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1. Introduction

Mentat is an object-oriented parallel processing system designed to address three problems
that face the parallel computing community, the difficulty of writing parallel programs, the
difficulty achieving portability of those programs, and the difficulty exploiting contemporary
heterogeneous environments. Writing parallel programs by hand is more difficult than writing
sequential programs. The programmer must manage communication, synchronization, and
scheduling of tens to thousands of independent processes. The burden ofcorrectly managing the
environment often overwhelms programmers, and requires a considerable investment of time and
energy. If parallel computing is to become mainstream it must be made easier for the average
programmer. Otherwise, parallel computing will remain relegated to specialized applications of
high value where the human investment required to parallelize the application can be justified.

A second problem is that once a code has been implemented on a particular MIMD
architecture, it is often not readily portable to other platforms; the tools, techniques, and library
facilities used to parallelize the application may be specific to a particular platform. Thus,
considerable effort must be re-invested to port the application to a new architecture. Given the
plethora of new architectures and the rapid obsolescence of existing architectures, this represents
a continuing time investment. One can view the different platforms as one dimension of a two
dimensional space, where the other dimension is time. One would like the implementation to be
able to cover a large area in this space in order to amortize the development costs.

Finally there is heterogeneity. Today’s high performance computation environments have a
great deal of heterogeneity. Many users have a wide variety of resources available, traditional
vector supercomputers, parallel supercomputers, and different high performance workstations. The
machines may be connected together with a high speed local connection such as FDDI, ATM, or
HIPPI, or they may be geographically distributed. Taken together these machines represent a
tremendous aggregate computation resource.

Mentat was originally designed to address the first two of these issues, implementation
difficulty and portability. The primary Mentat design objectives were to provide 1) easy-to-use
parallelism, 2) high performance via parallel execution, 3) system scalability from tens to hundreds
of processors, and 4) applications portability across a wide range of platforms. The premise
underlying Mentat is that writing parallel programs need not be more difficult than writing
sequential programs. Instead, it is the lack of appropriate abstractions that has kept parallel
architectures difficult to program, and hence, inaccessible to mainstream, production system
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programmers. The third issue, heterogeneity, is the focus of the Legion project which is an
outgrowth of Mentat.

To date Mentat has been ported to a variety of platforms that span the latency and
bandwidth spectrum; from heterogeneous workstation networks, to distributed memory MPP’s, to
shared memory machines2. Workstations include generations of Sun workstations, IBM RS
6000’s, Hewlett Packard’s, and Silicon Graphics workstations. MPP platforms have included the
BBN Butterfly, the Intel iPSC/2, iPSC/860, and Paragon, the IBM SP-1 and SP-2, the Convex
Exemplar, the Mieko CS-2, and the Silicon Graphics Power Challenge. Recently we have ported
to Linux [5], allowing Mentat to run on PC-based systems as well. For the most part we have had
applications source code portability between platforms. The only exception being the iPSC/860.
Applications performance has been good as well, though not always good. Mentat is not
appropriate for fine-grain applications that require either very frequent communication, or large
volumes of communication. This is not surprising, as even hand-coded parallel programs often
have difficulty with such applications.

 The objective of this paper is to provide the reader with a solid introduction to Mentat and
to provide intuition as to the performance that can be expected from Mentat applications. This will
be accomplished by first examining the Mentat philosophy to parallel computing and reviewing the
Mentat programming language basics. We will then move onto applications performance. For each
of several applications we will address two questions. 1) What is the shape of the Mentat solution?
2) How did the implementation perform? We conclude with a retrospective and a look forward to
our next system, Legion.

2. Mentat

The Mentat philosophy on parallel computing is guided by two observations. The first is
that the programmer understands the application domain and can often make better data and
computation decomposition decisions than can compilers. The truth of this is evidenced by the fact
that most successful applications have been hand-coded using low-level primitives. The second
observation is that management of tens to thousands of asynchronous tasks, where timing-
dependent errors are easy to make, is beyond the capacity of most programmers. Compilers, on the
other hand, are very good at ensuring that events happen in the right order and can more readily
and correctly manage communication and synchronization than programmers. The Mentat solution
is driven by those two observations, that there are some things people do better than compilers, and
that there are some things that compilers do better than people. Rather than have either do the
complete job, we exploit the comparative advantages of each.

Mentat is more than a programming language and run-time system. Mentat is a complete
parallel-application development environment for workstations and MPP’s. It consists of the
Mentat Programming Language (MPL) [18] and all of the required supporting infrastructure. The
infrastructure consists of the run-time system [20] that supports object invocation, program graph
construction, and scheduling; support tools such as a complete post-mortem debugger, resource
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management tools, accounting tools, and system status tools; and extensive documentation and
user tutorials. The workstation version of the run-time system is completely fault-tolerant. The
system automatically adapts to host failure and recovery without human intervention.

The MPL is an object-oriented programming language based on C++. The programmer
uses application domain knowledge to specify those object classes, called Mentat classes, that are
of sufficient computational complexity to warrant parallel execution. The granule of computation
is the Mentat class member function. Mentat classes consist of contained objects (local and
member variables), their procedures, and a thread of control.

Mentat extends object implementation and data encapsulation to include parallelism
encapsulation. Parallelism encapsulation takes two forms that we callintra-object andinter-object
encapsulation. Intra-object encapsulation of parallelism means that callers of a Mentat object
member function are unaware of whether the implementation of a member function is sequential
or parallel. Inter-object encapsulation of parallelism means that programmers of code fragments
(e.g., a Mentat object member function) need not concern themselves with the parallel execution
opportunities between the different Mentat object member functions they invoke. Thus, the data
and control dependencies between Mentat class instances involved in invocation, communication,
and synchronization are automatically detected and managed by the compiler and run-time system
without further programmer intervention.

Member function invocation on Mentat objects is syntactically the same as for C++ objects.
Semantically there are differences. First, Mentat member function invocations are non-blocking,
providing for the parallel execution of member functions when data dependencies permit. Second,
each invocation of a regular Mentat object member function causes the instantiation of a new object
to service the request. This, combined with non-blocking invocation, means that many instances of
a regular class member function can be executing concurrently. Finally, Mentat member functions
are always call-by-value because the model does not provide shared memory.

 We believe that by splitting the responsibility between the compiler and the programmer,
we can exploit the strengths and avoid the weaknesses of each. The assumption is that the
programmer can make better decisions regarding granularity and partitioning, while the compiler
can better manage synchronization. This simplifies the task of writing parallel programs and makes
parallel architectures more accessible to non-computer scientists.

2.1. Mentat Classes

In C++, objects are defined by their class. Each class has an interface section in which
member variables and member functions are defined. Not all class objects should be Mentat
objects. In particular, objects that do not have a sufficiently high communication ratio, i.e., whose
object operations are not sufficiently computationally complex, should not be Mentat objects.
Exactly what is complex enough is architecture-dependent. In general, several hundred executed
instructions long is a minimum. At smaller grain sizes the communication and run-time overhead
takes longer than the member function; resulting in a slow-down rather than a speed-up.

Mentat uses an object model that distinguishes between two “types” of objects, contained
and independent objects.3 Contained objects are objects contained in another object’s address



space. Instances of C++ classes, integers, structs, and so on, are contained objects. Independent
objects possess a distinct address space, a system-wide unique name, and a thread of control.
Communication between independent objects is accomplished via member function invocation.
Independent objects are analogous to UNIX processes. Mentat objects are independent objects.

The programmer defines a Mentat class by using the keywordmentat in the class
definition. The programmer may further specify whether the class ispersistent, sequential, or
regular. Instances of Mentat classes are called Mentat objects.

Persistent and sequential objects maintain state information between member function
invocations, while regular objects do not. Thus, regular object member functions are pure
functions. Regular classes may have local variables much as procedures do and may maintain state
information for the duration of a function invocation.

Mentat class interfaces may not have public member variables. The only way to modify or
observe the state of a persistent or sequential Mentat object is via member functions. It is illegal to
directly access member variables. This restriction follows from the address-space-disjoint nature
of Mentat objects.

Example 1. regular mentat class integer_ops {
public:

int add(const int arg1,const int arg2);
int mpy(const int arg1,const int arg2);
int sqrt(const int val);

};

The interface for the regular Mentat classinteger_ops  defines three functions that
operate on integers. Note that they are all pure functions, the output depends only on the input.
Because they are pure function and do not depend on any persistent state the system may schedule
invocations of those functions on any processor in the system.

3. The distinction between independent and contained objects is not unusual and is driven by efficiency con-
siderations.
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Figure 1 The Mentat object model. Mentat objects are address space disjoint and communicate via
member functions and return values, shown here as directed arcs. Both the main program
and Mentat objects may contain local variables.



Example 2. sequential mentat class integer_accumulator {
int running_total;

public:
create(const int initial_value);
void add(const int value);
int current_value();

};

The persistent Mentat classinteger_accumulator  differs from theinteger_ops
class in that it does have state that persists from invocation to invocation. The state of the object is
the member variablerunning_total . Once an instance of the class is created and the initial value
assigned, subsequent calls to the add member function are applied to the same object, incrementing
the value of the running_total. The function current_value returns running_total. We will describe
use of the create() member in more detail later.

Mentat objects are used much as C++ objects. The code fragment below uses the
integer_ops and integer_accumulator classes to sum the squares of n integers.

Example 3. {
integer_accumulator A;
integer_ops B;
A.create(0); // Create an integer_accumulator with

 // an initial value of 0
for (int i=0; i<N; i++)

A.add(B.mpy(i,i));
cout << A.current_value();

}

In this example the loop is unrolled at run-time and up to N instances of the integer_ops
class may execute in parallel. Note that parallel execution of the B.mpy() operation is achieved
simply by using the member function. All of the A.add() operations are executed on the same
object instance which is created and initialized with the A.create(0); statement.

The above examples illustrate the definition and use of Mentat classes. However, if we
compiled and executed the above code fragments in Mentat, the parallel version of the program
would execute far slower than an equivalent sequential program. The reason is that integer
operations are of too fine a granularity for Mentat to exploit usefully. Larger grain operations are
usually required for good performance.

2.2. Return-to-Future rtf()

The return-to-future function (rtf() ) is the Mentat analog to thereturn  of C. Its
purpose is to allow Mentat member functions to return a value to the successor nodes in the macro
data-flow graph in which the member function appears. Mentat member functions use thertf()
as the mechanism for returning values. The returned value is forwarded to all member functions
that are data dependent on the result and to the caller if necessary. In general, copies may be sent
to several recipients.



Example 4.

The implementation of the integer_ops::add() function illustrates the basic case well:
integer_ops::add(const int arg1, const int arg2) {

rtf(arg1+arg2);
return arg1+arg2; // C++ compilers require return

}

While there are many similarities betweenrtf()  and return , rtf()  differs from
return  in three significant ways. First, inC, before a function canreturn  a value, the value
must be available. This isnot the case with anrtf() . Recall that when a Mentat object member
function is invoked, the caller does not block. Instead the results are forwarded wherever they are
needed. Thus, a member function mayrtf()  a “value” that is the result of another Mentat object
member function that has not yet been completed or perhaps even begun execution. Indeed, the
result may be computed by a parallel subgraph obtained by detecting inter-object parallelism.

Second, aC return  signifies the end of the computation in a function while anrtf()
does not. Anrtf()  only indicates that the result is available. Since each Mentat object has its own
thread of control, additional computation may be performed after thertf() , e.g., to update state
information or to communicate with other objects. In the message passing community this is often
called send-ahead. By making the result available as soon as possible, we permit data dependent
computations to proceed concurrently with the local computation that follows thertf() .

Third, a return  returns data to the caller. Depending on the data dependencies of the
program, anrtf()  may or may not return data to the caller. If the caller does not use the result
locally, then the caller does not receive a copy. This saves on communication overhead. The next
two examples illustrate these features.

Example 5.

Consider apersistent Mentat class sblock  used in Gaussian elimination with
partial pivoting. In this problem we are trying to solve for x in Ax=b.. Thesblocks  contain

portions of the total system to be solved. The sblock member function

vector* sblock::reduce(vector*);

Figure 2 Gaussian elimination with partial pivoting illustrating the use ofrtf()

vector*sblock::reduce(vector* pivot) {
reduce current column using pivot
find candidate row
reduce candidate row
rtf(candidate row);
reduce the rest of the sub-matrix
return

}
(a)sblock::reduce()  pseudo-code

rtf() reduce rest

reduce candidate
communication

(b) Overlap of communication and computation withrtf() .



performs row reduction operations on a submatrix and returns a candidate row. Pseudo-code for
the reduce operation is given in Figure 2a. The return value can be quickly computed and returned
via rtf() . The remaining updates to the sblock then can occur in parallel with the communication
of the result (Figure 2b). In general, the best performance is realized when thertf()  is used as
soon as possible

3. Applications Experience

The bottom line for parallel processing systems is performance on real applications. Our
goals include both performance and ease-of-use. Over the past three years we have tried to answer
three questions about Mentat and our approach to object-oriented parallel processing.
• Is MPL easy to use?
• Is the performance acceptable to users?
• What is the performance penalty (if any) with respect to hand-coded implementations?

To answer these questions we set out to implement a set of both real and synthetic
applications. Our application selection criteria was that the application must be representative of a
class of applications, and that the application must be of genuine interest to identifiable users.
Further, we wanted variety in our applications, not just linear algebra applications. In all cases the
implementation processes has been carried out in collaboration with domain scientists (e.g.,
biochemists) who had an interest in the codes. For each application we are interested in the level
of difficulty in implementing the code, and in the resulting performance. For some of the
applications there already existed a hand-coded parallel C or Fortran implementation of the
application. In those cases we compare to the hand-coded version.

The set of Mentat applications is diverse and includes DNA and protein sequence
comparison (biochemistry), automatic test pattern generation (electrical engineering), genetic
algorithms (searching a combinatorial space), image processing (both libraries and for target
recognition), command and control, and parallel databases (computer science) to name a few. Only
a few of Mentat application have been implemented by our research group at the University of
Virginia. Below four of those applications are presented. The four applications are DNA and
protein sequence comparison, a dense linear algebra library, a stencil library, and a 2D
electromagnetic finite element method. For each of the four applications (or libraries that are used
in several applications) we will address two questions. 1) What is the shape of the Mentat solution?
2) How did the implementation perform?

3.1. DNA and Protein Sequence Comparison4

Our first application is DNA and protein sequence comparison. With the advances in DNA
cloning and sequencing technologies, biologists today can determine the sequence of amino acids
that make up a protein more easily than they can determine its three-dimensional structure, and
hence its function. The current technique used for determining the structure of new proteins is to
compare their sequences with those of known proteins. DNA and protein sequence comparison
involves comparing a single query sequence against a library of sequences to determine its rela-

4. Portions of this section first appeared in [19].



tionship to known proteins or DNA. For the computer scientist, the basic problem is simple: DNA
and protein sequences can be represented as strings of characters that must be compared. Biolo-
gists want to know the degree of relationship of two sequences. Two given sequences are com-
pared and, using one of several algorithms, a score is generated reflecting commonality. Three
popular algorithms are Smith-Waterman [33], FASTA [28], and Blast [1]. The latter two algo-
rithms are heuristics; the quality of the score is traded for speed. Smith-Waterman is the bench-
mark algorithm, generating the most reliable scores although at considerable time expense.
FASTA is less accurate but is twenty to fifty times faster than Smith-Waterman.

An important attribute of the comparison algorithms is that all comparisons are indepen-
dent of one another and, if many sequences are to be compared, they can be compared in any
order. This natural data-parallelism is easy to exploit and results in very little overhead.

A common operation is to compare a single sequence against an entire database of
sequences. This is thescanlib problem. Inscanlib, a source sequence is compared against each
target sequence in the sequence library. A sorted list of scores is generated and the sequence
names of the topn, usually 20, sequences and a score histogram are generated for the user.

A second common operation is to compare two sequence libraries, i.e., to compare very
sequence in a source library against every sequence in the target library. For each sequence in the
source library statistics are generated on how the sequence compares to the target library as a
whole. This is known as thecomplib problem.

The Mentat implementation ofscanlib usesregular  Mentat class workers. The class
definition for the Smith-Waterman worker is given in Figure 3.The private member variables have
been omitted for clarity. The single member function,compare() , takes three parameters:

sequence , the source sequence to compare,libstruct , the structure containing information
defining a subrange of the target library, andparamstruct , a parameter structure containing
algorithm-specific initialization information. The member functioncompare()  compares the
source sequence against every sequence in its library subrange and returns a list of result struc-
tures. Each result structure has a score and the library offset of the corresponding sequence.

The important features of the main program are shown in Figure 4. Note that we only had
to declare one worker, and that the code from lines 7-10 looks as though the single worker is being
forced to do its work sequentially. Recall, however, that since the worker is aregular  Mentat
class, each invocation instantiates a separate copy of the worker object, so each copy is actually

Figure 3 . Class definition for scanlib worker.  Note it is a regular class indicating that the compare
function is a pure function, and that the system may instantiate new instances as needed.

1 regular mentat class sw_worker {
2 // private member data and functions
3 public:
4 result_list *compare(sequence, libstruct, paramstruct);
5 // Compares sequence against a subset of the library. Returns
6 // a list of results (sequnce id, score).
7 }



doing the comparisons in parallel.

Performance on the iPSC/2 is given in Table 1. Performance information is given for both
the Mentat implementation and for a hand-coded message passing C implementation. A 3.8-

Mbyte target library containing 9633 sequences was used. LCBO and RNBY3L are different
source sequences. They are 229 and 1490 bytes long respectively. Execution times for both the
Smith-Waterman and much faster FASTA are given. Performance on this application clearly dem-
onstrates that for naturally data-parallel applications with no inter-worker communication and lit-
tle worker-master communication, neither the object-oriented paradigm nor dynamic
management of parallelism seriously affect performance. Indeed, the performance of the Mentat
version is always within 10% of a hand-coded version, and usually within 5%

The complib implementation is more complex, though the main program remains straight
forward. The main program manipulates three objects, the source genome library, the target
genome library, and a recorder object that performs the statistical analysis and saves the results.
See [19] for more detail. The main program for loop is shown in Figure 5 below. The effect is that

a. The Smith-Waterman times are not shown. They provide no additional insight.

Table 1 Scanlib execution times on the iPSC/2 in minutes: seconds.

Workers 1 3 7 15

Sequence/Algorithm M HC M HC M HC M HC

LCBO - FASTA 2:47 2:42 0:59 0:57 0:28 0:26 0:17 0:16

LCBO - SW - - 95:49 95:19 41:12 41:00 19:22 19:14

RNBY3La- FASTA 7:19 6:56 2:30 2:33 1:07 1:04 0:35 0:32

Figure 4 . Code skeleton for the master program routine for scanlib.

1 // master program routine -- initialization details omitted
2 // -- get the number of workers
3 // -- divide the library into a partition for each worker
4
5 sw_worker worker;
6 // invoke the comparison for each partition of the library
7 for (i = 0; i < num_workers; i++) {
8 // compute library parcel boundaries
9 results[i] = worker.compare(the_seq, libparcelinfo, param_rec);
10 }
11 // for each partition’s result, and for each comparison
12 // within the partition, compute statistics
13 for (i = 0; i < num_workers; i++) {
14 for (j = 0; j < results[i]->get_count(); j++) {
15 // get_count() returns the number of scores returned.
16 // for each result, update mean, stdev, and other statistics.
17 }
18 }



a pipe is formed, with sequence extraction from the source, sequence comparison in the target,
and statistics generation are executed in a pipelined fashion. Each high-level sequence compari-
son is transparently expanded into a fan-out, fan-in program graph where the “leaves” are the
workers, the source sequence is transmitted from the root of the tree to the leaves, and the results
are collected and sorted by collators.

Table 2 presents results for five complib implementations on a network of 16 Sun IPC
workstations. The execution times for four hand-coded implementations are compared to the
Mentat time. (The non-Mentat implementations were done by William Pearson of the Department
of Biochemistry at the University of Virginia.) To reduce the effect of the perturbations caused by
other users five runs for each were taken, and thebest times reported. Keep in mind thatcomplib
is not a low communication application. At fifteen workers over fourteen megabytes of data are
moved through the pipeline shown in Figure 5. We used the faster FASTA algorithm, a twenty
sequence source library and a 10,716 sequence target library. The same kernel C code to actually
perform the comparisons was used by all five implementations. The sequential time (without any
parallel constructs) is 583 seconds. The most surprising aspect of the results is that the perfor-
mance of the tools is so similar. With the exception of Express most of the execution times are
within 5% of each other.

for(i=0;i<num_source_seq;i++) {
//for each sequence
s_val = source.get_next();
//Compare against target library
result = target.compare(s_val);
//Do statistics
post_process.do_stats(result,s_val);

}

source.get_next() target.compare()

s_val

pp.display()

source.get_next() pp.do_stats()

target.compare()

Figure 5  Mentat implementation ofcomplib. The
main loop of the program is shown in
(a). Three objects are manipulated, the
source, the target, and the
post_processor. The pipelined program
graph is shown in (b).Target.compare()
has been expanded showing sixteen
workers in (c). The fan-out tree
distributes the source sequence to the
workers. The internal nodes of the
reduction tree are collator objects. The
reduction tree sorts and merges the
results generated by the workers.

(a) (b)

(c)



3.2. Matrix Algebra

Linear algebra is the basis for a wide variety of applications. Because it is so often the
computational kernel of applications and so well understood by users we chose to construct a set
of non-optimized linear algebra libraries to package with Mentat as examples. We begin with a
discussion of an important support class. For more information see [26].

The foundation for many Mentat applications, including the linear algebra library, is a
C++ library that provides classes for two dimensional arrays and vectors. Much of the functional-
ity of these classes can be found in numerous matrix library classes [12,31]. The Mentat imple-
mentation environment (disjoint address spaces) placed the requirement on our class that
parameters passed as arrays must be memory contiguous. The classDD_array provides an inter-
face to provide the user with a class instance that is contiguous in memory without binding the
size of the array involved or its orientation in memory. (DD_array stands for “double dimension
array, we did not want to start a class name with a “2”.) TheDD_array methods provide for the
decomposition of an array into subarrays, the creation of new arrays by overlaying or extracting
from existing arrays, the access of array elements, and so on. Finally,DD_array serves as a base
class from which arrays of any type can be created. Currently, arrays of floating point, double pre-
cision floating point, integer, and character have been developed. In addition, sparse and dense
vectors of integers, floating point, and double precision floating point are derived from the class
DD_array. The classDD_array also provides functions to decompose the array into one of five
forms: by row, by column, cyclically by row, cyclically by column, or by block. For example, if
the array consists of 100 rows, a row-cyclic decomposition into four pieces would allot rows 0, 3,
7,.. to the first subarray, 1,4,8,..to the second subarray, etc. A column-cyclic decomposition is
analogous to a row-cyclic decomposition.

Using theDD_array class as a basis we then developed two Mentat linear algebra classes,
one persistent, and one regular. The interface for the persistent class is shown below in Figure 6.
(Space limitations prevent the presentation of both classes.) The implementations were coded in a
classic master-worker/data parallel manner. Each matrix is internally sub-divided into several sub-
matrices (matrix_sub_blocks) which are themselves Mentat objects. Operations performed on the
entire matrix are then implemented in the member functions by manipulating the sub-matrices.

Performance in the libraries is presented below in Table 3. The same network of 16 Sun
IPC’s was used. In [26] we present more complete results, including Intel Paragon performance.
Due to performance difficulties with NFS the run-time was measured from a pointafter the matri-
ces had been loaded into memory5. The results are for single precision numbers. The matrix mul-

Table 2- Complib performance on Sun IPC workstations. Execution time in seconds.

Workers Express Linda Mentat (2.6) P4 (1.3b) PVM (3.2.6)

3 220 211 202 218 206

7 98 95 91 98 92

11 80 62 63 65 60

15 NA 50 48 49 49



tiply uses a naive algorithm requiringO(n3) operations. The solver uses Gaussian elimination with
partial pivoting which is alsoO(n3).

3.3. Stencil Libraries6

Stencil algorithms are used in a wide range of scientific applications, such as image con-
volution and solving partial differential equations (PDE’s). Stencil algorithms are a class of algo-
rithms that have several features in common: (1) the input data set is an array of arbitrary
dimension and size, (2) there is astencil that defines a local neighborhood around a data point, (3)
some function is applied to the neighborhood of points that are “covered” when the stencil is cen-
tered on a particular point, and (4) this function is applied to all points in the data set to obtain a

5. We found that a large number of simultaneous bulk I/O requests will bring NFS to it’s knees. The packet
loss rate, combined with other factors that we do not understand, often causes the I/O to fail.

6. Portions of this section first appeared in [23].

Table 3 . Sun 4 Network Execution Times for 1024 x 1024 Matrices

Problem
Sequential

Time
4 6 8 10 12 14

Regular Class

Matrix Multiply 1380 363 258 202 163 206 193

Gauss 626 179 131 109 108 118 126

Persistent Class

Matrix Multiply 1380 356 258 228 151 137 137

Gauss 626 172 123 102 99 107 126

persistent mentat class p_matrix {
      int total_rows, total_cols; // Total rows and columns in the array
      int num_pieces; // Number of pieces into which the array is divided
      int decomp_type; // Decomposition method
      p_matrix_sub_block *sub_arrays; // Pointers to the objects holding the decomposed matrix
public:

initialize(DD_floatarray *data, int decomp_type, int pieces);
initialize(string *file_name, int decomp_type, int pieces);
// Creates instances ofp_matrix_sub_block and distributes the array data by  decomp_type.
void scalar_add_mat(float scalar); // Add a scalar to each of the subarrays.
int transpose(); // Perform the transpose of the array.
sp_dvector *vec_mult(sp_dvector *arg_vect); // Performs matrix-vector multiplication.
DD_floatarray *mat_mult(DD_floatarray *data);//  Performs matrix matrix multiplication.
p_matrix  mat_mult(p_matrix); // Performs matrix matrix multiplication.
sp_dvector *solve(sp_dvector *rhs_vector); // Gaussian Elimination using partial pivoting.

   };

Figure 6. Function prototypes for thepersistent mentat class p_matrix .  Only a subset
of the interface is shown.



new data set. Figure 7-a shows a two dimensional 3× 3 stencil that indicates that each output
value will dependonly on the “north,” “east,” “west,” and “south” (called NEWS) neighboring
points of the corresponding point in the input array. The associated function is an example of a
stencil function that uses NEWS neighbors.

We have defined a base stencil class,Stenciler , that is designed to manage those
issues that are common to all stencil algorithms while providing a framework for the user to create
derived classes that can be tailored to specific applications [23]. The base class contains built-in
member functions to perform common tasks, such as managing data communication between
pieces. The base class also contains well-commented stubs for member functions that the user
must define, such as the stencil function. This approach minimizes the effort needed to create new
stencil applications through reuse of common code while supporting flexibility in creating parallel
stencil applications. The user creates a new class derived fromStenciler . The derived class
inherits all of the member functions of the base class, so instances of this new class have all of the
built-in common functions provided with theStenciler  class. The user then supplies the appli-
cation-specific code by overloading certain member functions.

An instance of aStenciler  or derived class is designed to handle one piece of the total
array. EachStenciler  instance can create additional workers to split the work-load into
smaller pieces. These pieces, in turn, may be further divided, creating a general tree structure of
pieces as shown in Figure 8. Each new level of the tree has a “contained-in” relationship to the
previous higher level. The pieces at leaves of this tree structure are the workers who perform the
stencil function. The interior instances are managers for the workers below them; the managers
distribute and synchronize the work of their sub-piece and collect the results. This hierarchical
tree structure of processes is a powerful and flexible tool for decomposing a stencil problem, espe-
cially when running on different hardware platforms.

To illustrate the use of the stencil framework we describe our experience with two sample
implementations: an image convolver and a PDE solver using Jacobi iteration.

Image convolution is a common application in digital image processing. In two dimen-

Figure 7. Typical 2 dimensional stencils.F - final matrix, I - input matrix, M - convolution mask.
(a) 2D 3×3 NEWS stencil. (b) 2D 3×3 eight-connected stencil.
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sional image convolution, a small 2D stencil, also called afilter or mask, defines a region sur-
rounding each picture element (pixel) whose values will be used in calculating the corresponding
point in the convolved image. Each element of the filter is multiplied by the corresponding neigh-
bor of the current pixel, and the results are summed and normalized. Figure 7-b shows a stencil
function for a 3× 3 mask.

Another common class of stencil algorithms are iterative methods. Jacobi iteration is a
method for solving certain systems of equations of the form , where A is a matrix of coeffi-
cients,  is a vector of variables, and  is a vector of constants. The general procedure for using
Jacobi iteration is to first guess a solution for all variables, and then to iteratively refine the solu-
tion until the difference between successive answers is below some pre-determined threshold.

The application of Jacobi iteration used here is the classic heated plate problem. The
heated plate problem consists of a plate or sheet of material that has constant temperatures applied
around the boundaries, and the goal is to determine the steady-state temperatures in the interior of
the plate (Figure 8). The temperature in the interior region is approximated by dividing the plate
into a regular 2D grid pattern and solving for each of the grid points. The values at each point are
approximated by the average of the values in the NEWS neighboring points. This transforms the
problem into a system of linear equations which can be solved using Jacobi iteration. The form of
the stencil for Jacobi iteration is shown in Figure 7-a.

To test performance we created two versions of each class, a sequential version written
strictly in C++, and a parallel version written in C++/MPL. We executed the sequential versions
on a Sun IPC and recorded the best of the wall-clock execution times. Similarly, we ran the paral-
lel versions on a network of 16 Sun IPCs connected via ethernet. The parallel versions were exe-
cuted decomposing the problem into from two to fourteen row pieces. Each decomposition was
run several times and the best time for each decomposition was recorded.

For theConvolver  tests, both the sequential and parallel versions were executed using
identical problems: a 2000× 2000 8-bit grey scale image convolved with three successive 9× 9
filters. ThePDE_Solver  problem used a 1024× 1024 grid of floating point numbers to estimate
the interior temperatures of the heated plate problem. Table 4 shows the raw best execution times.

Table 4 Stenciler Performance Results

Number of Pieces
Convolver PDE_Solver

Best Execution
Time (min:secs) Speedup Best Execution

Time (min:secs) Speedup

1 49:33 N/A 43:39 N/A
2 24:33 2.0 23:01 1.9
4 12:37 4.0 11:37 3.8
6 8:47 5.6 7:53 5.5
8 7:07 7.0 7:08 6.1
10 5:53 8.4 6:47 6.4
12 5:08 9.7 6:23 6.8
14 4:57 10.0 6:10 7.1

Ax b=

x b



3.4. 2D Electromagnetic Finite Elements7

The finite element method (FEM) has been in use for many years in structural mechanics
and has become popular in recent years as a technique for use on electromagnetic problems. FEM
has the advantage of being able to deal with the specific geometry of objects by using unstruc-
tured gridding which follows an object’s shape. This is of particular importance in electromag-
netic (EM) scattering problems, where the correct representation of a scatterer’s surface is
necessary for accurate computation. Finite elements are used in 2 and 3 dimensional EM scatter-
ing problems to model objects of complex composition. A “hand-coded” version of the code has
been implemented on several MIMD computers by my collaborator using explicit message pass-
ing. A complete description of this code, along with parallel implementation description and per-
formance, is found in [13]. A description of the Mentat implementation can be found in [36].

To solve the problem a 2D integral equation is transformed into a set of linear equations by
decomposing the problem domain into a set of finite elements. The problem domain is meshed
with nodal points at which the solution is to be found, matching the geometry of the objects.
These nodes are then tiled with a set of finite elements. In 2D, the elements might be triangles or
quadrilaterals. A set of basis functions are defined at each node in the mesh, which have nonzero
value only within the elements of which it is a part. These basis functions are generally some
polynomial function which is 1 at the node defining it, 0 at all other nodes in the element, and 0
along the edges of the element opposite the defining node.

The EM finite element application consists of two primary computation phases, matrix
assembly and matrix solve. In matrix assembly, the finite elements compute contributions (i.e.
matrix values) that are assembled (i.e. added) into the stiffness matrixK. The stiffness matrix is
banded, symmetric, and very sparse. During assembly, the force vectorF is also computed by the
elements. This vector is the right-hand-side vector during the matrix solve computation.

In matrix solve the system of equations represented by the stiffness matrix with the force
vector as the right-hand-side is solved by a conjugate-gradient algorithm known as Bi-conjugate
gradient [21]. The algorithm uses three basic operations: matrix-vector multiplication, vector dot
product, and vector saxpy. The solve phase poses challenges to achieving good performance on
parallel machines due to the sparse nature of the matrix-vector operations.

The Mentat EM code was developed at JPL and run on a 64-node Intel iPSC/860 at
Caltech. The data collected are from a data set that consisted of 2304 9pt quadrilateral elements
(9313 nodes). This is considered a small problem. We computed speedups with respect to the
sequential C++ EM code run on a single i860 node. The results are divided into the two dominate
phases: 1) assembly is the time taken to complete the matrix assembly operations, and 2) solve is
the time taken for the matrix solve operation. The sequential C++ is a factor of two slower for the
solve phase, and a factor of three slower for the assembly phase. This is expected as the C++ com-
piler technology is much less mature than the Fortran technology; in particular the C++ compiler
does not exploit the vector unit.

We compared the results with a hand-coded optimized parallel Fortran EM implementa-
tion that has been in development for some time. We expected the performance to be worse than
the hand-coded version, but how much? The results indicate that this is indeed the case, though

7. Portions of this section first appeared in [36].



neither implementation achieves good speedup on the solve phase. They also indicate that the
optimized version is scaling in a manner similar to the hand-coded Fortran. The assembly phase
scales identically to the hand-coded while the solve phase scales almost as well. The slight dis-
crepancy is due to Mentat overheads often seen for small problems. We expect the performance of
the Mentat version to more closely match the hand-coded for larger problems.

4. Related Work

There are many other projects with objectives similar to Mentat’s. One important dimen-
sion along which solutions to the parallel software problem can be placed is the level of program-
mer awareness and control of the parallel environment. Solutions can be placed along a spectrum
that ranges from fully automatic solutions to completely explicit solutions. In fully automatic the
programmer is completely freed from the responsibility of managing any aspect of the parallel
environment. A parallelizing compiler, often acting in concert with a sophisticated run-time sys-
tem, finds andsafely exploits opportunities for parallelism in the application. The user is not
responsible for threads, synchronization, or other details. At the other extreme are the explicit,
manual systems where the programer writes programs in the assembly language of parallelism.
The programmer must decompose the problem, distribute data structures, manage scheduling and
communication, andsafely manage synchronization between tasks.

An advantage of automatic techniques are that programs are deterministic and semanti-
cally equivalent to the sequential program. Compilers are very good at finding large amounts of
parallelism in programs, often down to the statement level. Further, automatic techniques can be
applied to “dusty deck” programs, usually Fortran, to leverage the huge existing software base. A
disadvantage of automatic techniques is that often the granularity of the detected parallelism is
too small to efficiently exploit on contemporary distributed memory machines. To the compiler,
the program is a large directed graph. It must attempt to partition and schedule the graph onto the
parallel computer. Finally, automatic techniques are often applied to dusty decks and are often
defeated by spurious dependencies in the program that require programmer intervention. Despite
these difficulties there have been significant advances in automatic solutions [27, 29].

Explicit approaches require the programmer to manage all of the details of parallel pro-
gramming. This is an advantage in that the programmer has total control of the program and can
tune the program to the particular machine. Another advantage is that explicit techniques are an
easy add-on to existing programming languages. They are often implemented as libraries, e.g.,
send and receive functions in a library, or shared memory and semaphores in a library. The down-
side of explicit approaches is that the programmer has total control of the program; including the
opportunity to make synchronization errors leading to non-deterministic deadlock or non-deter-
ministic program behavior, and the opportunity to do a very poor job of decomposing and sched-

TABLE 5 Mentat and hand-coded Fortran speedup on the iPSC/860

Processors/Phase 2 4 8 16

Assembly phase: Mentat 1.9 3.8 7.0 11

Assembly phase: hand-coded 2.0 2.9 7.2 11

Solve phase: Mentat 1.8 2.8 3.9 4.9

Solve phase: hand-coded 1.9 3.0 4.8 6.4



uling the problem. Examples of explicit systems include [2,6,35].
There are systems that operate in the middle of the spectrum. By doing so they attempt to

capture the benefits of both explicit and implicit approaches. Mentat, Linda [8], Fortran D [14],
HPF Fortran [25], and Dataparallel C [30] are just a few of these systems.

Another dimension of the solution space is the programming language style, e.g., object-
oriented versus functional. There are a variety of object-oriented parallel processing systems.
Examples include Charm++ [22],CC++ [9], pC++ [4], ESP [32], and Presto [3]. Mentat differs
from systems such as [2,3] (shared memory object-based systems) in its ability to easily execute
on both shared memory MIMD and distributed memory MIMD architectures, as well as hybrids.
pC++ [4] and Paragon [11] on the other hand are data-parallel derivatives of C++. Mentat accom-
modates both functional and data-parallelism, often within the same program. Mentat differs from
other distributed object based systems and languages [10] in our objectives, we strive for perfor-
mance via parallelism rather than distributed execution.

Applications portability across parallel architectures is an objective of many projects.
Examples include PVM [35], Linda [8], the Argonne P4 macros [6], and Fortran D [14]. Our
effort shares with these and other projects the basic idea of providing a portable virtual machine to
the programmer. The primary difference is the level of the abstraction. Low-level abstractions
such as in [6,8,35] require the programmer to operate at the assembly language level of parallel-
ism. This makes writing parallel programs more difficult. Others [14,24,25,30] share our philoso-
phy of providing a higher level interface in order to simplify applications development. What
differentiates our work from other high-level portable systems is that we support both functional
and data-parallelism as well as support the object-oriented paradigm.

5. Retrospective

In the four years that the MPL compiler has been operational we have developed several
applications and learned much about the Mentat approach. The results are not all good. Like many
other parallel processing systems Mentat performs well on some applications and not so well on
others. The primary factors that influence performance are application granularity and application
load balance. Mentat performs poorly when application granularity is small or when the applica-
tion has load imbalances that Mentat cannot correct. This is not unexpected. There is not much
that can be done about the granularity restrictions, overheads can be reduced to lower the mini-
mum effective grain size. However there is a limit on how low we can drive the overhead. Simi-
larly, the underlying communication system of MPP’s favors large grain computations. That is
unlikely to change. With respect to load imbalance, there is room for significant improvement in
the areas of dynamic scheduling of objects, and dynamic re-distribution of data parallel objects.
We are working on both.

On the plus side we have learned that the use of the object-oriented paradigm combined
with compiler-based parallelism detection and management can be performance competitive with
hand-coded implementations using send and receive. This is significant because it means that the
future of parallel processing is not limited to send and receive, and that the benefits of the object-
oriented paradigm can be realized in high-performance parallel environments.



6. The Future - Legion

Technology continues its inexorable march forward. When the Mentat project was first
conceived in the mid 1980’s high-end wide-area network bandwidth was 56Kb/sec. To realize the
bandwidth necessary for parallel computation required either local area networks, or more
realistically, tightly coupled MIMD architectures. Today 155Mb/sec networks are available, and
networks up to 2.4Gb/sec are expected to be widely available in just a few years. The availability
of so much wide-area bandwidth presents the opportunity to apply parallel processing technology
to the construction of large-scale, wide-area, metasystems.

The Legion project at the University of Virginia is an attempt to provide system services
that provide the illusion of a single virtual machine to users, a virtual machine that providesboth
improved response time via parallel execution and greater throughput 15. Legion is targeted toward
large wide-area assemblies of workstations, supercomputers, and parallel supercomputers. Legion
tackles problems not solved by existing workstation based parallel processing tools such as fault-
tolerance, wide area network support, heterogeneity, the lack of a single file name space, protection
and security, as well as providing efficient scheduling and resource management. At the same time
Legion provides the parallel processing, object-interoperability, task scheduling, security, and file
system facilities not usually found in job-based load balancing systems.

Legion builds extensively on our experience with Mentat. We are leveraging the compiler
and run-time system technology developed, the applications base, and our experience with solving
real problems. Early results using Legion both in a campus-wide environment and on the I-Way
testbed at Supercomputing ‘95 in San Diego have encouraged us to forge ahead with system
development.
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