
To expand the use of distributed computer infrastructures as well 
as facilitate grid interoperability, OGSA has developed standards 
and specifications that address a range of scenarios, including high-
throughput computing, federated data management, and service 
mobility. 

G
rid computing1-3 involves the virtualization, 
integration, and management of services 
and resources in a distributed, heteroge-
neous environment that includes collections 
of users and resources across traditional 

administrative and organizational domains. To date, 
developers have built grids using either ad hoc open 
source software components and protocols or propri-
etary technologies. While various open source and 
commercial solutions are successful in their niche 
areas, interoperation is limited. The result is islands of 
grid computing that do not interact, preventing grids 
from reaching their full potential. 

Grid scenarios present several significant challenges 
to end users, application developers, and IT managers. 
These challenges revolve around issues such as security 
(authentication, authorization, trust, and data integrity), 
quality of service (meeting service-level agreements, avail-
ability, and so forth), data management, scheduling, and 
resource management. If neither the application developer 
nor the grid middleware addresses these issues, the result 
can be missed deadlines, cost overruns, and less-than-
robust software.

The Open Grid Services Architecture addresses these 
complex challenges by defining a set of standard inter-
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faces, service interaction protocols, and profiles on existing 
standards that provide the foundation on which to build 
robust grid applications and grid management systems. 
Thus, OGSA defines the services, their interactions, and 
the design philosophy. 

OGSA is an open service-oriented architecture based on 
Web services (WS).4 OGSA is an open architecture in two 
ways: First, the development of specifications and profiles 
occurs in a completely open process where no one group or 
company can define the outcomes, port types, schemata, 
and interaction protocols. Instead, specifications and pro-
files are the result of consensus and are nonproprietary. 
Second, different implementations are available, some of 
which are open source reference implementations.

OGSA services and specifications have three potential 
applications: high-throughput computing, providing access 
to federated data, and facilitating service mobility. 

Deeper Dive
OGSA services fall into six broad areas, defined in terms 

of capabilities frequently required in grid scenarios. While 
interdependencies can exist between services, not all ser-
vices need to be used at any given time—different use 
cases call for different subsets of services. 

The six areas are
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•	 Infrastructure services. These services include 
common functionalities, such as naming, typ-
ically required by higher-level services. 

•	 Execution management services. Ranging 
from simple jobs to complex workflows and 
composite services, these services deal with 
issues related to starting and managing tasks, 
including placement, provisioning, and life-
cycle management.

•	 Data management services. These services 
handle issues such as data consistency, 
persistence, and integrity by providing func-
tionality to move data to where it is needed, 
maintaining replicated copies, running que-
ries and updates, and transforming data into 
new formats. 

or operation of a computing application or environment. 
Resources are often stateful and provide a capability or 
capacity such as servers, networks, memory, applications, 
and databases. Resources might also handle dynamic enti-
ties, such as processes, print jobs, database query results, 
and virtual organizations.

OGSA builds heavily on existing WS standards and aug-
ments them with two specifications that address high-level 
service naming and binding. 

Naming. Suppose there are two resources, A and B, and 
that A wishes to interact with B. How does A refer to B? 
OGSA defines a multilayer naming scheme of addresses, 
location-transparent identities, and pathnames. 

OGSA uses the WS-Addressing specification for address-
ing. This specification defines an XML data structure called 
the end point reference that encapsulates the information 
the client needs to message a service. The EPR includes 
data such as a network protocol and address, an extensible 
metadata section to convey arbitrary suggestions such 
as security policies, and an opaque section for session/
resource identifiers. 

The Open Grid Forum’s (OGF’s) WS-Naming specifica-
tion profiles WS-Addressing to provide location-transparent 
identities and name rebinding. An optional EPR metadata 
element called end point identifier supports location-trans-
parent names. An EPI is a uniform resource identifier that 
is unique in space and time. Clients can compare the EPIs 
contained in two or more EPRs. If the EPIs are the same, 
the EPRs are said to point to the same entity. The semantics 
of the underlying service determine sameness. If the EPIs 
are different, nothing can be inferred. 

The rebinding aspects of WS-Naming EPRs facilitate 
the implementation of the traditional distributed system 
transparencies: migration, failure, replication, and so forth. 
Embedded in an EPR’s metadata element is an optional 
resolver EPR. A client can call the resolver EPR to acquire 
a new EPR for the service. For example, suppose there is a 
client C and service EPR S that contains a resolver EPR R. 
Suppose S migrates. Subsequent invocations of S by C 
will fault because S has moved. C can then invoke 
the resolution function to acquire a new EPR for 
S, S’, that is, S’ = S.R.resolve().

In OGSA, a resource is a physical 
or logical entity that supports the 
use or operation of a computing 
application or environment. 

•	 Security services. Providing authentication, 
authorization, and integrity assurance, these 
services facilitate the enforcement of secu-
rity-related policy within an organization and 
support safe resource sharing.

•	 Resource management services. These ser-
vices provide management capabilities for 
grid resources: the resources themselves, 
resources as grid components, and the OGSA 
infrastructure. 

•	 Information services. These services provide 
efficient production of, and access to, infor-
mation about the grid and its constituent 
resources. Information refers to dynamic data 
or events for status monitoring, relatively static 
data for discovery, and any logged data. 

Infrastructure services
Infrastructure services are a set of common function-

alities required by higher-level services. As OGSA builds 
on Web services technologies, the Web Services Descrip-
tion Language defines service interfaces. Infrastructure 
includes standards such as Web Services Resource Frame-
work (WS-RF), WS-Management, and WS-Addressing.

Infrastructure services are concerned with resource 
naming, communication, and reflection. In OGSA, a 
resource is a physical or logical entity that supports the use 



While EPRs are convenient for applications to manip-
ulate, they can easily exceed hundreds of characters in 
length, making them awkward for humans to use. Further, 
the EPR namespace usually does not represent relation-
ships between EPRs. To address these shortcomings and 
make grids more human friendly, the resource namespace 
service provides a hierarchical directory structure that 
maps string paths to EPRs much like a Unix directory maps 
string paths to inodes. For example, suppose there is an 
RNS path /biology/Sequences/pir21.a. RNS can map the 
human-readable path to a WS-Addressing EPR, and the EPR 
can directly access the resource.

Reflection and metadata. Reflection is a critical infra-
structure capability. Reflection here refers to the ability 
to discover properties or attributes of grid resources or 
services, for example, the port types, security mecha-
nisms, and the provenance of data. Examples in use 
include WS-RF and WS-Metadata Exchange. The OGSA 
WS-RF Base Profile addresses selected WS-RF specifi-
cations including the operation getResourceProperties, 
which returns an XML document with the metadata 
associated with a resource. 

Execution management services
Execution management services are concerned with 

the problems of instantiating and managing, to comple-
tion, units of work, including OGSA services or legacy 
applications. More formally, EMSs address problems with 
executing units of work, such as placement, “provision-
ing,” and lifetime management. These problems include, 
but are not limited to

Finding execution candidate locations. What are the 
locations at which a unit of work can execute? 
Selecting execution location. Once it is known where 
a unit of work can execute, the question is where it 
should execute. 
Preparing for execution. This includes deployment and 
configuration of binaries and libraries, staging data, 
or other operations to prepare the local execution 
environment.
Initiating the execution. Once preparation is complete, 
this includes starting the execution and carrying out 
related actions such as registering it in the appropri-
ate places.

•

•

•

•

Managing the execution. Once the execution is started, 
this includes managing and monitoring to completion. 
If it fails, should it be restarted in another location? 
Should there be periodic checkpoints to enable 
restarts? 

These major issues that EMS must address cover the 
gamut of tasks and involve interactions with many other 
OGSA services—for example, provisioning, logging, reg-
istries, and security—that other OGSA capabilities are 
expected to define. To date, there are four OGF specifica-
tions related to execution management: Job Submission 
Description Language (JSDL), OGSA Basic Execution Ser-
vices (BES), OGSA Resource Selection Services (RSS), and 
the High-Performance Computing (HPC) Basic Profile. 

JSDL is an XML-based schema for describing applica-
tions, resources required for the application (for instance, 
memory, number and speed of CPUs), files to stage in 
before the application executes, files to stage out on com-
pletion, the command line string to execute, and so forth. 
JSDL delineates terms in the job description space and 
encourages definition of new terms. 

The OGSA BES specification defines interfaces for cre-
ating, monitoring, and controlling computational entities 
such as Unix or Windows processes or parallel programs—
known as activities. Clients identify activities using JSDL, 
and a BES implementation executes each activity that it 
accepts. A BES resource can represent a single computer; 
a cluster handled by a resource manager such as Load Lev-
eler, Sun Grid Engine (SGE), Portable Batch System (PBS), 
Condor, or Platform’s Load Sharing Facility (LSF); or even 
another BES implementation. 

To execute an activity, a client sends a JSDL document 
describing the activity to a BES resource. The BES resource 
either faults if it cannot execute the activity or returns an 
EPR that refers to the new activity. Subsequently, the client 
can either terminate or check the activity’s status.

The OGSA RSS specification defines an abstract inter-
face for performing queries used to select resources for 
any purpose. The specification also narrows the abstract 
interface for the specific purpose of selecting a BES on 
which to instantiate an activity based on a JSDL document 
and classifies renderings for such services according to 
both the WS-RF and the WS-Transfer draft. 

The HPC Basic Profile on OGSA BES and JSDL supports 
a minimal set of capabilities to satisfy a particular use 
case. The minimal set of operations does not include data 
staging, delegation, or application deployment. HPC Basic 
Profile File Staging, a subsequent profile, addresses file 
staging. Because there was not an agreed-upon secu-
rity model at the time specification authors developed 
the document, the profile includes username-token and 
X.509 token credential profiles from the Web Services 
Interoperability (WS-I) Basic Security Profile (BSP) for 
authentication. 

•

EMSs address problems with 
executing units of work, such as 
placement, “provisioning,” and 
lifetime management.
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Data management services
The yin to the execution management services’ yang, 

data management services determine the process of 
describing, finding, storing, accessing, transferring, and 
managing data resources. The OGSA data architecture 
presents a toolkit of data services and interfaces that 
address multiple scenarios. These services and interfaces 
include data access, data transfer, storage management, 
data replication, data caching, and data federation.

Data management services address data access via 
Web services for both unstructured and structured data. 
OGSA ByteIO provides access to unstructured data, that 
is, sequences of bytes without type or interpretation. 
ByteIO provides Posix-like read and write operations 
on sequences of bytes. There are two variations of this 
interface. In the RandomByteIO interface, operations 
handle the offset, number of bytes, and data. In the 
StreamableByteIO interface, the operations do not take 
the offset.

In addition to providing access to structured data, for 
example, relational or XML databases, the WS Data Access 
and Integration family of specifications offers the ability to 
submit queries against structured data. One specification 
in the family covers each resource class—for example, 
RDBMSs, XML databases, flat files, and RDF triple stores. 
The client sets up a query and invokes it against a WS-DAI 
resource. The WS-DAI resource then parses and executes 
the query, creates a new WS-DAI resource, and returns the 
EPR of the new resource. That returned resource imple-
ments a suitable interface for accessing data, typically 
WS-DAI. For example, in WS Data Access and Integration 
Relational, the result of a SQL query is another WS-DAIR 
resource that contains the resulting table. 

Note that a resource can implement more than one 
port type. In the above WS-DAIR example, the returned 
resource can support both the WS-DAIR port type and 
the ByteIO port type. Thus, the client can both query the 
resource and read it as a text file. OGSA ByteIO and WS-
DAI resources are addressed using WS-Addressing EPRs. 
As such, clients can easily place both resource types into 
RNS namespaces and access them using RNS pathnames 
rather than EPRs. 

Along with computing and networking resources, data 
storage resources are one of the basic building blocks of 
a distributed computing infrastructure. Often, for per-
formance reasons, storage resources need to be directly 
accessible using non-WS means, for example, using direct 
operating system read/write calls. There are many kinds 
of storage resources, ranging from a memory stick to a 
multipetabyte tape silo. The OGSA data architecture 
documents describe using storage resource management. 
SRM services provide space to either store files or func-
tion as a formatted and mounted raw device or block 
device. 

Security services
Security is a system’s ability to protect the assets of 

its users and those of its resource providers. At the most 
fundamental level, the assets within a service-oriented 
grid architecture are the resources exposed by service 
clients and end points. Such resources can exist in the 
form of information and data, communication and data 
processing services, controls for equipment and facilities, 
and so forth.

Following the Open Systems Interconnect threat model, 
the types of security threat to which grid resources are 
vulnerable include disclosure or theft of resources, modi-
fication (including destruction) of resources, and resource 

service interruption. Because of these and other threats, an 
effective security model is paramount to the adoption of 
the OGSA. Without a commitment to meaningful security, 
many potential adopters would be unable to participate 
because of undue risk or legal restrictions. 

The biggest challenges of architecting a practical grid 
security model arise from the fact that often the users and 
resources participating within a grid are equipped with an 
existing security policy and mechanism for authorized 
behavior. OGSA’s site autonomy theme posits that orga-
nizational domains will retain control over these security 
policies, even as they might need adjustment to accom-
modate new vulnerabilities arising from exposure through 
grid service interfaces. 

The WS-Security family of specifications defines a 
general-purpose mechanism for associating security cre-
dentials with message content, then constructing a set of 
specific profiles for encoding popular token types—for 
example, X.509, Kerberos, Security Assertion Markup 
Language (SAML), and username-token credentials. The 
WS-Security core specification also defines the application 
of XML encryption and XML digital signature to provide 
end-to-end messaging integrity and confidentiality without 
the support of the underlying communication protocol. To 
achieve real-world interoperability, the WS-I BSP provides 
guidance on the use of WS-Security and its associated 
security token formats to resolve nuances and ambigui-
ties between communicating implementations intending 
to leverage common security mechanisms.

OGSA envisions the highly dynamic coupling of grid 
resources, which makes interoperability further depen-
dent on the ability to normatively describe and advertise 
individual secure communication requirements that affect 

The OGSA data architecture 
documents describe using storage 
resource management.
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message format. OGF has developed two supplemental 
security profiles that provide guidance for the expression 
and conveyance of secure communication requirements. 

The OGF Secure Communication Profile (SecComm) 
is a profile of WS-Security Policy, a flexible, extensible 
approach for specifying the security tokens, cryptographic 
algorithms, and protocol mechanisms needed for secure 
communication. More specifically, the SecComm profile 
describes how to convey cryptographic key material (for 
example, digital certificates) and versioning information 
within policy assertions, clarifies the semantics for sev-
eral WS-Security Policy assertions, and profiles normative 
“well-known” policy documents that identify commonly 
used security mechanisms. 

To facilitate the distribution of communication require-
ments, the OGF Secure Addressing Profile (SecAddr) 
describes the attachment of such security policy within 
WS-Addressing end point references. The WS-Addressing 
end point reference data structure is a useful construct 
because it provides the “invocation context” for a service 
end point—the necessary information that a client requires 
to establish meaningful communication. In addition, the 
SecAddr profile describes the digital signature of EPR 
documents to provide guarantees of trust regarding the 
identity of the minter and the integrity of the EPR—useful 
properties given the OGSA models of storing and exchang-
ing EPRs within intermediary services.

Resource management and  
information services 

Because they are dependent on infrastructure, exe-
cution management, data management, and security 
services, resource management and information services 
are now receiving attention. 

In concert with the Distributed Management Task Force, 
the OGSA working group (WG) has developed a computer-
integrated manufacturing-based resource model for OGSA 
resources. The result is OGF Grid Final Document (GFD; 
www.ggf.org/gf/docs) 119, “Execution Environment and 
Basic Execution Service Model in OGSA Grids.” The docu-
ment provides Unified Modeling Language and Microsoft 
Operations Framework definitions of OGSA BES concepts 
mapped to CIM. GFD 45 contains a survey of issues in 
resource management in grids.

In terms of information services, a significant challenge 
in grids is understanding the system’s state. This state can 
include metadata or attributes resources, their interfaces, 
current status, event logs, and policies. Not only is the 
sheer scale of the number of resources (tens of billions 
in a large system) daunting, making collection, organiza-
tion, and querying of the state difficult, but the problem 
of data currency is present. The basic problem in grids is 
determining how to collect and manage resource metadata 
to support queries against the data for resource discov-
ery, system management, or other tasks. There have been 
several solutions for this in grids, but no consensus has 
emerged for a standard. 

Putting the Pieces together
The specifications described here are sufficient to realize 

several grid use cases, including high-throughput comput-
ing, a federated data environment, and service mobility. 

High-throughput computing 
High-throughput computing is one of the most common 

uses cases in grids today. The challenge is distributing a 
large number of jobs onto a set of computational resources 
that can span multiple administrative domains and file sys-
tems. For example, a researcher wants to screen a potential 
new cancer drug against a large number of targets. An 
application runs for each potential target, which can 
amount to tens of thousands of application instances. 

The most basic specifications for this use case are JSDL 
and OGSA BES. Compute resources are represented by 
BES resources that can run the applications. A simple run 
command generates an appropriate JSDL document for the 
needed execution and sends the JSDL document in a round-
robin fashion to one of a number of preconfigured BES 
resources. The BES resources can receive RNS pathnames 
to simplify administration. The BES resources might wrap 
a Globus Gram; gLite Compute Element; Unicore gateway; 
or a PBS, SGE, or LSF queue. Note that while run is out of 
the scope of OGSA specifications, implementations of run 
tools exist.5 The JSDL document can contain data staging 
elements specifying where to fetch input files and where 
to place the results. 

Round-robin job placement on a preselected set of BES 
resources is rigid and might not reflect different application 
requirements or organizational policies. Another scenario 
would be implementing a BES resource that, rather than 
directly executing JSDL documents itself, proxies for a 
large number of other BES resources and schedules jobs 
on those containers in first-in, first-out order. The run com-
mand now simply sends the JSDL document to the queue, 
similar to BES resources. Alternatively, a metascheduling 
BES resource might match the job requirements in the JSDL 
document, such as CPU architecture, against the resource 
properties of the BES resources. 

OGF has developed two 
supplemental security profiles that 
provide guidance for the expression 
and conveyance of secure 
communication requirements.
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This use case also requires security management. Users 
log in to their local domain’s identity provider, as per WS-
Trust, to obtain credential tokens. Alternatively, they might 
already have their own tokens locally, such as an X.509 
certificate and corresponding private key on a smart card 
device. 

When users select a BES resource and obtain an EPR 
for it, the EPR contains a WS-Security Policy section (as 
profiled by the WS-Secure Addressing) within its metadata 
that contains secure communication information such as 
cryptographic identity (for example, an X.509 certificate), 
the types of security tokens required (for example, X.509, 
SAML, or username-token), and the secure communica-
tion actions (for example, transport- and message-level 
cryptographic algorithms).

With credential types suitable for delegation, the meta
scheduling BES can participate in the further brokering of 
identity in the event that its resources are located within 
yet another administrative domain.

Access to federated data
Data storage and management can take place in sev-

eral different locations. Users might not be able to directly 
access the data using standard operating environments 
such as Unix or Windows due to disjoint administrative 
domains or unwillingness to provide accounts between 
suborganizations. Further, copying data to a single data 
warehouse might not be practical. Whatever the reason, a 
mechanism is required to access data directly.

To realize this use case, we start by assuming the data 
exists as unstructured flat files located in a rooted direc-
tory tree stored in a Windows or Unix file system. The first 
step is to create a set of ByteIO EPRs that correspond to the 
files and RNS EPRs that correspond to the directories in 
the rooted tree. This set of ByteIO and RNS end points rep-
resents an RNS namespace in which the leaves are ByteIO 
files. We call this step “exporting” a directory structure. 
The exported directory structure then links to an existing 
RNS namespace in a manner similar to a Unix link. Client 
applications access data regardless of physical location by 
issuing the appropriate ByteIO read and write calls. 

Developers can add structured relational data by includ-
ing WS-DAI EPRs in the RNS namespace. Each WS-DAI 
EPR can refer to a different table or set of tables. SQL que-
ries can be executed against each WS-DAI end point. The 
result is another WS-DAI EPR that represents the result of 
query execution. Thus, RNS can find an EPR for a particu-
lar dataset and issue a WS-DAI query; the resulting EPR 
can reside in yet another RNS directory for subsequent 
use. If the returned WS-DAI resource also implements the 
OGSA ByteIO port type, clients could then read the result 
set as a file.

The security aspects for this use case are analogous to 
those of the high-throughput computing use case. EPRs 

to data sources will advertise the security token require-
ments, cryptographic actions, claims, and references 
to interdomain security token services for credential 
brokering. Authorization policies in place at the ser-
vices’ end points determine which actions are allowed 
to proceed.

So far we’ve made no assumptions about how the client 
accesses the data—whether through a C library call, user-
defined Web services call, or some other mechanism. 
While we could use a special grid API such as OGF’s Simple 
API for Grid Applications, the problem is that many users 
can’t change their applications to access the data grid 
resources via a new API. Instead, developers must hide 
the grid from users and applications so they can access 
data without application modification. 

One solution is to use one or more grid-aware mountable 
file systems. The basic idea is simple: Create a grid-aware 
Windows Installable File System, Network File System, 
Common Internet File System, or Filesystem in User Space 
file service and map the grid in the local file system. Reads 
and writes progress through standard operating system 
interfaces and pass through the operating system to the 
grid-aware file system, which then interacts with the grid 
using Web services. 

The advantage of this approach is that user applications 
and shell scripts can execute without any modifications. 
A challenge is properly associating local operating system 
identities with grid identities. In the simplest case, each 
grid-aware file system plug-in instance corresponds to a 
particular single user and has a properly delegated cre-
dential for that user.

Resource mobility
While existing Web services best practices support het-

erogeneity, concurrency, and behavioral transparency, 
the use of name rebinding mechanisms as defined in WS-
Naming can provide a framework for realizing additional 
important transparencies—in particular, migration, loca-
tion, replication, and failure transparency. 

Four real-world use cases highlight the importance of 
supporting these additional transparencies:

Migrating closer to active users. Suppose a client appli-
cation is intensely using a resource that is located far 
away—for example, an application in California that 

•

Developers must hide the grid from 
users and applications so they can 
access data without application 
modification.
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reads and modifies a shared file (ByteIO) resource 
currently residing in New York. In this configuration, 
the application might be suffering unnecessarily from 
poor performance due to high network latency. Ide-
ally, the file resource should migrate from New York 
to California without any service interruption to other 
users that need access to the shared file.
Migrating away from failing or overloaded systems. 
Consider a service or resource executing on a host 
that is heavily loaded in some way—perhaps the host 
CPU is overloaded or the network into the host is 
flooded. There might be problems with the physical 
environment such as a power shortage or air condi-
tioning failure, or a host might be planning downtime 
because of maintenance. The service should migrate 
to another host without interrupting the service and 
without disrupting ongoing interactions with this and 
other services and resources. 
Recovery from a failed resource. Consider a stateful 
resource that has failed (for example, due to a hard-
ware or software failure) and needs to be restarted, 
possibly on a different physical resource. The resource 
instance should migrate to a different location or 
machine while minimizing interruptions for access-
ing the resource.  
Replica management and usage. A resource might 
have multiple back-end end points that can each 
perform its services with an option to dynamically 
select which replica to use. For example, one replica 

•

•

•

might be closer (in network terms) to the end user 
than another or one replica might offer better quality 
of service in some dimension such as performance. 

When combined with WS-Naming-aware stubs, the WS-
Naming rebinding services can realize each of these use 
cases. The EPR of resource A includes the EPR of a service 
R, which can acquire a new EPR for A when A migrates 
or fails.

Adoption
OGF and OGSA specification and profile authors rep-

resent a variety of organizations from around the world. 
Projects and products that incorporate OGSA and OGF 
specifications come from equally diverse representatives 
from industry, government, and academia. Table 1 cap-
tures the state of adoption in late 2007. Each cell has one 
of three values: Yes, Will, or No. Yes means the project 
has implemented or is in the process of implementing 
the specification. Will means the project is planning an 
implementation but has not started. No means that the 
project did not plan to implement the specification as of 
late 2007. 

Several interoperation events have taken place, 
including at Supercomputing 2006 and 2007. These 
events tend to show interoperation on a particular spec-
ification or profile or a set of related specifications and 
profiles, for example, JSDL, OGSA BES, and HPC Basic 
Profile.

Table 1. Specification adoption.

WS-Naming RNS
OGSA WS-

RF BP
OGSA 

ByteIO
WS-DAI JSDL OGSA BES

HPC Basic 
Profile

Crown No No No No No Yes No Yes

Fujitsu USMT Will No Yes Yes No Yes Yes Yes

Genesis II Yes Yes Yes Yes Yes Yes Yes Yes

Gfarm No Yes No Will No No No No

gLite3 No Yes No Yes No Yes Yes Yes

Globus Yes No Yes No Yes Yes Yes Yes

GridSAM No No No No No Yes Yes Yes

Microsoft 
CCS

No No No No No Yes Yes Yes

NAREGI No No No No Yes Yes Yes No

OGSA DAI No No Will Yes Yes No No No

Platform No No No No No Yes Yes Yes

Unicore 6 No No Yes Yes Will Yes Yes Yes
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A fter several years of development, consensus 
building, and experimentation, the Open Grid 
Services Architecture has reached the state where 
there are sufficient specifications and profiles to 

enable the construction of interoperable grids. The speci-
fications cover a range of use cases and requirements 
from basic infrastructure services—such as naming and 
binding—to execution management, data management, 
and security. Developers can use the specifications to 
construct secure, interoperable compute and data grids 
that meet a variety of real-world high-throughput com-
puting and data-sharing use cases in the pharmaceutical, 
financial services, electronic design automation manu-
facturing, and aerospace industries as well as several use 
cases in the sciences and engineering. 

In addition, several organizations are adopting the 
specifications. These organizations, from the commercial, 
academic, government, and open source communities, 
have developed and continue to develop OGF and OGSA 
specifications.

OGSA is by no means complete. While it addresses key 
core services, it does not currently address many criti-
cal services such as auditing, transactions, service-level 
agreements, resource discovery, and information services 
workflows. It is not the intent of the OGSA WG to define all 
of these but rather to adopt and profile existing specifica-
tions as appropriate and, when necessary, develop new 
specifications and schemata. To learn more about OGSA, 
visit www.ogf.org/OGSA_primer.php. To download and 
experiment with an open source implementation of the 
OGSA specifications, visit www.cs.virginia.edu/~vcgr. 
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