Extenfieble Bwar m Programming Ar chitecture

A Thesis
in TCC 402
Presented to
The Faculty of the
School of Engineering and Applied Science

University of Virginia

| T Partia Fatfiment

of the Requirementsfor the Degree

Bachelor of Sciencein Computer Science

By Adam Trost
July 31, 2001
On my honor as a University student, on this assgnment | have neither given nor received

unauthorized aid as defined by the Honor Guidelinesfor Papersin TCC Courses.

Approved (Technical Advisor)

David Evans

Approved (TCC Advisor)

W B. Carlson

L]

Abstract

Computing is beginning to change as programs start to execute over many mobile processors
communicating over ad hoc networks. Collections of these processors can be described asa“swarm.” The
behavior of aswarm is categorized asthetota behavior of dl itsindividual components but, unlike
traditional distributed programming, swarms exist dynamically in unpredictable environments. The mgor
challenges are designing programs for the units with adesired swarm behavior and, on the other side,
predicting behavior from the programs running on the units. The soccer Ssmulation competition within the
RoboCup 2001 conference is the medium of the swarm research. This conference uses a soccer smulation
to focus on cooperation between autonomous agents in dynamic multiagent environments. The smulation
league comprises of aserver acting asthefield, and eleven clients for each team, which act asthe players.
Thefield is an unpredictable dynamic environment, while the players are thought of asthe cooperative
swarm. The research addresses the challenges of swarms by implementing an extendabl e obj ect-oriented

architecture for a RoboCup soccer player.

Testing the ease of adding the centering and dispersing defensive behaviors displays the benefits of
the program architecture. The extendable object-oriented design resulted in easily implementing the two
behaviorsinto the swarm program of the RoboCup soccer player. Though RoboCup isonly one
application of swarm programming, the architecture can be gpplied to many others. If utilized, the swarm

devel opment community could evolve more effectively with endless potential.

Table of Contents

NS ET I Y X S |
BLOSSARY i V]
[INTRODUGTION.........

.1 SWARM PROGRANIMING......

.2 RESEARCH EFHECTS................
1.2.1 RoboCup Improvenjent...
1.2.2 Explofation....................
1.2.3 Search and Rpscue.........
1.2.4 Electronic Comnperce.....
[1.2.5 MINTAINY[USES. ...t

1.3 ROBOCUP 2001 ...ttt eateecsnc s casesneae et escancaesanesecaseanias

.4 LITERATURE REVJEW

Y 1=, oo Yoo

D METHODS ... ooooooooooooooooeereeoeeeseeeeeseeeerseeeeeseeeereseeeerseeeeneeeerneeeerseeeermeeeereeeeereeeeeeeeeers

P.1 FUNCTIONALITY ABSTRAETION
P11 Listen......cocovcciiiee
P12 Thipk................
T

P CLASS ABSTRACTIDN ...vevviiiiieiesetetete bttt ettt eb bbb bbbt esesessns
p.2.1 Co
P22 B
2.3 World Modf!

P24 Perception...............

D25 Behavipr..................
2.6 Recommendation

P.2.7 Action......................

.3 DECISION MAKING..........
P31 DISPErSE BENAVIPI ..ot
P.3.2 Central BENAVIO!coviviviiii e
P.3.3 Final Action DEEMINGION.........cciiiiiiitiretereiisieetetceeees sttt eserererens 13

B RESULITS..ioiiiiiiiiiiiiiii st 14]

B.1 PROGRAM MODIFICATIPN

B.1.1 Copim........................

1.2 Actigns.............
B.1.3 Perceptiops.......
=T o) oo

ARCHITECTURE PROGRAMMABILITY ovcvevtetiiiiiissssssseserstsssssnssssssssssssresssssssssssssssssssssssseses 16
B.3 ARCHITECTURE EXTENSIONS

R S e T = are o T

B.3.2 ACHANS. ...t

Glossary

ad hoc - contrived puredly for the purpose in hand rather than planned.

architecture - the organization and interaction of classesin aprogram.

class - programmer defined data structure for an object.

client - computer software and/or hardware utilizing a server's resources.

instance - an individual object of acertain class.

low-level actions - the basic action the server can understand, such as dash and kick.

object - aunique instance of a data structure defined according to the template provided by its class.

object-oriented design - see architecture.

server - computer software and/or hardware whose resources are shared by multiple users.

source code - commands written in some forma programming language which can be
compiled automatically.

state of the world - the properties of the game communicated by the server.

timestep - one changein time experienced by the server.

1 Introduction

1.1 Swarm Programming

Computing is beginning to change as programs execute on many mobile processors communicating
over ad hoc networks. Of the 8 billion computing units that will be deployed worldwide this year, only 150
million are stand-alone computers [Tennenhouse2000]. Technologica advancementsin
microel ectromechanical systems and wireless networking are producing small, inexpensive devices with
significant computing and communicating capabilities [Evans2000]. Collections of these mobile
processors can now be described asa®swarm.” Thereisgreat interest in creating and understanding the

properties of these computational swarms.

Swarms have an inherent complexity causing difficultiesin research. The behavior of aswvarmis
thetotal behavior of al itsindividual components, yet, unlike traditiona distributed programming, swarms
exist dynamically in unpredictable environments. The swarm must be resilient not only to aharsh
environment, but also to unrdliable units that may be executing incorrectly. Time and memory have been
the most limited resourcesin conventional computing, but swarm programming is most concerned with the
abilities to compute, to maintain state, and to communicate with neighbors. The mgjor challenges are thus
designing programs for the units with a desired swarm behavior and predicting that behavior from the

programs running on the units.

Anaysis of these two problemsis smplified by confining the swarm to a set number of devices.
Thiswill make best use of the limited time available for svarm simulation, analysis, and modification.
Also, because swarms usually contain many more components than the number of RoboCup soccer

players, theresults are only as valid asthe scale of the reduced swarm correlates to a much larger svarm.

1.2 Research Effects

Research aiding the understanding swarm programming could lead to avariety of potential
applications.
121 RoboCup Improvement

Aninitial impact would be the improvement of the RoboCup tournament. The RoboCup
competition focuses on cooperation between autonomous agents in dynamic multiagent environments.
Future devel opers of RoboCup agents would be able to use many of the ideas created in this program, thus
improving their research. The smulation league would evolve into more redlistic soccer play, approaching
the goa of the tournament; ateam of robots competing with world-class players by 2050 [Stone2000-b].
1.2.2 Exploration

Imagine dropping many small robots from an airplane or a spacecraft over Marsin order to explore
terrain below. In such ahostile environment, the swarm of robots would need to be programmed so that
they could cooperatively adapt to unpredictable situations while pursuing the larger goal. The robots would
have to react appropriately if one were to be destroyed to cover the same areawith fewer robots. Instead of
encoding the robots' decisonsinto theindividua devices, the programs should be mechanically generated
from aformal description of the behavior of the robots as a group.
1.2.3 Search and Rescue

A variation of the exploration application would be a directed search for aparticular object. The

program could attract more devices to an area as sensor feedback shows an increased probability of nearing

thegoal. Thisapplication could be used to search for skiersor hikerslost in the mountains or to find the

black box after a plane crash.

1.24 Electronic Commerce
In the future, investors may have millions of agents acting on their financia behaf. Agents may be

forbidden to act independently to prevent unwanted situations, such as having too many high-risk
investments at once. The owner of the agents could define apolicy that limits and guides the overall

behavior of this swarm of agents[Evans2000].

1.25 Military Uses
The military could also use arobot swarm to search for and destroy something, such as an enemy

weapons base or amissile launch site. Unfortunately, amilitary could also abuse this technology by using
an army of robotsto help take over aregion. The use of swarm programming could revolutionize war, and

result in catastrophic destruction.

1.3 RoboCup 2001

Theinternationa research symposium, RoboCup 2001, is the medium of the swarm research
discussed in thisreport. Because this conference focuses on cooperation between autonomous agentsin
dynamic multiagent environments, it easily lendsitself to the research. The smulation leagueisthe best
setting of al the competitions held at RoboCup 2001 in which to conduct the research. The simulation
league consists of aserver acting asthefield, and eleven clients for each team, which act asthe players.
The simulation has amonitor display that represents the game (figure 1). The ball isthewhitecirclein the
middle of thefield, and the players are represented by the circleswith numbers, the lighter side being their

front. Therestislikearegular soccer field.

[Quit |[Kick OFf

| italyz0

{referee before_kick_off}
{referee kick_off}

=5

Recw:
Recw:
Recw:
Recw:
Recw:
Recw:
Recw:

I

brazil_7:{turn GO}
italy_11;{turn GO}
brazil_9:{turn GO0}
brazil_8;{turn GO0}
italy_5:{turn 60}
brazil_3:{dash 13,5}
italy_1:{dash 18.4})

figure 1: The RoboCup Simulation Leagure Display Monitor

The smulation league closdly paralels swarms. Thefield may be considered an unpredictable

dynamic environment, while the players are the cooperative swarm. This swarm is more easily analyzed,

asthereisardatively small set of unitsintheteam. An aggregate of devised defensive tactics will act as

the high-level behavior that the swarm of playerswill striveto achieve. Players need to maintain constant

communication concerning the state of the world and of fellow teammates. Defense was chosen because

itsbasisliesin positioning and overdl structure of the entire team, whereas offense concerns more
creativity that isindividual. The swarm approach should succeed at RoboCup 2001 because its defense
will be extremely effective against the opposing offenses, especially with the extensve soccer knowledge

of those who created the program.

1.4 Literature Review
The literature research necessary for thisthess pertains to swarm programming and the RoboCup

competition. All the swarm programming literature came from a paper written by University of Virginia
Professor David Evans and others obtained from a swarm research web site (www.swarm.org). The
literature about RoboCup came from the conferences held in previous years. Also, an extremey important

document described the source code from which the new team is derived.

Evans s paper explains swvarm programming, while acknowledging that the field is relatively young
s0 there are many possible approaches. Evanstaks about the impact siwvarm programming could have on
society with examples about exploration and sensor networks. Evans' research plan includes creating
experimental swarm programs, developing swarm specifications, developing models, analyzing swvarm
programs, and synthesizing swarm programs. In addition, snce Evansis my technical advisor his paper
hel ped set acommon vocabulary in which to communicate research ideas. The papers from the swarm web
site describe possible tool s and techniques for swarm programming. Also, the papers explicitly stated the
goasand desired capabilities of programmed swarms. This portion of the literature created a scope for the

project, but it lacked specific solutionsto the programming problems.

The documentation about the Mainz Rolling Brains RoboCup team was helpful in the early

developmenta stages. Since the swarm-based team was derived from Mainz Rolling Brains, its document

had to be referenced to more easily understand the source code. Because the document was not
comprehensive, at times, the authors had to be contacted viae-mail to answer some questions about their
source code. Though the Mainz Ralling Brains team was not created as a swarm program, its adaptation

required frequent use of its documentation.

The playersin the swarm must make decisions throughout the game. A paper called Mulit-Level
Direction of Autonomous Creatures for Red-Time Virtua Environments [Blumberg] was helpful in
creating the decision-making method for the RoboCup players. The paper stresses the need for
“directability,” which is defined as capable autonomous action and response to externd control. It usesa
robotic dog as an example of how to develop with directability. The paper describes the abstractions of
motor skills, sensing, and the behavior system. It aso explains the decision-making method of organizing
behaviorsinto mutualy inhibiting groups. This allows the dog to make adecision without having two
behaviors combine incorrectly. This paper greatly hel ped the design by offering important ideas about

abstraction and behaviora combination.

Finding and utilizing the literature for the RoboCup competition was difficult because most of the
papers were not related to this project. The most necessary literature was the documents about creating a
team for the competition, including the description of the server functiondlity so that the program can be
compatible. The other papersthat were found tended to help brainstorm ideas and approaches to RoboCup,

but most were unrelated, concentrated on artificid intelligence.

1.5 Methods

Tojoin the smulation league at the RoboCup competition, entrants must have aprogram that can

interact as ateam of clients on the soccer server. This program needs to be devel oped with not only the

RoboCup rulesin mind, but aso the concepts of swarm programming. Typically the programs are tens of
thousands lines of computer code because programming an intelligent smulation player involves being
ableto react to myriad stuations during the game. Thiswould be nearly impossible to start from scratch
with the resources available, so the programming team started working from the C++ source code of the
Mainz Rolling Brainsteam that had previousy competed. This code was chosen because, though an
overhaul was still necessary, its basic design could be understood and changed more easily than any of the
other teams. In addition, a substantia portion of the functionality could be saved with modificationsin the
code placement and syntax. The changesto the code improved its object-oriented design, and abstracted
the swarm’ s basic behaviors away from the rest of the code. This architecture alowed for the
programmability ided in swarm programming. | could implement the basic behaviors independently, and
then combine them together to choose the action that best helps the swarm achieveitsgoa. The ease of
implementing, testing, and adding the centering and dispersing defensive behaviors displays the benefits of
the program architecture. Though RoboCup is only one gpplication of swarm programming, the
architecture can be applied to many others. If utilized, the swarm devel opment community could evolve

more effectively with endless potential.

2 Methods

The RoboCup 2001 team crested for the smulation league was developed in the C++ programming
language. The most important part of the programming for swarm research was the object-oriented design.
For effective swarm programming, the architecture abstracts the various components away from each other,
such asthe state of the world and the definitions of low-level actions. When done correctly, extending the
program with new behaviors, decisions, and actionsis done with less complexity, as discussed in the
Chapter 3. (All references to the program class architecture in the chapter can be seen visualy in figure 2,

the program flow.)

2.1 Functionality Abstraction
The architecture abstracts the basic functionality of the program into the three basic layers a RoboCup

player experiences.

211 Listen
Listening isthe reading of sensory information by the soccer player’sbrain. Literally, it isthe client

processing the data about the state of the world from the soccer server. The Body class uses the Comm
class to communicate with the soccer server. Once read, the Comm class packages the information so that

it can be passed into the world mode by the Body, allowing the player to understand the state of the world.

21.2 Think
In this program, thinking isinterpreting the world and deciding what action should be taken.

Thinking must be correctly implemented if the swarm program isto operate well. The Perception class
processes the information in the world model, such aswho is the closest opponent to me, for usein
behaviors. The behavior classes use the perceptions to choose the action that maintains or initiates that
behavior. Inthelast step of thinking, each behavior passes arecommendation, which is analyzed into the a
final action for the player.
2.1.3 Act

Acting isthe most straightforward portion of the program. Thefina action that has been chosenis
given back to the Body. The Comm within the Body trandates the action so that the soccer server can

understand it.

2.2 Class Abstraction

This section will describe the class architecture implemented in the program.

221 Comm
The Comm classis atwo-way interface between the program and the soccer server. Comm

understands the protocol and information format that the server gives and receives. Comm parsesthe
information from the server into packages caled sensor data. There are different types of sensor data
depending on which part of the world mode is updated, including the ball, opponents, and teammates.
Going the other way, the Comm classtakes the fina action the player wants to execute and trandatesiit into

amessage derived from the predefined set of commands the soccer server understands.

222 Body
The Body class makes communication to the server invisible to the rest of the program. It hasa

Comm object and acts asitsinterface to the program. The Body sends the sensor data from the Comm

10

object to the world model, so that it is current. On the other side, the Body takes the fina action the player

wants and givesit to the Comm object to be communicated to the server.

223 World Model
The World Modd class holds al the basic information the player understands about the state of the

world. It uses different types of sensor datato update the corresponding part of the world model.
Therefore, at every timestep, the world model only updates the portion the player has seen or heard at that
time. The player knows that not al the world modd isreliable, as aging and indefinite information cannot
befully trusted.
224 Perception

Perception classes alow the player to process the basic information in the world model usefully.
For example, the world mode holds the information about the ball and the other players, but afunctionina
perception would predict which player could get to the ball the quickest. This manipulation of information

allowsthe player to make intelligent decisions about the most effective action.

225 Behavior
The abstraction of the Behavior classesisthe most important in the architecture for effective swarm

programming. It allowsthe program to contain a set of desirable behaviors the swarm anayzes every
timestep inthe game. Given a circumstance in the world, abehavior uses perception classes to compute the

importance of the behavior and the action that best achievesit.

226 Recommendation
An instance of the Recommendation classis produced by each behavior andyzed in atimestep of

the game. A recommendation consists of agrade and an action, both set by the corresponding behavior.
The purpose of the recommendation isto smplify decison-making. All the recommendations from the

behaviors are compared to decide on the fina action the player takes.

11

227 Action
The Action classes are more intuitive than those communicated to the server. They, dong with the

perceptions, alow the behaviorsto think at ahigher level. For example, the player might use the
DribbleAction classto dribble the ball without reducing this action to a series of dash and kick commands

tothesarver.

2.3 Decision Making

The C++ object-oriented design uses an agorithm to make the fina decision on an action.

231 Disperse Behavior
The disperse behavior spreads the team defense. Two defenders in the same spot of thefield

reduces the total areathat they can cover. The disperse behavior uses a predefined distance to separate the
players. This spreadsthe defense, but leavesit tight enough to prevent easy passing and dribbling by the
offense. The player uses a perception function to find al teammeates within the predefined distance. The
vectors to those teammates are combined to determine the direction to move to achieve the disperse
behavior. The player adso givesthe action agrade, directly proportional to the proximity of the teammeates.

The action and grade are set in arecommendation passed on by the behavior.

2.3.2 Central Behavior
The central behavior ensures that the defense protects the team from attack from the center parallel

to the lengthwise siddlines. In this part of thefield, the offensive players have more dribbling and passing
options, and the god isin this central position. The center of the field perceived by the defense shiftsalong
with the position of the ball, with limits at the edges of the pendlty area. For example, if the ball ison the
right sideline, the defense should be denser on the right side of the field, but not directly on theright
sdeline. The behavior will pass arecommendation consisting of the directional move and a grade directly

proportiona to the distance away from the perceived center.

12

233 Final Action Determination
Once dl the behaviors have passed recommendations, the player chooses thefina action. This

processis smpleif one recommendation has a much higher grade than the others. For example, if the
central behavior’s recommendation has a much higher grade than that of the disperse, the player will move
towards the center of thefield. The decision becomes more difficult with smilarly high grades, wherein
two possibilitiesarise. If the behaviors cannot logically combine, then the recommendation with the
dightly higher gradeis chosen. If the behaviors can logically combine, then the separate actions of those
recommendationswill aggregate into afina action. For example, if the central and disperse behaviors have
high graded recommendations, the player combines them to movein acentral direction that disperses from

teammates.

13

3 Results

The descriptionsin this chapter of the swarm programmability show the results of the program
architecture. Additions, deletions, and modifications throughout the source code demonstrate the ease at
which swarm programming extensions are made with this architecture. In addition, implementing the
centering and dispersing behaviors displays a microcosm of the full devel opment, showing how well the

object-oriented design lendsitsdlf to swarm programming.

3.1 Program Modification

3.1.1 Comm
The Comm object acts asan interface to the server. Thus, when there are version changesto the

server, only the Comm class must be changed. If thereisaformat change, it can take the information and
trandate it into the same form for the world model. If the server gives anew type of information, then the
world model would need to adapt its storage. If acommand format is changed, then the Comm simply
trandates the actions differently. The program can easily be changed to command different forms of

players (such asrobots) by adapting the Comm trandations of the actions.

3.1.2 Actions
The definitions of actionsin the program can be added, deleted, or modified with minimal changes

to other code. All the behaviors can utilize added actions when deciding the player’ s next move. When an

14

action is modified, the programmer must make necessary changes so that behaviors still use the action
properly. If an action is deleted, behaviors using it must be modified to use the existing actions without
losing desired functionality.
3.1.3 Perceptions

Perception addition and deletion issmple because it corresponds to behaviors. For example, the
centering behavior will have a centering perception. When the centering behavior was added, so wasthe
centering perception, and if the centering behavior was deleted, the centering perception would also be
deleted. The maintenance of perceptionsisthe most difficult because of the organization of their functions.
If only one behavior uses a perception function, it is put in the corresponding perception. If thefunction is
used by another behavior, the function should move to the perception base class so both perceptions can use
it without code duplication. When deleting a perception, the programmer must know all the functions used
inthe behavior. Thefunctions used only in that behavior are deleted aong with the perception, but
reorganization must be done for shared functions. If multiple behaviors ill use the function, it staysin the
perception base class. If only one other perception uses the function, then it moves from the base classto
the perception of the behavior that still usesit. If organized correctly, the code length is minimized.
314 Behaviors

Modification of the behavioral portion of the programiseasy. Onceinitialy coded, the behavior

goesinto the array of behaviorsin the master control class. Thisresultsin the program anayzing the new
behavior aong with the others within the think function. The only other change is programming its
recommendation to combine with those of the other behaviors. When complete, the programmer can
observe how well the new behavior is affecting the swarm, editing until it works asdesired. To deletea
behavior, the programmer must take it out of the array so that it is not analyzed, and delete its combination

with the other recommendations.

15

3.2 Architecture Programmability

The architecture of this program lendsitsalf extremely well to swarm development. The program’s
abstraction results in ease of code extension and modification. Though the complete designisnot
compatible with dl forms of swarms, much of it is gpplicable, especidly the behaviord structure. There are
some maintenance burdens, but they do not outweigh the benefits. The architectureis exemplified by the

development of the centering and disperse behaviors.

Thefirst step to adding anew behavior to the programisto get its functionality working
independently. Thisensuresthat its program incluson isready, so any problems areisolated in the
recommendation combination logic. Aninitia implementation of the centering behavior was added to the
program, but instead of giving its recommendation the computed grade, it is given the highest possible.
Therefore, when running the smulation, the player aways chooses the centering behavior's
recommendation asthefina action. Thisalowsthe programmer to test many situations, making
corrections to the code until the player is moving to the correct place on thefield. Once done, the central
behavior’ s recommendation grade was decreased to work on another behavior. The disperse behavior was
then programmed similarly. First, theinitia implementation and highly graded recommendation were
added to the program. Corrections were then made until the players effectively distanced themselves from

thelr teammeates.

The central and disperse behaviors were then ready to be combined to achieve correct swarm
interaction. Instead of giving the recommendations a predetermined grade, they compute from the state of
theworld. If the grades are smilar, then the recommendation movements combine to achieve a degree of
both behaviors. When the two behaviors combined, they did not interact correctly, as the players stayed

dispersed without moving centrally. The solution was to weight the multipliersin the centering behavior

16

equation heavier to improve its grade so that its recommendation would be chosen and combined more

often. Thetwo grade equations were adjusted until the players kept central and relatively isolated positions.

Though the programming description only includes two behaviors, it displays the ease of the swarm
development. It was amicrocosm of the development of many behaviors for aswarm, from independent
behavior creation to combination logic. The addition of more behaviors keeps independent behavior
development time congtant, only increasing the combination complexity. Programmers must make a
concerted effort to correctly organize the functions within the perceptions, or the design becomes
overloaded and difficult to understand. Reliance on programmersto follow the guidelines of perception
organization is an unattractive compromise, but necessary to obtain the desired abstraction. There were few
time bottlenecks in the design, leaving only those inherent in the behaviors. Though there are many other
development approaches, the programmability of this architecture epitomizes sound design by maximizing

swarm programming efficiency and effectiveness.

3.3 Architecture Extensions

Though this design has proven effective for swarm programming, improvements are possible.

331 Recommendation
The Recommendation class could improve so that the players make decisions that are more

intelligent. The mgor shortcoming of the recommendationsisthat they only have asingleinteger grade.
Though there are many numbersto vary the grade, little information is passed. A degree of risk and chance
for success aong with the overall grade may be added so that the players could make decisions such as
taking more chances at the end of the game. The change could aso require the decision-making

architecture to improve by adapting to the more descriptive recommendations.

17

3.3.2 Actions
There are only basic actions available, such as running, turning, and passing, but thereisroom to

expand. Actions should eventually include multi-stepped moves. Thiswould alow the programmer to
execute complex moves more effective against the opposition. An exampleisagive-and-go pass. Its
implementation would require a pass, run, and trap along with communication for teammate coordination

of the return pass.

3.33 Perception Organization
The organization of perception functionsisthe most difficult for programmersto maintainin this

architecture. It would greatly reduce the unproductive responsibilities of the programmersif the

organization was easier if not hidden completely.

18

Bibliography

[Abelson2000] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy,
Thomas F. Knight, Jr., Radhika Nagpal, Erik Rauch, Gerald Jay Sussman, and Ron Weiss.
Amor phous Computing. Communications of the ACM, Volume 43, Number 5, p. 74-83. May
2000.

[Blumberg] Bruce M. Blumberg and Tinsley A. Galyean. Multi-Level Direction of Autonomous
Creatures forReal-Time Virtual Environments. Cambridge, MA: MIT Media Lab.

[Catlin1990] Mark G. Catlin, M.D. The Art of Soccer. St. Paul, Minnesota: Soccer Books,
1990.

[Chen2001] Mao Chen. RoboCup Soccer Server. User's manual for the simulation league for
RoboCup 2001, June 2001.

[Daniels2000] Marcus Daniels. An open framework for agent-based modeling. Sponsored by Los
Alamos National Laboratory and US Marine Corps Combat Devel opment Command, April
2000.

[Evans2000] David Evans. Programming the Svarm. Project Proposal Document. July
2000.

[Flenrge2001] F. Flenrge. Enhancing the Adaptive Abilities Mainz Rolling Brains 2001. Mainz
Rolling Brains RoboCup Simulation League team description document, 2001.

[Heintz2000] Fredrik Heintz. RoboSoc: a system for Devel oping RoboCup Agents for
Educational Use. Paper describing the RoboSoc package available at
http://www.ida.liu.se/~frehe/RoboCup/RoboSoc/, March 2000.

[Kitano2000] Hiroaki Kitano, Enrico Pagello, and Manuela Vel oso, eds. RoboCup-99:
Robot Soccer Wrold Cup 3. Springer, Germany: Springer, 2000.

[Stone2000-a] Peter Stone and David McAllester. An Architecture for Action Selection in
Robotic Soccer. Paper submitted to the Fifth International Conference on Autonomous Agents,
October 2000.

[Stone2000-b] Peter Stone, ed. RoboCup-2000: The Fourth Robotic Soccer World
Championships. Paper summarizes the advancements seen at RoboCup-2000, November
2000.

19

[Stone2001] Peter Stone and Richard S. Sutton. Scaling Reinforcement Learning toward
RoboCup Soccer. Paper describes the challenges to reinforcement learning in RoboCup
agents, 2001.

[Tennenhouse2000] David Tennenhouse. Embedding the Internet: Proactive Computing.
Communications of the ACM. Volume 43, Issue 5. P. 43-50. May 2000.

[Velosn1998] ManuelaVeloso, Peter Stone, and Michael Bowling. Aniticipation: A Key
for Collaboration in a Team of Agents. Paper submitted to the Third International Conference
on Autonomous Agents, October 1998.

20

Appendix A - Source Code

MASTERCONTROL.H

#ifndef MASTERCONTROL_H_
#define_ MASTERCONTROL_H_

#include "recommendation.h"
#include "action.h"
#include "worldmodel.h"
#include "behavior.h"
#include "perception.h"
#include "body.h"
#include "identitydata.h”
#include <iostream.h>
#include <strstream.h>
#include <stdlib.h>
#include <vector>

class MasterControl

{

public:
MasterControl (char* _pcTeamname, const char* _pcHostName, int _iPort, bool _fL ogging,
int _iReconnectNumber, bool _flsGoalie = false);
~MasterControl();
void play();
void listen();
Recommendation think();
void act(const Recommendation & _recFinal);

private:
WorldModel wmWorld;

vector<Behavior*> pbeBehaviors;
Body bdBody;

/I filestream for logging

ofstream out;

bool fLogging;

int iLastKickTime;
bool fClockwise;

// For logging

intiLastTime;
play_mode pmLastPlayM ode;

#endif

21

MASTERCONTROL.CPP

#include "mastercontrol .h"
#include <cstring>

#include "recommendationlist.h"
#include " centerbehavior.h"
#include "dispersebehavior.h"

using namespace std;

MasterControl::MasterControl (char* _pcTeamname, const char* _pcHostName, int _iPort, bool _fL ogging,
int _iReconnectNumber, bool _flsGoalie)
{

iLastKickTime = UNKNOWN;
fClockwise = fasg;

iLastTime=-1;
pmLastPlayMode = PLAY_MODE_UNKNOWN,;

fLogging = _fLogging;
/I prepare the identity data and register with the server
| dentityData idAboutMe;

idAboutMe.team_name = new char[strlen(_pcTeamname)];
strepy(idAboutMe.team_name, _pcTeamname);

idAboutMetype = CLIENT_FIELDPLAYER;

/' host information passed in from above, either from command line or as defaults
bdBody.init(idAboutMe, pcHostName, _iPort, _iReconnectNumber);

/I insert the IdentityData into the WorldM odel
wmWorld += idAboutMe;

/' initialize behaviors and perceptions
pbeBehaviors.push_back(new DisperseBehavior(wmWorld));
pbeBehaviors.push_back(new CenterBehavior(wmWorld));

}

MasterControl::~MasterControl ()
{

unsigned int i;
for(i = 0; i < pbeBehaviors.size(); i++)
{
if (pbeBehaviorg[i] != NULL)
delete pbeBehaviordi];

}

void MasterControl::play()

{
if(fLogging)
{

/I open log for writing
char cFilename[80];

22

}

}

}

snprintf(cFilename, 80, "%s%s%d%s’', WORLD _LOG_FILENAME, wmWorld.getTeamName(),
wmWorld.getClientPlayer().getNumber(), WORLD_LOG_EXTENSION);
out.open(cFilename, ios::out);

out << "<?xml version=\"1.0\"?>" << endl;
out << "<IDOCTY PE playerlog SY STEM \"playerlog.dtd\">" << end|;

out << "<playerlog>" << end;

Recommendation recFinal;

/I Telling the client player move to an initial position
MoveAction maMove(KICKOFF_POSI TIONS wmWorld.getClientPlayer().getNumber()-1]);
bdBody.execute(& maMove);

// while the client's body is connected to the server
while(bdBody.isConnected())

{
/Il listen

listen();

/I if the worldmodel has changed
if (WwmWorld.getTime() !=iLastTime) || (wmWorld.getPlayMode() != PLAY_MODE_PLAY_ON))
{

iLastTime = wmWorld.getTime();
/l'log the world
if(fLogging)
out << wmWorld;

/I think

recFinal = think();
Il act
act(recFinal);

}

/I closelog
if(fLogging)
{

out << "</playerlog>" << endl;
out.close();

void MasterControl::listen()

{

/1 get information about the world
bdBody.senseWorld();
SensorData* psdData;

while (bdBody.hasSensorData())

/I grab the next piece of sensordata

23

psdData = bdBody.getNextSensorData();
/I insert the new sensordata into the world
wmWorld +=*psdData;

delete psdData;
psdData= NULL;

}

Recommendation MasterControl::think()

{
RecommendationList rclRecommendations;
Recommendation recTemp;

unsigned int i;
/I for each behavior
for(i = 0; i < pbeBehaviors.size(); i++)

/I if the behavior is useful

if ((pbeBehaviorgi] '= NULL) && pbeBehaviorgi]->isUseful())
/I add it's recommendation to the list
pbeBehaviorgi]->eval uate(rclRecommendations);

}

/I Log the recommendations
if(fLogging)
{

if (WwmWorld.getTime() !=iLastTime) || (wmWorld.getPlayMode() != PLAY_MODE_PLAY_ON))
{
out << rclRecommendations << endl;
pmLastPlayMode = wmWaorld.getPlayM ode();
}
}

/I return the composition of al of the recommendations
return rclRecommendati ons.compos&();

}

void MasterControl::act(const Recommendation & _recFinal)
{
/I get the list of actions from the recommendation
ActionList acActions = _recFinal.getActionList();
bdBody.execute(acActions);

24

CENTERBEHAVIOR.H

#ifndef CENTERBEHAVIOR H_
#define_ CENTERBEHAVIOR H_

#include "behavior.h"

#include " centerperception.h”
#include " centerrecommendation.h
#include "runaction.h”

class CenterBehavior : public Behavior

{

public:
CenterBehavior(const WorldModel & _wmWorld);
virtual ~CenterBehavior();

bool isUseful();
virtual void evaluate(RecommendationList& recList);

private:
CenterPerception perCenter;

1

#endif

25

CENTERBEHAVIOR.CPP
#include " centerbehavior.h"

CenterBehavior::CenterBehavior(const WorldModel & wmWorld): perCenter(_wmWorld)

{
}
CenterBehavior::~CenterBehavior()
{
}
bool CenterBehavior::isUseful()
{
if (IperCenter.isActiveMode())
return false;
bool f = false;
bool g =false;
if ((perCenter.getPossession() != PS_OURYS) || (perCenter.inOurPenaltyArea (perCenter.getBall())))
f =true;
if ((!perCenter.amlClosestToBall()) && (perCenter.getBallAge() < 15));
g = true;
if (f&& Q)
return true;
elsereturn false;
}
void CenterBehavior::evaluate(RecommendationList& recList)
{

/lcreate the Recommendation to be passed back
CenterRecommendation rCenterRec;
rCenterRec.szBehaviorName = "center";

/Isets the ball position aathe virtual center

double dVirtCenter = (perCenter.getBall AbsPos()).getY ();

/lif outside the penalty area width, the respective edge
/Ibecomes the virtual center
if (fabs(dVirtCenter) >0.5* PENALTY_AREA_WIDTH - 10.0)
if (dVirtCenter >0.0)
dVirtCenter =0.5* PENALTY_AREA_WIDTH - 10.0;
else
dVirtCenter =-0.5* PENALTY_AREA_WIDTH + 10.0;

/ffind the maximum distance a player can be away from the virtual center
double dMaxDist = (0.5 * FIELD_WIDTH) + (0.5* PENALTY_AREA_WIDTH - 5.0);

/lfind fraction to virtual center and get initial grade
double dDistToV Center = perCenter.distToVirtCenter (dVirtCenter);

26

double dPercToV Center = fabs (dDistToV Center) / dMaxDist;
int iGrade = static_cast<int> (dPercToVCenter * CENTERING_MULTIPLIER);

//add the bonus depending on where the ball is and set grade

if (perCenter.inAttackingThird (perCenter.getBall()))
iGrade += ATTACKING_BONUS;

elseif (perCenter.inMiddleThird (perCenter.getBall()))
iGrade += MIDDLE_BONUS;

elseif (perCenter.inOurPenaltyArea (perCenter.getBall()))
iGrade += PENALTY_AREA_BONUS;

elseif (perCenter.inDefensiveThird (perCenter.getBall()))
iGrade += DEFENSIVE_BONUS;

rCenterRec.setGrade(i Grade);

//set the action of the centering move and return recommendation
Angle aRunAngle;
if (dDistToV Center > 0.0)

{

aRunAngle = - PI_2 - perCenter.getBodyDir();

}

{
aRunAngle = PI_2 - perCenter.getBodyDir();

}

RunAction raTemp;

pmaTemp->setl ntensity(iGrade);

if (perCenter.inDefensiveThird (perCenter.getBall()))
raTemp.setDirection(aRunAngle);

else

rCenterRec.addAction (raTemp);

recList.insert(rCenterRec);

}

27

CENTERPERCEPTION.H

#ifndef CENTERPERCEPTION_H_
#define_ CENTERPERCEPTION_H_

#include "perception.h”
#include "types.h"
#include "constants.h"

class CenterPerception : public Perception

{

public:
CenterPerception(const WorldModel & _wmWorld);
virtual ~CenterPerception();

Vector2d getBall AbsPos();

bool inAttackingThird(WorldObject _woObj);
bool inMiddleThird(WorldObject _woObj);
bool inDefensiveThird(WorldObject _ woObyj);
bool inOurPenaltyArea(WorldObject _woObj);
WorldBall getBall();

double distToVirtCenter (double _dVirtCenter);

Angle getBodyDir();

bool isGoalig() const { return wmWorld.getClientPlayer().isGoalie(); }

#endif

28

CENTERPERCEPTION.CPP
#include " centerperception.h”

CenterPerception::CenterPerception(const WorldModel & wmWorld) : Perception(_ wmWorld)

{
}

CenterPerception::~CenterPerception()

{
}

Vector2d CenterPerception::getBall AbsPos()

{

/Ireturns the absol ute position of the ball

return wmWorld.getWorldBall().getAbsPosition();

}

bool CenterPerception::inAttackingThird(WorldObject _woObj)
{

//gets the absol ute position of the WMO

Vector2d vAbsPos = _woObj.getAbsPosition();

/lfindsif the X coord is greater than 1/6 Length because greater than that
/listhe attacking third of the field
if (vAbsPos.getX() > (FIELD_LENGTH/ 6.0))
return true;
elsereturn false}

bool CenterPerception::inMiddleThird(WorldObject _woObj)
{

//gets the absol ute position of the WMO

Vector2d vAbsPos = _woObj.getAbsPosition();

/ffindsif the X coord islessthan 1/6 Length and greater than -1/6 Length
//because that is the middle third of the field
if ((vAbsPos.getX() < (FIELD_LENGTH / 6.0)) && (VAbsPos.getX() > -(FIELD_LENGTH / 6.0)))

return true;
elsereturn false}
bool CenterPerception::inDefensiveThird(WorldObject _woObj)
{
//gets the absol ute position of the WMO
Vector2d vAbsPos = _woObj.getAbsPosition();
/lfindsif the X coord islessthan -1/6 Length because less than that
/listhe defensive third of the field
if (vAbsPos.getX () < -(FIELD_LENGTH /6.0))
return true;
elsereturn false;
}
bool CenterPerception::inOurPenaltyArea(WorldObject _woObj)
{

Vector2d vAbsPos = _woObj.getAbsPosition();

29

return ((vAbsPos.getX() >-0.5* FIELD LENGTH) &&
(vAbsPos.getX() <-0.5* FIELD_LENGTH + PENALTY_AREA LENGTH) &&
(fabs(vAbsPos.getY()) < 0.5* PENALTY_AREA_WIDTH));

}
WorldBall CenterPerception::getBall()
{

[Ireturns the world ball

return wmwWorld.getWorldBall();
}
double CenterPerception::distToVirtCenter (double _dVirtCenter)
{

return (wmWorld.getClientPlayer().getAbsPosition().getY () - _dVirtCenter);

}
Angle CenterPerception::getBodyDir()
{

return (wmWorld.getClientPlayer().getBodyDir());
}

30

DISPERSEBEHAVIOR.H

#ifndef DISPERSEBEHAVIOR_H
#define DISPERSEBEHAVIOR_H

#include "behavior.h"
#include " disperseperception.h”

class DisperseBehavior : public Behavior {

public:
DisperseBehavior(const WorldModel & _wmWorld);
virtual ~DisperseBehavior();

bool isUseful();
virtual void eval uate(RecommendationList& recList);

private:

DispersePerception perDisperse;

#endif

31

DISPERSEBEHAVIOR.CPP

#include "dispersebehavior.h"
#include "runaction.h”

DisperseBehavior::DisperseBehavior(const WorldModel & wmWorld): perDisperse(_ wmwWorld)
{

}
DisperseBehavior::~DisperseBehavior()
{
}
bool DisperseBehavior::isUseful ()
{
if (!perDisperse.isActiveMode())
return false;
/Ibehavior is useful for offense and defense
if ((perDisperse.getMyX() >-0.5* FIELD_LENGTH) && (!perDisperse.amlClosestToBall()) & &
(perDisperse.getBallAge() < 15))
return true;
return false;
}
void DisperseBehavior::eval uate(RecommendationList& recList)
{

//create the Recommendation to be passed back
Recommendation rDisperseRec;
rDisperseRec.szBehaviorName = "disperse”;

/ffigure out what the disperse distance should be

double dDispDigt;

if (perDisperse.getPossession() == PS_OURS)
dDispDist = OFFENSIVE_DISPERSE_DIST;

else
double dFieldPerc = ((0.5* FIELD_LENGTH) + (perDisperse.getMyX())) / FIELD_LENGTH;
dDispDist = dFieldPerc * DEFENSIVE_DISPERSE MULT;

}

if (dDispDist< 5.0)

dDispDist = 5.0;
/[figure out a vector with the positions of the players within disperse distance
Vector2d vDisperseVec (0.0, 0.0);
Vector2d vDigt;
double dDistMagnitude;

for (inti = 0; i < NUM_TEAMMATES; ++i)
{

32

vDist = perDisperse.rel Pos(perDisperse.ourTeamDistlndex(i));
if ((vDist.getLength() < dDispDist) && (vDist.getLength() != 0.0))
{

dDistMagnitude = vDist.getL ength();
vDisperseVec += ((vDist / dDistMagnitude) * (dDispDist - dDistMagnitude));

}

/I take the negative of the composite distance vector and set recommendation
vDisperseVec = -vDisperseVec;

perDisperse.checkV ec(vDisperseVec);

double dGrade = (vDisperseV ec.getLength() / dDispDist) * 100;

rDisperseRec.setGrade(dGrade);
Angle aDir = vDisperseVec.getAngle();

RunAction raTemp;

raT emp.setDirection(aDir);

pmaT emp->setintensity(iGrade);
rDisperseRec.addAction(raTemp);

recList.insert(rDisperseRec);
return;

33

DISPERSEPERCEPTION.H

#ifndef DISPERSEPERCEPTION_H
#define DISPERSEPERCEPTION_H

#include <perception.h>
class DispersePerception : public Perception {
public:
DispersePerception(const WorldModel & wmWorld);
virtual ~DispersePerception();
WorldPlayer ourTeamDistlndex(int _ilndex);
double getMyX();
void checkVec(Vector2d& vDisVec);

#endif

34

DISPERSEPERCEPTION.CPP
#include " disperseperception.h”

DispersePerception::DispersePerception(const WorldModel & wmWorld) : Perception(_ wmWorld)

{
}
DispersePerception::~DispersePerception()
{
}
WorldPlayer DispersePerception::ourTeamDistIndex(int _ilndex)
{
/[ClientWorldPlayer cwpClientPlayer = wmWorld.getClientPlayer();
int iClientNum = wmWorld.getClientPlayer().getNumber();
/[finds out the number of teammates client knows well enough for disperse
intiArray = 0;
for (inth=1; h<=MAX_PLAYER; ++h)
{
if (h!=iClientNum)
{
if ((wmWorld.getOurPlayer(h).isknown() == true) || (wmWorld.getOurPlayer(h).getAge() < 6)
)

++iArray;

}

/I create array for distances to ball
WorldPlayer wpTeammateArray[iArray];
WorldPlayer temp;

//sets up teammate array
int iArrayCount = 0;
for (int k = 1; k <= MAX_PLAYER,; ++k)

{
if (k !=iClientNum)
if ((wmWorld.getOurPlayer(k).isknown() == true) || (wmWorld.getOurPlayer(k).getAge() < 6)

{
wpTeammateArray[iArrayCount] = wmWorld.getOurPlayer(k);

++iArrayCount;

}

/I get distance from the ball and resort the distance array
for (inti =0;i <iArray; ++i)
{

for (intj =0; j <i; ++j)

if (norm(relPos(wpTeammateArray[j])) > norm(relPos(wpTeammateArray[i])))

temp = wpTeammateArray [i];
wpTeammateArray [i] = wpTeammateArray [j];

35

wpTeammateArray [j] = temp;

}
}
}
if (iArray >=_ilndex)
return (wpTeammateArray[_ilndex - 1]);
return WorldPlayer();
}
double DispersePerception::getMyX()
{
return (wmWorld.getClientPlayer().getAbsPosition().getX());
}

void DispersePerception::checkVec(Vector2d& _vDisVec)

if ((wmWorld.getClientPlayer().getAbsPosition().getX() <-0.5* FIELD_LENGTH + 5) && (_vDisVec.getX()

<0.0))
_vDisVec.setX(0.0);

36

	Swarm Programming
	Research Effects
	RoboCup Improvement
	Exploration
	Search and Rescue
	Electronic Commerce
	Military Uses

	RoboCup 2001
	Literature Review
	Methods
	Functionality Abstraction
	Listen
	Think
	Act

	Class Abstraction
	Comm
	Body
	World Model
	Perception
	Behavior
	Recommendation
	Action

	Decision Making
	Disperse Behavior
	Central Behavior
	Final Action Determination

	Program Modification
	Comm
	Actions
	Perceptions
	Behaviors

	Architecture Programmability
	Architecture Extensions
	Recommendation
	Actions
	Perception Organization

