
Cluster Computing 3 (2000) 63–73 63

Heterogeneous process state capture and recovery through Process
Introspection

Adam Ferrari a, Steve J. Chapin b and Andrew Grimshaw a

a University of Virginia, Charlottesville, VA 22904, USA
b Syracuse University, Syracuse, NY 13244, USA

The ability to capture the state of a process and later recover that state in the form of an equivalent running process is the basis for
a number of important features in parallel and distributed systems. Adaptive load sharing and fault tolerance are well-known examples.
Traditional state capture mechanisms have employed an external agent (such as the operating system kernel) to examine and capture
process state. However, the increasing prevalence of heterogeneous cluster and “metacomputing” systems as high-performance computing
platforms has prompted investigation of process-internal state capture mechanisms. Perhaps the greatest advantage of the process-internal
approach is the ability to support cross-platform state capture and recovery, an important feature in heterogeneous environments. Among
the perceived disadvantages of existing process-internal mechanisms are poor performance in multiple respects, and difficulty of use
in terms of programmer effort. In this paper we describe a new process-internal state capture and recovery mechanism: Process
Introspection. Experiences with this system indicate that the perceived disadvantages associated with process-internal mechanisms can
be largely overcome, making this approach to state capture an appropriate one for cluster and metacomputing environments.

1. Introduction

The ability to capture the state of a process and later re-
cover that state in the form of an equivalent running process
is the basis for a number of important features in parallel
and distributed systems. For example, process migration
policies supporting adaptive load sharing and/or fault toler-
ance rely on a state capture facility. Process state capture
and recovery is the basis of a large class of backward error
recovery schemes documented in the fault tolerance litera-
ture [6]. Optimistic systems such as Time Warp [12] rely
on the ability to “roll back” a local computation to provide
semantic guarantees (such as the causal ordering of mes-
sage delivery), and thus also require a process state capture
mechanism. Distributed object systems can use process
state capture and recovery to implement long-lived persis-
tent objects efficiently, as is done in the Legion system [15].

Traditional state capture mechanisms have employed an
external agent (such as the OS kernel) to examine and cap-
ture process state [19]. However, the increasing preva-
lence of heterogeneous cluster and “metacomputing” sys-
tems [10] as high-performance computing platforms has
prompted investigation of process-internal state capture
mechanisms. Among the greatest advantages of process-
internal approaches are portability and the ability to support
cross-platform state capture and recovery. A process can
interpret the semantics of its own data regions, and thus
produce a state description that can be used to reconstruct
an equivalent process on a different platform. This flexibil-
ity has been found to be a valuable feature in heterogeneous
cluster and metacomputing environments such as Legion,
Cumulvs [14], and Dome [2].

Despite its increasing adoption in such environments,
process-internal state capture and recovery has thus far been

considered lacking in at least two respects: performance
and usability. Performance has been considered problem-
atic for process-internal mechanisms by a number of mea-
sures. For example, process-internal approaches require a
state-capture request to be sent to the process. The de-
lay inherent in servicing this request appears as decreased
responsiveness of the mechanism in contrast to external ap-
proaches can initiate state capture at any time. Furthermore,
the added overhead of maintaining meta-information (such
as type) for the process’s data regions can add run-time
overhead, lowering raw computational performance. Lack
of usability of process-internal mechanisms is due mainly to
added programmer effort and/or limitations on the types of
services the process can use. For example, in some cases,
such as Legion, the code needed to describe and recover
the process’s state must be provided by the user.

In this paper we describe a new process-internal state
capture and recovery mechanism: Process Introspection.
This system is based on a combination of library and com-
piler support to maximize the ease of use of process-internal
state capture and recovery. For platform-independent mod-
ules, the compiler completely automates state capture and
recovery. For modules where automatic transformation is
not possible, a flexible library providing the needed primi-
tive operations for cross-platform state capture and recov-
ery makes adding state capture functionality straightfor-
ward. In section 2 we describe the design and interface
of our system, and in section 3 we present key features
of the implementation. We argue that the design of the
Process Introspection system overcomes the usability flaws
in existing process-internal state capture mechanisms. In
section 4 we describe the results of performance measure-
ments of our system. These results indicate that a cross-
platform process-internal state capture mechanism can offer

 Baltzer Science Publishers BV



64 A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection

good performance. Our results lead us to conclude that the
process-internal approach to state capture is the appropri-
ate one for cluster and metacomputing environments. In
section 5 we describe related work, and in section 6 we
discuss our conclusions.

2. Design

The design of a process-internal state capture mechanism
is naturally based upon the modification of user programs to
render them both self-describing and self-recovering. Be-
yond the basic goal of providing a platform-independent
state capture and recovery service, important goals for such
a mechanism are to provide good performance and ease of
use. In this section, we describe the key features of our
design as a basis for discussing how it meets these goals.

2.1. Model

In our model, a running process is defined to be in
one of three states: normal execution, state-capture, or
state-recovery. The state of the process is changed by the
program itself, either in response to requests from outside
sources or as the result of an internal trigger such as peri-
odic checkpoint scheduling. We require that the program
periodically execute poll points: points in the code at which
the process determines if it is in the state-capture mode, in
which case a state description should be produced if one
has been requested (analogous to Bus Stops in Heteroge-
neous Emerald [23]). Certain parts of the process state are
easily captured – for example, any global variable or heap
allocated data structures are globally addressable and are
thus easy to manipulate. The key difficulty in creating the
state description is the capture of the subroutine invocation
stack state.

In the Process Introspection approach, the process uti-
lizes the native “subroutine return” mechanism to capture
stack state. When a poll point is encountered during state-
capture mode, the current active subroutine captures its own
state, including its local variables and the logical location
of the poll point at which the current call frame was saved
(e.g., this can simply be an integer that uniquely identi-
fies the poll point within the subroutine), and returns to the
caller. After the return, the caller saves its own state in the
same way, and this frame-by-frame stack capture repeats
until the base subroutine has been reached, at which point
the stack state capture is complete. For this stack-saving
mechanism to work, the program must execute a poll point
after returning from each subroutine call. At this point,
the program might be in normal execution mode, in which
case it proceeds with normal processing, or it might be in
state-capture mode, in which case the stack save process
continues. We name these required poll points following
subroutine returns mandatory poll points. In fact, more fre-
quent checks for state capture initiation may be desirable,
in which case additional optional poll points can be placed
anywhere in a program.

A side-effect of capturing state in this manner (but not
of simply polling) is the destruction of all data on the call
stack, implying that the program must perform some of
the work of a restart to recover the stack if it is to con-
tinue execution after capturing state. We note an important
optimization to the above mechanism: in the process of
capturing the state of each frame, the frame state should
also be saved in memory. This permits the implementation
of a quick stack recovery after state capture. Because the
state capture mechanism is non-destructive to other state
(i.e., global variables and dynamically-allocated memory
blocks), this optimization permits the process to proceed
without unreasonable delay after state capture.

A further optimization to the described code modifica-
tion scheme is also possible. Although we initially stated
that mandatory poll points must be placed immediately fol-
lowing every subroutine call statement, we can in practice
loosen this restriction. Given knowledge that all possible
call chains resulting from a subroutine call would contain
no poll points, the mandatory poll point following the call
site can safely be omitted. For example, consider a call
to a simple function that calls no other functions and con-
tains no poll points. Upon return from this function, we
know that a capture of the stack could not yet have been
initiated. Even if state capture had been requested while
the function was executing, we can safely continue normal
execution after the call returns before beginning to service
the request.

To effect restarts, the process employs the native “sub-
routine call” mechanism. On a restart, the program is
started and is immediately placed in state-recovery mode.
The base subroutine of the program always executes a pro-
logue that checks for state-recovery mode, then condition-
ally recovers the data for its local stack frame and jumps
to the location in the subroutine for the call to the next
stack frame, i.e., the poll point at which the state of the
current stack frame was captured. Each stack frame in turn
is recovered by its respective subroutine, which must im-
plement its own stack-recovery prologue. Before jumping
just past the poll point that initiated the state capture, the fi-
nal frame resets the process state to normal-execution mode
to complete the state recovery and resume normal execu-
tion. Of course, at some point during the recovery process,
the global variables and heap allocated data must also be
restored.

With these additions, the program can restore an interme-
diate state as produced by its own state capture mechanism.
In particular, since the state capture and recovery mecha-
nisms are specified at a platform-independent level of rep-
resentation, different implementations of the program (i.e.,
versions compiled for different architectures) can read and
write one another’s captured state, assuming the associated
data is stored in a universally recognizable format, masking
issues such as data representation (cf. Sun XDR [21]).



A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection 65

2.2. System usage

This model of process-internal state capture and recov-
ery appears at first glance to require significant programmer
effort. In practice, many of the described code transforma-
tions can be automated. The Process Introspection system
does this through the use of a source code compiler and run-
time support library. For computational modules that are
specified in a platform-independent form (i.e., that are writ-
ten in a high-level language, are type-safe, and do not rely
on the underlying features of a particular hardware platform
for correctness), the described code transformations can be
completely automated.

We expect this completely automatic usage of the system
to be the typical mode employed by application program-
mers such as domain scientists. However, some program
modules are not amenable to automatic transformation. For
example, modules that deal with state that is external to the
process (e.g., file system interfaces, communication inter-
faces) cannot be automatically transformed by our system
to incorporate state capture and recovery. In some cases,
it seems that this is in fact an inherent limitation of our
approach. Consider a message passing interface module.
A compiler attempting to incorporate state capture and re-
covery functionality into such a module would have no way
to know how to encode the capture of state such as mes-
sages in transit, nor would it be able to determine the state
capture coordination semantics required by the application.
In such cases, our model requires that the module be aug-
mented by hand to incorporate state capture and recovery
functionality – this typically involves the creation of a state-
capture-enabled wrapper module for the interface in ques-
tion. We envision the creation of state-capture-enabled li-
brary modules as an infrequent activity undertaken by clus-
ter and metacomputing software system designers. These
wrapper libraries can then be reused by application pro-
grammers whose own modules will be transformed auto-
matically. To support the interoperation of state-capture-
enabled library modules and automatically transformed ap-
plication modules, and to ease the hand-coding of state cap-
ture mechanisms for library modules, our system supports a
library interface. This library provides basic services such
as cross-platform data-format transformation routines, rou-
tines for constructing descriptive meta-information about
the data regions of the process (such as a data type de-
scription table), and an event model for allowing separately
developed state-capture-enabled modules to interoperate.

3. Implementation

3.1. Overview

We have constructed a prototype implementation of the
Process Introspection system consisting of a library mod-
ule as described in section 2.2, the Process Introspection Li-
brary (PIL), and a source code translator called APrIL (Au-
tomatic application of the Process Introspection Library)

which can automatically apply the Process Introspection
transformations to platform-independent modules written in
ANSI C. The implementation has been tested on a vari-
ety of workstations and PC platforms, including Sun work-
stations running Solaris or SunOS 4.x, SGI workstations
running IRIX 5.x and 6.x, IBM RS/6000 workstations run-
ning AIX, DEC Alpha workstations running Digital Unix
or Linux, and PC compatibles running Linux or Microsoft
Windows 95/NT.

3.2. The Process Introspection Library

The Process Introspection Library (PIL) is the most ba-
sic component of the system. In the case of hand-coded
modules, the PIL provides the API for implementing a
module’s state capture and recovery capability. In the case
of compiler-transformed modules, the PIL provides needed
run-time support. The primary job of the Process Introspec-
tion Library is to provide an easy-to-use mechanism for de-
scribing, saving, and restoring data regions in as automatic
a fashion as possible. In addition, the library provides an
event-based mechanism for coordinating the activities of
modules during state capture and recovery.

The key elements of the PIL are:

The Type Table: To capture or restore a memory block,
the PIL must have a description of the basic data types
stored in that memory block. The PIL provides an inter-
face to a table which maps type identifiers to logical type
descriptions. These type identifiers can then be used to
tag data regions, indicating the types of the data found
in the region. The type table is not unlike a type de-
scription table that might be found in a compiler, except
that it is available and dynamically configurable at run-
time. The interface provides pre-defined type identifiers
for the basic types supported by ANSI C, and provides
an interface for composing vector and structure descrip-
tions based on existing types.

Data Format Conversion Module: The PIL provides an
interface for reading and writing typed data from and to
a state description in an architecture-independent format,
respectively. This interface is responsible for masking
differences in byte ordering and floating point represen-
tation. When storing captured state, the library automat-
ically includes a description of the data formats used.
Later, during state recovery, the data format can be con-
verted to the restarting processor’s representation, a pro-
tocol known as receiver-makes-right [26]. Given this
approach, the library must contain routines to translate
the set of basic data types from every available format
to every other available format. This O(n2) require-
ment (where n is the number of different data formats)
may initially appear unnecessarily costly; why not in-
stead use an O(n) solution such as XDR? In fact, the
receiver-makes-right protocol makes sense only in light
of the small number of data formats actually used by
current computer systems and because the cost of for-
mat conversions is avoided for the frequent case in which



66 A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection

captured state is recovered on a computer with similar
data formats to the one on which it was created.

Pointer Analysis Module: Memory addresses (i.e., point-
ers) contained within memory blocks are inherently
platform-dependent. Thus, they must be stored using
a logical format in place of the physical address. Simi-
larly, at state recovery time, logical pointer descriptions
must be translated to determine the actual local mem-
ory address values that should be restored. Our mecha-
nism for this assigns a unique identification number to
every memory block of interest in the program, and a
logical pointer description comprises a <memory block
identification tag, offset> tuple. Based on this idea, the
Pointer Analysis Module provides a convenient interface
for generating logical descriptions of memory locations
and for mapping these logical descriptions into actual
memory addresses. The pointer description implemen-
tation is based on simple case analysis; a pointer can be
one of exactly five types: a reference into a heap allo-
cated memory region, a reference into a global memory
block, a reference into a local (stack) memory block, a
pointer to some code entry point, or value which has
special meaning in the program (such as NULL in C).
The PIL associates id numbers with memory blocks of
each class (except the last), providing the basis for log-
ical pointer description.

The primary challenge posed by the use of logical
pointer descriptions is the translation of these descrip-
tions during state recovery – offsets into a memory re-
gion may need to be transformed due to differences in
data size and alignment between the capture and re-
covery platforms. The Pointer Analysis Module uses
a pointer translation algorithm that transforms offsets
based on the type descriptions available for all memory
regions (supported by the Type Table), and knowledge
of the data formats and alignment issues of the source
and target platforms. Full details of this algorithm are
presented in [7].

Global Variable Table: The PIL provides an automated
mechanism for saving and restoring the values of global
variables at state capture and restart time, respectively.
The mechanism requires that the memory addresses, type
table indices, and sizes of all globally-addressable mem-
ory blocks be registered with the PIL in a Global Vari-
able Table. Besides providing automatic capture and
recovery of globals, the Global Variable Table is used to
perform pointer analysis for addresses pointing within
global memory blocks.

Heap Allocation Module: The PIL provides a mechanism
for allocating memory blocks from the heap that will be
automatically captured and restored. The Heap Alloca-
tion Module exports heap wrapper routines that perform
typed memory block allocation and deallocation. Similar
to the case with globals, these wrapper routines maintain
a table of the addresses, type table indices, and sizes of
all active dynamically-allocated memory blocks.

Code Location Table: To fully resolve the meaning of all
pointers, the PIL must maintain a table that maps logi-
cal code entry points to actual memory code locations.
All subroutine entry points (and other addressable code
locations) in a program that may be referred to by a
pointer must be assigned a logical identification number
via the Code Location Table interface.

Active Local Variable Table: Because pointers can refer
to local variables, the addresses, type table indices, and
sizes of some local variable memory blocks should be
registered with the PIL. Note, only those locals whose
addresses are ever examined (and thus whose addresses
might consequently be found in some memory block)
need to be registered with the Active Local Variable
Table. Local variables whose addresses are never exam-
ined should not be registered, preserving the possibility
of register assignment.

Event Module: The Event Module provides the primary
mechanism for modules to customize their state cap-
ture and recovery behavior. The Event Module allows a
program module to register function callbacks that will
be invoked by the system automatically at state cap-
ture and recovery time. To understand the importance
of this module, consider the case of a file system in-
terface module. Besides the normal activities of saving
and restoring the data in memory blocks (as is done by
every module, and which is typically automated using
the PIL), the file module must perform extra actions.
During state recovery, for example, it must use the lo-
cal file interface to re-open the files that were in use
when state was captured. It might also be responsi-
ble for maintaining the file version differences associ-
ated with different captured states. These extra activi-
ties can be coded in the form of event handlers which
would be executed in response to state capture and restart
events.

3.3. The APrIL source code translator

The programming interface provided by the PIL auto-
mates some of the elements of the Process Introspection
model, but is still relatively low-level. Although issues
such as data representation are handled, using only the
PIL the programmer would be left to manually perform
code modifications such as poll-point placement and pro-
logue generation. Fortunately, a source code translator can
automate this process for platform-independent programs.
Using the Sage++ toolkit [3], we have implemented this
functionality in the APrIL compiler. APrIL takes as input
ANSI C code, and produces as output new ANSI C code
transformed to utilize the PIL as a run-time interface. The
resulting C code can then be compiled using any ANSI
C compiler. In this section, we examine the fundamental
APrIL transformations: poll points, function prologues, and
function epilogues.



A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection 67

Figure 1. An optional poll point.

3.3.1. Poll points
APrIL inserts poll points throughout the code it trans-

forms. At each poll point, code is inserted to check if the
process is in state capture mode – this simply involves ex-
amining the value of the global variable PIL State (we
currently set the value of this variable using an interrupt
handler that processes external state capture requests in the
form of signals; in principle it could be set by other triggers
such as periodic checkpoint scheduling, or a state capture
request message). Immediately following the poll point,
code is inserted which will be executed when state capture
is in progress. This code records the location in the cur-
rent subroutine at which state is captured and jumps to a
function epilogue that saves the actual parameters and local
variables in the frame.

As described in the model, APrIL generates two kinds
of poll points: optional and mandatory function call site
poll points. Optional poll points can be inserted in the
transformed code between any two statements in the uni-
versal representation. These poll points are designated
by a single labeled code location (i.e., a C label state-
ment). An example of an optional poll point is depicted in
figure 1.

In our model, mandatory poll points are inserted by
APrIL after every function call statement in the code1 –
these mandatory poll points are required to implement the
stack save mechanism based on the native function return
mechanism. When a function returns in APrIL-transformed
code, the return may be due to the normal completion of
the function, or it may be a return being performed in the
context of capturing the stack. Mandatory poll points must
catch and implement this latter case. Mandatory poll points
require two labeled code locations: one before the call site
(to handle the case that state capture was initiated in a
higher call frame), and one after the call site (in the event
that state capture is initiated immediately following a nor-
mal function return). An example of a mandatory poll point
is given in figure 2. Note that if this poll point continues

1 In fact, function calls in C occur not as specific statements, but instead
within expressions. Expressions in turn can appear within other expres-
sions, in more complex statements, etc. (e.g., a function call might be
a parameter to another function call, which might be part of the condi-
tional for an “if” statement). To perform the transformations as described
in the model, APrIL utilizes a pre-processing step in which it extracts
functions from complex expressions and statements, and reduces them
to simple C expression statements containing a single function call.

Figure 2. A mandatory poll point.

a stack capture that was initiated in a higher call frame,
the code location is recorded as 2 to ensure that on recov-
ery this frame will jump to label PIL PollPt 2, which
will result in a call to the next function needing to restore
state. On the other hand, if this poll point initiates state
capture, it records the code location as 3 to ensure that on
recovery the frame jumps beyond the function call – be-
cause this poll point initiated the stack capture, the call to
function must have completed normally (without cap-
turing state), and thus we must not re-call the completed
function on recovery.

The placement of poll points in the code is a critical
performance issue for APrIL. If poll points are placed so
that they occur frequently, the introduced overhead may be
large. On the other hand, if poll points are placed too
infrequently, a state capture request sent to the process
may suffer a long delay before being serviced. Clearly,
a balanced approach based on the user’s tolerance of in-
troduced overhead and state-capture-request wait time is
required. If the user expects to perform state capture oper-
ations infrequently (e.g., once every minute), but demands
little introduced overhead, then very sparse, conservative
poll-point placement is called for. Alternatively, if state-
capture-request wait times must be very low (for example,
if state capture will be used for code migration to effect
load sharing), more frequent, aggressive placement is ap-
propriate. However, the problem of statically examining
code and determining the introduced overhead and result-
ing state-capture-request wait time based on a given poll-
point-placement strategy is difficult, if not impossible. The
current APrIL solution is to provide a set of heuristic place-
ment strategies with varying degrees of placement aggres-
siveness.

Our currently-supported placement strategies are based
on the observation that the primary mechanisms for induc-
tion in procedural programming are iteration (loops) and
subroutine invocation (recursion). Although subroutine in-
vocation already causes periodic polling (due to mandatory
poll point placement), it seemed likely that the addition of
optional poll points into loops could provide more complete



68 A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection

periodic polling coverage over the lifetime of a program
and thus lead to lower on-average state-capture-request wait
times. Care must be taken, however, as the naive policy
of placing a poll point inside each loop body could lead to
poor performance – careless placement of poll points can
prevent the application of many back-end optimizations, in-
cluding those performed on loops. To allow further control
over the placement of poll points, the APrIL heuristic poli-
cies classify loops based on the number of statements in
the loop body and the nesting level of the loop. Compile
time switches allow the user to restrict placement to loops
with given characteristics. Examples of possible policy se-
lections include:

• No optional poll points (mandatory poll points only).

• Optional poll points placed as the last statement in each
nesting loop (i.e., each loop that contains at least one
other loop).

• Same as the previous, but poll points are added only to
outermost loops with greater than k statements.

Although many more policies are available, a better in-
terface to the compiler would allow the programmer to
specify the desired performance characteristics of the trans-
formed code, which would guide the automatic selection
of a policy. The degree to which this ideal can be ap-
proximated is the subject of future work. The performance
characteristics of three currently available APrIL placement
options are examined in section 4.

3.4. Function prologues

Function prologues are added to every function defin-
ition transformed by APrIL. If the addresses of any local
variables or parameters (i.e., any objects stored on the stack)
are examined in the function body, APrIL generates calls
to the PIL to register those variables in the local variable
table. APrIL then generates a check to determine if the
process is in state recovery mode (recall that stack restora-
tion in our model is implemented using the normal function
call mechanism). APrIL generates code to be executed in
case of a restart, which will restore the values of all local
variables and actual parameters (using the PIL interface),
determine the code location in the function at which the
state for this frame was captured, and jump to the appro-
priate poll point label in the function. Figure 3 illustrates
an APrIL function prologue transformation. The function
heading given in figure 3(a) is transformed to include the
prologue depicted in figure 3(b).

This function has an array X whose address is used at
some point in the function, and thus a call to register the
address, size, and type of this array is generated. The pro-
logue checks the value of the PIL State variable to de-
termine if this function call was made in the process of
restoring a call stack. If it was, the actual parameters and
locals are restored using PIL routines. The point in the
function at which the state was captured is then jumped
to using a goto based on a code location marker read

Figure 3. A function prologue transformation.

from the captured state. For some code locations (those
corresponding to optional poll points and the second label
associated with mandatory poll points), the generated code
first calls PIL DoneRestart() to complete the restart
process and unset the PIL State variable.

3.4.1. Function epilogues
Poll points inserted by APrIL generate code to jump to a

function epilogue during state capture to save all of the lo-
cal variables and actual parameters for the function. APrIL
generates an epilogue for each function it transforms that
contains any poll points (if the function never polls for state
capture requests, it will never need to save its state) placed
beyond the last return statement; the epilogue is accessi-
ble only by goto, and is not executed during the normal
progression of the program. The function epilogue for the
example function from figure 3 is depicted in figure 4.

This design for saving the local state associated with
a function call has the inherent implication that all local
variables must be visible from the outermost scope of the
function. To ensure this, APrIL moves the declaration of
locals declared in inner scopes to the head of the function,
renaming where appropriate to avoid name clashes.



A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection 69

Figure 4. A function epilogue.

3.4.2. Module initialization
The three types of transformations discussed thus far are

primarily aimed at implementing the state capture and re-
covery of function call stacks. APrIL also generates a rou-
tine to register any types defined by the translated module
with the Type Table and register any globals defined by the
translated module in the Global Variable Tables. The gen-
eration of this function is a straightforward process based
on any types and global variables found in the module.

3.4.3. Heap allocation transformations
One of the more difficult transformations that APrIL per-

forms is the translation of all heap allocation requests into
calls to the typed allocation routines provided as part of the
PIL. Since heap allocation is not part of the C language
syntax but is instead handled by library routines, APrIL
is required to perform a heuristic to determine when heap
allocation is taking place, and the type and size of the allo-
cated memory. The currently implemented heuristic finds
all calls to the standard C library heap allocation routines
(e.g., malloc(), calloc(), realloc(), etc.), uses
the parameters to the call to determine the allocation size,
and attempts to determine the allocation type first based on
the type that the return value is cast to (if it is available),
and (failing that), on the type of the variable to which the
return value is assigned. While this heuristic is adequate
in many cases, it can fail if the memory allocation method
used does not match our expected patterns. Future work
will include investigating better heuristics for finding and
wrapping heap allocations.

4. Performance

To examine the performance characteristics of our pro-
totype implementation, we applied the system to a set of
numerical applications. Tests were run on the heteroge-
neous set of test platforms listed in table 1. This set of test
programs included:

• mm (matrix multiply) – Computes the product of two
dense, square matrices of 256 × 256 double precision
floating point numbers using the standard O(n3) algo-
rithm.

• gs (Gauss–Seidel) – Solves the sparse linear system of
104 equations resulting from the discretization of a two
dimensional Poisson equation with Dirichlet boundary

Table 1
Test platforms.

Platform RAM OS Compiler

x86 200 MHz Pentium Pro 64 MB Linux 2.0 GNU gcc 2.7.2
dual processor

Alpha 500 MHz DEC Alpha 128 MB Linux 2.0 GNU gcc 2.7.2
RS/6000 PowerPC 601-based 128 MB AIX 4.2 xlc 3.1

IBM RS/6000
MIPS 100 MHz MIPS R4000 64 MB IRIX 6.2 SGI cc

SPARC 50 MHz 4-processor 512 MB SunOS 5.5.1 SPARCCompiler
SparcStation-20/514 C 3.0

conditions. The algorithm used is a standard Gauss–
Seidel five point stencil iteration applied to a 80 × 80
grid of solution elements until the change in the two-
norm of the solution is less than 10−2.

• qs (quicksort) – Applies a standard quicksort algorithm
to an array of 221 integers.

• ge (Gaussian elimination) – Performs Gaussian elimina-
tion with partial pivoting on a dense 512× 512 matrix,
followed by a back-substitution phase to obtain the so-
lution vector.

• cg (conjugate-gradient) – Applies a basic conjugate-
gradient iteration (no preconditioning) to the same linear
system solved by the Gauss–Seidel test, using the same
convergence criterion as that example, with the solution
discretized onto a 200× 200 grid.

Our first set of measurements was performed to examine
the run-time overhead introduced by our code transforma-
tions. The transformations applied by APrIL add overhead
to programs not only because they result in the execution
of extra instructions, but also because they affect the ability
of compilers to apply certain optimizations. The degree to
which the APrIL code transformations affect performance
is primarily a function of two factors: the policy for placing
poll points in the code, and the characteristics of the code
itself. To examine the effects of these factors, we applied
three of the available set of heuristic poll-point-placement
policies supported by APrIL to each of our test applications.
The selected transformation heuristics were:

• Mandatory – no optional poll points placed, only those
required for correct capture and recovery of the subrou-
tine invocation stack.

• Conservative – in addition to mandatory poll points, this
policy places an optional poll point after the last state-
ment in the body of each nesting loop (i.e., a loop con-
taining at least one other loop in its body).

• Aggressive – in addition to those placed by the conserv-
ative policy, this policy places a poll point in each loop
with more than one statement in its body. For exam-
ple, whereas the conservative policy would not place a
poll point in an innermost loop, this policy may perform
such a placement.

We timed each of the test programs, first compiled with-
out APrIL transformations, and then transformed using each



70 A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection

Figure 5. Execution time of optimized example programs (std) compared
to execution time of optimized transformed programs (mand, cons, aggr)
on x86 platform. Times in seconds. Percent increase in run time is

indicated for each transformed program.

of the above policies (“-O” optimization was performed in
all cases). For the transformed versions, we measured the
time to completion without capturing or recovering during
execution (measured run times included time to load the
process). In figure 5 we display the relative performance of
non-transformed and transformed test programs on the x86
platform. Additional results for the other test platforms are
presented in [7] – because all platforms exhibited roughly
the same relative performance for the different transformed
program versions, we present the timings for only one ar-
chitecture here.

The first trend that we observe in these results is that
the overhead of our transformations under the mandatory
and conservative placement policies is generally low – well
below 10% in all cases except for quicksort under the con-
servative policy. As expected, more aggressive placement
can easily lead to high overhead. However, we note that
the impact of the poll-point-placement policy is dependent
on the application. Given our loop-structure based place-
ment heuristics, the loop structure of an application will
largely determine the performance implications of a given
policy. Finally, we note that in all cases, at least one of the
examined policies was able to achieve low net overhead.

Low introduced overhead, while important, is only half
of the story. Recall, the frequency at which poll points are
encountered not only affects overhead, but also determines
the average amount of time that state capture requests would
have to wait before being serviced. In our model, a state
capture request is sent to the process, resulting in a global
variable being set to indicate that state capture has been
requested. It is only later, when the process reaches a poll
point, that the state capture actually begins. This naturally
leads to the question, if a process is sent a state capture
request, how long will it be before a poll point is reached
and state capture begins? To investigate the state-capture-
request wait time resulting from our system, we modified
the APrIL compiler to instrument transformed programs at
each poll point to keep a running count of the number of
poll points encountered. Assuming an approximately equal
distribution of poll points encountered over time, the av-
erage interval between poll points is simply the execution
time divided by the poll point count. Based on measure-

Table 2
Average poll point interval (on x86 platform). Times in milliseconds

unless otherwise noted.

Policy mm gs qs ge cg

Mandatory 3.7 sec. 0.42966 0.00026 1.2 sec. 5.16433
Conservative 0.05606 0.01057 0.00017 0.06234 0.20863
Aggressive 0.02769 0.00015 0.00016 0.06175 0.00022

ments of the poll point counts, we present the computed
average poll point interval for each program on the x86
test platform in table 2.

These results put the performance overheads presented
in figure 5 in perspective. First, we note the correspondence
between high poll point counts and high introduced over-
head. This confirms our intuition that introduced overhead
will be a function of the frequency at which poll points are
encountered. Next, we note that optional poll point place-
ment is important. For the matrix multiply and Gaussian
elimination examples, the mandatory-only policy resulted
in very few poll points, and thus very high average poll
point intervals. This result is an artifact of the structure
of these applications: each uses few function calls, and
coarse, long-running loops – attributes that are not uncom-
mon in high performance applications. Thus, we conclude
that mandatory placement alone is insufficient for some ap-
plications.

Perhaps the most important result these measurements
provide is that for each application, at least one of the ex-
amined policies resulted in both low introduced overhead
(i.e., below 10%) and a small average poll point interval
– generally below 0.1 millisecond. Since captured state
will generally be written to stable storage (e.g., check-
point/restart applications) or over a network (e.g. migration
applications), poll point intervals of this duration are orders
of magnitude less than the time required to perform state
capture. Thus, for all applications, an acceptable level of
overhead and very low on-average poll point interval were
both possible with at least one policy. The implication of
this fact is that Process Introspection can be applied both
automatically, and with good performance.

Our final set of experiments was performed to exam-
ine the efficiency of the state capture and recovery mech-
anisms. For these tests, we instrumented the PIL to note
the time when either state capture or recovery was initiated,
and to subsequently record the completion time. To obtain
repeatable results, we also instrumented the PIL to automat-
ically force a state capture request after a set number of poll
points encountered during execution. We ran each of our
transformed test applications (compiled with the conserv-
ative poll point placement policy) until 50000 poll points
were encountered. At that point, a checkpoint was written
to disk, and the process was terminated. We then used the
checkpoint files produced on each platform to time a restart
from disk. In figure 6 we present the results for the x86
platform.

We found that state capture and recovery costs on each
platform were generally a function of state size and the



A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection 71

Figure 6. State capture and recovery costs on x86 platform. Times in
milliseconds; recovery time listed for checkpoints produced on each of
the five test platforms. The captured state size for each test program is

listed under the results for that program.

I/O performance possible on the test platform. For exam-
ple, in figure 6 we note that the time to capture the state
of the Gaussian elimination program is roughly twice that
required to capture the state of the conjugate gradient pro-
gram, and there is approximately a factor of 2 difference in
the programs’ state sizes. An important result we notice is
that the cost of restarting from a checkpoint produced on a
platform with an incompatible data representation is greater
than that of a compatible restart. For example, the times to
perform state recovery from the incompatible RS/6000 for-
mat presented in figure 6 are generally about 40% greater
than the times required to restart using the native x86 for-
mat. The RS/6000 uses big-endian byte ordering, and thus
extra time is required during state recovery to perform byte
swapping. This result is not only important for making
scheduling decisions (e.g., this might affect selection of a
target host for migration), but also confirms our intuition
that receiver-makes-right data conversion can improve per-
formance.

5. Related work

The idea of capturing the state of a running process on
one kind of computer system and then later restarting an
equivalent process on a different type of computer system
has been the subject of a number of previous papers. Per-
haps the most general coverage of this topic is presented
by von Bank et al. in [25]. In this paper, the authors iden-
tify the general idea that a procedural computation can be
modeled as progression through a sequence of compatible
well-defined states: points in execution at which the state
of a process can be used to fully describe the equivalent
state of any other implementation of the process. In our
model, these compatible well defined states are present in
the form of process states when poll points are encountered.
Related implementation work done by this group integrated
a limited form of heterogeneous process migration into the
V system [5]. As is typical in existing approaches, this

implementation relied on the operating system to examine
and translate the state of the process.

A novel approach to the heterogeneous state cap-
ture/restore problem was proposed by Theimer and
Hayes [24]. In their proposed solution, the state of a process
is examined and captured using compiler-generated sym-
bol mapping information. Instead of being captured in a
data-only format that must be used in conjunction with a
separate executable (a feature common in the other systems
presented in this section, as well as our own), the process
state is instead captured in the form of an intermediate code
program. This program is constructed to re-initialize the
full equivalent state of the captured process and proceed
from its logical point of state capture. The actual process
migration then consists of compiling this program on the
destination machine. Such a mechanism would have the de-
sirable property of requiring very little external support at
the restart host (beyond the ability to recompile the interme-
diate code program). Our approach extends this desirable
feature of autonomy to include state capture as well as state
restore.

A more recent and fully implemented approach to the
heterogeneous state capture problem was presented by
Steensgaard and Jul in [23]. In this paper, the authors
describe an extension of the thread- and object-mobility
capability of the heterogeneous Emerald distributed system
to allow native code migration among heterogeneous hosts
(previous implementations supported native code mobility
for homogeneous hosts). In their implementation, native
code threads can migrate at well-defined points during exe-
cution, called Bus Stops, at which time control is transferred
to the Emerald run-time system, and a complete descrip-
tion of the running code is constructed by the system using
compiler-generated mapping information (the same princi-
ple as used for symbolic debugging). This approach has
the attractive property that modification to the generated
code is not required; the compiler is simply responsible for
generating the extra mapping information required by the
run-time system. This approach differs from ours in exactly
this respect – while we require modification of programs to
support state capture and recovery, we do not require sup-
port from any external agent for this functionality. This
affords us the desirable attribute of generality – our tool
can be integrated into existing distributed systems with-
out requiring modification to those systems or to our basic
process state capture mechanism, and Process Introspec-
tion does not require extensive run-time system support.
Our current implementation requires only that the system
interface be accessible from C code, and that it be possible
to construct a wrapper interface for system services that
maintain external state for processes.

A similar approach to that of heterogeneous Emerald
called Tui [20] has been proposed by Smith and Hutchinson.
This approach also involves the use of compiler-generated
state mapping information in the form of the symbol ta-
ble typically used by symbolic debuggers. The Tui imple-
mentation has the additional desirable feature of supporting



72 A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection

programs written in C. Again, this approach differs from
Process Introspection in being external-agent-based – spe-
cial programs are required to capture and restore the process
state.

Recent work in the area of mobile agents has resulted
in a number of state-capture and recovery mechanisms to
support migration in mobile agent languages. For exam-
ple, the Sumatra [1] language supports the capture and re-
covery of Java threads in a heterogeneous environment.
State capture and recovery in Sumatra is achieved through
modifications to the Java Virtual Machine bytecode inter-
preter. A more flexible approach is supported by the Ara
system [17]. As opposed to Sumatra, which mandates use
of the Java language, Ara supports mobile agents in an
extensible set of interpreted languages, currently including
interpreted C and Tcl. To support state capture of a running
agent, the interpreters used in the system must be able to
capture their own full state (i.e., including the state of a pro-
gram being interpreted). A primary drawback of these and
many other mobile agent systems is the use of interpreted
execution for agents. In our intended application domain,
this model fails to meet the performance requirements of
most users. A notable system that overcomes this limita-
tion is Extended Facile [13], an agent programming system
based on the Facile functional programming language. In
Extended Facile, agents are first-class functions which may
be transferred to remote nodes for execution. The code
for agent functions in Extended Facile can be transferred
in a higher-level, platform independent representation or
as native-code executable instructions (or a mixture of the
two). Extended Facile utilizes the continuation-based com-
pilation model of the language to support state capture and
recovery at function boundaries.

6. Conclusions

We have presented Process Introspection, a process-
internal heterogeneous process state capture and recovery
mechanism based on automatic code modification. Experi-
ences with this system have produced encouraging results.
First, we found that relatively simple poll-point-placement
policies can achieve acceptable levels of incurred overhead
while at the same time providing good performance in terms
of average checkpoint-request wait time. This result is im-
portant – process internal state capture and recovery made
possible by periodic polling can be utilized effectively, ef-
ficiently. Furthermore, the design of our system demon-
strates that process-internal state capture and recovery need
not place undue burden on the programmer – the typical us-
age mode for our system is fully automatic, requiring only
an additional compiler translation of the user’s application
program.

We believe our mechanism is general and widely ap-
plicable in a variety of different distributed system en-
vironments. For example, we are currently working on
adapting the system for use in the Legion [15] meta-
computing system, and are investigating integration into

a PVM [9] or MPI [11] system. This adaptability is explic-
itly supported by our PIL API which provides a medium
for APrIL-transformed modules and hand-coded system-
interface wrapper modules to interoperate. Furthermore,
we have designed extensions for our system to handle ad-
ditional programming constructs such as threads, and lan-
guages such as Fortran and C++. These designs (presented
in [7]) are the subject of ongoing development and evalu-
ation.

References

[1] A. Acharya, M. Ranganathan and J. Saltz, Sumatra: A language for
resource-aware mobile programs, in: Mobile Object Systems, eds.
J. Vitek and C. Tschudin (Springer, Berlin, 1997).

[2] A. Beguelin, E. Seligman and M. Starkey, Dome: Distributed
object migration environment, Technical Report CMU-CS-94-153,
Carnegie Mellon University (May 1994).

[3] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srini-
vas and B. Winnicka, Sage++: An object-oriented toolkit and class
library for building Fortran and C++ restructuring tools, OONSKI
(1994).

[4] J. Casas, D.L. Clark, P.S. Galbiati, R. Konuru, S.W. Otto, R.M.
Prouty and J. Walpole, MIST: PVM with transparent migration and
checkpointing, in: 3rd Annual PVM Users’ Group Meeting, Pitts-
burgh, PA (May 7–9, 1995).

[5] F.B. Dubach, R.M. Rutherford and C.M. Shub, Process-originated
migration in a heterogeneous environment, in: Proceedings of the
ACM Computer Science Conference (February 1989) pp. 98–102.

[6] E.N. Elnozahy, D.B. Johnson and Y.M. Wang, A survey of rollback-
recovery protocols in message-passing systems, Technical Report
CMU-CS-96-181, Carnegie Mellon University (October 1996).

[7] A.J. Ferrari, Process state capture and recovery in high-performance
heterogeneous distributed systems, Ph.D. thesis 9802, Department of
Computer Science, University of Virginia (January 1998).

[8] R.F. Freund and D.S. Cornwell, Superconcurrency: A form of dis-
tributed heterogeneous supercomputing, Supercomputing Review 3
(October 1990) 47–50.

[9] A. Geist, A Beguelin, J. Dongarra, W. Jiang, R. Manchek and
V.S. Sunderam, PVM: Parallel Virtual Machine (MIT Press, Cam-
bridge, MA, 1994).

[10] A.S. Grimshaw, J.B.Weissman, E.A. West and E. Loyot, Meta sys-
tems: An approach combining parallel processing and heterogeneous
distributed computing systems, Journal of Parallel and Distributed
Computing 21(3) (June 1994) 257–270.

[11] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Paral-
lel Programming with the Message-Passing Interface (MIT Press,
Cambridge, MA, 1994).

[12] D.R. Jefferson, Virtual time, ACM Transactions on Programming
Languages and Systems 7(3) (July 1985) 404–425.

[13] F.C. Knabe, Language support for mobile agents, Ph.D. thesis, avail-
able as Technical Report CMU-CS-95-223, Carnegie Mellon Univer-
sity (December 1995).

[14] J.A. Kohl and P.M. Papadopoulos, Efficient and flexible fault toler-
ance and migration of scientific simulations using CUMULVS, in:
2nd SIGMETRICS Symposium on Parallel and Distributed Tools,
Welches, OR (August 1998).

[15] M.J. Lewis and A.S. Grimshaw, The core Legion object model, in:
Proceedings of IEEE High Performance Distributed Computing 5,
Syracuse, NY (August 6–9, 1996) pp. 551–561.

[16] M.J. Litzkow, M. Livny and M.W. Mutka, Condor – A hunter of idle
workstations, in: Proceedings of the Eighth International Conference
on Distributed Computing Systems (1988) pp. 104–111.

[17] H. Peine and T. Stolpmann, The architecture of the Ara platform for
mobile agents, in: Proceedings of the First International Workshop



A. Ferrari et al. / Heterogeneous process state capture and recovery through Process Introspection 73

on Mobile Agents: MA’97, Berlin, Germany (April 7–8, 1997), eds.
K. Rothermel and R. Popescu-Zeletin, Lecture Notes in Computer
Science, Vol. 1219 (Springer, Berlin, 1997).

[18] J. Robinson, S.H. Russ, B. Flachs and B. Heckel, A task migration
implementation for the message passing interface, in: Proceedings
of the Fifth IEEE International Symposium on High Performance
Distributed Systems, Syracuse, NY (August 1995).

[19] J.M. Smith, A survey of process migration mechanisms, Operating
Systems Review 22(3) (July 1988) 28–40.

[20] P. Smith and N.C. Hutchinson, Heterogeneous process migration:
The Tui system, Technical Report, University of British Columbia
(February 28, 1996).

[21] Sun Microsystems, External Data Representation Reference Manual
(Sun Microsystems, 1985).

[22] Sun Microsystems, Java Object Serialization Specification, Revi-
sion 0.9 (1996).

[23] B. Steensgaard and E. Jul, Object and native code thread mobility
among heterogeneous computers, SOSP (1995).

[24] M.M. Theimer and B. Hayes, Heterogeneous process migration by
recompilation, in: Proceedings of the 11th International. Confer-
ence on Distributed Computing Systems, Arlington, TX (May 1991)
pp. 18–25.

[25] D.G. von Bank, C.M. Shub and R.W. Sebesta, A unified model of
pointwise equivalence of procedural computations, ACM Transac-
tions on Programming Languages and Systems 16(6) (November
1994) 1842–1874.

[26] H. Zhou and A. Geist, Receiver makes right data conversion in PVM,
in: Proceedings of 14th International Conference on Computers and
Communications, Phoenix (March 1995) pp. 458–464.

Adam Ferrari. Photograph and biography not available at time of publi-
cation.

Steve J. Chapin. Photograph and biography not available at time of
publication.

Andrew Grimshaw. Photograph and biography not available at time of
publication.


