
1

A Framework for Partitioning Parallel
Computations in Heterogeneous Environments

Jon B. Weissman
Andrew S. Grimshaw

Department of Computer Science
University of Virginia

Abstract

In this paper we present a framework for partitioning data parallel computations across a heterogeneous meta-

system at runtime. The framework is guided by program and resource information which are made available to the

system. Three difficult problems are handled by the framework: processor selection, task placement, and heteroge-

neous data domain decomposition. Solving each of these problems contributes to reduced elapsed time. In particular,

processor selection determines the best grain size at which to run the computation, task placement reduces communi-

cation cost, and data domain decomposition achieves processor load balance. We present results that indicate excel-

lent performance is achievable using the framework. This paper extends our earlier work in partitioning data

parallel computations across a single-level network of heterogeneous workstations1.

1.0 Introduction

A great deal of recent interest has been sparked within academic, industry, and government circles in

the emerging technology of metasystem-based high-performance computing. A metasystem is a shared

ensemble of workstations, vector, and parallel machines connected by local- and wide-area networks, see

Figure 1. The promise of on-line gigabit networks coupled with the tremendous computing power of the

metasystem makes it very attractive for parallel computations.

1. This work has been partially funded by grants NSF ASC-9201822, JPL-959303, and NASA NGT-50970.

M

Shared Memory

Workstations

Vector Machine

Mesh-based multicomputer

Network backbone

Figure 1. A typical metasystem

Hypercube-based multicomputer

2

The potentially large array of heterogeneous resources in the metasystem offers an opportunity for

delivering high performance on a range of parallel computations. Choosing the best set of available

resources is a difficult problem and is the subject of this paper. Consider the set of machines in Table 1 and

observe that they have different computation and communication capacities. Loosely-coupled parallel

computations with infrequent communication would likely benefit by applying the fastest set of computa-

tional resources (perhaps the DEC-Alpha cluster), and may benefit from distribution across many

machines. On the other hand, more tightly-coupled parallel computations are best suited to machines that

have a higher communication capacity (perhaps an Intel Paragon), but may also benefit from distribution

across many machines if the computation granularity is sufficient. We address the latter problem in this

paper.

We present a framework that automates partitioning and placement of data parallel computations

across metasystems such as in Figure 1. Partitioning is performed at runtime when the state of the metasys-

tem resources are known. Three difficult problems are handled by the framework: processor selection, task

placement, and heterogeneous data domain decomposition. Solving each of these problems contributes to

reduced completion time. Processor selection chooses the best number and type of processors to apply to

the computation. This is important because if too many processors are chosen the computation granularity

will be too small, and if too few processors are selected the computation granularity will be too large. In

either case, the elapsed time will be increased. Task placement is performed to limit communication costs,

while data domain decomposition is done to achieve processor load balance.

To solve each of these problems, we exploit information about the computation and communication

structure of the data parallel program and the computation and communication capacities of the metasys-

tem resources. The former is provided by a set of callback functions that are described.

The partitioning framework is based on three runtime phases: processor availability, partitioning, and

instantiation. Processor availability is a runtime monitoring process that determines the available set of

processors based on the current usage of metasystem resources. Availability depends on the machine class.

Machine Latency Bandwidth Processor speed
iPSC/2 moderate moderate slow

Sparc ethernet cluster high low moderate

DEC-Alpha cluster on Gigaswitch high high very fast

Paragon low very high fast

Cray T3D low very high very fast

Sequent Symmetry low low slow

Table 1. A spectrum of heterogeneity

3

For example, workstation availability is based on system load, while multicomputer availability is based

on partition or subcube availability. Partitioning determines the number and type of processors to use from

the available set, the placement of tasks across processors, and a decomposition of the data domain. Instan-

tiation is an application-dependent phase that starts the data parallel computation across processors

selected by partitioning using the determined task placement.

We begin by describing our metasystem model and the communication and processor resource infor-

mation that supports the processor availability and partitioning phases. We discuss placement in the con-

text of the metasystem communication model. Next we describe the data parallel computation model and

the program information that is used to guide partitioning and placement. We then describe the partitioning

method and an implementation to show how the resource and program information is used. Experimental

and simulation results indicate that partitioning can be effectively automated for a large and useful class of

data parallel computations. We also show that the partitioning can be done efficiently and excellent perfor-

mance is achievable for these computations.

2.0 Framework

2.1 Metasystem Model
The metasystem illustrated in Figure 2 contains heterogeneous machines organized in a hierarchy.

The basis of this organization is the processor cluster denoted by the large circles. A processor cluster con-

tains a homogeneous family of processors that may contain workstations, vector, or parallel machines. For

example, processor clusters range from tightly-coupled multiprocessors such as a Sequent in which proces-

sors communicate via shared-memory to distributed-memory multicomputers such as a Paragon or

loosely-coupled workstations such as a Sun 4 cluster in which processors communicate via messages.

Communication between processors in different processor clusters is accomplished by message-pass-

ing. Taken as a whole, the metasystem is a multi-level distributed-memory MIMD machine. We will use

the following notation throughout this section:

 Ni = the ith network cluster
 Ci = the ith processor cluster
 τ = application communication topology
 b = message size in bytes
 c1 .. c4 = communication cost coefficients
 f () = processor-dependent communication function
 r1, r2 = router cost constants
 e1 = coercion cost constant
 k = number of messages that cross through the router

4

A network cluster contains one or more processor clusters and is denoted by the boxes labelled N1, N2

and N3 in Figure 2. The key property of a network cluster is that it has private communication bandwidth

with respect to other network clusters, and shared bandwidth with respect to the processor clusters it con-

tains. For example, the total available bandwidth in the metasystem of Figure 2 is the sum of the bandwidth

in N1, N2 and N3, but the available bandwidth in N1 is shared between the Sun 4 and SGI clusters. Network

clusters are connected by one or more routers. For wider-area metasystems, we define network clusters

hierarchically as shown in Figure 3. Here N4 is a network cluster that contains N1, N2 and N3.

The metasystem organizations in Figure 2-3 are locality-based in which processors are grouped by

physical connectivity. This has important implications for partitioning parallel computations in which min-

imizing communication overhead is key. For example, communicating processors within a processor clus-

ter pay no routing penalty, while processors in different processor clusters pay a routing penalty. If the

processors are within the same network cluster than a single hop routing penalty is incurred. We will see

later in this section that task placement exploits this locality information.

In this paper, we focus on local-area metasystems such as in Figure 2 and restrict ourselves to multi-

computers and workstations. Current network technology limits the benefit that tightly-coupled data paral-

lel computations will receive by wider-area distribution due to high and often unpredictable

communication costs. However, this is likely to change when the gigabit networks become more wide-

spread. We also make the simplifying assumption of one processor cluster per network cluster. This

assumption allows us to present a simpler communication model and partitioning method. We will refer

only to processor clusters in the remainder of this paper.

Figure 2. Cluster-based metasystem organization

R

SGI Paragon Sun4

SequentN1

N2

N3

N4

N1

N2
N3

R

N7

Figure 3. Wider-area metasystem organization

R

N5 N6

R

5

Processor clusters maintain important resource information that will be exploited by partitioning

and placement (the * is not implemented and the information in bold will be used in this paper):

•Interconnection topology
•Processors (total, avail)
•Aggregate power (mflops, mips)
•Communication functions
•B/W (peak, effective*, avail*)
•Latency (idle, effective*)
•Manager

This information is stored by a processor we call the manager and is denoted by the shaded circle in Fig-

ure 2. The topology refers to bus (ethernet), ring (FDDI), mesh (multicomputer), and hypercube (multi-

computer) and may be different for different processor clusters. The peak bandwidth is the maximum

communication bandwidth achievable for this cluster based on the processor type (assuming idle

machines and network). Because this environment is dynamic and shared, both bandwidth and process-

ing resources may be committed to other computations. The effective bandwidth may be less if proces-

sors in the cluster are loaded or unavailable, and the available bandwidth is the amount available to us

based on the current traffic profile. The relationship between these quantities is: peak < effective < avail-

able. At present, we do not have a network monitor so information about the available bandwidth is not

collected.

The available processors in a cluster may be less than the total number due to sharing. For example,

when a workstation gets highly loaded or multicomputer partition or subcube gets allocated, we mark

these processors as unavailable. The managers monitor the system state to determine availability within

a cluster. This is known as processor availability and is the first phase of partitioning. For workstations,

a simple load threshold policy is used to determine availability. We treat all processors below this thresh-

old as available and equal in terms of computation and communication capacity. A more general strategy

that is being investigated is to allow all processors to be available, but with adjustments to both commu-

nication capacity (i.e., effective bandwidth) and computation power (i.e., aggregate power) based on pro-

cessor load. Operating system facilities are provided in Unix (uptime, kmem) and NX (pspart, cubeinfo)

to determine processor availability. We do not discuss this process in any detail in this paper. The reader

may assume that we can determine the available processor pool needed during partitioning. Aggregate

power is the cumulative processing power based on the peak instruction rate for the processor type and

the number of available processors.

6

2.2 Communication

The communication functions determine the cost of communication within the cluster and are the cor-

nerstone of partitioning and placement. Choosing the appropriate number and type of processors depends

on the communication cost that results from this selection. For example, choosing too many processors

results in a small computation granularity and increased elapsed time due to high communication costs.

Partitioning uses a set of functions to estimate communication costs for candidate processor selections.

In metasystems consisting of workstations and Intel multicomputers, communication is enabled by a

reliable heterogeneous message-passing system (MMPS) [5]. MMPS uses UDP datagrams for communi-

cation among workstations and between processors in different clusters and NX for communication among

processors in Intel multicomputer clusters. Partitioning requires that an accurate estimate of communica-

tion costs in the metasystem be known.

Consider the simple case where all communication occurs within a cluster Ci. The communication

cost function for Ci depends on the application communication topology and the interconnection topology

of Ci. The particular cost experienced by an application depends on two application-dependent parameters

provided to this function: (1) the size of messages exchanged, and (2) the number of communicating pro-

cessors. In the model we present in the next section, these parameters will be known at runtime. We are

exploring three communication topologies often found in data parallel computations: 1-D, ring, and tree.

The 1-D is common in scientific computing problems based on grids or matrices and is class of near-

est neighbor topologies. In the 1-D topology processors simultaneously send to their north and south

neighbors and then receive from their north and south neighbors. The ring topology is common to systolic

algorithms and pipeline computations. In the ring topology communication is much more synchronous. A

processor receives from its left neighbor and then sends to its right neighbor. The tree topology is used for

global operations such as reductions. In the fan-in, fan-out tree topology communication occurs in two

phases. In fan-in a parent processor receives from all of its children before sending to its parent, while chil-

dren simultaneously send to their parent. Once the root receives from its children the process is repeated in

reverse during fan-out.

These communication topologies are synchronous in that all processors participate in the communica-

tion collectively. The synchronous nature of the communication means that the communication cost expe-

rienced by all processors is roughly the same and is determined by the processor experiencing the greatest

cost. This observation has been verified by empirical data.

A set of accurate communication cost functions can be constructed for each cluster by benchmarking

a set of topology-specific communication programs. These cost functions determine the average communi-

cation cost, measured as elapsed time, incurred by a processor during a single communication cycle. A

7

cycle corresponds to a single iteration of the computation. For example in a single cycle of a ring commu-

nication, a processor receives one message from its left neighbor and sends one message to its right neigh-

bor. For each cluster Ci and communication topology τ, we have a communication cost function of the

form: Tcomm [Ci, τ] (b, p).

The cost function is parameterized by p, the number of communicating processors within the cluster,

and b, the number of bytes per message. For example suppose C1 refers to the SGI cluster in Figure 2. The

cost function Tcomm [C1, 1-D] (b, p) refers to the average cost of sending and receiving a b byte message in

a 1-D communication topology of p processors within the SGI cluster computed as elapsed time. The cost

functions have a latency term that depends on p and a bandwidth term that depends on both p and b (c1 and

c2 are latency constants and c3 and c4 are bandwidth constants):

Tcomm [Ci, τ] (b, p) = c1+c2 f(p)+ b(c3+c4 f(p)) (EQ 1)

The function f depends on the cluster interconnect and the communication topology. For example, on eth-

ernet we often see f linear in p for all communication topologies due to contention for the single ethernet

channel. On the other hand, richer communication topologies such as meshes and hypercubes have greater

communication bandwidth that scales more easily with the number of processors. For example, we have

observed that for tree communication on a mesh, f is log in p. Each communication cost function is bench-

marked using different p and b values to derive the appropriate constants. A set of communicating tasks are

mapped over the processors to perform the benchmarking. The placement of tasks depends on the commu-

nication and interconnection topologies and is discussed later in this section.

If we decide to use processors within a particular Ci only, then the cost function in (EQ 1) determines

the communication cost. If processors in several clusters are used, then communication will cross cluster

boundaries and two additional costs come into play:

Trouter [Ci, Cj] (b) = r1+r2 b (EQ 2)

Tcoerce [Ci, Cj] (b) = e1b

The router cost includes a latency penalty r1 and a per byte penalty r2 that captures any delay or

buffering required in routing a message from a processor in Ci to a processor in Cj. Since proces-

sors in different clusters may support different data formats, coercion may be needed. Coercion is

paid as a per byte processor cost e1 (e.g., endian conversion) by the sending or receiving proces-

sor. These costs are determined by benchmarking. Suppose that processors in Ci and Cj are com-

municating and no other clusters are used. The communication cost for processors in Ci becomes

the sum of the previous cost equation in (EQ 1) plus several new terms (Cj may be written simi-

larly):

8

Tcomm [Ci, τ] = Tcomm [Ci, τ] + k (Trouter [Ci, Cj] + Tcoerce [Ci, Cj])

where k is the number of messages that cross between Ci and Cj per cycle. The router also

increases contention for communication bandwidth and this is discussed in [17]. The total com-

munication cost experienced by all processors, which we denote by Tcomm [τ], depends on the

topology τ:

Tcomm [1-D] = maxi {Tcomm [Ci, 1-D]} (EQ 3)

Tcomm [ring] = sumi {Tcomm [Ci, ring]}

Tcomm [tree] = Tcomm [Croot, tree] + maxi∈��leaves {Tcomm [Ci,

tree]}

For the 1-D topology, all processors communicate simultaneously and the total communication cost is lim-

ited by the slowest cluster (i.e., the cluster with the largest communication cost). For the synchronous ring

topology, the communication cost is additive. The tree topology is more complicated. It has both concur-

rent communication (e.g., the leaves communicate simultaneously), and synchronous communication (e.g.,

communication is ring-like along the critical path). The cost is defined recursively.

Empirical evidence suggests that these cost functions are accurate. The benefit of this approach is that

very accurate topology-specific communication costs can be estimated and these costs are key to making

effective partitioning decisions. We are currently studying the impact of load on communication cost and

how the communication cost functions may be adjusted at runtime to reflect reduced bandwidth. Once the

cost functions are constructed they can be applied to other data parallel computations that contains these

topologies.

Placement

The communication cost functions in (EQ 1-3) are benchmarked using a set of task placement strate-

gies. Task placement assigns tasks to processors in a communication efficient manner. Reducing commu-

nication costs is achieved by (1) maintaining communication locality (i.e., avoiding router crossings and

potential coercion) and (2) effectively exploiting communication bandwidth within clusters. The former is

achieved by inter-cluster placement and the objective is to minimize communication costs between clus-

ters. The latter is achieved by intra-cluster placement and the objective is to minimize communication

costs within clusters. Intra-cluster placement is also known as mapping or embedding and has been widely

studied [10][11]. Algorithms for both forms of placement are topology-specific. Inter-cluster placement

depends on the communication topology. In Figure 4, we present several inter-cluster placement strategies

for the 1-D, ring, and tree topologies across several clusters (the black boxes are routers). Notice that the

number of router crossings or communication hops are minimized.

9

Intra-cluster placement is dependent on the communication topology (as is inter-cluster placement)

and on the interconnection topology. Intra-cluster placement maps tasks to specific processors within a

cluster. Two factors that contribute to intra-cluster communication costs are dilation (or hops) and conten-

tion. Intra-cluster placement should keep the average dilation small and limit contention. For example, a

grey-scale mapping of a 1-D topology onto a hypercube achieves minimal dilation and contention and has

reduced communication overhead. On the other hand, a random placement suffices on a bus interconnect

for any communication topology. High dilation and contention will tend to limit the exploitable communi-

cation bandwidth. There is a rich literature on the mapping problem and many of the algorithms are well

known. Traditionally these algorithms have been applied within a static compile-time scheduling frame-

work. Our approach will apply these algorithms in a novel way: within in a runtime partitioning frame-

work. The algorithms for inter- and intra-cluster placement are used to benchmark the communication

functions and are canned for use at runtime during partitioning.

2.3 Data Parallel Computations

A common approach for implementing data parallel computations in MIMD environments is SPMD

[9]. In the SPMD model, the computation is performed by a set of identical tasks, placed one per processor,

each assigned a different portion of the data domain. We have adopted a dynamic SPMD model in which

tasks are instantiated at runtime based on the processor selection. We assume that the task implementation

has been provided either by the user or as a result of a compilation process. A task executable for each

architecture type is assumed to exist. The data domain is decomposed into a number of primitive data units

or PDUs, where the PDU is the smallest unit of data decomposition. The PDU is problem and application

specific. For example, the PDU might be a row, column, or block of a matrix in a matrix-based problem, or

a collection of particles in a particle simulation. The PDU is similar to the virtual processor [9][12] and

may arise from unstructured data domains. The partitioning method does not depend on the nature of the

PDU but rather manipulates PDUs in the abstract.

Two views of the data parallel computation are provided to the partitioning framework: task view and

phase view. In the task view, the computation is represented as a set of communicating tasks. The task

view provides important topology information that is needed by placement. In the phase view, the compu-

Figure 4. Inter-cluster placement

(a) 1-D and ring (b) tree

C1 C2

C1

C2 C3

10

tation is represented as a sequence of alternating computation and communication phases [11]. These

phases are more tightly-coupled than the phases discussed in [13] which require data redistribution. A

communication phase contains a synchronous communication executed by all processors as discussed in

Section 2.2. A computation phase contains only computation. Communication and computation phases

may be overlapped. Most data parallel computations are iterative with the computation and communication

phases repeating after some number of phases. This is known as a cycle.

The phase view provides important information that is needed by partitioning. This information is

provided by callbacks functions. The callbacks are a set of runtime functions that provide critical informa-

tion about the communication and computation structure of the application that is used by the partitioning

method. We discuss callback specification later in this section and present an implementation of callbacks

in Section 2.5.1.

Computation phase callbacks

Each computation phase must have the following callbacks defined:

• numPDUs
• comp_complexity
• arch_cost

The number of PDUs manipulated during a computation phase, numPDUs, depends on problem parame-

ters (e.g., problem size). The amount of computation performed on a PDU in a single cycle is known as the

computation complexity, comp_complexity. It has two components: the number of instructions executed

per PDU, and the number of instructions executed that are independent of the number of PDUs. The archi-

tecture-specific execution costs associated with comp_complexity are captured by arch_cost, provided in

units of usec/instruction. The arch_cost contains an entry for each processor type in the target metasystem.

To obtain the arch_cost, the sequential code must be benchmarked on each processor type.

Communication phase callbacks

Each communication phase must have the following callbacks defined:

• topology
• comm_complexity
• overlap

The topology refers to the communication topologies discussed in Section 2.2. The amount of communica-

tion between tasks is known as the communication complexity, comm_complexity. It is the number of

bytes transmitted by a task in a single communication during a single cycle of the communication phase.

Similar to comp_complexity, it has two components: the number of bytes transmitted per PDU and the

number of bytes transmitted that are independent of the number of PDUs. It is used to determine the

parameter b in the communication cost equations. If a communication phase is overlapped with a computa-

11

tion phase, then the name of the computation phase is provided by the overlap callback. Among the com-

putation and communication phases, two phases are distinguished. The dominant computation phase has

the largest computation complexity, while the dominant communication phase has the largest communica-

tion complexity2.

A simple example that illustrates the callbacks for a regular NxN five-point stencil computation is

given in Figure 5 (the arch_cost is omitted). These are functions that return the values indicated. For

comp_complexity we show only the PDU-dependent cost and for comm_complexity we show the non-

PDU-dependent message size. This computation has been implemented using a block-row decomposition

of the grid. In this application, the PDU is a single row and the processors are arranged in a 1-D communi-

cation topology. The stencil computation is iterative and consists of two dominant phases: a 1-D communi-

cation to exchange north and south borders, and a simple computation phase that computes each grid point

to be the average of its neighbors.

Notice that the callback functions may depend on problem parameters (e.g., N) that are unknown until

runtime. The callbacks associated with the dominant phases are used by the partitioning method. In partic-

ular, the callbacks associated with the computation and communication complexity allow an estimate of

the computation granularity to be computed at runtime. This estimate is used to determine the number of

processors to use. The topology is used to select the appropriate communication function. The computation

complexity is also used to determine a decomposition of the data domain, i.e., the number of PDUs to be

assigned to each task. In a heterogeneous metasystem environment, processors may be assigned different

numbers of PDUs for load balance. This information is contained in a structure known as the

partition_map that is defined as follows:

Ai = number of PDUs assigned to processor pi
∑Ai = numPDUs

The partition_map has an entry for each processor and the association of its entries to processors is topol-

ogy-dependent, see Figure 6. The topology-dependence reflects the data locality relationships in the prob-

2. The dominant phases may be problem or runtime dependent, and this is discussed in Section 2.5.1.

topology ⇒ 1-D
comm_complexity ⇒ 4N (bytes)
numPDUs ⇒ N
comp_complexity ⇒ 5N (fp ops)

Data domain (NxN)

(a) Stencil computation (b) Callbacks for stencil

Figure 5. Example: 1-D stencil computation

processors

12

lem. This information is needed when the data domain is decomposed to processors. For example in the 1-

D stencil problem of Figure 5, a 20x20 grid might be decomposed across four processors as shown Figure

6a (processor 1 gets the first 2 PDUs or rows, processor 2 gets the next 5 PDUs, and so on). The

partition_map is a logical decomposition of the data domain and is computed at runtime by the partitioning

method. The application is responsible for using it in a manner appropriate to the problem. In Section 2.5,

we sketch an implementation in which the grid is physically decomposed using the partition_map and the

pieces are passed to the appropriate tasks.

Callback Specification

The callback mechanism is very powerful and can be applied to data parallel computations less regu-

lar than the five-point stencil. Since the callbacks may be arbitrary and complex functions, they can handle

data-dependent computations by pre-processing the data domain. For example, the computation complex-

ity for a sparse matrix problem depends on the non-zero structure of the matrix, and this is problem-depen-

dent. But a simple callback can be written to capture this dependence. We are currently doing this with a

finite-element code that we have written previously [15].

For irregular or control-dependent data parallel computations, it is likely that off-line benchmarking

of the sequential code is needed to determine average values for some callbacks. A simple example is

Gaussian elimination in which the amount of computation and communication changes from cycle to

cycle. For irregular, control- or data-dependent computations it is likely that the domain programmer will

have to write the callback functions by-hand. For regular problems such as the stencil computation, we

believe that current compiler technology may be able to generate the callbacks if sufficient language sup-

port is provided. In the absence of compiler technology, we believe that domain programmers should be

able to provide the callbacks. Another strategy is to provide libraries of callbacks for well-known computa-

tional structures and this technique is discussed in Section 2.5. Current compiler technology also looks

promising for generating the SPMD task implementation and automatically decomposing the data domain

for regular problems [2][9].

2
5
5
8

2 5
5 8

2

5 5

8

(a) 1-D (b) 2-D (c) tree

Figure 6. Topology-dependent partition_map (numPDUs = 20)

13

2.4 Partitioning

Partitioning is the second stage in the three stage process introduced in Section 1.0. Once processor

availability has determined the available set of processors (the first phase), the partitioning phase computes

the best subset of processors to use and a distribution of the data domain across these processors. Choosing

the subset of processors in known as processor selection and the objective is to determine the best grain

size at which to run the computation. Dividing the data domain is known as data domain decomposition,

and the objective is to achieve processor load balance. Data domain decomposition was introduced in Sec-

tion 2.3. A load balanced decomposition and an appropriate computation granularity lead to reduced com-

pletion time and this is the objective of partitioning. Partitioning is performed once at runtime. Dynamic

repartitioning in the event of load imbalance could be accommodated with the framework, but it is outside

the scope of this paper. We will use the following notation throughout this section:

 pi = a particular processor
 Ai = number of PDUs assigned to processor pi
 Vi = number of available processors within cluster Ci
 Pi = number of processors selected for Ci
 wi = relative processor weight for ith processor based on arch_cost
 m = number of clusters
 g() = the amount of computation as a function of Ai
 d(i)

1 = non-PDU cost constant for ith processor
 d(i)

2 = PDU cost constant for ith processor
 Tc = per cycle elapsed time
 Tstartup = startup overhead
 Tcomm = per cycle communication cost
 Tcomp = per cycle computation cost

More formally, we define a processor configuration as a set of processors Pi (0≤Pi≤Vi, i=1 to m),

where Vi is the number of processors available within Ci. Partitioning computes a processor configuration

that yields an appropriate computation granularity and a decomposition of the data domain Ai associated

with each pi (i.e., the partition_map) that load balances the processors. We discuss each of these problems

in turn, beginning with data domain decomposition.

2.4.1 Data Domain Decomposition

We compute a load balanced decomposition based on the dominant computation phase. The amount

of time spent in a single cycle of the dominant computation phase, denoted by Tcomp, is defined as follows

(shown for a processor pi):

Tcomp [pi] = comp_complexity * arch_cost * g(Ai)

The computation time depends on the problem and processor characteristics and on number of PDUs, Ai,

given to each processor. In the general case, the dependence on Ai may be arbitrary function g of Ai. In

14

practice however, it is common that the dependence is linear for SPMD computations. Invoking callbacks

for comp_complexity and arch_cost at runtime determines two cost constants that are problem-dependent:

d1 is a non_PDU cost and d2 is a PDU cost.

The form for Tcomp becomes (shown for processor i):

Tcomp [pi] = d1
(i) + d2

(i)g(Ai) (EQ 4)

Load balance requires that Tcomp be the same for all processors (P total processors):

d1
(1) + d2

(1)g(A1) = d1
(2) + d2

(2)g(A2) = ... d1
(P) + d2

(P)g(AP)
subject to ∑Ai = numPDUs

If g is non-linear then this is a difficult system to solve. Fortunately, g is most often linear for SPMD com-

putations in which the same computation is performed on each data element (i.e., PDU) independently. If g

is linear, we can combine these equations easily (Pj comes in with the second constraint):

(EQ 5)

If we assume that the non_PDU cost is 0 (i.e., d1
(i)= 0), we get a simple equation for the

partition_map:

(EQ 6)

This equation has the property that faster processors will receive a greater share of the data domain and

processors in the same cluster will receive an equal share. Since Ai must be integral, the individual entries

in the partition_map are rounded to the nearest integer. Computing the partition_map via (EQ 6) requires

knowing the number of processors to be used (i.e., Pj). This is the subject of processor selection, discussed

next.

2.4.2 Processor Selection

The job of processor selection is to choose a subset of available processors that are best applied to the

computation. Nearly all parallel computations reach a point of diminishing returns with respect to the num-

ber of processors due to communication overhead. At this point, we have achieved the best computation

grain for the problem and the elapsed time will be minimized. Because processor power and cluster com-

munication capacities differ in the metasystem, locating this point is difficult. Our method is a heuristic

that is guided by runtime cost estimation that uses information provided by the callbacks of Section 2.3.

The elapsed time Telapsed, may be defined as follows:

Ai

wi
wj Pj⋅---------------

j

∑
 
 
 
 

NumPDUs pj

d1
j()

d1
i()

–

d2
j()-------------------------

j i≠
∑– wi

d2
i()

max d2
j()

 
 
 

---------------------------=,⋅=

Ai

wi

wj Pj⋅--------------- NumPDUs⋅
j

∑=

15

 or (EQ 7)

, where (EQ 8)

The startup overhead, Tstartup, may include initial data distribution costs or problem setup costs. The

amount of time spent in the ith iteration or cycle is denoted by Tc[i] and the average over all Tc[i] is denoted

by Tc. If Tstartup is small relative to the elapsed time, then minimizing Telapsed can be achieved by minimiz-

ing Tc. Tc contains both computation and communication cost terms and is defined as follows:

Tc = Tcomp + Tcomm or (EQ 9)

Tc = max {Tcomp, Tcomm} if computation and communication are overlapped.

Since Tc is assumed to be an average, Tcomp and Tcomm must be computed as averages in the event that they

differ from cycle to cycle. An example of this is Gaussian elimination discussed in Section 3.1. Our heuris-

tic computes Tcomp and Tcomm based on the dominant computation and communication phases3. The form

for Tcomp was given in (EQ 4) and the form for Tcomm was given in (EQ 3). The appropriate Tcomm will be

selected by the topology of the dominant communication phase. The function Tc is non-linear in the num-

ber of processors and possibly non-convex (if max appears). The optimal solution therefore requires mini-

mization of a non-linear, possibly non-convex objective function, subject to constraints, and heuristics

must therefore be used.

We describe two heuristics for processor selection, H1 and H2, that have yielded promising results.

Both heuristics explore a series of processor configurations in an attempt to achieve a minimum Tc, hence

minimized elapsed time. For each configuration explored, we compute Tc via (EQ 9). To do this we first

compute the partition_map Ai via (EQ 6). Once Ai is determined, we can compute Tcomp and Tcomm easily

by invoking the callbacks and selecting the appropriate communication function. All of these computations

are simple and can be performed efficiently at runtime. For a given configuration, the placement heuristics

are used to determine task placement and the expected communication costs that result using this place-

ment are computed by Tcomm.

It is not possible to explore all processor configurations since the space is exponential in both the

number of processors and clusters. The first step of the processor selection heuristics are to order the clus-

ters in order to reduce the search space. The idea is that the best clusters should be explored first.

Heuristic H1

3. A more accurate and computationally expensive technique is to compute Tc for all phases.

Telapsed Tstartup Tc i[]
i 1=

cycles

∑+=

Telapsed Tstartup= cycles Tc⋅+ Tc

Tc i[]∑
cycles
-------------------=

16

Heuristic H1 has been designed for workstation network environments in which communication

capacities are the same within the metasystem (e.g., ethernet-based clusters), and routing costs are high.

The algorithm begins by ordering the clusters based on aggregate computation power. In this environment,

the clusters with the highest aggregate computation power will often have the smallest communication

costs. Using clusters with a higher aggregate computation power will lead to reduced completion time

since Tcomp and Tcomm will both be smaller. The next stage of the algorithm explores the processor config-

uration space in a greedy fashion. All processors of a cluster are selected before processors in the next clus-

ter are considered thus avoiding router crossings if possible. This algorithm tries to maintain

communication locality by avoiding the router penalty and potential coercion overhead. The algorithm ter-

minates when adding processors in the current cluster causes Tc to increase, and is sketched in Figure 7.

The algorithm computes two things in get_curr_config: the best processor configuration (and task

placement) based on the previous configuration and the current cluster, and the partition_map. It has the

property that once Pj is computed for cluster Cj, it is not modified in subsequent iterations. For each cluster

it locates the best number of processors by a form of binary search, the details of which are provided in

[17]. The worst-case order of this algorithm is O(mlog2P) for m clusters and P total processors. The algo-

rithm is scalable and the overhead in practice is small. In Section 3.1, we present some experimental results

that indicate H1 is efficient and produces excellent results.

A more general heuristic is needed when communication capacities differ in the metasystem or if

router costs are not prohibitively high. The latter means that additional communication bandwidth may by

effectively exploited across multiple clusters even with a router penalty. A greedy strategy will not work

well in this case.

Heuristic H2

Order clusters C1 .. Cm by aggregate computation power
Initialize curr_config, min_cost
For each cluster Ci {

// Determine config that yields min Tc given previous Pj (j<i)
best_curr_config = get_curr_config (curr_config, Ci);

// If Tc has increased we are done
if (best_curr_config.cost > min_cost)

break;
else {

curr_config = best_curr_config;
min_cost = best_curr_config.cost;

}
}
return best_curr_config;

Figure 7. Heuristic H1

17

Heuristic H2 has been designed for general metasystems and relaxes the assumptions made in H1.

Because communication capacities may be different, a simple cluster ordering strategy based solely on

computation power will not always work well. For example, consider that a slow network of very fast

machines such as a DEC-Alpha cluster might be chosen over a Paragon partition because the DEC-Alpha

is faster than the i860. Clearly this may be a poor choice for some tightly-coupled parallel computations.

Instead, we adopt a ordering heuristic based on Tc since Tc gives us a real measure of cost that includes

both computation and communication. We apply H1 to each cluster in isolation to compute the minimum

Tc. We then order the clusters by this value.

A more complex two-phase strategy is adopted for exploring the processor configurations, see Figure

8. In phase 1, we add processors for the current cluster using the same algorithm as described in H1. It is

guaranteed that adding processors will decrease the Tcomp component of Tc. The addition of processors will

never decrease Tcomm, though it may remain unchanged. In phase 2, we try to reduce the Tcomm component

of Tc. Recall from Section 2.2 that the total communication cost is a function of the communication cost

contributed by each cluster based on intra-cluster placement, see (EQ 3). The cluster that contributes the

maximum communication cost is targeted for reducing the overall communication cost. In phase 2, we add

processors to the current cluster while removing processors from the cluster than contributed the largest

communication cost. This is guaranteed to reduce Tcomm, but the impact on Tc is unpredictable since Tcomp

may increase since we are trading potentially faster processors for slower ones. The cluster that contributes

the largest cost may change during the course of phase 2 as processors are traded. The configuration that

yields the minimum Tc after both phase 1 and phase 2 is stored. This is the starting configuration that used

as the next cluster is considered, much like in H1. Unlike H1, H2 is conservative and does not terminate

until all clusters are explored. The worst-case order of this algorithm is O(mP): O(mlog2P) for cluster

ordering, O(mlog2P) for phase 1, and O(mP) for phase 2. In practice, the linear dependence on P is tolera-

ble since the amount of computation performed for each configuration is very small. We are exploring heu-

ristics to improve the time bound for phase 2. In Section 3.2, we present some simulation results that

indicate that H2 is viable.

2.5 Implementation

The final phase of the partitioning framework is instantiation. Instantiation initiates the data parallel

computation across the processor configuration using the determined task placement. We present a partial

implementation of the stencil computation implemented in Mentat to illustrate the instantiation process.

Mentat is parallel object-oriented parallel processing system based on C++ [7]. We also present a C++

callback interface that is currently being implemented.

18

2.5.1 Callback Specification

The callbacks are encapsulated by a class called a domain, see Figure 9. The domain class can be tai-

lored to the specific computation by means of derivation. For example, we have defined a stencil_domain

derived from domain for stencil computations and we show the implementation of the comp_complexity

callback for the single computation phase. This class is instantiated at runtime with a programmer-defined

structure known as a parameter vector (PV) that contains any problem-dependent parameters that are used

in the implementation of the callbacks (e.g., N for the stencil problem). Notice that the callback functions

may depend on the number of processors, np, that are determined at runtime. Also observe that the domi-

nant computation and communication phases are determined by callbacks since the dominant phases may

depend on problem parameters. The domain instance is used by the partitioning framework at runtime.

2.5.2 Program Interface

A Mentat code fragment for the stencil computation that uses the stencil_domain is given in Figure

10. The main program marshals the relevant program parameters into PV, instantiates the stencil_domain

and calls the function partition that implements the partitioning heuristics of Section 2.4. This function

Order clusters C1 .. Cm by Tc
Initialize curr_config, min_cost
For each cluster Ci {

// Phase 1 -- Try to reduce Tcomp
// Determine config that yields min Tc given previous Pj (j<i)
best_curr_config = get_curr_config (curr_config, Ci)
// min_cost is stored

// Phase 2 -- Try to reduce Tcomm
curr_config.Pi = 0
// Repeatedly trade processors in Ci with processors in Ck (k<i)
// where Ck is the cluster with the largest communication cost
// Ck may change during phase 2 -- if it is the current cluster, exit
while ((curr_config.Pi <= Ni) && (k!=i)) {

curr_config.Pi++;
curr_config.Pk--;
Tc = get_Tc (curr_config);
if (Tc < min_cost) {

best_curr_config = curr_config;
min_cost = Tc;

}
}
curr_config = best_curr_config;

}
return best_curr_config;

Figure 8. Heuristic H2

19

returns a structure that contains the processor configuration and partition_map. In the Mentat implementa-

tion, this structure is passed to a Mentat routine DP_create that instantiates a task (Mentat object) on each

selected processor and passes the names of the neighboring Mentat objects to each Mentat object to enable

communication. It is then up to application to start the data parallel computation and use the partition_map

in an appropriate manner. In this code fragment, the grid is physically decomposed by the function

1D_carve, and the member function compute is called on each Mentat object. Each Mentat object is passed

its portion of the problem via compute. The 1-D communication to exchange north and south borders

occurs within the implementation of compute.

3.0 Results

3.1 Experimental

We have obtained very promising results with H1 on several real parallel codes: the stencil computa-

tion and Gaussian elimination with partial pivoting. The stencil code has been implemented on an hetero-

class domain {
char** PV;
public:

virtual domain (char** PV);
virtual phase dominant_comp_phase (int np);
virtual phase dominant_comm_phase (int np);
virtual phase_rec num_phases ();

virtual comp_rec comp_complexity (int np, phase comp_phase);
virtual int numPDUs (phase comp_phase);
virtual cost_rec arch_cost (proc_type proc, phase comp_phase);

virtual comm_rec comm_complexity (int np, phase comm_phase);
virtual phase overlap (phase comm_phase);
virtual top topology (phase comm_phase);

}

class stencil_domain: domain {
public:

...
comp_rec comp_complexity (int np, phase comp_phase) {

int N = atoi (PV[0]); // extract problem size
comp_rec *CR = new comp_rec;
CR->PDU_inst = 5*N; // 5 fp operations per PDU in this problem
CR->non_PDU_inst = 0;
return *CR; }

...
}

Figure 9. Domain class callback interface

20

geneous workstation network and Gaussian elimination on the Intel Gamma. In both environments, the

communication capacities are the same (i.e., the workstation network is ethernet only and the Intel Gamma

is a single machine with a hypercube interconnect), so H1 is appropriate.

Stencil

We have implemented two versions of the stencil code, STEN-1 and STEN-2 in which communica-

tion is handled by the MMPS communication library discussed in Section 2.2. STEN-2 overlaps computa-

tion and communication while STEN-1 does not. The callbacks for the stencil code were given in Figure

5b. The codes were run on two ethernet-connected clusters of Sun 4s joined by a router. Cluster C1 con-

tains 6 Sparc2s and C2 contains 6 Sun 4 IPCs. The arch_cost for this problem was determined to be .3 usec

and .6 usec for C1 and C2 respectively. Thus, the Sparc2s are about twice as fast as the Sun 4 IPCs and the

partition_map will give each Sparc2 processor twice as many PDUs as each Sun 4 IPC via (EQ 6). The

codes were implemented using a 1-D topology and the communication cost functions were derived by

benchmarking. Heuristic H1 computes Tcomp and Tcomm by invoking callbacks with Tc computed to be:

Tc [STEN-1] = Tcomp + Tcomm

Tc [STEN-2] = max {Tcomp, Tcomm}

We ran H1 off-line on a range of problem sizes for both STEN-1 and STEN-2: N=60, 300, 600, and 1200.

When STEN-1 and STEN-2 were run on the network using the processor configuration and partition_map

computed by H1, minimum elapsed times were obtained [17]. The codes were run multiple times when the

network and processors were lightly loaded and averages reported. We also timed H1 and found that the

largest overhead was approximately 250 usec on a Sparc2, while the elapsed times for STEN-1 and STEN-

main() {
stencil_class *workers, mo;
stencil_domain *dom;
...
// Problem-specific code: (N and Grid are read from file)
PV[0]= itoa (N); // marshal PV for problem instance
dom = new stencil_domain (PV); // instantiate domain

PM = partition (dom);
mclass* workers = (mclass*) DP_create (PM, mo);

// Application-specific code
1D_grid = 1D_carve (Grid, PM.partition_map);
for (int i=0; i<PM.total; i++)

workers[i].compute (1D_grid[i], N);
...

}

Figure 10. Stencil main program

21

2 were in the hundreds of milliseconds. This overhead is quite tolerable and it was worth paying: an

improper data domain decomposition increased elapsed time by as much as 35% due to load imbalance

and an a poor processor configuration may increase elapsed time by a far greater percentage.

Gaussian Elimination

We have implemented Gaussian elimination with partial pivoting (GE) on the 64-node Intel Gamma

at Caltech with communication handled by the NX library. GE is implemented using a fan-in tree for pivot

determination and a row-cyclic decomposition of the NxN matrix (i.e., the PDU is a row). Because this

environment is homogeneous, decomposing the data domain is straightforward: each processor gets an

equal number of PDUs. However, processor selection is still needed. Since the amount of communication

and computation change from cycle to cycle in GE, we provide average values for comp_complexity and

comm_complexity. The callbacks for the dominant computation phase (forward reduction) and the domi-

nant communication phase (pivot exchange) are given in Figure 11.

On average a pivot row of length N/2 is communicated and the average instruction count is obtained

by taking the total instruction count [4] and dividing by the number of PDUs (N) and cycles (N-1). A single

cluster C1 of 32 i860 nodes was used. The arch_cost for GE was determined to be 0.18 usec and Tcomm

was determined by benchmarking the tree topology on the Intel Gamma. Heuristic H1 computes Tcomp and

Tcomm by invoking callbacks with Tc computed to be:

Tc [GE] = Tcomp + Tcomm

We ran H1 off-line on a range of problem sizes for GE: N=128, 256, 512, and 1024 and obtained the fol-

lowing processor configurations: P1 = 2, 4, 16, and 28 respectively. Notice that not all processors are used.

When GE was run on the Gamma using the processor configuration and partition_map computed by H1,

minimum elapsed times were obtained for N=128 and N=1024, and elapsed times within 10% of the small-

est elapsed times were obtained for N=256 and N=512. Measured overhead for H1 was a few hundred usec.

3.2 Simulation

A simulation study of heuristic H2 was performed to test the efficacy of the algorithm. The simulation

environment supports both synthetic problem and metasystem generation. Real costs can easily be inserted

into the simulator to replace any synthetic cost if desired. For each problem instance/metasystem pair, the

topology ⇒ tree
comm_complexity ⇒ 4(N/2) (bytes)
numPDUs ⇒ N
comp_complexity ⇒ (2/3N3+N(N-1))/ N(N-1)

⇒ (2N2)/(3N-3) (fp ops)

Figure 11. Callbacks for Gaussian elimination

22

simulator computes the best Tc by H2 and then the optimal Tc by exhaustive search of the processor config-

uration space and the comparative results are tallied.

A metasystem is determined by generating processor clusters together with the information described

in Section 2.1. All generated information is uniformly distributed over a fixed range, see Figure 12. The

ranges are limited to values that have been empirically observed and are reasonable. For example, a

latency constant is restricted to be in the millisecond range on an ethernet-based cluster, while a bandwidth

constant is restricted to be in the microsecond range. We simulated both ethernet-based clusters and mesh-

based multicomputer clusters. For each communication topology (ring, 1-D, tree), the communication cost

functions are determined by generating the cost constants in (EQ 1) and (EQ 2). For bus interconnects, f in

(EQ 1) is linear in the number of processors for all topologies. For the mesh-based multicomputer, f is log

p for the tree topology, linear for the ring, and nearly-independent4 of p for the 1-D topology due to a dila-

tion one intra-cluster placement of the 1-D topology onto the mesh. The total communication cost Tcomm is

computed by the functions in (EQ 3).

A problem instance contains a communication phase and a regular computation phase that is linear

and we use (EQ 6) to compute the partition_map. The values for comp_complexity, arch_cost, and topol-

ogy are generated with uniform distributions to simulate a range of problem granularities and numPDUs

takes on the values: 1, 100, 500, 1000, 5000, 10000. To keep things simple, all non_PDU terms are 0, and

the phases are non-overlapping. The arch_cost is inversely proportional to the peak processor rate. For

each problem instance, a number of values for comm_complexity on the range [1 .. numPDUs] are simu-

lated since the size of messages depends on the how the problem was decomposed.

We present two sets of simulation results. In Table 2, only workstation clusters are simulated. In

Table 3, both workstations and multicomputers are simulated. In both cases, we run in two modes: (1) zero

router/coercion cost and (2) non-zero router/coercion cost. We separate results based on the application

communication topology since H2 has a slightly different formulation for each topology. For comparison

we present the results for the same experiments but with cluster ordering turned off to show the benefit of

4. This is achieved by setting c3 and c4 very small.

metasystem parameters
num_clusters = [1 .. 5]
num_processors_per_cluster = [1 .. 10]
processor_rate = [1 .. 100] mflops
interconnect = [mesh, bus]
latency_constant = [0 .. 1000] usec
bandwidth_constant = [.1 .. 10] usec/byte

Figure 12. Simulation parameters

problem parameters
top = [tree, ring, 1-D]
NumPDUs = [1, 100, 500, 1000, 5000, 10000]
comm_complexity = [1 .. NumPDUs] bytes
arch_cost = [.1 .. 1] usec/instruction
comp_complexity = [1 .. 10000] instructions

23

this scheme. In all cases, cluster ordering is highly beneficial. Each table cell is the tabulation of 50 meta-

systems and 900 problem instances for a total of 45,000 experiments. We show two values per cell, the %

of runs within 5% of optimal and 10% of optimal respectively.

The results in Tables 2-3 indicate that the algorithm performs equally well for multicomputer and

workstations clusters. We see that cluster ordering is pivotal to the success of the algorithm - a 30%

improvement in most cases. The algorithm finds a configuration that yields an elapsed time for Tc that is

within 10% of optimal (acceptably close in our view) over 90% of the time. We also see that the inclusion

of router and coercion overhead does not perturb the performance of the algorithm. This validates our local

ordering strategy based on Tc in which we consider only communication costs within the cluster and not

between clusters during cluster ordering. The performance results differ slightly between the different

topologies with performance higher for the ring than for either the 1-D or tree topologies. The reason is

that Tc is a more complex function for these topologies due to the presence of max in the formulation for

Tcomm, see (EQ 3), and H2 is more prone to fall into a local minima.

The results from one sample run in Table 2 for the 1-D topology is given in Figure 13 to illustrate the

experimental parameters and a sample solution. Notice that the communication and computation capacities

differ: C2 has the most powerful processors (75 mflops), but C0 has the greatest communication capacity

(i.e., the smallest cost constants), this is analogous to the difference between a network of DEC Alpha

workstations and an Intel Paragon. Also observe that the communication function f (EQ 1) is linear in p on

the workstation network. The number of PDUs shown is the number given to each processor within each

cluster (i.e., in H2 we give 11 PDUs to each processor in C3). For the optimal solution, we round-off the

partition_map to integer values and make sure that the total equals NumPDUs.

topology
w/ cluster ordering
(5%, 10% optimal)

w/o cluster ordering
(5%, 10% optimal)

ring 98.6, 99.5 63.9, 70.7

1-D 89.3, 94.4 72.7, 81.2

tree 91.6, 95.3 61.5, 68.8

topology
w/ cluster ordering
(5%, 10% optimal)

w/o cluster ordering
(5%, 10% optimal)

ring 98.7, 99.6 61.4, 67.7

1-D 88.9, 94.6 63.9, 70.7

tree 92.6, 95.9 52.5, 59.7

Table 2. Simulation results: workstation clusters only

(a) No router/coercion b) router/coercion

topology
w/ cluster ordering
(5%, 10% optimal)

w/o cluster ordering
(5%, 10% optimal)

ring 97.7, 99.3 67.5, 76.4

1-D 91.4, 95.0 69.9, 76.5

tree 89.2, 91.7 63.3, 70.2

topology
w/ cluster ordering
(5%, 10% optimal)

w/o cluster ordering
(5%, 10% optimal)

ring 98.8, 99.7 64.3, 71.1

1-D 92.3, 96.4 65.9, 73.0

tree 88.1, 91.6 63.5, 71.1

Table 3. Simulation results: workstation and multicomputer clusters

(a) No router/coercion b) router/coercion

24

4.0 Related Work

PVM [14] is the most widely used system for supporting parallel processing in heterogeneous envi-

ronments. PVM provides low-level routines that manage communication and process interaction, but it has

no support for partitioning. The programmer is responsible for problem decomposition and selecting the

number of processors. Dataparallel C [9][12] provides a language and run-time system that supports both

static and dynamic partitioning of regular data parallel computations across heterogeneous workstation

networks. Dataparallel C is limited to workstations or multicomputers (but not both) and does not provide

granularity control. An approach similar to our partitioning framework is adopted in [1]. Partitioning paral-

lel computations on a heterogeneous network are guided by information provided by benchmarking.

Classes of well-known parallel operations are benchmarked on different processor configurations and the

best configuration selected by interpolation. The partitioning framework is more general and not limited to

specific parallel operations.

The Augmented Optimal Selection Theory Model (AOST) and its variants [3] are targeted to more

general metasystems such as in Figure 1. A model for statically mapping large-grain parallel computations

onto a pool of dedicated heterogeneous parallel and vector machines is proposed. The applications appro-

priate for AOST contain loosely-coupled modules that are mapped to the machines that will execute them

most efficiently. Their approach relies heavily on off-line benchmarking. Unlike AOST, the partitioning

framework is based on a shared metasystem environment.

The Oregami project [11] adopts a philosophy similar to ours in that program phase information and

resource information are used to guide partitioning and placement of parallel programs. A canned library

of placement heuristics have been developed. We intend to adopt the same strategy for intra-cluster place-

C0 = 6 processors, peak_rate = 45 mflops, Tcomm[1-D] (p, b) = 88p + b (.56 + 1.04p)
C1 = 4 processors, peak_rate = 16 mflops, Tcomm[1-D] (p, b) = 577p + b (3.7 + 6.88p)
C2 = 2 processors, peak_rate = 75 mflops, Tcomm[1-D] (p, b) = 411p + b (2.7 + 4.85p)
C3 = 10 processors, peak_rate = 55 mflops, Tcomm[1-D] (p, b) = 91p + b (.58 + 1.07p)

NumPDUs = 100
Msg_Size = 100

H2 processor configuration: C3 = 5, C0 = 5, C2 = 0, C1 = 0
H2 partition_map: A3 = 11, A0 = 9 PDUs

optimal processor configuration: C3 = 6, C2 = 0, C1 = 0, C0 = 6
optimal partition_map: A3 = 9.2, A0 = 7.5 PDUs

Tc [H2] = 3347.8 usec, Tc [optimal] = 3228.4 usec => 3.7% difference

Figure 13. Sample simulator run

25

ment. Oregami differs from our framework in two significant ways: it is limited to homogeneous parallel

machines and it is a compile-time approach.

5.0 Conclusion

We described a framework for partitioning data parallel computations across heterogeneous metasys-

tems at runtime. Three difficult problems, processor selection, task placement, and heterogeneous data

domain decomposition, are handled automatically by the framework. The framework is applicable to a

large class of data parallel computations and the early results indicate that excellent performance is achiev-

able. Our approach exploits program and resource information in a novel way. A model of data parallel

computations was presented in which program information is made available by a powerful callback

mechanism. A C++ implementation of callbacks based on domain classes was given. A hierarchical meta-

system organization was also presented in which resource information is collected and maintained by the

system. A key part of this model is a set of topology-specific communication functions that are central to

the processor selection process. We are currently implementing the framework in Legion [8], a heteroge-

neous parallel processing system based on Mentat.

6.0 References

[1] A.L. Cheung, and A.P. Reeves, “High Performance Computing on a Cluster of Workstations,” Proceedings
of the First Symposium on High-Performance Distributed Computing, Sept 1992.

[2] G. Fox et al, “Fortran D Language Specification,” TR90-141, Department of Computer Science, Rice Uni-
versity, December 1990.

[3] R.F. Freund and H.J. Siegel, “Heterogeneous Processing,” IEEE Computer, June 1993.

[4] G.H. Golub and J.M. Ortega, Scientific Computing and Differential Equations, Academic Press, Inc., 1992.

[5] A.S. Grimshaw, D. Mack, and T. Strayer, “MMPS: Portable Message Passing Support for Parallel Comput-
ing,” Proceedings of the Fifth Distributed Memory Computing Conference, April 1990.

[6] A.S. Grimshaw, J.B. Weissman, E.A. West, and E. Loyot, “Metasystems: An Approach Combining Parallel
Processing And Heterogeneous Distributed Computing Systems,” Journal of Parallel and Distributed Com-
puting, Vol. 21, No. 3, June 1994.

[7] A.S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,” IEEE Computer, May
1993.

[8] A.S. Grimshaw et al, “Legion: The Next Logical Step Toward a Nationwide Virtual Computer,” Computer
Science Technical Report, CS-94-21, University of Virginia, June, 1994.

[9] P.J. Hatcher, M.J. Quinn, and A.J. Lapadula, “Data-parallel Programming on MIMD Computers,” IEEE
Transactions on Parallel and Distributed Systems, Vol 2, July 1991.

[10] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan-
Kaufmann Publishers, 1992.

[11] V.M. Lo et al, “OREGAMI: Tools for Mapping Parallel Computations to Parallel Architectures,” CIS-TR-
89-18a, Department of Computer Science, University of Oregon, April 1992.

[12] N. Nedeljkovic and M.J. Quinn, “Data-Parallel Programming on a Network of Heterogeneous Worksta-
tions,” Proceedings of the First Symposium on High-Performance Distributed Computing, Sept. 1992.

[13] D.M. Nicol and P.F. Reynolds, Jr., “Optimal Dynamic Remapping of Data Parallel Computations,” IEEE

26

Transactions on Computers, Vol. 39, No. 2, February 1990.

[14] V.S. Sunderam, “PVM: A framework for parallel distributed computing,” Concurrency: Practice
and Experience, vol. 2(4), pp. 315-339, December 1990.

[15] J.B. Weissman, Andrew S. Grimshaw, and Robert R. Ferraro, “Parallel Object-Oriented Computa-
tion Applied to a Finite Element Problem,” Journal of Scientific Programming, Vol. 2 No. 4, 1993.

[16] J.B. Weissman, “Multigranular Scheduling of Data Parallel Programs,” TR CS-93-38, Department
of Computer Science, University of Virginia, July 1993.

[17] J.B. Weissman and A.S. Grimshaw, “Network Partitioning of Data Parallel Computations,” Pro-
ceedings of the Third International Symposium on High-Performance Distributed Computing,
August 1994.

