
46 November 1998/Vol. 41, No. 11 COMMUNICATIONS OF THE ACM

How they create the illusion of a giant desktop
computational environment—transparent,

distributed, shared, secure, fault-tolerant.

MetasystemsMetasystems

Andrew Grimshaw, Adam Ferrari,

Greg Lindahl, and Katherine Holcomb

Metasystems give users the illusion that the
files, databases, computers, and external devices they
can reach over a network constitute one giant trans-
parent computational environment. With a metasys-
tem, users can share files, computational objects,
databases, and instruments. They need not decide
where to execute their programs nor copy the neces-
sary binaries and data files; the metasystem does
these jobs. And new classes of applications—meta-
applications—are available through the emerging
infrastructure, further increasing users’ efficiency
and productivity.

Here we explore the potential of metasystems and
the technical problems that have to be solved to real-
ize them, highlighting five metasystem uses: shared
persistent object spaces; transparent remote execu-
tion; wide-area queueing systems; wide-area parallel
processing; and meta-applications. We also cover an
example of a meta-application being developed by
NPACI—a coupled ocean-atmosphere-weather
model.

A metasystem’s building blocks are geographi-
cally separated resources (people, hosts, instruments,
databases) connected by one or more high-speed
interconnections. An essential software layer, often
called middleware, transforms a collection of inde-
pendent hosts into a single, coherent virtual
machine, giving the user the power of a unified envi-
ronment. To the user, this virtual machine is a single

entity that executes applications, schedules applica-
tion components, detects and recovers from faults,
provides protection and security to users and
resource owners, and brings users together through
enhanced support for collaboration and sharing.

Why don’t we use metasystems? The fundamen-
tal difficulty is lack of software—specifically, an
inadequate conceptual model for metasystem soft-
ware design. Faced with accelerating changes in
hardware and networking, the computing commu-
nity has sought to stretch the existing paradigm for
sharing resources over a network—interacting
autonomous hosts—to a level that exceeds its abili-
ties. The result is a collection of partial solutions,
some good in isolation but lacking coherence and
scalability, making development of even a single
wide-area application at best demanding and at
worst nearly impossible.

The challenge to the computer science commu-
nity is to provide a solid, integrated middleware
foundation on which to build wide-area applications.
NPACI, in its role as agent for high-end computing,
has an additional challenge—to design and deploy
metasystems technology providing the high perfor-
mance needed for the most demanding scientific
applications.

As envisioned, the NPACI metasystem contains
thousands of hosts and petabytes of data. Users will
have the illusion of a very powerful computer on

COMMUNICATIONS OF THE ACM November 1998/Vol. 41, No. 11 47

Land cover of Africa in Plate Caree projection.
(Courtesy, Joseph Já Já and John Townshend, University of Maryland.)

48 November 1998/Vol. 41, No. 11 COMMUNICATIONS OF THE ACM

their desks that can manipulate objects representing
data resources, such as digital libraries or video
streams; applications, such as teleconferencing or
physical simulations; and physical devices, such as
cameras, telescopes, and linear accelerators. The
objects being manipulated may be shared with other
users, allowing construction of shared virtual
workspaces.

This metasystem will support the illusion of a sin-
gle machine by transparently scheduling application
components on processors; managing data migra-
tion, caching, transfer, and coercion, or the masking
of data-format differences between systems; detect-
ing and managing faults; and ensuring that users’
data and physical resources are pro-
tected. Moreover, the technology used
by the metasystem will have to scale
appropriately.

The potential benefits of such a meta-
system to the scientific community are
enormous, including:

• More effective collaboration, achieved
by putting coworkers in the same vir-
tual workplace

• Higher application performance, owing
to parallel execution and exploitation of
off-site resources

• Improved access to data and computa-
tional resources

• Improved researcher and user productiv-
ity, resulting from more effective collab-
oration and better application
performance

• A considerably simpler programming
environment for applications
programmers

There are many ways to use a metasys-
tem, ranging from relatively simple ones to
intricate implementations exploiting its abilities
to solve currently impossible problems. We sketch
five wide-ranging uses to illustrate some of the
possibilities.

Shared persistent object (file) space. The simplest
service a metasystem provides is location transparency,
whereby users gain authorized access to entities with-
out knowing where they reside. For file access, this
well-understood type of service is often called a “dis-
tributed file system.” Well-known distributed file sys-
tems include NFS [9] and Andrew [10].

In shared object spaces, instead of just sharing
files, all entities (files as well as executing tasks) can
be named and shared among authorized users. This
merging of “files” and “objects” is driven by the
observation that files are merely a special kind of
object that happens to live on a disk, so files are
slower to access but persist when the computer is
turned off. In a shared object space, a file object is a
typed object with an interface that exports standard
file operations, such as read, write, and seek.
The interface can also define an
object’s properties,

including its
persistence, fault, syn-

chronization, and performance
characteristics. Files do not have to be

of the same type.
Beyond basic sequential files, class-based persis-

tent objects offer a range of opportunities, including:

• Application-specific “file” interfaces. For
example, instead of just read, write, and
seek, a 2D-array-file may have additional
functions, such as read_column,
read_row, and read_sub_array. The
advantage is the
ability to interact with the file system in

Above: Where damage starts; opposite: Stress in a composite.
(Courtesy, Kumar Vemaganti, University of Texas, Austin.)

application terms rather than as arbitrarily
linearized streams of data.

• User specification of caching and prefetch
strategies. Users can exploit application domain
knowledge about access patterns and locality to
tailor the caching and prefetch strategies to the
application.

• Asynchronous I/O. Combined with a
parallel object implementation, I/O
can be performed concurrently with
application computation. The combi-
nation of user specification of
prefetching and asynchronous
I/O can drastically reduce I/O delays.

• Multiple outstanding I/O requests. Again,
if combined with a parallel object
implementation, the application can
request remote data long before it is
actually needed. The application can
then compute while I/O is being
processed. By the time data is needed,
it may already be available, resulting
in almost zero latency.

• Data format heterogeneity. Persistent
classes may be constructed to hide
data format heterogeneity,
automatically translating data as
it is read or written.

• Active simulations. In addition to pas-
sive files, persistent objects can also be
active entities. For example, a factory
simulation can proceed at a specified pace (such
as wall clock time) and be accessed (read) by
other objects. The factory simulation may itself
use and manipulate other objects.

Transparent remote execution. A slightly more
complex service is transparent remote execution.
Consider the following hypothetical situation: A user
is working on a computationally complex sequential
code, perhaps written in C or Fortran. After compil-

ing and linking the application, the user has to
decide where to execute the code, choosing to run it
on the local workstation (assuming adequate space
and speed are available), on a local high-performance
machine, or at a remote supercomputer center. The
choices involve many trade-offs. First, there is the

scheduling issue: Which choice will result in the
fastest turnaround? This decision is especially crucial
when the user has accounts at multiple centers. How
is the user to know which choice is likely to result in
the best performance without manually checking
each? Next, there are the inconveniences of using
remote resources. Data and executable binaries may
first have to be copied physically to a remote center
and the results copied back for analysis and display.
Finally, there are the administrative difficulties of

COMMUNICATIONS OF THE ACM November 1998/Vol. 41, No. 11 49

The challenge is to provide a
solid, integrated middleware foundation on

which to build wide-area applications.

acquiring and maintaining multiple accounts at
multiple sites.

In a metasystem, the user can simply initiate the
application at the command line. The underlying
system selects an appropriate host from among those
the user is authorized to use, transfers binaries if nec-
essary, and begins execution. Data is transparently
accessed from the shared persistent object space, and
the results are stored in a shared persistent object
space for later use.

Wide-area queueing system. Queueing systems
are part of everyday life at production supercom-
puter centers. The idea is simple: Rather than inter-
actively starting a job, the user submits a description
of the job to a program (the queueing system), and

that program schedules the job to execute at some
point in the future. The purpose of the queueing sys-
tem is to optimize an objective function, such as sys-
tem utilization, minimum average delay, or a
priority scheme. There are more than 25 different
queueing systems in use today, including NQS, PBS,
Condor, and Codine [8].

Just as queueing systems can be used to manage
homogeneous resources at a particular site, meta-
system queueing systems manage heterogeneous
resources at multiple sites. This feature enables sub-
mission of a job from any site and, subject to access
control, automatic scheduling of the job somewhere
in the metasystem. Further, if binaries for the appli-
cation are available for multiple architectures, the
queueing system has a choice of platforms on which
to schedule the job.

The advantage to the user over the current state of
practice in distributed systems is significant. Users
with multiple accounts at different sites often have
to shop around, looking for the shortest queue in
which to run a job, and may need to copy data
between remote sites. This manual metascheduling

process consumes the most precious resource—user
time—which is better spent doing science.

Wide-area parallel processing. Another opportu-
nity offered by metasystems is to connect multiple
resources for the purpose of executing a single appli-
cation, enabling scientists to tackle mission-critical
problems on a much larger scale than would other-
wise be possible. However, not all problems can
exploit this capability, since the application must be
latency-tolerant (it is, after all, at least 30msec from
California to Virginia). Examples of applications in
this category include “bag-of-tasks” problems and
many regular finite-difference methods.

Consider typical bag-of-tasks problems, such as
parameter-space studies, Monte Carlo computations,
and other simple data-parallel problems. In a para-
meter-space study, the same program is repeatedly
executed with slightly different parameters. (The
program may be sequential or parallel.) In a Monte
Carlo simulation, many random trials are per-
formed; the trials may be distributed easily among
a large number of workers and the results gathered.

In a simple data-parallel problem, the same opera-
tion is performed on each of many different data
points, and the computation at each data point is
independent of those for all other data points.

These bag-of-tasks problems are well suited to
metasystems because the related applications are
highly latency tolerant. While one computation is
being performed, the results of the previous compu-
tation can be sent back to the caller and the parame-
ters for the next computation sent to the caller.
Further, the order of execution is unimportant, com-
pletely eliminating the need for synchronization
among workers, thus simplifying load-balancing
significantly. The computations can also be spread
easily to a large number of sites because the compu-

50 November 1998/Vol. 41, No. 11 COMMUNICATIONS OF THE ACM

Host 1 Host 2

Boundary Layer

Figure 1. Two geographically separated distributed-memory
MPPs connected via high-speed link and a user at a visualization
station at a third site. The hosts can be the same or have
different processors and interconnection networks.

Figure 2. One possible decomposition of a 2D grid
between two MPPs

tations do not interact in any way.
A more complex class of problems might com-

prise 2D finite-difference applications, such as time-
explicit hydrodynamics. Suppose we wish to use two
distributed-memory massively parallel processors
(MPPs) and a visualization system at different sites,
all connected by a fast communication pipe running
at 100Mb–1Gb (see Figure 1). Further suppose that
the first host has twice as many processors as the sec-

ond one has. Balancing the load requires decomposi-
tion of the problem in such a way that the first host
has twice as much of the data as the second.

Given the decomposition in Figure 2 and infor-
mation on the size of the mesh points, we can easily
compute the bandwidth requirements of the com-
munications channel to determine whether the total
latency is acceptable.

Meta-applications
The most challenging class of applications is the
meta-application—a multicomponent application
whose components may have been previously exe-
cuted as standalone computations.

The generic example in Figure 3 shows three pre-
viously standalone applications connected to form a
larger, single application. Each of the components
has hardware affinities. Component 1 is a fine-grain
data-parallel code requiring a tightly coupled MPP
machine, such as an IBM SP2; Component 2 is a
coarse-grain data-parallel code that runs efficiently
on an inexpensive “pile of PCs” machine; and Com-
ponent 3 is a vectorizable code that runs best on a
vector machine, such as a Cray T90. Component 1
also has a very large database physically located at
Site 1. Component 1 is a shared-memory Fortran
code, Component 2 is written in C using the Mes-
sage Passing Interface (MPI) [7], and Component 3
is written in Cray Fortran.

The underlying software layer has to take into
account component characteristics, distributed data-
bases, scheduling, visualization, fault tolerance, and
security.

Component characteristics. Meta-application

components are often written and maintained by
geographically separate research groups. The compo-
nents may be written in different languages or may
use different parallel dialects of the same language
(such as Fortran components using MPI, Parallel
Virtual Machine, or PVM, [4] and High Perfor-
mance Fortran, or HPF). Since the components often
represent valuable intellectual property for their
owners, these owners may want to protect their code
by keeping it in house. Similarly, software licenses
may be available only on a subset of the available
hosts. The metasystem has to facilitate intercompo-
nent communication when the components are in
different languages, and it has to migrate binaries
transparently from site to site.

Geographically distributed databases. Data is
usually physically close to the research group that
collects and maintains it. So before execution can
begin, the data often has to be copied to a single
location. The challenge to the metasystem is to
determine when it makes sense to move the compu-
tation to the data or vice versa.

Scheduling. Scheduling meta-applications is
another significant challenge. The general schedul-
ing problem of mapping an arbitrary task graph onto
more than three processors is known to be an
extremely difficult problem. Application-class-spe-
cific heuristics that exploit knowledge about the
application (the “shape” of the graph) have to be used
[1]. Even so, the scheduling problem is quite difficult.

Consider scheduling a simple meta-application
with three data-parallel components onto a single
distributed-memory MPP (see Figure 4). First, the
number of processors allocated to each component
must ensure that each component progresses at the
same rate; efficiency may require that each compo-
nent use a different number of processors. Second,
the component tasks have to be mapped to the

COMMUNICATIONS OF THE ACM November 1998/Vol. 41, No. 11 51

Component 1
Shared-memory

Fortran

Site 1

Component 2
MPI/C

Component 3
Cray Fortran

(vector)

Component 1

Component 2

Component 3

Figure 3. A multicomponent application

Figure 4. One possible mapping of three data-parallel
components onto an MPP

processors in such a way as to reduce the communi-
cation load among them; random placement can lead
to communication bottlenecks. Finally, the compu-
tational requirements of the components may vary
over time, requiring dynamic repartitioning of the
available resources.

Now suppose that instead of a fixed number of
processors on an MPP, we have to choose among a
large number of diverse systems, each connected to
the others by networks of widely varying capability.
The scheduling problem is certainly a tough one.

Visualization. During computation, users may
want to see what is happening, at the global scale
and at smaller scales. Further, they may wish to look
inside individual models at particular points and
perhaps adjust the computation by modifying some
parameters.

Fault tolerance. As the number of hosts and
processors participating in the computation
increases, the probability of a failure increases and
the mean time to failure decreases. When the mean
time to failure is less than the completion time for a
run of the application, the probability that the appli-
cation will finish successfully is low. Fault tolerance
is a necessity under these circumstances.

Security. Security encompasses a range of issues,
including authentication, access control, and encryp-
tion. Different users have different requirements.
Suppose, though, that a meta-application is using
databases that are distributed geographically. These
databases must be protected against unauthorized
access and update, and the distributed components’
results must be protected from tampering or
destruction. Finally, data transferred among compo-
nents may be proprietary and need protection
against tampering and snooping.

A meta-application, in sum, may be composed of
multiple models running at different scales, written
by different research groups using different lan-
guages or parallel processing tools, using propri-
etary, geographically distributed databases, on faulty
hardware. Such applications require a system that

cleanly and easily supports interoperability among
components, as well as the plug-and-play incorpora-
tion of components into a running program and the
scheduling of components onto processing resources
(within a large MPP and between hosts). Further,
the system must support transparent, secure, and
efficient access to remote databases while providing
robust integrated visualization.

Metacomputing at NPACI
Metacomputing is one of NPACI’s four enabling
technology thrust areas. (The other three are also
covered in this issue.) The NPACI metasystems plan
consists of three broad components: rapid hardening
and deployment of leading-edge metasystems soft-
ware, integration of software and tools developed in
the other technology thrust areas, and close collabo-
ration among metasystem thrust teams and pioneer-
ing applications teams.

NPACI does not support basic research per se in
metasystems or in the other thrust areas. Rather, it
supports technology transfer from existing funded
research projects to the production computing envi-
ronment. However, research software is rarely imme-
diately ready for production use. Before such
software can be used, it must undergo aggressive
testing and elimination of bugs. And the develop-
ment of documentation, sample codes, tutorials, and
other training materials is needed to make the soft-
ware accessible to mainstream scientific users.

The NPACI hardening effort consists of four meta-
systems projects: AppLeS [1], Globus [2, 3], Legion
[5, 6], and the Network Weather Service (NWS) [11].

AppLeS (Application-Level Scheduler). Directed
by Fran Berman of the University of California, San
Diego, this project focuses on developing applica-
tion schedulers for individual metasystem applica-
tions. Each AppLeS agent couples with its
application to develop and deploy a customized
application schedule that can respond to the
dynamic and heterogeneous performance character-
istics of the underlying metasystem. AppLeS uses

52 November 1998/Vol. 41, No. 11 COMMUNICATIONS OF THE ACM

Metacomputing is indispensable for
the success of large, complex simulations.

application-specific information, dynamic system
information (provided by NWS), and predictive
models to develop a performance-efficient, time-
dependent, and load-dependent schedule.

AppLeS applications can either target networked
environments with no additional infrastructure or
use the infrastructure provided by other NPACI
metasystem projects. AppLeS agents are being devel-
oped and deployed for such NPACI applications as
protein-docking codes, a synthetic-aperture radar
atlas (SARA), and tomography codes.

Globus. Globus is an infrastructure toolkit devel-
oped by Carl Kesselman of the University of South-
ern California and Ian Foster of Argonne National
Laboratory with a broad group of collaborators. It
provides services in the areas of communication,
resource location/allocation, security, information,
and data access. Globus has withstood many tests,
including a recent one involving battlefield simula-
tions distributed across more than 30 machines and
representing the independent activity of more than
100,000 tanks, trucks, and other units.

For each of Globus’s five service areas, there is a
defined application programming interface (API)
and a set of implementation notes explaining the
semantics and the implementation. For example,
Globus communication services (the Nexus commu-
nication library) provide unicast and multicast mes-
sage delivery services. Globus information services
(through its Metacomputing Directory Service) pro-
vide a uniform mechanism for obtaining real-time
information about system structure and status.
Globus resource location and allocation services pro-
vide mechanisms for expressing application resource
requirements, for identifying resources meeting
these requirements, for scheduling resources once
they are located, and for initiating and managing
computation on these resources.

Legion. Legion is a reflective object-based meta-
system being developed by the author Andrew
Grimshaw and his group at the University of Vir-
ginia. Legion aims to provide a single, coherent, vir-
tual machine addressing scalability, programming
ease, heterogeneity, fault tolerance, security for users
and resource providers, site autonomy, multilan-
guage support, and interoperability.

Legion supports a range of services and program-
ming tools, including a shared, secure persistent
object space supporting authentication and arbitrary
access control lists for objects; parallel programming
tools, such as MPI, PVM, the Mentat programming
language, and Fortran dataflow; complete site auton-
omy (a site can decide which users can run which
binaries on the site); a complete set of authentica-

tion, encryption, and access control services; and
user-defined scheduling and resource management.

Network Weather Service. NWS, being devel-
oped by Richard Wolski of the University of Califor-
nia, San Diego, dynamically forecasts the
performance that various network and computational
resources can deliver over a given time interval. It is
being used to track and monitor the performance of
end-to-end very high-speed Backbone Network Ser-
vice (sponsored by the NSF). It operates a set of sen-
sors (network and CPU monitors) from which it
gathers readings of current conditions. It then uses
sophisticated numerical models to generate forecasts
of what the conditions will be for a given time frame.
The supported forecasting methods treat successive
measurements from each monitor as a time series.
These methods fall into three categories: mean-
based, median-based, and autoregressive methods.

NWS tracks the accuracy of all predictors to gen-
erate a forecast, using prediction error as an accuracy
measure and selecting the predictor exhibiting the
lowest cumulative error measure at any given
moment. In this way, NWS automatically identifies
the best forecasting technique for any given resource.

Metasystems represent the glue that unites all of
the other NPACI projects. Over time, the other
enabling technologies and the applications proto-
types will exist in a metacomputing environment.
For example, KeLP coupling and interpolation and
the NetSolve numerical object environment
(described in J. Saltz’s article in this section) are
already being integrated with Legion and Globus.
And application integration is moving ahead. An
example is the collaboration between the Legion
team and an earth science application originating at
the University of California at Los Angeles.

Coupled Ocean-Atmosphere Modeling
Global climate modeling is an example of a field that
can benefit from metacomputing. Climate modeling
has progressed beyond atmospheric simulations to
include multiple aspects of the Earth system, such as
full-depth world ocean models, high-resolution
land-surface models, sea-ice models, and chemistry
models. Each component model generally requires a
different resolution in space and time. Some compo-
nents, such as a full model of atmospheric chemistry,
can add as much as an order of magnitude to the total
processing time.

The models usually originate with different
research groups around the world and are written in
different languages. An additional complication is
that many models have parallel implementations,
often using different parallel toolkits. With existing

COMMUNICATIONS OF THE ACM November 1998/Vol. 41, No. 11 53

tools, coupling these models would be tedious and
error-prone at best; not only do the data formats and
protocols have to be implemented by hand, but (for
the sake of performance) models have to be sched-
uled appropriately on the available resources. In
addition, databases required for the component
models are usually geographically distributed, and if
there is a huge quantity of data, the data needed for
a desired set of resolutions and models may not fit on
the machine on which the simulation is to be
performed.

The metacomputing environment will enable the
models to run on different, perhaps physically
remote, machines, as long as fault tolerance and
security are addressed. Security problems are exacer-
bated by the operation over a network of far-flung
resources, because the data and the results of the cou-
pled models are the intellectual property of the
researchers who compiled the input data and pro-
duced the results. A final issue is visualization. The
larger and more complex the simulation, the more
critical is the need for visualization—for humans to
be able to digest the enormous amount of data gen-
erated by high-resolution scientific models.

The Earth System Model (ESM) being developed
by NPACI partners R. Carlos Mechoso and Richard
Turco at UCLA is a coupled atmosphere and ocean
model that can include atmospheric and ocean
chemistry to study such problems as the effect on
climate of chlorofluorocarbons and aerosols. Work is
also under way to couple a regional mesoscale model
developed at the Lawrence Berkeley Laboratory to
the ESM to enable researchers to focus on the effect
of global climate phenomena, especially El Niño and
La Niña, on California weather. Future plans call for
even smaller scales, down to individual bays and
estuaries along the California coast.

The global atmospheric model is currently being
run at a resolution of approximately 1.25 degrees of
latitude 3 1 degree of longitude, with 30 vertical
atmospheric levels; such a model can resolve large
cyclonic weather systems. Although this is state-of-
the-art climate modeling, it is still too coarse a grid
to resolve details of smaller individual weather sys-
tems. The mesoscale model is run with a resolution
of 20km over a region encompassing mainly Califor-
nia and Nevada.

A full system of this nature would be nearly
impossible to run on existing individual supercom-
puters, even those that are massively parallel. ESM
alone can consume most of the cycles of an MPP
Cray T3E, while the current implementation of the
mesoscale model runs most efficiently on machines
like a Cray C90 or T90. Therefore, the Legion

research team is developing a Legion-based cou-
pling module to manage the data exchange and syn-
chronization among various models running on
different hardware. The researchers in charge of the
component models would need to add only a few
communication calls to their codes; no major
changes or rewriting would be required—a major
advantage when dealing with complex scientific
models.

ESM communicates internally via a native paral-
lel toolkit, such as MPI or PVM. There is no imped-
iment to using Legion in this situation, but we have
decided not to alter the current implementation.
The ESM master process acts as the intermediary
between ESM and the Legion coupler. The Legion
coupler receives data from ESM, performs the
appropriate transformations from the ESM grid to
the regional grid, and sends the transformed data to
the regional model. From the perspective of the
models, this is little different from writing to or
reading from a file. Once full coupling is achieved
between ESM and the regional model, a dynamic
interface is essential, but much of the communica-
tion effort has already been completed by way of a
unidirectional interface. Moreover, maintaining a
separate “manager” means that resolutions can be
changed and models interchanged or added with lit-
tle difficulty.

This coupling project illustrates clearly the
advantage of a metacomputing approach for a
demanding, important scientific simulation. The
models run optimally on different architectures but
must communicate at regular intervals to calibrate
one another. Each model has to use a large store of
surface data that might be in a format incompatible
with the architectures on which the other models are
being run. The lengthy runs required for climate
simulation make fault tolerance imperative, espe-
cially in a coupled environment in which one model
could hang hopelessly if another fails. Metacomput-
ing is thus indispensable for the success of large,
complex simulations.

Computational Productivity
Metasystems technology is maturing. Three years
ago at the Supercomputing95 conference, the I-Way
was a one-time demonstration of a large number of
applications that had been constructed in a rather ad
hoc manner. Today, metasystems testbeds are opera-
tional on an almost full-time basis. As the technol-
ogy matures further and becomes hardened enough
for use in production systems, we can expect a sig-
nificant increase in the computational productivity
of the sciences. c

54 November 1998/Vol. 41, No. 11 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM November 1998/Vol. 41, No. 11 55

This work is supported in part by DARPA (Navy) contract N66001-96-C-8527; DOE
grant DE-FD02-96ER25290; DOE contract Sandia LD-9391; Northrup-Grumman
(for the DoD HPCMOD/PET program); DOE D459000-16-3C; and DARPA (GA) SC
H607305A.

References
1. Berman, F., and Wolski, R. Scheduling from the perspective of the

application. In Proceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, IEEE Computer Society Press, Piscataway, N.J.,
1996.

2. Foster, I., and Kesselman, C. Globus: A metacomputing infrastructure
toolkit. Int. J. Supercomput. Appl. 11, 2 (1997), 115–128.

3. Foster, I., and Kesselman, C., Eds. The Grid, Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, San Francisco, 1998.

4 Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and
Sunderam, V. PVM: Parallel Virtual Machine. MIT Press, Cambridge,
Mass., 1994.

5. Grimshaw, A., and Wulf, W. The Legion vision of a worldwide virtual
computer. Commun. ACM 40, 1 (Jan. 1997), 39–45.

6. Grimshaw, A., Ferrari, A., and West, E. Mentat. In Parallel Program-
ming Using C++, G. Wilson, Ed., MIT Press, Cambridge, Mass., 1996.

7. Gropp, W., Lusk, E., and Skjellum, A. Using MPI: Portable Parallel Pro-
gramming with the Message Passing Interface. MIT Press, Cambridge,
Mass., 1994.

8. Kaplan, J., and Nelson, M. A comparison of queueing, cluster, and dis-
tributed computing systems. NASA Tech. Memo. 109025, NASA
LaRC, 1993.

9. Levy, E., and Silberschatz, A. Distributed file systems: Concepts and
examples. ACM Comput. Surv. 22, 4 (Dec. 1990), 321–374.

10. Morris, J., et al. Andrew: A distributed personal computing environ-
ment. Commun. ACM 29, 3 (March 1986).

11. Wolski, R. Dynamically forecasting network performance to support
dynamic scheduling using the network weather service. In Proceedings of
the 6th IEEE Symposium on High-Performance Distributed Computing. IEEE
Press, Piscataway, N.J., 1996.

Andrew Grimshaw (grimshaw@cs.virginia.edu) is an associate
professor of computer science at the University of Virginia.
Adam Ferrari (ferrari@cs.virginia.edu) is a research scientist on
the Legion project at the University of Virginia.
Greg Lindahl (lindahl@cs.virginia.edu) is a research scientist at
the University of Virginia.
Katherine Holcomb (kholcomb@cs.virginia.edu) is a research
scientist at the University of Virginia.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1998 ACM 0002-0782/98/1100 $5.00

