Steganalysis with Streamwise Feature Selection

Steven D. Baker University of Virginia sdb7e@cs.virginia.edu

Motivation

- Catch bad people trying to communicate in secret
- Catch good people trying to communicate in secret?
- Research opportunities:
 - Improve detection
 - · Disrupt secret communication without harming legitimate image sharing
 - Improve theoretical guarantees

Steganography: An Example "Hello, I am the "Hello, I am the Original Image

amazing Mr. Moulin..."

Triangle of Peril Robustness Target region Detectable Useless Secrecy Bate

Theoretical work in Steganography

- Complexity theory
- Provably Secure Steganography [Hopper et al.]
- Information theory
 - An Information-Theoretic Model for Steganography [Cachin]
 - Perfectly Secure Steganography [Wang and Moulin]
- · Basic conclusion: perfect security means useless rate
- No available, practical algorithm allows smooth adjustment of rate, robustness, and secrecy*

Let Intel do the work

- Have a computer separate the useless features from the good ones
- Do this in a suboptimal but very fast way, so that you can evaluate loads of features, more than there are observations
- Streamwise Feature Selection [Zhou et al.]

