
A New Model of Security for Metasystems ?

Steve J. Chapin, Chenxi Wang, William A. Wulf, Fritz Knabe,

and Andrew Grimshaw

Department of Computer Science, University of Virginia, Charlottesville, VA

22903{2442, fchapin,cw2e,wulf,knabe,grimshawg@cs.virginia.edu

Abstract

With the rapid growth of high-speed networking and microprocessing power,
metasystems have become increasingly popular. The need for protection and se-
curity in such environments has never been greater. However, the conventional ap-
proach to security, that of enforcing a single system-wide policy, will not work for
the large-scale distributed systems we envision. Our new model shifts the emphasis
from \system as enforcer" to user-de�nable policies, making users responsible for
the security of their objects.

This security model has been implemented as part of the Legion project. Legion
is an object-oriented metacomputing system, with strong support for autonomy.
This includes support for per-object, user-de�ned policies in many areas, including
resource management and security. This paper brie
y describes the Legion system,
presents our security model, and discusses the realization of that model in Legion.

Keywords: security, metasystems

1 Introduction

High-speed networking has signi�cantly changed the nature of computing,
and speci�cally gives rise to a new set of security concerns and issues. The
conventional security approach has been for a single authority (\the system")
to mediate all interactions between users and resources, and to enforce a single
system-wide policy. This approach has served us well in the environment of
a centralized system because the operating system implements all the key
components and knows who is responsible for each process.

?This work was funded in part by NSF grant CDA9724552, ONR grant N00014-
98-1-0454, Northrup-Grumman contract 9729373-00, and DOE contracts DEFG02-
96ER25290, SANDIA #LD-9391, and D45900016-3C.

Preprint submitted to Elsevier Science 5 October 1998

However, in a metasystem several things have changed:

{ Distributed Kernel: There is no clear notion of a single protected kernel.
The path between any two objects may involve several machines that are
not equally trusted.

{ System Scope and Size: The system is usually much larger than a centralized
one. We expect it to be a federation of distinct administrative domains with
separate authorities.

{ Heterogeneity: The system may involve many subdomains with distinct se-
curity policies, channels that are secured in several ways, and platforms with
di�erent operating systems.

The intricate nature of metasystems has fundamentally changed the require-
ments for system security. Within the Legion project, we are investigating a
new model of computer security appropriate to large distributed systems.

Users of Legion-like systems must feel con�dent that the privacy and integrity
of their data will not be compromised|either by granting others access to their
system, or by running their own programs on an unknown remote computer.
Creating that con�dence is an especially challenging problem for a number of
reasons; for example:

{ We envision Legion as a very large distributed system; at least for purposes
of design, it is useful to think of it as running on millions of processors
distributed throughout the galaxy.

{ Legion will run on top of a variety of host operating systems; it will not
have control of the hardware or operating system on which it runs.

{ There won't be a single organization or person that \owns" all of the systems
involved. Thus no one can be trusted to enforce security standards on them;
indeed, some individual owners might be malicious.

No single security policy will satisfy all users of a huge system|the CIA,
NationsBank, and the University of Virginia Hospital will have di�erent views
of what is necessary and appropriate. We cannot even presume a single \login"
mechanism|some situations will demand a far more rigorous one than others.
And, for both logical and performance reasons, the potential size and scope of
Legion suggests that we should not have distinguished \trusted" components
that could become points of failure, penetration, or bottlenecks.

Running \on top of" host operating systems has many implications, but in
particular it means that we must assume additional security weaknesses in
addition to the usual assumption of insecure communication. We assume that
copies of Legion system objects will be corrupted (rogue Legionnaires), that
some other agent may try to impersonate Legion, and that a person with
\root" privileges to a component system can modify the bits arbitrarily.

2

The assumption of \no owner" and wide distribution exacerbates these issues.
Because Legion cannot replace existing host operating systems, the idea of
securing them all is not a feasible option. We presume that at least some of
the hosts in the system will be compromised, and may even be malicious.

These problems pose new challenges for computer security. They are su�-
ciently di�erent from the prior problems faced by single-host systems that
some of the assumptions that have pervaded work on computer security must
be re-examined. Consider one such assumption: that security is absolute; a
system is either secure or it is not. A second assumption is that \the system"
is the enforcer of security.

In the physical world, security is never absolute. Some safes are better than
others, but none is expected to withstand an arbitrary attack. In fact, safes are
rated by the time they resist particular attacks. If a particular safe isn't good
enough, its owner has the responsibility to get a better one, hire a guard, string
an electric fence, or whatever. It isn't \the system," whatever that may be,
that provides added security|that burden rests on the owner of the object.

Note that we said that users must feel con�dent that the privacy and integrity
of their data will not be compromised; we did not say that they had to be
guaranteed of anything. Security needs to be \good enough" for a particu-
lar circumstance, at a cost commensurate with the protection provided. Of
course, what is good enough in one case may not be in another|so we need a
mechanism that �rst lets the user know how much con�dence they are justi�ed
in having, and second provides an avenue for gaining more when required.

The phrase \trusted computing base" (TCB) is common when referring to
systems that enforce a security policy. The mental image is that \the system"
mediates all interactions between users and resources, and for each interaction
decides to permit or prohibit it based on consulting a \trusted data base"; the
Lampson access matrix [4] is the archetype of such models.

As with the previous assumption, this one just doesn't work in a Legion-like
context. In the �rst place there isn't a single system-wide policy. New policies
may emerge all the time, and the complexities of overlapping or intersect-
ing security domains blur the very notion of a perimeter to be protected. In
the second place, since we have to presume that the code might be reverse-
engineered and modi�ed, we cannot rely on the system enforcing security|at
most, we can view it as a set of interfaces, protocols, and agents, some of
whom we trust.

Moreover, security has a cost in time, convenience, or both. The intuitive
determination of how much con�dence is \good enough" is moderated by
cost considerations. As has been observed many times, one reason that extant
computer systems have not paid more attention to security is that the cost,

3

especially in convenience, is too high. These prior systems took the approach
that security is absolute, and everyone either paid the cost of full security or
had none, regardless of their individual needs. To succeed, our model must
scale along cost|it must have essentially zero cost if no security is needed,
and the cost must increase in proportion to the extra con�dence one gains.
Further, these costs must scale on the basis of individual objects, not only for
the system as a whole.

These observations call for a change in our way of thinking and a shift in
security paradigm. In the rest of the paper, we suggest a new security model
that di�ers from the traditional approach, and describe the current implemen-
tation of the model within the Legion metasystem. We also illustrate ideas to
deal with the issues raised above, as well as others. Before proceeding to de-
scribe our plan of attack, the following describes the Legion system to provide
context.

2 Background: The Legion Project

The Legion [3] project at the University of Virginia is an attempt to provide
metasystem services that create the illusion of a single virtual machine. This
machine provides secure shared object and name spaces, high performance
via both task and data parallelism, application adjustable fault tolerance, im-
proved response time, and greater throughput. In all cases, we allow and en-
courage per-object user-de�nable resource policies. Legion is targeted towards
wide-area assemblies of workstations, supercomputers, and parallel supercom-
puters. Such a system will unleash the integrated potential of many diverse,
powerful resources which may very well revolutionize how we work, how we
play, and in general, how we interact with one another.

The potential bene�ts of a metasystem such as Legion are enormous. We envi-
sion (1) more e�ective collaboration by putting coworkers in the same virtual
workplace; (2) higher application performance due to parallel execution and
exploitation of o�-site resources; (3) improved access to data and computa-
tional resources; (4) improved researcher and user productivity resulting from
more e�ective collaboration and better application performance; (5) increased
resource utilization; and (6) a considerably simpler programming environment
for applications programmers.

Legion is an object-oriented metasystem. The principles of the object-oriented
paradigm are the foundation for the construction of Legion; All components of
interest in Legion are objects, and all objects, including classes, are instances
of classes. Use of the object-oriented paradigm enables us to exploit encap-
sulation and inheritance, as well as providing bene�ts such as software reuse,

4

fault containment, and reduction in complexity.

Hand-in-hand with the object-oriented paradigm is one of our driving philo-
sophical themes: we cannot design a system that will satisfy every user's needs,
therefore we must design an extensible system. This philosophy manifests it-
self throughout, particularly in our use of delayed binding and what we call
\service sliders." For example, there is a trade-o� between security and per-
formance (due to the cost of authentication, encryption, etc.). Rather than
providing a �xed level of security, we allow users to choose their own trade-o�s
by implementing their own policies or using existing policies via inheritance.
Similarly, users can select the level of fault-tolerance that they want|and pay
for only what they use. By allowing users to implement their own services, or
inherit from library classes, we provide the user with
exibility while at the
same time providing a menu of existing choices.

3 The Security Model

In this section we describe the security model and its current implementation
in Legion. We �rst present the design guidelines and principles. We discuss
the trade-o�s and our design decisions. We then explain how the model works,
with particular focus on how it can be used to enforce discretionary policies.

3.1 Design Principles

The Legion Security model is based on three principles:

(i) as in the Hippocratic Oath, do no harm!
(ii) caveat emptor|let the buyer beware.
(iii) small is beautiful.

Legion's �rst responsibility is to minimize the possibility that it will provide
an avenue via which an intruder can do mischief to a remote system. The
remote system is, by the second principle, responsible for ensuring that it is
running a valid copy of Legion|but subject to that, Legion should not permit
its corruption.

The second principle means that in the �nal analysis users are responsible
for their own security. Legion provides a model and mechanism that make it
feasible, conceptually simple, and inexpensive in the default case, but in the
end the user has the ultimate responsibility to determine what policy is to
be enforced and how vigorous that enforcement will be. This, we think, also

5

models the real world; the strongest door with the strongest lock is useless if
the user leaves it open.

The third principle simply means, given that one cannot absolutely, uncondi-
tionally depend on Legion to enforce security, there is no reason to invest it
with elaborate mechanisms. On the contrary, at least intuitively, the simpler
the model and the less it does, the lower the probability that a corrupted
version can do harm. The remainder of the paper describes such a simple
model.

As noted above, Legion is an object-oriented system. Thus, the unit of pro-
tection is the object, and the \rights" to the object allow invocation of its
member functions (each member function is associated with a distinct right).
This is not a new idea; it dates to at least the Hydra system in the mid 1970's
[12] and is also in some proposed CORBA models [2]. Note, however, that
it subsumes more common notions such as protection at the level of �le sys-
tems. In Legion, �les are merely user-de�ned objects, which happen to have
methods read/write/seek/etc. Directories are just another type of object with
methods such as lookup/enter/delete/etc. There is no reason why there must
be only one type of �le or one type of directory and, indeed, these need not
be distinguished concepts de�ned by, or even known to Legion.

The basic concepts of the Legion Security Model are minimal; there are just
four:

(i) every object provides certain known member functions (that may be de-
faulted to NIL); we will describe MayI, CanI, Iam, and Delegate.

(ii) there are two objects associated with each operation: a responsible agent
(RA) and a calling agent (CA). The RA is someone who can be held
accountable for the particular operation. The CA is the object that ini-
tiated the current method call. The RA is a generalization of the \user
id" in conventional systems; for the moment it is adequate to think of it
as identifying the user or agent who was responsible for the sequence of
method invocations that lead to the current one. There are a certain set
of member functions associated with an RA object. User-de�ned objects
can act as RA by supplying these member functions.

(iii) every invocation of a member function is performed in the context of
a certi�cate which contains the Legion Object ID (LOID) of the RA
which generated the certi�cate, a list of allowed method invocations, and
a timeout. The certi�cate is digitally signed by the maker.

(iv) there are a small set of rules for actions that Legion will take, primarily
at member function invocation. These rules are de�ned informally here.

The general approach is that Legion will invoke the known member functions
(MayI, etc.) at the appropriate time, thus giving objects the responsibility

6

Foo()

Return Value

Object B Yes

MayI()?

No
Foo()

Object A

Iam()

Fig. 1. Object A calls B.foo(), automatically invoking B.MayI()

of de�ning and ensuring the policy by providing their own implementations
of those well-known functions. Precisely how this happens is detailed in the
following sections.

3.2 Protecting Oneself|Privacy

In Legion users are responsible for their own security. They are the ones who
decide how secure their applications ought to be, and from there, which policy
is to be enforced and how rigorous the enforcement should be. For example, a
truly paranoid user's object can include code in every method to authenticate
the caller and to determine whether that caller has the right to make this
call. For many users, however, this degree of caution is unnecessary and some
delegation to the Legion mechanism is appropriate|for example, rather than
engaging in an authentication dialog with the caller, an object might trust
that the CA is correct.

Our �rst objective is to have policies de�ned by the objects themselves. At
the same time, we don't want to have to include policy-enforcement code in
every member function unless the object is particularly sensitive. So, instead,
we require that every class de�ne a special member function, MayI (this can
be defaulted, but we'll ignore that for now). MayI de�nes the security policy
for objects of that class. Legion automatically calls the MayI function before
every member function invocation, and permits that invocation only if MayI
sanctions it (see �gure 1).

In �gure 1, Object A invokes method B.foo. This call is passed to B, and the
Legion run-time system automatically invokes B.MayI rather than invoking
foo. 1 If B.MayI returns true, then foo is invoked with the arguments passed
from A. If not, then an exception is raised and passed back to A (Legion
exception handling is beyond the scope of this paper). All the information

1 Ignore the call to A.Iam for the moment.

7

necessary to make such a decision (the calling Agent (A), the method being
invoked (foo), and the parameters of the call) are available as input to MayI.

Note how this simple idea begins to meet our objectives. First, it permits
the creator of an object class to de�ne the privacy policy for objects of that
class; there is no system-wide policy. Second, it is fully extensible|when a
user de�nes a new class its member functions become the \rights" for that
class and its MayI function/policy determines who may exercise those rights.
Third, it is fully distributed. Fourth, it is not particularly burdensome; users
can default MayI to \always OK," inherit a MayI policy from a class they
trust, or write a new policy if the situation warrants. Fifth, the code for
implementing the security policy is localized to the MayI function rather than
distributed among the member functions. Finally, the default \always OK"
policy can be optimized so that there is no overhead at all associated with the
mechanism (the \no play, no pay" option).

3.3 Authentication

The previous discussion �nessed one point: who or what is the \I" that the
MayI function grants access? Indeed, the request must �rst be authenticated to
identify the principal that uttered it, and then authorized only if the principal
has the right to perform the operation on the object. The principal behind
the request could be human users, software programs, or compound identities
such as delegations, roles and groups.

Authentication in Legion is aided by the use of Legion certi�cates. Recall that
the certi�cate contains the object identi�er of the responsible agent, and that
the calling agent is identi�ed in the method call.

In the general spirit of our approach, the authentication of the caller and
caller's context can be anything that the MayI function demands|and in
sensitive cases, that is just as it should be. In most cases, however, \I" will be
simply the CA, or the RA, or any subset of the two. Indeed, by analogy with
familiar systems where \I" is the user, that subset may be just the RA.

Legion makes a speci�ed level of e�ort to assure the authenticity of the cer-
ti�cate IDs; this e�ort should be adequate for most purposes. However, in the
spirit of the second principle, we expect that MayI functions with extraor-
dinary security concerns will code their own authentication protocols by, for
example, calling back to the caller, and/or responsible agent. To make this
possible, we require every Legion object to supply a special public member
function, Iam, for authentication purposes. In the same principle as MayI, Iam
could be optimized to NIL. Figure 1 shows a call from B.MayI back to A.Iam
to verify A's identity. The speci�c protocol used between MayI and Iam to

8

authenticate A's identity is immaterial; if Iam satis�es MayI, then the call will
proceed, else MayI will fail (and an exception will be raised).

Legion bases authentication on public-key cryptography in the default case.
Knowledge of the private key is the proof of authenticity. In addition, a set of
general authentication protocols will be provided as the system standard. Iam
can choose to support all or none of them. Other more elaborate protocols
could be negotiated between objects and made known to the Iam function.
Objects unprepared to adequately authenticate themselves are ipso facto not
to be trusted.

3.3.1 Login

The avenue via which Legion users authenticate themselves to Legion is the
Login procedure. Login establishes the user's identity as well as creating a
responsible agent object for the user. The login procedure is therefore the
building block for future authentication and delegation.

By the same design principle, Legion does not mandate a single \Login" mech-
anism. Currently, there is a login object that is invoked when a user �rst logs
in. This login object engages in a login dialog with the user and, if satis�ed,
declares itself to be the responsible agent. Actually, any Legion object may
declare itself to be the current responsible agent should it choose. It simply
generates an additional certi�cate designating itself as the RA.

There are many advantages to why we shouldn't make this login mechanism
universal. For example, logging on to Legion at the University of Virginia may
require only a simple password while Legion in the CIA might demand that
users submit �ngerprints or retinal scan information. Users can de�ne their
own login class with varying degrees of rigor in the login dialog, speci�c to
their needs. The login mechanism can also be easily inherited or defaulted to
some simple scheme.

How do we know that a particular login class (or RA) is to be trusted? We
don't, in general. The MayI function of another class need not believe the login!
After interrogating the class of the responsible agent the MayI function may
reject the call if the login is either insu�ciently rigorous, or simply unknown
to this MayI. As in the infamous \real world," trust can only be earned.

3.4 Delegation

In all security models one must consider the question of rights propagation;
can a principal hand all or some of its authority to another, and how can a

9

principal restrict its authority? For example, a user on a workstation may wish
to delegate the \read" right on her �les to the C compiler. The compiler can
then access �les on her behalf as long as the delegation still stands.

In Legion, an object can generate a new certi�cate to delegate rights, e.g. the
user above could generate a certi�cate granting the bearer the \read" right and
pass it to the compiler. If an intermediate object in the call chain wished to
delegate rights contained in its current certi�cate, it could invoke the Delegate
function on the RA to generate a more limited certi�cate.

Our philosophy is that delegation policy is a part of the discretionary policy
that should be de�ned by the object itself. Indeed, delegation policies can be
arbitrarily complex or lightweight. Classes that want to take extreme precau-
tions against delegation may choose not to support delegation at all. Alter-
natively, users can write their own delegation functions or inherit appropriate
ones from existing classes.

So far we have discussed three security-related functions: MayI, Iam and Del-
egate (we defer discussion of CanI to the next section). They are user-de�ned
functions, which together, quite elegantly, form a guard or reference monitor
upon which any discretionary policy can be de�ned. In addition, MayI, Iam
and Delegate can be defaulted to NIL and hence will impose no overhead. And
indeed, many classes will favor the default case for performance reasons. When
these functions are non-NIL, they enforce user-de�nable policies rather than
some global Legion-de�ned one. These functions can be as simple or as elab-
orate as the user feels necessary to achieve their comfort level|the \service
slider" approach again.

4 Mandatory Policies

Mandatory policies, such as multi-level security, presume that the parties in-
volved may be conspirators and impose some sort of check by a third party|
usually \the system"|between caller and called objects. Generally this im-
position is completely dynamic; every call is checked.

In the Legion context, of course, we eschew the idea of a system-wide policy.
Thus we need a safe mechanism that interposes an arbitrary enforcer of an
arbitrary policy between caller and called object. Interestingly, when combined
with inheritance, the MayI function already discussed provides half the answer,
albeit in a somewhat di�erent way.

Imagine that a new mandatory security regime is to be created. An obvious
consideration is that the enforcer, which we'll call the \security agent" must

10

Foo()

Return Value

Object B Yes

MayI()?

Object A

...Foo()

CanI()?
No

Yes Foo()

No

Fig. 2. Automatic invocation of CanI on outgoing calls.

know about all of the kinds of objects in its domain|it cannot enforce \no
write down" if it doesn't know what a \write" to a speci�c object is, for
example. Thus we'll begin with the presumption that a good security agent
simply won't allow calls on objects of unknown pedigree.

Given that, it is reasonable to presume that the security agent can derive
subclasses for the objects that it does know about; in these subclasses the
security agent can inherit a MayI function of its choosing|and speci�cally
one that performs an outcall to the security agent to verify the validity of
each inward call. In this case, we include both compile-time and run-time
activities in the actions of the security agent. These may, in fact, be separate
but cooperating entities. All and only the objects that are instances of these
derived classes will be permitted in this security agent's regime.

As noted above, this solves half the problem|the security agent is invoked
whenever an object under its control is called. We need to add the symmetric
capability for outward calls; thus we add a method CanI that, if non-null,
is invoked by Legion whenever an object attempts to make a call on another
object. Now, by deriving a class that de�nes both the MayI and CanI methods,
the security agent can be ensured that it gets invoked on every call involving
one of the objects under its control.

Figure 2 depicts the use of CanI in a method call. Again, Object A invokes
B.foo, but the compiler has interposed code so that A.CanI is automatically
invoked before the call leaves A. If CanI returns true, then the method call
proceeds as in our earlier example. 2 If CanI returns false, an exception is
raised.

Note that while the usual mechanism for enforcing mandatory policies is done
completely at run time, the one we have described is partially a compile time
(or link time) mechanism|that is, the time at which the MayI and CanI
methods are bound into the subclass. Although this seems almost required by

2We omit the potential call to Iam to keep the picture legible.

11

the rejection of a single system-wide policy, it might raise concerns over the
possibility of intentional corruption of the mechanism. This is a subtler topic
than can be handled in detail here, but the reader may gain some comfort from
the observation that we have inverted the usual (temporal) relation between
defender and attacker. In the traditional scenario the defender of security puts
out a systemwhich the attackers then may analyze and attack at leisure. In our
case, if the attack is to be mounted from within an object that the security
agent has \wrapped" with its own MayI and CanI functions, the attacker
must put their code out �rst without knowledge of how it will be wrapped.
In this case, the security agent has the advantage of examining the purported
attacker's code before deciding whether to allow it into its security regime.

5 Is There An Imposter In The House?

In a large distributed system such as we envision, it is impossible to prevent
corruption of some computers. We must presume that someone will try to
pose as a valid Legion system or object in order to gain access to, or tamper
with other objects in an unauthorized way. That is why, in the �nal analysis,
the most sensitive data should not be stored on a computer connected to any
network, whether running Legion or not.

On the other hand, perhaps we can make the probability of such mischief
su�ciently low and its cost su�ciently high to be acceptable for all but the
most sensitive applications. We have formulated a number of principles that
form a basis for our ongoing research. They are:

(i) Defense in depth: There won't be a single silver bullet that \solves" the
problem of rogue Legionnaires, so each of the following is intended as an
independent mechanism. The chance that a rogue can defeat them all is
at least lower than defeating any one separately.

(ii) Least Privilege: Legion will run with the least privilege possible on each
host operating system. There are two points to this: �rst, it will reduce
the probability that a remote user can damage the host, and second it is
the manifestation of a more pervasive minimalist design philosophy.

(iii) No privilege hierarchy (compartmentalize): There must not be a general
notion of something being \more privileged than" something else. Specif-
ically Legion is not more privileged than the objects it supports, and it is
completely natural to set up non-overlapping domains/policies. This pre-
cludes the notion of a \Legion root," guaranteeing that no single entity
can gain system-wide ultimate privileges.

(iv) Minimize functionality to minimize threats: The less one expects Legion
to do, the harder it is to corrupt it into doing the wrong thing! Thus, for
example we have moved a great deal of functionality into user-de�nable

12

objects-responsible agents and security agents were discussed here, but
similar moves have been made for binding, scheduling, etc. This increases
the control that an individual or organization has over their destiny.

(v) If it quacks like a Legion...: Legion is de�ned by its behavior, not its
code. There are a number of security-related implications of this. First,
it's possible for several entities to implement compatible Legion systems;
this reduces the possibility of a primordial trojan horse; it also permits
competing, guaranteed implementations. Second, it opens the possibility
of dynamic behavioral checks|imagine a benign worm that periodically
checks the behavior of a system that purports to be a Legion, for example.

(vi) Firewalls: It must be possible to restrict the machines on which an ob-
ject is stored or is executed, and conversely restrict the objects that are
stored or executed on a machine. Moreover, the mechanism that achieves
this must not be part of Legion. It must be de�nable on a per class basis
just like MayI and Iam. (Of course, like the other security aspects of Le-
gion objects, we expect that the majority of folks will simply inherit this
mechanism from a class that they trust). Our prototype implementation
uses user-level, per-class and per-host scheduling support to achieve this.

(vii) Punishment vs. Prevention: It will never be possible to prevent all mis-
deeds, but it may be possible to detect some of them and make public
visible examples of them as a deterrent.

It should be noted that there is an informal, but important link between phys-
ical and computer security that is especially relevant to this discussion. Any
individual or organization concerned with security must control the physical
security of their own equipment; doing this increases the probability that the
Legion code at their own site is valid. That, coupled with the security agent's
ability to monitor every invocation, can be used to further increase an instal-
lation's con�dence.

6 Recapping Some Options

The Legion security model shifts the emphasis from \system as enforcer" to
user-de�nable policies-to give users responsibility for their own security-and
to provide a model that makes both the conceptual cost and performance cost
scale with the security needed. At one extreme, the blithely trusting need do
nothing and the implementation can optimize away all the checking cost. At
the other extreme, ultimate security suggests staying o� the net altogether.
Between these extremes lie several options, including:

{ High security systems might be willing to accept the base Legion commu-
nication mechanism, but not even trust it to MayI or check certi�cates
properly. For these we suggest embedding checks in each member function

13

and use physical security in conjunction with Legion.
{ Somewhat less sensitive systems might trust the local \imposter checking"
mechanisms to adequately ensure that MayI and certi�cate checking is done.
However, they may still want to invoke MayI on each member function
invocation to obtain a high degree of assurance. Such systems may execute
authentication protocols with the responsible or calling agent to ensure that
the remote Legion is not an imposter.

{ In situations where security is not a primary concern, careful systems may
feel that a lighter weight check, and not call back to the responsible or
calling agent for authentication checks.

Our point is that there is a rich spectrum of options and costs; the user must
choose the level at which they are su�ciently con�dent. Caveat emptor!

7 Related Work and CORBA Security

There is a rich body of research on security that spans a spectrum from the
deeply theoretical to the eminently practical, most of which is relevant to this
work. In particular, all of the work on cryptographic protocols [10] and on
�rewalls [1] is directly applicable to the development of Legion itself. Other
work, such as that on the de�nition of access control models [4], on infor-
mation
ow policies [9] and on veri�cation [7] will be more applicable to the
development of MayI functions-which we will lean on as we develop a number
of base classes from which users may inherit policies. In the same vein we will
lean on existing technologies such as Kerberos [5], RSAREF [8], Sesame [6],
etc.

We are not aware, however, of other work that has turned the problem inside
out and placed the responsibility for security enforcement on the user/class-
designer. The closest related work is in connection with CORBA; indeed many
of the concerns we raised in the introduction are also cited in the OMGWhite
Paper on Security [2]. A credo of that work, however, was \no research," and
so they retain the model of system as enforcer. Indeed an exemplar of our
concern with this approach is where they talk about the trusted computing
base (TCB):

\The TCB should be kept to a minimum, but is likely to contain operating
system(s), communications software (though note that integrity and con�-
dentiality of data in transit is often above this layer), ORB, object adapters,
security services and other object services called by any of the above during
a security relevant operation."

It's precisely this sort of very large \minimum" security perimeter that caused

14

us to wonder whether there was another way.

8 Technical Challenges and Future Work

There are many technical issues that we are unable to discuss in depth due
to limited space. These issues pose challenging research questions and greatly
a�ect the design of Legion security. For example,

{ Encryption: Legion does not specify the use of any particular encryption al-
gorithm, although our prototype implementation uses the RSAREF public-
key encryption library. Applications concerned about the privacy of their
communication should choose any encryption scheme they deem necessary.
But that does raise one question, namely, how much protection of mes-
sages should be done by default? Should we send messages in the clear
but digitally signed? Should we encrypt every message? What is the right
performance-cost trade-o�?

{ Key Management: Public-key cryptography is the basis of authentication in
Legion. However, Legion eschews any distinguished trusted objects. Name
and key management thus need to be handled without any centralized
component|no single key certi�cation or distribution server. To make the
key management simple, we de�ne that every object's unique identi�er be
the public key of that object. A new key generation scheme is developed to
do completely distributed, unique key generation. See [11] for more details
on Legion key generation and management.

{ Rogue Legionnaires: Will our users be comfortable enough to use Legion
despite the fact that Legion itself could be corrupted? Do the principles we
stated in fact help enough to make users con�dent? Can we describe the
limits of the approach well enough for users to make well-informeddecisions?

{ Composition of security policies: In a multi-policy environment like Legion,
what can we say when objects that enforce di�erent policies are used to-
gether? In particular what happens when con
icting, even contradictory,
security policies operate in conjunction? What can we do to e�ectively re-
solve con
ict should it arises and help users evaluate combinatorial policies?
How can we express policies to expedite evaluation and composition?

{ There are a host of implementation issues related to other functional aspects
of a real system|e.g., scheduling|that have security implications (how
better to e�ect denial of service than to simply not schedule the task!).

We are testing out our ideas and starting to address these questions on a
Legion prototype which is currently operational both within the University of
Virginia and at our research partners (including NSF Supercomputer Centers,
DoD MSRC, and DoE National Labs). As the overall Legion project proceeds,
we will be able to develop the model in a more realistic context and scale.

15

We have built several base classes with security policies based on access con-
trol lists. We are in the process of incorporating Kerberos authentication into
Legion. In cases where our simple login mechanism is deemed insu�cient, we
are working with our research partners to integrate more stringent mechanisms
into Legion.

9 Conclusion

Building metasystems across the Internet will inevitably involve the interac-
tion and cooperation of diverse agents with di�ering security and integrity
requirements. There will be \bad actors" in this environment, just as in other
facets of life. The problems faced by Legion-like systems will have to be solved
in this context.

The model we have developed and implemented, we believe, is both a concep-
tually elegant and a robust solution to these problems. We believe it is fully
distributed; it is extensible to new, initially unanticipated types of objects;
it supports an inde�nite number and range of policies and login mechanisms;
it permits rational, user-de�ned trade-o�s between security and performance.
At the same time, we believe that it has an e�cient implementation.

In the coming months, as we deploy Legion in a nationwide metasystem, we
will test the \we believe" part of the last paragraph.

References

[1] William R. Cheswick and Steven M. Bellovin, \Firewalls and Internet Security,"
Addison-Wesley, 1994.

[2] B. Fairthorne, \OMG White Paper on Security," OMG Security Working
Group, April 1994

[3] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver
and Paul F. Reynolds Jr. \Legion: The Next Logical Step Toward a Nationwide
Virtual Computer," June 8, 1994. UVA CS Technical Report CS-94-21.

[4] B. W. Lampson, \Protection," Proceedings of the Fifth Princeton Symposium
on Information Sciences and Systems, pp 437-443. March 1971.

[5] B. C. Neuman, T. Y. Ts'o, \Kerberos: An Authentication Service for Computer
Networks," IEEE Communications, Vol. 32, pp. 33-38, Sept. 1994.

[6] Tom Parker and Denis Pinkas, \SESAME Technology Version 3, Overview,"
http://www.esat.kuleuven.ac.be/cosic/sesame/doc-txt/overview.txt, May
1995.

16

[7] R. Rivest, A. Shamir, and L. Adleman, \A Method for Obtaining Digital
Signatures and Public-key cryptosystems," Communications of ACM, vol. 21,
no. 2 Feb. 1978, pp. 120-126.

[8] RSA Data Security, Inc., http://www/rsa.com.

[9] J. H. Saltzer, \Protection and the Control of Information Sharing in Multics,"
Communications of the ACM, Vol 17, No 7, pp 388-402, July 1974.

[10] Bruce Schneier, \Applied Cryptography," John Wiley & Sons, Inc. 1994.

[11] Chenxi Wang, Wm A. Wulf, \A Distributed Key Generation Technique," UVA
CS Technical Report, CS-96-08.

[12] William A. Wulf, Roy Levin, Samuel P. Harbison, \HYDRA/C.mmp: An
Experimental Computer System," McGraw-Hill, New York, 1981.

17

