squares = 0;

    if (world.getObjectAtX$Y (a, b) != null) {


   return -100000;

    }

    int length = 8*n;

    int sum = 0;

    int wallvalue = 0;

    if ((b - n) > 0)

    
sum += Top(a,b,n);

    else

    
sum += wallvalue;

    if ((a - n) > 0)

    
sum += Left(a,b,n);

    else

    
sum += wallvalue;

    if ((a + n) < worldXSize)

    
sum += Right(a,b,n);

    else

    
sum += wallvalue;

    if ((b + n) < worldYSize)

    
sum += Bottom(a,b,n);

    else

    
sum += wallvalue;

    if (((b - n) > 0) && ((a - n) > 0))

    
sum += LeftTop(a,b,n);

    else

    
sum += wallvalue;

    if (((a + n) < worldXSize) && ((b - n) > 0))

    
sum += RightTop(a,b,n);

    else

    
sum += wallvalue;

    if (((b + n) < worldYSize) && ((a + n) < worldXSize))

    
sum += RightBottom(a,b,n);

    else

    
sum += wallvalue;

    if (((a - n) > 0) && ((b + n) < worldYSize))

    
sum += LeftBottom(a,b,n);

    else

      sum += wallvalue;

    return sum/squares;

  }

  //determines the best move

  public void makeMove() {

    int max = -100000;

    int Weights[] = {0,0,0,0,0,0,0,0};

    int position = 0;

    int newX = x;

    int newY = y;

    int n = 1;

    int newpos;

    int ct = 0;

    int occupiedvalue = -100000;

    int dividingfactor = 1;

    for (int i = 1; i <= n; i++) {

      if (i == 1)

         dividingfactor = 1;

      if (i == 2)

         dividingfactor = 5;

      if (i == 3)

         dividingfactor = 11;

      if (i == 4)

         dividingfactor = 15;

       if (i == 5)

         dividingfactor = 17;

    
if (((x-1) >= 0) && ((y+1) < worldYSize))

    

Weights[0] += (GetWeight(x-1,y+1,i)) / dividingfactor;

    
else

      
Weights[0] = occupiedvalue;

    
if (((y+1) < worldYSize) && (x >=0))

    

Weights[1] += (GetWeight(x,y+1,i)) /dividingfactor;

    
else

    

Weights[1] = occupiedvalue;

    
if (((x+1) < worldXSize) && ((y+1) < worldYSize))

    

Weights[2] += (GetWeight(x+1,y+1,i)) /dividingfactor;

    
else

      
Weights[2] = occupiedvalue;

    
if ((x-1) >= 0)

    

Weights[3] += (GetWeight(x-1,y,i)) /dividingfactor;

    
else

      
Weights[3] = occupiedvalue;

    
if ((x+1) < worldXSize)

    

Weights[4] += (GetWeight(x+1,y,i))/dividingfactor;

    
else

      
Weights[4] = occupiedvalue;

    
if (((x-1) >= 0) && ((y-1) >= 0))

    

Weights[5] += (GetWeight(x-1,y-1,i))/dividingfactor;

    
else

    

Weights[5] = occupiedvalue;

    
if ((y-1) >= 0)

    

Weights[6] += (GetWeight(x,y-1,i))/dividingfactor;

    
else

    

Weights[6] = occupiedvalue;

    
if (((x+1) < worldXSize) && ((y-1) >= 0))

    

Weights[7] += (GetWeight(x+1,y-1,i))/dividingfactor;

    
else

      
Weights[7] = occupiedvalue;

    }

    //determines max weight and associated position

    for (int p = 0; p < 8; p++) {

        if (Weights[p] > max) {

           max = Weights[p];

           position = p;

        }

    }

    //determines if more than one position has the max weight

    int temp[] = new int[8];

    int tempsize = 0;

    for (int r = 0; r < 8; r++) {

    
if (Weights[r] == max) {

      
temp[tempsize] = r;

         tempsize++;

      }

    }

    //randomly selects from equally weighted positions

    if (tempsize > 1) {

    
position = temp[Globals.env.uniformIntRand.

        
getIntegerWithMin$withMax (0, tempsize-1)];

    }

    //moves bug

    if (max != -100000) {

    
switch (position)

        {

        case 0:

          newX = x-1; newY = y+1;   // SW

          break;

        case 1:

          newX = x ; newY = y+1;    // S

          break;

        case 2:

          newX = x+1 ; newY = y+1;  // SE

          break;

        case 3:

          newX = x-1 ; newY = y;    // W

          break;

        case 4:

          newX = x+1 ; newY = y;    // E

          break;

        case 5:

          newX = x-1 ; newY = y-1;  // NW

          break;

        case 6:

          newX = x ; newY = y-1;    // N

          break;

        case 7:

          newX = x+1 ; newY = y-1;  // NE

          default:

          break;

        }

      moves++;

      locmoves++;

      if (locmoves > locmax)

      
locmax = locmoves;

      System.out.println(moves);

      System.out.println(locmax);

    
world.putObject$atX$Y (null, x, y);

      x = newX;

      y = newY;

      world.putObject$atX$Y (this, newX, newY);

    }

  }

  public void heatbugStep () {

    int newX, newY;

    newX = x;

    newY = y;

      int location, xm1, xp1, ym1, yp1;

      xm1 = (x - 1);

      xp1 = (x + 1);

      ym1 = (y - 1);

      yp1 = (y + 1);

      //Ensures that makeMoves is only called if there is a possible valid move

      if (

      //case 1

        (((x == 0) && (y == 0)) && ((world.getObjectAtX$Y (xp1, y) != null)

                               || (world.getObjectAtX$Y (x, yp1) != null)

                               || (world.getObjectAtX$Y (xp1, yp1) != null))) ||

      //case 2

        (((y == 0) && (x != 0)) && (x != (worldXSize -1))

                  && ((world.getObjectAtX$Y (xm1, y) != null)

                  || (world.getObjectAtX$Y (xm1, yp1) != null)

                  || (world.getObjectAtX$Y (x, yp1) != null)

                  || (world.getObjectAtX$Y (xp1, yp1) != null)

                  || (world.getObjectAtX$Y (xp1, y) != null))) ||

      //case3

        (((y == 0) && (x == (worldXSize -1)))

        



&& ((world.getObjectAtX$Y (xm1, y) != null)

                  || (world.getObjectAtX$Y (xm1, yp1) != null)

                  || (world.getObjectAtX$Y (xp1, y) != null))) ||

      //case4

        (((x == (worldXSize-1)) && (y != 0) && (y != (worldYSize-1)))

        



&& ((world.getObjectAtX$Y (x, ym1) != null)

                  || (world.getObjectAtX$Y (xm1, ym1) != null)

                  || (world.getObjectAtX$Y (xm1, y) != null)

                  || (world.getObjectAtX$Y (xm1, yp1) != null)

                  || (world.getObjectAtX$Y (x, yp1) != null))) ||

      //case 5

        (((x == (worldXSize-1)) && (y == (worldYSize-1)))

                  && ((world.getObjectAtX$Y (x, ym1) != null)

                  || (world.getObjectAtX$Y (xm1, ym1) != null)

                  || (world.getObjectAtX$Y (xm1, y) != null))) ||

      //case 6

        (((y == (worldYSize-1)) && (x != 0) && (x != (worldXSize-1)))

                  && ((world.getObjectAtX$Y (xm1, y) != null)

                  || (world.getObjectAtX$Y (xm1, ym1) != null)

                  || (world.getObjectAtX$Y (x, ym1) != null)

                  || (world.getObjectAtX$Y (xp1, ym1) != null)

                  || (world.getObjectAtX$Y (xp1, y) != null))) ||

     //case 7

      (((x == 0)  && (y == (worldYSize-1)))

                  && ((world.getObjectAtX$Y (x, ym1) != null)

                  || (world.getObjectAtX$Y (xp1, ym1) != null)

                  || (world.getObjectAtX$Y (xp1, y) != null))) ||

      //case 8

        (((x == 0) && (y != 0) && (y != (worldYSize-1)))

        



&& ((world.getObjectAtX$Y (x, ym1) != null)

                  || (world.getObjectAtX$Y (xp1, ym1) != null)

                  || (world.getObjectAtX$Y (xp1, y) != null)

                  || (world.getObjectAtX$Y (xp1, yp1) != null)

                  || (world.getObjectAtX$Y (x, yp1) != null))) ||

        //case 9

        (((x != 0) && (x != (worldXSize -1)) && (y != 0)

                  && (y != (worldYSize -1))) &&

                     ((world.getObjectAtX$Y (xm1, y) != null)

           


||
(world.getObjectAtX$Y (xp1, y) != null)

                  || (world.getObjectAtX$Y (x, ym1) != null)

           


||
(world.getObjectAtX$Y (x, yp1) != null)

           


||
(world.getObjectAtX$Y (xm1, ym1) != null)

           


||
(world.getObjectAtX$Y (xm1, yp1) != null)

           


||
(world.getObjectAtX$Y (xp1, ym1) != null)

           


||
(world.getObjectAtX$Y (xp1, yp1) != null))))

        {

         makeMove();

        }

  }
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