

Securing Web Communications

A Thesis
in TCC 402

Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Engineering

by

Lim Vu

April 25, 2002

On my honor as a University student, on this assignment I have neither given nor received
unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

__

Approved ___ (Technical Advisor)

David Evans

Approved ___ (TCC Advisor)
Betsy Mendelsohn

 i

Preface

 Succinctly stated, this thesis works towards securing regular web communications

such as instant messaging and file sharing. One might ask, is this an exercise in futility?

Who is going to spy on instant messaging conversations? Perhaps no one has or ever

will. However, this thesis does not strive simply to secure messaging. It presents serious

issues concerning information security and privacy in our digitally connected world.

Thus, this thesis attempts an exercise in securing web communications so that those

reading this paper and I, the author, can learn greater lessons about implementing secure,

efficient security solutions for the burgeoning information and privacy problem we face

tomorrow.

I would like to thank my technical advisor, David Evans, for providing sound

mentorship and allowing me to attempt this thesis. Both my TCC advisors, Betsy

Mendelsohn and Rosanne Simeone, deserve great thanks as well. They provided

unsurpassed writing guidance; without them, my thesis would be incomprehensible.

Finally, a thank you to Mark Boyns and Kirill Kouzoubov, their open source software

contributed greatly to this thesis.

 ii

Table of Contents

Table of Figures ...iii

List of Tables and Examples...iii

Abstract.. iv

1 Introduction...1

2 Background...6

2.1 Encryption in Computer Networks...6

2.1 Modern Cryptography ...7

3 Design... 11

3.1 Including Open Source Code ... 11

3.2 UML Class Diagram.. 12

4 Data Transfer and Encryption.. 17

5 Implementation ... 20

5.1 Usage of Java .. 20

5.2 Usage of Java Cryptographic Extensions ... 21

5.3 Implementing Encryption .. 23

5.4 Usage of Open Source Software .. 24

6 Conclusion .. 26

6.1 Summary... 26

6.2 Interpretation... 27

6.3 Recommendations ... 28

7 Works Cited .. 30

8 Glossary of Terms ... 32

 iii

Table of Figures

Figure 1. Program interaction ...2

Figure 2. Alice and Bob use RSA...9

Figure 3. UML Class Diagram of example analog clock... 13

Figure 4. UML Class Diagram for Black Box... 16

Figure 5. Application data packet with SOCKS or HTTP header 17

Figure 6. Black Box encrypting data between two computers 18

List of Tables and Examples

Table 1. The steps in a Diffie-Hellman key exchange. Steps derived from [7]................7

Example 1. JCE Encryption Abstraction... 22

Example 2. JCE Key Abstraction ... 23

 iv

 Abstract

Web services today, such as real time instant messaging and file sharing are

insecure. This thesis implements an encryption program that has the capability of giving

confidentiality to these services. The encryption program acts as a proxy server using

modern encryption to secure all data transmissions of any Internet communication

service. Thus, any application or service with proxy server support has the capability of

securing its transmissions.

With an increasing reliance on digital data, the security of the digital

communications medium has become more important. The sensitive information these

digital lines carry can be privy to anyone without proper protection. This thesis fulfills a

gap in the protection of newer, web communications using an encryption proxy. We

describe the design using UML. Its implementation makes use of open source software

and the Java Cryptographic Extensions to allow a robust, portable, and efficient

encryption proxy.

 1

1 Introduction

This thesis describes the securing of common web services such as instant

messaging and file sharing through the creation of “Black Box”, an encryption proxy.

These new modes of communication serve as primary conduits of contact for many

people. However, these web services are extremely insecure. Protection of privacy is an

important issue in society today. Consequently, the possibility of an intrusion of our

privacy rises as well. Specifically, any type of digital communication makes an ideal

target for information theft. Everyday Internet services, such as instant messaging and

file sharing, are excellent examples of targets for information piracy. Attackers can tap

into these Internet services easily to steal the information and secrets they carry.

Securing the channels over which these services communicate provides the means to

safeguarding them.

A proxy program acts as a go-between for applications accessing the Internet [1].

Black Box, being an encryption proxy, encrypts and decrypts all outbound and inbound

Internet communication data. Thus, it secures the information communicated by any

application or web service. Figure 1 further illustrates the proxy nature of the Black Box.

In the figure, Black Box runs atop a computer operating system acting as a proxy

between applications and the Internet. It encrypts all outbound, application data and

decrypts all incoming, Internet data. Thus, following the figure from left to right, an

application sends its data to Black Box. Next, Black Box encrypts the application data

and sends it through the Internet to another computer system also running Black Box.

Finally, the receiving Black Box proxy decrypts and hands the data to the appropriate

application.

 2

Figure 1. Program interaction

Black Box uses a symmetric block cipher known as TripleDES to encrypt. A

cipher is an algorithm that changes plaintext (original text) into ciphertext (encrypted

text) and vice versa. Today, ciphers protect digital communications with unrivaled

security. Modern ciphers fall into two main categories; symmetric and asymmetric

ciphers. Symmetric ciphers use one key to encrypt and decrypt messages. Conversely,

an asymmetric cipher uses two keys; one for encryption and another for decryption.

The main problem with many ciphers is that a key exchange must take place

before a secure channel is established. Key distribution is a problem that has plagued

cryptographers for thousands of years. The problem involves distributing the keys safely

to each user [2]. Oftentimes, great measures, such as personally delivering a key, must

take place to ensure that an attacker does not compromise encrypted communication. For

example, when using an asymmetric cipher, if an attacker poses as Alice and offers a fake

public key to Bob, the attacker can continue to pose as Alice and intercept all information

 3

between the two. Security experts know this particular assault as the man-in-the-middle-

attack [3].

Black Box makes use of a method known as the Diffe-Hellman key exchange for

key distribution. In 1976, Whitfield Diffie and Martin Hellman presented a revolutionary

solution to key distribution and introduced asymmetric ciphers in their paper, New

Directions in Cryptography [10]. Diffie-Hellman allows two users to exchange a secret

key without any prior agreement or knowledge over any medium. The paper propelled

cryptography into the modern digital world allowing its use in new, exciting areas [4].

With the development of modern ciphers, programs began developing that

provided encryption to the masses. Pretty Good Privacy (PGP) is such a program

developed by Phil Zimmermann in 1991. PGP first uses RSA, an asymmetric cipher, to

exchange a key and then turns to IDEA, a symmetric cipher, for encryption of any

message given it. PGP does not make use of RSA entirely because RSA is

computationally intensive and time consuming. Thus, PGP uses RSA only for its

asymmetric nature and turns instead turns to a less intensive symmetric cipher for

encryption, also known as session-key encryption [5]. People use PGP worldwide and its

popularity continues to grow.

Zimmerman developed PGP to protect a new, rapidly expanding digital

communication, email. He saw the growing need for protection of information privacy

and the freedoms it entails in a digitally connected world. For without these protections,

threatening organizations, governments, and entities could violate an individual’s basic

human right to privacy and secure communication. After PGP’s development,

Zimmerman became the centerpiece of a worldwide debate on the availability of strong

 4

encryption to the public. On one side of the debate, government and law enforcement

argue that strong encryption allows criminals and terrorists to thwart legal wiretaps and

communicate in secret. Directly opposing them, civil libertarians advocate that privacy is

a fundamental human right as stated by article 12 of the Universal Declaration of Human

Rights, “No one shall by subjected to arbitrary interference with his privacy … Everyone

has the right to protection of the law against such interference or attacks.” Civil

libertarians argue that with the advent of digital communications, monitoring and

wiretapping becomes easier. Consequently, this eavesdropping ability, unhindered by

encryption, leads to threatening entities, such as the government or criminals, abusing it.

Major corporations also ally with civil libertarians in this debate. Every major

corporation employs encryption to protect their online transactions and private databases

of corporate and client information. Without encryption, attackers can easily steal

corporate secrets and cause major problems for a company. The debate rages on today,

affecting the strength of encryption software such as PGP or this thesis’s encryption

proxy, Black Box [4].

With Black Box, users have the capability of securing their data transmissions

saving them from potential information theft. These users include most of the average

home users on the Internet today. Users of chat clients or file sharing clients can take

advantage of the Black Box’s capabilities. Thus, an encryption proxy adds protection to

previously insecure digital communications easily and quickly.

Even with the availability of PGP, specific digital communications are still

insecure. People use PGP primarily only with email. Zimmermann created it before the

instant messaging and file-sharing phenomenon of today. Hence, society still needs a

 5

reliable, fast, and user-friendly program to secure these new channels of communication

and ones to come. Some programs available today attempt to fulfill this need. However,

they usually lack complete solutions or only provide encryption for their proprietary

services. This thesis fills the gap in digital communications today with Black Box, an

encryption proxy that works with all instant messaging and file-sharing software.

The rest of this thesis outlines modern cryptographic techniques and their history,

explains the rationale behind the design decisions of Black Box, and reveals the

implementation details of the proxy.

 6

2 Background

 For thousands of years, people have created ciphers to protect secrets. The

ongoing war between cryptographers, those who develop ciphers, and cryptanalysis,

those who break ciphers, drove this innovation. From simple courier mail to today’s data

transmissions, the success of securing messages with encryption has relied on the latest

cryptographic research [4]. Thus, the designed encryption proxy takes advantage of all

the major breakthroughs achieved by modern cryptography to provide a complete

solution to securing web communications.

2.1 Encryption in Computer Networks

 Computing experts have not always viewed encryption as the answer to computer

network security. In 1968 Jack B. Dennis, a visionary professor from the Massachusetts

Institute Technology, wrote a positional paper describing the basic requirements for

successful and secure information networks. One of the three major requirements he

listed was “the development of public, message-switched communications services so

that adequate provisions are made for information security.” He goes on to say that, “the

security of messages sent between information systems via the internal public network is

an important and serious problem …. Although message encryption is a useful technique

where the communicating parties are able to make prior arrangements, the author is not

convinced that this is workable in the context of public information services [6].” Thus,

Dennis regarded message security as an important issue but did not identify encryption as

a solution. Dennis further states that the problem with encryption stems not from the

actual ciphers used but instead from key distribution. While his conclusions were valid

 7

for his time, they were made before modern breakthroughs in encryption made it a viable

solution for overall network security.

2.1 Modern Cryptography

The Diffie-Hellman key exchange and RSA were two major breakthroughs that

enabled modern encryption on today’s computer networks [4]. As mentioned in the

introduction, Whitfield Diffie and Martin Hellman developed Diffie-Hellman in 1976.

Published and described in their paper, New Directions in Cryptography, the protocol

describes mechanisms that allow two users to agree upon a secret key without divulging

any prior secrets over any insecure medium [3]. Diffie-Hellman relies on the erratic

nature of one-way modular functions to negotiate a key exchange. One-way functions

differ from two-way functions because one cannot easily reverse them knowing only the

solution.

Let us further investigate Diffie-Hellman by examining an example key exchange

between Alice and Bob. To start a Diffie-Hellman key exchange, both Alice and Bob use

the function “Yx (mod P)” and agree on a random value “Y” and prime “P.” Below,

Table 2 lists the steps taken to arrive at an identical secret key.

Table 1. The steps in a Diffie-Hellman key exchange. Steps derived from [7].

Diffie-Hellman Key Exchange

1. Alice chooses a random value “y”
2. Alice sends “Yy (mod P)” to Bob
3. Bob chooses a random value “z”
4. Bob sends “Yz (mod p)” to Bob
5. Alice computes “Yyz (mod p)” as “(Yy (mod p))z mod p”
6. Bob computes “Yyz (mod p)” as “(Yz (mod p))y mod p”
7. They both arrive at the same final answer that they use as the

secret key for symmetric encryption

 8

In New Directions of Cryptography, Diffie and Hellman also discuss public-key

cryptography. “Public key distribution systems offer a different approach to eliminating

the need for a secure key distribution channel. In such a system, two users who wish to

exchange a key communicate back and forth until they arrive at a key in common. A third

party eavesdropping on this exchange must find it computationally infeasible to compute

the key from the information overheard [8].” Diffie-Hellman was revolutionary in that it

enabled a new class of encryption systems not requiring prearranged keys. RSA was

ground-breaking for its use of public-key cryptography as well. However, unlike Diffie-

Hellman, it encrypts messages instead of simply negotiating a key [4].

 In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman developed RSA, a

cipher that would become a worldwide encryption standard [9]. Unlike many ciphers,

RSA is asymmetric. RSA produces a pair of keys, public and private, for each user.

Each key is unique and provides the means of either decrypting or encrypting messages.

Let us examine an RSA communication to illustrate further. Alice and Bob wish to

communicate securely using RSA. For Bob to send protected messages to Alice, Bob

must first locate Alice’s public key that she makes available to everyone. He then

encrypts his message with Alice’s public key. After delivery, Alice decrypts the message

with the key that only she has privy to, her private key. For Alice’s messages to Bob, the

same method applies but backwards [4]. Figure 2 illustrates RSA pictorially. One might

view RSA and Diffie-Hellman as a complete solution after this discussion. However, a

problem remains that plagues most modern encryption schemes: the man-in-the-middle

attack.

 9

Figure 2. Alice and Bob use RSA

 As mentioned in the introduction, the man-in-the-middle attack involves an

attacker intercepting the exchange of public keys between two individuals, introducing

his or her own public key to each, and then intercepting all encrypted messages between

the two. Thus, the two communicating users encrypt their messages with the attacker’s

public key allowing the attacker to read their messages after interception. After the

attacker finishes reading the intercepted message, he or she encrypts the message with the

public key of the intended recipient. The corresponding individuals can then never detect

the attack if the attacker executes it flawlessly [3].

Today, encryption software uses partial solutions that minimize the chances of a

person-in-the-middle attack. The most widely used solution is a digital certificate.

Digital certificates contain an individual’s public key encrypted with the private key of a

trusted source. Thus, a trusted source, usually a government agency or large company,

vouches for an individual. After receiving a digital certificate, one retrieves the

embedded key by decrypting the certificate using the trusted source’s public key. The

trusted source’s public key is widely available from multiple sources, and thus

trustworthy. Thus, the only risk present in this security model is the trusted source’s

DKR(Alice)(C) = Msg EKU(Alice)(Msg) = C

EKU(Bob)(Msg) = C DKR(Bob)(C) = Msg

D = Decrypt
E = Encrypt
KU = Public Key
KR = Private Key
Msg = plaintext
C = ciphertext

 10

private key. If an attacker compromises its private key, all its issued certificates become

useless [5].

The design of a complete, secure encryption proxy required understanding and

use of all the concepts presented above. For example, Black Box performs session-key

encryption by utilizing Diffie-Hellman for initial key agreement, and then TripleDES for

symmetric encryption. However, the novelty of Black Box lies not in the technology it

employs but the work it performs. Thus, these technical details provide the means to an

end. This thesis attempts innovation not through new discoveries in cryptography but

rather by finding a new, novel application of encryption. Like PGP, Black Box secures

widely used digital communications that currently lie susceptible to attack.

 11

3 Design

 We utilized the Universal Modeling Language (UML) to design Black Box.

UML’s benefits include its graphical notation, heavy use of object-oriented design,

program flow modeling, intuitive feel, and observations into the usage of objects by users

and systems. Software designers use UML to model software systems during the design

process to better understand and implement their programs. UML conveys the

programmer’s design in terms of use, structure, and flow [10]. Black Box also

incorporated open source software in its implementation. Accordingly, the structure of

the open source software greatly affected the overall design.

3.1 Including Open Source Code

Black Box utilizes open source software to provide the functionalities of a

Hypertext transfer protocol (HTTP) and SOCKS proxy server. Both the HTTP and

SOCKS protocols outline the interactions between a proxy server and the clients it serves.

Without these protocols, a standard would not exist for implementing universal proxy

support within software. Both protocols are non-proprietary, free, and available on the

web.

Likewise, open source software shares these same aspects. Open source software

includes any program that a developer has specifically licensed to be freely available.

Consequently, programmers have the option of making their source code obtainable to

others under specific software licenses. These licenses vary greatly in terms of reusing

protected source code in other programs. Restrictions on reuse usually depend on

whether the borrowed code appears in open source or proprietary software. Independent

 12

developers often lean towards allowing reuse only in other open source software. In

contrast, software companies favor letting open sourced code appear in proprietary

programs.

The open source software Black Box uses allows for modification and use in

resulting open source software only. Thus, Black Box itself falls under the GNU General

Public License (GNU GPL) that allows for modification of GPL code in freely

distributed software only [11]. GNU itself is a project launched in 1987 that works

towards a complete UNIX-like environment in the form of free software.

Overall, the use of open source HTTP and SOCKS software greatly reduced the

time and effort needed to create an overall design strategy. The functionality of the open

source software allowed the design of Black Box to focus on its main task, encryption.

Accordingly, the resulting UML design reflects the usage of open source HTTP and

SOCKS proxies.

3.2 UML Class Diagram

 The UML class diagram communicates the structure of the software system using

object-oriented (OO) design. Thus, the UML class diagram uses classes, the primary

building block used in OO design to group ideas, as its basis. OO design views classes as

the description of the variables and methods inherent within similar types of objects. A

class can model real-life objects according to the natural data and operations present in all

items. Consequently, OO design designates a particular class instantiation as a specific

object of that class [10]. To illustrate these concepts take the following example. A

programmer decides to make an analog clock program. The programmer creates a main

 13

clock class containing the necessary data needed, mainly time and its subdivisions of

hours, minutes, and seconds, and operations on time, such as start time or reset time. The

programmer can further divide the physical clock into its components, the hour, minute,

and second hand. This division of the clock into its physical components creates an

aggregation in OO terms. Finally, once the programmer starts the program, it instantiates

the clock class into a clock object. Figure 3 contains the class diagram for the example

analog clock. The dotted arrows represent dependencies between the classes.

Figure 3. UML Class Diagram of example analog clock

Dependency arises when one class subclasses another. A solid arrow depicts inheritance,

another OO feature that represents the derivation of a class from a similar one.

 Figure 4 illustrates the class diagram containing the nine classes used within

Black Box. The proxy class diagram contains three main classes, the HTTPProxyServer,

SOCKSProxyServer, and BlackBoxGUI classes. Both the HTTPProxyServer and

SOCKSProxyServer classes represent open source software used to perform the functions

 14

of a HTTP and SOCKS proxy. The two classes in the diagram abstract the open source

software into objects to incorporate them into the Black Box design. The

HTTPProxyServer class handles incoming HTTP proxy connections, encryption

configuration, and starting the server. Consequently, the HTTPProxyServer class starts

the entire server running and creates SOCKSProxyServer and BlackBoxGui objects. The

SOCKSProxyServer class represents a thread that handles all SOCKS proxy connections.

A thread executes a differing program flow concurrently with the main program. Thus,

when a program needs simultaneous execution of differing code, it uses threads. Within

Black Box, two threads concurrently handle possible HTTP and SOCKS connections.

The BlackBoxGui class executes as a thread that handles all the encryption functionalities

of Black Box. These functionalities include configuring encryption, connecting to

perform key agreement, and actual encryption and decryption of data.

Six classes help the three main classes perform their tasks. Both the

HTTPConnection and SOCKSConnection classes represent the connections either a

HTTP or SOCKS proxy handles. They inherit from a general Connection class that

abstracts a connection into its describing data and operations. Connection data includes

socket as well as input and output stream information. A socket represents a computer

connection point, analogous to a telephone or antenna socket. Input and output streams

characterize the flow of data from a socket or, more generally, any object. Connection

operations consist of reading, writing, and closing a socket. Thus, by inheriting from the

Connection class the HTTPConnection and SOCKSConnection classes receive all the data

and operations of a general connection. Further, they each contain specific data and

operations respective to their specialized type of connection. For instance, the

 15

HTTPConnection class creates data objects that stand for the HTTP request and replies

received as stated by the HTTP protocol. Likewise, the SOCKSConnection class has data

representing a SOCKS request and reply.

 The EncryptListner class represents a thread listening for connections made to

establish key agreement by other remote encryption proxies. BlackBoxGui instantiates an

EncryptListner thread after the user starts encryption. In turn, the EncryptListner thread

creates an Encrypt object. The Encrypt class encapsulates the cryptographic functions of

encryption and decryption. Thus, when a connection wants to decrypt or encrypt its data,

it uses an Encrypt object. The Encrypt class inherits from the EncryptionConnection

class. The EncryptionConnection class represents all the cipher algorithms, keys, and

data flows associated with encryption. Thus, through inheritance, the Encrypt class

manages all the logistics of encryption.

 16

Figure 4. UML Class Diagram for Black Box

 17

4 Data Transfer and Encryption

To better understand the operation of Black Box, this section examines how two

Black Box programs communicate, negotiate a secret key, and transfer secure data.

Applications on a local computer access Black Box through local HTTP and SOCK

connections. HTTP and SOCK headers state what server an application requests.

Consequently, Black Box parses these headers to find the correct server to establish a

connection with on behalf of the application. Figure 5 depicts SOCKS or HTTP encoded

application packet. Black Box then establishes a connection and handles all the

information transferred between the application and its requested servers. This describes

the normal proxy behavior of Black Box.

Figure 5. Application data packet with SOCKS or HTTP header

For encryption, a remote computer running Black Box negotiates a secret key

with the local computer through a direct connection. Afterwards, the local computer uses

Black Box to encrypt all received application data before transferring the data out to

requested servers. Eventually, the requested servers relay this data to the remote

 18

computer that shares the negotiated secret key, thus allowing it to decrypt the application

data. Figure 6 outlines the interaction between a local and remote computer running

Black Box.

Figure 6. Black Box encrypting data between two computers

Black Box encryption relies on the fact that users use the same application on

both sides of the encrypted connection. It also assumes that the applications use a

protocol that allows for encryption. For example, a user uses an instant messaging

application that talks with its server and correspondents using a specialized protocol. If

Black Box encrypts the entire application data packet before sending it to the server, the

server will not understand the encrypted message and will not correctly forward it to the

intended recipient. Thus, the Black Box must make note of the applications and their

protocols to encrypt data properly.

Black Box can gain this knowledge of an application’s protocol either by

dynamically loading it as a configuration file or hard coding the protocol in the source

 19

code. These configuration files would list the application’s protocol and how and where

to encrypt the application’s data. Hard coding the application would achieve the same

goal. This version of Black Box utilizes hard coding instead of configuration files to gain

knowledge of a particular application’s protocol.

Black Box’s ability to encrypt relies on the assumption that an application’s

developer releases their proprietary software protocol. Recent trends show that software

companies generally disclose their application’s protocols [17]. However, one exception

is America Online (AOL). The company does not disclose the Open System for

Communication in Real Time (OSCAR) protocol for its popular AOL instant messaging

client (AIM) to the public. However, some people reversed engineered AOL’s AIM

protocol and currently publish it as the Fake AIM (FAIM) protocol on the Internet [18].

Black Box manages to encrypt AIM messages by using FAIM to partially parse

AIM application packets and encrypt the text string within. However, FAIM does fail in

some areas. FAIM contains inaccuracies regarding the structure of AIM message packets

as well as a few other AIM commands. Consequently, this implementation of Black Box

required reverse engineering parts of AIM’s protocol, and thus, this process increased

overall development time.

 20

5 Implementation

Java, the chosen language, made building Black Box an easier and more efficient

task overall. Likewise, the use of open source software cut overall development time by

eliminating the need to implement HTTP and SOCKS proxies. However, one must take

great care whenever reusing code. Detailed knowledge of the reused code proves

necessary because incorrect application usually leads to software bugs and unpredictable

program behavior. Lastly, using the Java Cryptographic Extensions (JCE) helped

simplify the use of encryption by abstracting and encapsulating complex cipher

algorithms into classes.

5.1 Usage of Java

 Several requirements influenced the choice of Java as the main language for this

project. Black Box needs a small overall size for easier distribution across limited

bandwidth. The project required a quick, efficient design and implementation of the

Black Box. Lastly, Black Box needs to work across a variety of platforms including

Windows, Linux, and UNIX.

Using Java created a smaller, more efficient encryption proxy. Small applications

shorten download times across connections with limited bandwidth including modems.

By making Black Box smaller, its availability increases to include more of the public.

A small size also makes Black Box more transportable since it fits on floppy or any other

removable disks. Furthermore, smaller programs usually execute more quickly and

efficiently.

 21

Java’s design as a programming language allows for quick design and

implementation of software projects. Through its object-oriented approach, strong type

checking, and error catching capabilities, Java lets programmers translate their software

designs into reliable code. If a programmer designs a project in the object-oriented

fashion of the Universal Modeling Language (UML), Java automatically lends itself to

rendering the code easily. Thus, this project took advantage of Java’s features for a quick

design and implementation of Black Box.

Lastly, Java’s design as a write once, run anywhere language finalized its choice

as this project’s main programming language. The cross-platform capabilities derived

from using Java allow a program to gain acceptance with a wider base of users. Thus, the

users of Windows, Linux, and UNIX can use Black Box interactively with each other

[12].

Overall, Java allowed this project to meet its encryption proxy requirements in

less time and more efficiently. Java’s excellent characteristics as a portable, easy to use,

and efficient language proved valuable to this thesis.

5.2 Usage of Java Cryptographic Extensions

 The JCE aided development by simplifying the usage of complex encryption

algorithms within Black Box. The JCE eased implementation by providing an easy to

use interface, thorough documentation, and an abstraction of complex cryptographic

details. It includes Java implementations of both encryption algorithms used in Black

Box, the Diffie-Hellman key exchange and Triple Data Encryption Standard

 22

(TripleDES). Also, the JCE’s inclusion into the Java 2 SDK v 1.4, allows any machine

with an up-to-date installation of Java to run the encryption routines in Black Box.

 Using JCE greatly simplifies using complex encryption algorithms because of the

automatic key generation facilities and intuitive cipher interfaces JCE provides. To use

any cipher to decrypt and encrypt data using JCE, one first creates a cipher object,

naming what encryption algorithm to use, and then initializes the parameters for the

algorithm. The example below demonstrates the ease of development that JCE provides

through abstraction when using TripleDES.

Example 1. JCE Encryption Abstraction

Without this abstraction of the encryption algorithm, the development time for Black Box

increases.

 The key generation facilities of the JCE remove the complex details of creating a

random key from a perfectly random seed. Oftentimes, in cryptography, an attacker sees

the secret key as a weak point rather than the actual encryption algorithm itself. This fact

places great importance on generating a random key. To create a key, one simply creates

// Create a TripleDES cipher object
Cipher 3DEScipher = Cipher.getInstance(“TripleDES”);

// Initialize the cipher object to encrypt and the user generated key
3DESCipher.init(Cipher.ENCRYPT_MODE, 3DESkey);

// Create clear text to encrypt
byte[] cleartext = “Test with some text”.getBytes();

// Encrypt the clear text into cipher text
byte[] ciphertext = AESCipher.doFinal(cleartext);

// Initialize the cipher object to decrypt now
3DESCipher.init(Cipher.DECRYPT_MODE, 3DESkey);

// Decrypt the cipher text into clear text
byte[] dcleartext = 3DESCipher.doFinal(ciphertext);

 23

a key generator object, initializes the generator object, and generates the key. Example 2

below demonstrates abstraction of key generation.

Example 2. JCE Key Abstraction

 JCE provides facilities to use encryption effectively within Java applications. It

allows developers to concentrate on the use and incorporation of encryption rather than

its implementation. JCE provided this project with valuable tools to decrease total

development time of Black Box [13].

5.3 Implementing Encryption

 The encryption algorithms chosen for Black Box as mentioned above were Diffie-

Hellman and TripleDES. Usage of both ciphers resulted in session-key encryption.

Thus, Black Box makes a direct connection with a remote proxy to perform Diffie-

Hellman and generate a secret key. Black Box employs a 1024-bit Diffie-Hellman key

size using SKIP (Simple Key Management for Internet Protocols) as its standard

modulus, “Y”, and base, “P”, in the standard equation Yx (mod P). Standard Diffie-

Hellman interactions must occur between a local and remote Black Box program to

establish an identical secret key. After Diffie-Hellman, Black Box initializes a 168-bit

secret key for TripleDES. A key size of 168-bits provides moderate security on modern

computer networks [14]. The network nature of Black Box necessitates the initialization

// Create an key generator object
KeyGenerator 3DESkeyGenerator = KeyGenerator.getInstance(“TripleDES”);

// Initialize the key object with a source of randomness and keysize
3DESkeyGenerator.init(RANDOM_SEED, 512);

// Generate the key and place it into a secret key object
SecretKey 3DESkey = 3DESkeyGenerator.generateKey();

 24

of TripleDES, orginially a block cipher, as a stream cipher. Thus, instead of encrypting

64-bit blocks of data, the proxy instead encrypts 8-bit blocks. This initialization proves

useful in streaming network applications, such as Black Box, because applications

usually do not read or write 64-bit blocks on a network.

Black Box uses the TripleDES block cipher instead of the originally proposed

AES cipher because of the TripleDES support in JCE. Since JCE’s inclusion into Java

v1.4, this support essentially ensures Black Box runs properly on machines that support

Java. The JCE specification does list AES as a supported cipher; however, its

implementation in the JCE is incomplete [13]. Overall, deploying encryption proved not

difficult because of the classes provided by JCE.

5.4 Usage of Open Source Software

 Black Box utilizes two open source software packages, Muffin, a HTTP proxy

server, and Java SOCKS Server, a SOCKS proxy server. Both packages are freely

available with source code via the Internet. Black Box uses their code primarily because

it is robust, efficient, and concise. Mark Boyns, a student at San Diego State University,

developed Muffin as an HTTP proxy with the capabilities of filtering and caching web

pages [15]. Kirill Kouzoubov, a student at the University of South Australia, developed

both the Java SOCKS Server and SOCKS library for future use by other developers [16].

 Black Box combines both open source proxies. This allows it to accept both

HTTP and SOCKS proxy connections. It then adds encryption capabilities to both types

of connections by implementing the classes described in section 3.0. For its main GUI,

Black Box uses Muffin because of its superior HTTP connection monitoring. Users can

 25

also configure the HTTP, SOCKS, and encryption connections from the main GUI. Both

open source programs provided little documentation about their design and

implementation. Thus, acquiring a deep understanding of both took a great deal of

development time and experimentation. However, in general the usage of open source

code cut proxy development time and allotted a greater amount of time towards

development of encryption.

 26

6 Conclusion

This chapter splits the conclusion into three sub-sections, the summary,

interpretation, and recommendation section, so that this thesis presents a more

comprehensive conclusion. First, the summary section provides an objective and definite

review of Black Box and its development. Next, the interpretation section draws

conclusions about Black Box and knowledge gained for its development. Finally, the

recommendations section makes suggestions of how to further enhance Black Box and

investigate new encryption problems.

6.1 Summary

The final version of Black Box for this thesis includes:

• proxy support for multiple HTTP, HTTPS, SOCKSv4, and SOCKSv5

connections

• session key encryption using Diffie-Hellman and TripleDES

• support for encryption of AIM messaging between two parties

• support for multiple platforms including UNIX, Windows, OSX, and Linux

This thesis utilized Java to create an encryption proxy named Black Box.

Thankfully, the addition of JCE into Java 2 SDK v1.4 specification ensures the support of

strong encryption routines on any system with an updated Java Runtime Environment

(JRE). Thus, Black Box runs with encryption on any machine with an up-to-date JRE.

However, Black Box’s encryption capabilities require specific knowledge of the

 27

encrypted data’s application protocol. The final implementation of Black Box only

includes the AIM protocol, and thus, the proxy only secures this service.

Utilizing open source, Black Box is itself open sourced and freely available under

the GNU GPL. The Black Box’s design reflects the use of open source through an

accurate UML Class description that relay the proxy’s underlying structure and flow.

6.2 Interpretation

The design of Black Box includes a comprehensive UML Class diagram. This

diagram allows future developers to understand and modify the existing source code with

ease. Thus, future versions of this Black Box or programs based of its source code have a

greater chance of existence.

 The Black Box’s inclusion of open source software permitted a fast, robust, and

efficient implementation cycle. The use of open source allowed the focus of

development to shift towards important issues including the implementation of working

encryption and inclusion of the AIM/OSCAR protocol. In particular, development

focused on including the OSCAR protocol because of AIM’s massive popularity and

OSCAR’s undisclosed nature. The use of open source software also directly affected the

availability of Black Box under the GNU GPL, and thus, made it free software.

 Written in Java, Black Box runs on several platforms. Its use of JCE also allows

it encryption capabilities to be portable as well. Thus, with this type of support, Black

Box ensures that not only will Windows users deploy it, but also UNIX, Linux, and OSX

users as well.

 28

The strong proxy connection support of Black Box ensures its compatibility with

a wide range of proxy capable applications. Thus, any application that supports either

SOCKS or HTTP proxy connections has the capability of encrypting all its network

bound data using Black Box. This added encryption capability presents strong

implications for securing a wide range of previously insecure data transmissions and

communications. Thus, since Black Box can secure web applications, such as AIM, it

secures a channel of digital communication millions use everyday.

Overall, Black Box strives to meet its original intent of securing all instant

messaging and file sharing services. However, the final version of Black Box secures

only the AOL instant messaging service. This one service presented a challenge because

its application protocol is proprietary and undisclosed. Hence, the thesis attempts to

secure the most difficult service available. If one views the final version of Black Box in

this light, one clearly sees that it is a success. Black Box proves the possibility of

securing all web services by securing the most challenging service first. Thus,

application of Black Box to other web services is a strong possibility.

6.3 Recommendations

 The final implementation of the Black Box leaves many avenues open for

development. Most importantly, the addition of new application protocols to Black Box

is a necessity. This addition ensures the thesis’s original intention of securing all instant

messaging and file-sharing services. Since most of the services have open, disclosed

protocols, one can easily add support for new web services. Coinciding with the addition

of application protocols is the development of an application detection engine. Thus,

 29

when a particular application connects, Black Box chooses the appropriate application

protocol.

Another important feature enhancement is the customization and improvement of

the encryption capabilities of the program. To improve the encryption capabilities of the

proxy, one could research new cryptographic findings and explore how to incorporate

them into Black Box. For instance, the usage of public key rings, password

authentication, or digital certificates could provide a more secure implementation of

Black Box. Customization of encryption within Black Box could involve letting users

choose which encryption algorithm they wish to use to secure a service.

The future enhancements that one can add to Black Box are limitless. However,

all added features need careful consideration and study on how they affect the overall

security. One can greatly affect a secure application by adding new features that present

inherent weaknesses to the software’s security model. Such feature might include saving

keys unencrypted, badly implemented authentication schemes, or poor use of passwords.

 30

7 Works Cited

[1] Angel, Jonathon. Proxy Servers. Network Magazine, 1 April 1999. 7
 September 2001
 <http://www.networkmagazine.com/article/NMG20000724S0061>.

[2] Knudsen, Jonathon. Java Cryptography. Cambridge: O’Reilly & Associates, Inc.,
1998.

[3] Pirooz, Hamid. Diffie-Hellman Public Key Distribution Scheme: A Complete
 Overview. Sans Institute, 4 December 2001. 8 September 2001
 <http://www.sans.org/infosecFAQ/encryption/diffie.htm>.

[4] Singh, Simon. The Code Book: The Science of Secrecy from Ancient Egypt
 to Quantum Cryptography. New York: Anchor Books, 1999.

[5] “The International PGP Home Page.” 15 September 2001 <http://www.pgpi.org>.

[6] Dennis, Jack B. “A Position Paper on Computing and Communications.”
Communications of the ACM. 2 (1968): 370-377.

[7] Garrett, Paul. Making, Breaking Codes: An Introduction to Cryptology.
 Upper Saddle River: Prentice Hall, 2001.

[8] Diffie, Whitfield, and Martin B. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory: 1976.

[9] RSA Security Inc. “RSA Laboratories Frequently Asked Questions about
 Today’s Cryptography 4.1.” 8 September 2001
 <http://www.rsa.com/rsalabs/faq/index.html>.

[10] Schmuller, Joseph. Sams Teach Yourself UML in 24 Hours. Indianapolis: SAMS,

1999.

[11] “GNU’s Not Unix! – the GNU Project and the Free Software Foundation (FSF).”

15 March 2002 <http://www.gnu.org>

[12] “java.sun.com.” 8 January 2002 <http://sun.java.com>

[13] “Java™ Cryptographic Extensions (JCE).” 10 January 2002

<http://java.sun.com/products/jce>

[14] Garms, Jess and Daniel Somerfield. Professional Java Security. Birmingham:

Wrox Press, 2001.

 31

[15] “MUFFIN.DOIT.ORG.” 156 January 2001. <http://muffin.doit.org>

[16] “Java SOCKS Proxy Server.” 16 January 2002. <http://jsocks.sourceforge.net>

[17] “IETF Internet Engineering Task Force.” 17 February 2002 <http://www.ietf.org>

[18] “FAIM/AIM/OSCAR protocol.” 17 February 2002 <http://www.oilcan.org/oscar>

 32

8 Glossary of Terms

Advanced Encryption Standard (AES) – An encryption algorithm designated for use in

encryption by the United States. The National Institute of Standards and

Technology choose Rijndael as this cipher and supplant DES.

AOL Instant Messenger (AIM) – A popular instant messaging program.

America Online (AOL) – A large software company and Internet Service Provider

(ISP).

asymmetric cipher – A cipher that uses two keys, one to encrypt and the other to

decrypt.

block cipher – A cipher that encrypts blocks of plaintext at a time.

cipher – A general name given to any algorithm or method that changes plaintext into

ciphertext through encryption. A cipher involves a key to perform the encryption

and decryption.

ciphertext – A message after being obscured by encryption.

concurrent program – A program that has concurrent independent tasks or threads of

control.

cryptography – The science of hiding or encrypting a message.

cryptology – The science of secrets including cryptography and cryptanalysis.

cryptanalysis – Unscrambling ciphertext without a key.

decryption – The process of deciphering or decoding a ciphertext back into plaintext.

 Data Encryption Standard (DES) – An encryption algorithm adopted by the United

States in 1976 for encryption of all its data. Today, the United States uses AES

instead.

 33

Triple DES (3DES, DESede) – An encryption algorithm that uses three rounds of DES

to increase the key bit size.

Diffie-Hellman key exchange (Diffie-Hellman) – A protocol by which two parties can

establish a secret key without sending any sensitive data. The two parties can then

use the secret key with a symmetric cipher for encryption. Whitfield Diffie and

Martin Hellman created Diffie-Hellman in 1976.

Fake AIM (FAIM) – The unofficial AIM/OSCAR protocol.

GNU – A project launched in 1984 to provide a complete UNIX-like environment as free

software. GNU is a recursive acronym for ``GNU's Not Unix''. It is pronounced

"guh-NEW".

GNU General Public License (GPL) – A particular software license developed by GNU

that promotes free software and source code modification.

key – Special knowledge or information that allows one to encrypt or decrypt ciphertext

using an encryption algorithm or cipher. Security experts regard keys as the

vulnerable point in encryption, not the encryption algorithm itself.

key distribution – The process of distributing a key for encryption and decryption by

multiple parties of two or more.

encryption – The process of encrypting or hiding the meaning of a message.

man-in-the-middle attack – An attack that renders modern asymmetric encryption

useless.

multi-threaded program – A program that has two or more threads of execution.

Allows for the overlapping or concurrent processing of several tasks.

 34

object-oriented design – A software design paradigm that promotes viewing

computation as the interaction among semi-independent objects that each contain its

own internal state and operations to mange that state.

Open System for Communication in Real Time (OSCAR) – The official undisclosed

AIM protocol.

Pretty Good Privacy (PGP) – A computer encryption algorithm used to encrypt and

decrypt digital data using session-key encryption. PGP uses a combination of RSA

and any symmetric cipher and its primary use is with email.

plaintext – A message before encryption.

private key – The key used with asymmetric ciphers to decrypt ciphertext or digitally

sign a message.

proxy server – A server or agent that allows two parties to communicate through it. A

proxy can perform actions on the information flowing through it such as encryption,

caching, or filtering.

public key – The key used with asymmetric cipher to encrypt plaintext or verify a

digitally signed message.

public key cryptography – A system of cryptography that utilizes asymmetric ciphers to

overcome key distribution problems.

Rijndael – A block cipher developed by Joan Daemen and Vincent Rijmen and

designated as AES.

RSA – An asymmetric cipher invented by Ron Rivest, Adi Shamir, and Len Adleman at

MIT in 1977.

 35

session-key encryption – The process of using an asymmetric cipher to establish a

symmetric cipher’s key with multiple parties. One then uses the established key for

any further encryption.

symmetric cipher – Any cipher that uses one key to encrypt and decrypt.

thread – An independent path of execution (task) within a program. Threads occur

within concurrent or multi-threaded programming.

Universal Modeling Language (UML) – A descriptive software and system modeling

language. It consists of subsets of graphical elements combined into diagrams to

convey functional and structural data. The resulting diagrams represent multiple

views of a single model. Grady Booch, James Rumbaugh, and Ivar Jacobson

developed UML throughout the 1980’s until they formalized it in 1997.

