
To expand the use of distributed computer infrastructures as well
as facilitate grid interoperability, OGSA has developed standards
and specifications that address a range of scenarios, including high-
throughput computing, federated data management, and service
mobility.

G
rid computing1-3 involves the virtualization,
integration, and management of services
and resources in a distributed, heteroge-
neous environment that includes collections
of users and resources across traditional

administrative and organizational domains. To date,
developers have built grids using either ad hoc open
source software components and protocols or propri-
etary technologies. While various open source and
commercial solutions are successful in their niche
areas, interoperation is limited. The result is islands of
grid computing that do not interact, preventing grids
from reaching their full potential.

Grid scenarios present several significant challenges
to end users, application developers, and IT managers.
These challenges revolve around issues such as security
(authentication, authorization, trust, and data integrity),
quality of service (meeting service-level agreements, avail-
ability, and so forth), data management, scheduling, and
resource management. If neither the application developer
nor the grid middleware addresses these issues, the result
can be missed deadlines, cost overruns, and less-than-
robust software.

The Open Grid Services Architecture addresses these
complex challenges by defining a set of standard inter-

Andrew Grimshaw, Mark Morgan, and Duane Merrill, University of Virginia
Hiro Kishimoto, Andreas Savva, and David Snelling, Fujitsu
Chris Smith, Platform Computing
Dave Berry, Edinburgh National e-Science Center

faces, service interaction protocols, and profiles on existing
standards that provide the foundation on which to build
robust grid applications and grid management systems.
Thus, OGSA defines the services, their interactions, and
the design philosophy.

OGSA is an open service-oriented architecture based on
Web services (WS).4 OGSA is an open architecture in two
ways: First, the development of specifications and profiles
occurs in a completely open process where no one group or
company can define the outcomes, port types, schemata,
and interaction protocols. Instead, specifications and pro-
files are the result of consensus and are nonproprietary.
Second, different implementations are available, some of
which are open source reference implementations.

OGSA services and specifications have three potential
applications: high-throughput computing, providing access
to federated data, and facilitating service mobility.

Deeper Dive
OGSA services fall into six broad areas, defined in terms

of capabilities frequently required in grid scenarios. While
interdependencies can exist between services, not all ser-
vices need to be used at any given time—different use
cases call for different subsets of services.

The six areas are

An Open Grid Services
Architecture Primer

computer	24

COMPUTING PR ACTICES

Published by the IEEE Computer Society	 0018-9162/09/$25.00 © 2009 IEEE	

25MARCH 2009

•	 Infrastructure services. These services include
common functionalities, such as naming, typ-
ically required by higher-level services.

•	 Execution management services. Ranging
from simple jobs to complex workflows and
composite services, these services deal with
issues related to starting and managing tasks,
including placement, provisioning, and life-
cycle management.

•	 Data management services. These services
handle issues such as data consistency,
persistence, and integrity by providing func-
tionality to move data to where it is needed,
maintaining replicated copies, running que-
ries and updates, and transforming data into
new formats.

or operation of a computing application or environment.
Resources are often stateful and provide a capability or
capacity such as servers, networks, memory, applications,
and databases. Resources might also handle dynamic enti-
ties, such as processes, print jobs, database query results,
and virtual organizations.

OGSA builds heavily on existing WS standards and aug-
ments them with two specifications that address high-level
service naming and binding.

Naming. Suppose there are two resources, A and B, and
that A wishes to interact with B. How does A refer to B?
OGSA defines a multilayer naming scheme of addresses,
location-transparent identities, and pathnames.

OGSA uses the WS-Addressing specification for address-
ing. This specification defines an XML data structure called
the end point reference that encapsulates the information
the client needs to message a service. The EPR includes
data such as a network protocol and address, an extensible
metadata section to convey arbitrary suggestions such
as security policies, and an opaque section for session/
resource identifiers.

The Open Grid Forum’s (OGF’s) WS-Naming specifica-
tion profiles WS-Addressing to provide location-transparent
identities and name rebinding. An optional EPR metadata
element called end point identifier supports location-trans-
parent names. An EPI is a uniform resource identifier that
is unique in space and time. Clients can compare the EPIs
contained in two or more EPRs. If the EPIs are the same,
the EPRs are said to point to the same entity. The semantics
of the underlying service determine sameness. If the EPIs
are different, nothing can be inferred.

The rebinding aspects of WS-Naming EPRs facilitate
the implementation of the traditional distributed system
transparencies: migration, failure, replication, and so forth.
Embedded in an EPR’s metadata element is an optional
resolver EPR. A client can call the resolver EPR to acquire
a new EPR for the service. For example, suppose there is a
client C and service EPR S that contains a resolver EPR R.
Suppose S migrates. Subsequent invocations of S by C
will fault because S has moved. C can then invoke
the resolution function to acquire a new EPR for
S, S’, that is, S’ = S.R.resolve().

In OGSA, a resource is a physical
or logical entity that supports the
use or operation of a computing
application or environment.

•	 Security services. Providing authentication,
authorization, and integrity assurance, these
services facilitate the enforcement of secu-
rity-related policy within an organization and
support safe resource sharing.

•	 Resource management services. These ser-
vices provide management capabilities for
grid resources: the resources themselves,
resources as grid components, and the OGSA
infrastructure.

•	 Information services. These services provide
efficient production of, and access to, infor-
mation about the grid and its constituent
resources. Information refers to dynamic data
or events for status monitoring, relatively static
data for discovery, and any logged data.

Infrastructure services
Infrastructure services are a set of common function-

alities required by higher-level services. As OGSA builds
on Web services technologies, the Web Services Descrip-
tion Language defines service interfaces. Infrastructure
includes standards such as Web Services Resource Frame-
work (WS-RF), WS-Management, and WS-Addressing.

Infrastructure services are concerned with resource
naming, communication, and reflection. In OGSA, a
resource is a physical or logical entity that supports the use

While EPRs are convenient for applications to manip-
ulate, they can easily exceed hundreds of characters in
length, making them awkward for humans to use. Further,
the EPR namespace usually does not represent relation-
ships between EPRs. To address these shortcomings and
make grids more human friendly, the resource namespace
service provides a hierarchical directory structure that
maps string paths to EPRs much like a Unix directory maps
string paths to inodes. For example, suppose there is an
RNS path /biology/Sequences/pir21.a. RNS can map the
human-readable path to a WS-Addressing EPR, and the EPR
can directly access the resource.

Reflection and metadata. Reflection is a critical infra-
structure capability. Reflection here refers to the ability
to discover properties or attributes of grid resources or
services, for example, the port types, security mecha-
nisms, and the provenance of data. Examples in use
include WS-RF and WS-Metadata Exchange. The OGSA
WS-RF Base Profile addresses selected WS-RF specifi-
cations including the operation getResourceProperties,
which returns an XML document with the metadata
associated with a resource.

Execution management services
Execution management services are concerned with

the problems of instantiating and managing, to comple-
tion, units of work, including OGSA services or legacy
applications. More formally, EMSs address problems with
executing units of work, such as placement, “provision-
ing,” and lifetime management. These problems include,
but are not limited to

Finding execution candidate locations. What are the
locations at which a unit of work can execute?
Selecting execution location. Once it is known where
a unit of work can execute, the question is where it
should execute.
Preparing for execution. This includes deployment and
configuration of binaries and libraries, staging data,
or other operations to prepare the local execution
environment.
Initiating the execution. Once preparation is complete,
this includes starting the execution and carrying out
related actions such as registering it in the appropri-
ate places.

•

•

•

•

Managing the execution. Once the execution is started,
this includes managing and monitoring to completion.
If it fails, should it be restarted in another location?
Should there be periodic checkpoints to enable
restarts?

These major issues that EMS must address cover the
gamut of tasks and involve interactions with many other
OGSA services—for example, provisioning, logging, reg-
istries, and security—that other OGSA capabilities are
expected to define. To date, there are four OGF specifica-
tions related to execution management: Job Submission
Description Language (JSDL), OGSA Basic Execution Ser-
vices (BES), OGSA Resource Selection Services (RSS), and
the High-Performance Computing (HPC) Basic Profile.

JSDL is an XML-based schema for describing applica-
tions, resources required for the application (for instance,
memory, number and speed of CPUs), files to stage in
before the application executes, files to stage out on com-
pletion, the command line string to execute, and so forth.
JSDL delineates terms in the job description space and
encourages definition of new terms.

The OGSA BES specification defines interfaces for cre-
ating, monitoring, and controlling computational entities
such as Unix or Windows processes or parallel programs—
known as activities. Clients identify activities using JSDL,
and a BES implementation executes each activity that it
accepts. A BES resource can represent a single computer;
a cluster handled by a resource manager such as Load Lev-
eler, Sun Grid Engine (SGE), Portable Batch System (PBS),
Condor, or Platform’s Load Sharing Facility (LSF); or even
another BES implementation.

To execute an activity, a client sends a JSDL document
describing the activity to a BES resource. The BES resource
either faults if it cannot execute the activity or returns an
EPR that refers to the new activity. Subsequently, the client
can either terminate or check the activity’s status.

The OGSA RSS specification defines an abstract inter-
face for performing queries used to select resources for
any purpose. The specification also narrows the abstract
interface for the specific purpose of selecting a BES on
which to instantiate an activity based on a JSDL document
and classifies renderings for such services according to
both the WS-RF and the WS-Transfer draft.

The HPC Basic Profile on OGSA BES and JSDL supports
a minimal set of capabilities to satisfy a particular use
case. The minimal set of operations does not include data
staging, delegation, or application deployment. HPC Basic
Profile File Staging, a subsequent profile, addresses file
staging. Because there was not an agreed-upon secu-
rity model at the time specification authors developed
the document, the profile includes username-token and
X.509 token credential profiles from the Web Services
Interoperability (WS-I) Basic Security Profile (BSP) for
authentication.

•

EMSs address problems with
executing units of work, such as
placement, “provisioning,” and
lifetime management.

computer	26

COMPUTING PR ACTICES

Data management services
The yin to the execution management services’ yang,

data management services determine the process of
describing, finding, storing, accessing, transferring, and
managing data resources. The OGSA data architecture
presents a toolkit of data services and interfaces that
address multiple scenarios. These services and interfaces
include data access, data transfer, storage management,
data replication, data caching, and data federation.

Data management services address data access via
Web services for both unstructured and structured data.
OGSA ByteIO provides access to unstructured data, that
is, sequences of bytes without type or interpretation.
ByteIO provides Posix-like read and write operations
on sequences of bytes. There are two variations of this
interface. In the RandomByteIO interface, operations
handle the offset, number of bytes, and data. In the
StreamableByteIO interface, the operations do not take
the offset.

In addition to providing access to structured data, for
example, relational or XML databases, the WS Data Access
and Integration family of specifications offers the ability to
submit queries against structured data. One specification
in the family covers each resource class—for example,
RDBMSs, XML databases, flat files, and RDF triple stores.
The client sets up a query and invokes it against a WS-DAI
resource. The WS-DAI resource then parses and executes
the query, creates a new WS-DAI resource, and returns the
EPR of the new resource. That returned resource imple-
ments a suitable interface for accessing data, typically
WS-DAI. For example, in WS Data Access and Integration
Relational, the result of a SQL query is another WS-DAIR
resource that contains the resulting table.

Note that a resource can implement more than one
port type. In the above WS-DAIR example, the returned
resource can support both the WS-DAIR port type and
the ByteIO port type. Thus, the client can both query the
resource and read it as a text file. OGSA ByteIO and WS-
DAI resources are addressed using WS-Addressing EPRs.
As such, clients can easily place both resource types into
RNS namespaces and access them using RNS pathnames
rather than EPRs.

Along with computing and networking resources, data
storage resources are one of the basic building blocks of
a distributed computing infrastructure. Often, for per-
formance reasons, storage resources need to be directly
accessible using non-WS means, for example, using direct
operating system read/write calls. There are many kinds
of storage resources, ranging from a memory stick to a
multipetabyte tape silo. The OGSA data architecture
documents describe using storage resource management.
SRM services provide space to either store files or func-
tion as a formatted and mounted raw device or block
device.

Security services
Security is a system’s ability to protect the assets of

its users and those of its resource providers. At the most
fundamental level, the assets within a service-oriented
grid architecture are the resources exposed by service
clients and end points. Such resources can exist in the
form of information and data, communication and data
processing services, controls for equipment and facilities,
and so forth.

Following the Open Systems Interconnect threat model,
the types of security threat to which grid resources are
vulnerable include disclosure or theft of resources, modi-
fication (including destruction) of resources, and resource

service interruption. Because of these and other threats, an
effective security model is paramount to the adoption of
the OGSA. Without a commitment to meaningful security,
many potential adopters would be unable to participate
because of undue risk or legal restrictions.

The biggest challenges of architecting a practical grid
security model arise from the fact that often the users and
resources participating within a grid are equipped with an
existing security policy and mechanism for authorized
behavior. OGSA’s site autonomy theme posits that orga-
nizational domains will retain control over these security
policies, even as they might need adjustment to accom-
modate new vulnerabilities arising from exposure through
grid service interfaces.

The WS-Security family of specifications defines a
general-purpose mechanism for associating security cre-
dentials with message content, then constructing a set of
specific profiles for encoding popular token types—for
example, X.509, Kerberos, Security Assertion Markup
Language (SAML), and username-token credentials. The
WS-Security core specification also defines the application
of XML encryption and XML digital signature to provide
end-to-end messaging integrity and confidentiality without
the support of the underlying communication protocol. To
achieve real-world interoperability, the WS-I BSP provides
guidance on the use of WS-Security and its associated
security token formats to resolve nuances and ambigui-
ties between communicating implementations intending
to leverage common security mechanisms.

OGSA envisions the highly dynamic coupling of grid
resources, which makes interoperability further depen-
dent on the ability to normatively describe and advertise
individual secure communication requirements that affect

The OGSA data architecture
documents describe using storage
resource management.

27MARCH 2009

message format. OGF has developed two supplemental
security profiles that provide guidance for the expression
and conveyance of secure communication requirements.

The OGF Secure Communication Profile (SecComm)
is a profile of WS-Security Policy, a flexible, extensible
approach for specifying the security tokens, cryptographic
algorithms, and protocol mechanisms needed for secure
communication. More specifically, the SecComm profile
describes how to convey cryptographic key material (for
example, digital certificates) and versioning information
within policy assertions, clarifies the semantics for sev-
eral WS-Security Policy assertions, and profiles normative
“well-known” policy documents that identify commonly
used security mechanisms.

To facilitate the distribution of communication require-
ments, the OGF Secure Addressing Profile (SecAddr)
describes the attachment of such security policy within
WS-Addressing end point references. The WS-Addressing
end point reference data structure is a useful construct
because it provides the “invocation context” for a service
end point—the necessary information that a client requires
to establish meaningful communication. In addition, the
SecAddr profile describes the digital signature of EPR
documents to provide guarantees of trust regarding the
identity of the minter and the integrity of the EPR—useful
properties given the OGSA models of storing and exchang-
ing EPRs within intermediary services.

Resource management and
information services

Because they are dependent on infrastructure, exe-
cution management, data management, and security
services, resource management and information services
are now receiving attention.

In concert with the Distributed Management Task Force,
the OGSA working group (WG) has developed a computer-
integrated manufacturing-based resource model for OGSA
resources. The result is OGF Grid Final Document (GFD;
www.ggf.org/gf/docs) 119, “Execution Environment and
Basic Execution Service Model in OGSA Grids.” The docu-
ment provides Unified Modeling Language and Microsoft
Operations Framework definitions of OGSA BES concepts
mapped to CIM. GFD 45 contains a survey of issues in
resource management in grids.

In terms of information services, a significant challenge
in grids is understanding the system’s state. This state can
include metadata or attributes resources, their interfaces,
current status, event logs, and policies. Not only is the
sheer scale of the number of resources (tens of billions
in a large system) daunting, making collection, organiza-
tion, and querying of the state difficult, but the problem
of data currency is present. The basic problem in grids is
determining how to collect and manage resource metadata
to support queries against the data for resource discov-
ery, system management, or other tasks. There have been
several solutions for this in grids, but no consensus has
emerged for a standard.

Putting the Pieces together
The specifications described here are sufficient to realize

several grid use cases, including high-throughput comput-
ing, a federated data environment, and service mobility.

High-throughput computing
High-throughput computing is one of the most common

uses cases in grids today. The challenge is distributing a
large number of jobs onto a set of computational resources
that can span multiple administrative domains and file sys-
tems. For example, a researcher wants to screen a potential
new cancer drug against a large number of targets. An
application runs for each potential target, which can
amount to tens of thousands of application instances.

The most basic specifications for this use case are JSDL
and OGSA BES. Compute resources are represented by
BES resources that can run the applications. A simple run
command generates an appropriate JSDL document for the
needed execution and sends the JSDL document in a round-
robin fashion to one of a number of preconfigured BES
resources. The BES resources can receive RNS pathnames
to simplify administration. The BES resources might wrap
a Globus Gram; gLite Compute Element; Unicore gateway;
or a PBS, SGE, or LSF queue. Note that while run is out of
the scope of OGSA specifications, implementations of run
tools exist.5 The JSDL document can contain data staging
elements specifying where to fetch input files and where
to place the results.

Round-robin job placement on a preselected set of BES
resources is rigid and might not reflect different application
requirements or organizational policies. Another scenario
would be implementing a BES resource that, rather than
directly executing JSDL documents itself, proxies for a
large number of other BES resources and schedules jobs
on those containers in first-in, first-out order. The run com-
mand now simply sends the JSDL document to the queue,
similar to BES resources. Alternatively, a metascheduling
BES resource might match the job requirements in the JSDL
document, such as CPU architecture, against the resource
properties of the BES resources.

OGF has developed two
supplemental security profiles that
provide guidance for the expression
and conveyance of secure
communication requirements.

computer	28

COMPUTING PR ACTICES

This use case also requires security management. Users
log in to their local domain’s identity provider, as per WS-
Trust, to obtain credential tokens. Alternatively, they might
already have their own tokens locally, such as an X.509
certificate and corresponding private key on a smart card
device.

When users select a BES resource and obtain an EPR
for it, the EPR contains a WS-Security Policy section (as
profiled by the WS-Secure Addressing) within its metadata
that contains secure communication information such as
cryptographic identity (for example, an X.509 certificate),
the types of security tokens required (for example, X.509,
SAML, or username-token), and the secure communica-
tion actions (for example, transport- and message-level
cryptographic algorithms).

With credential types suitable for delegation, the meta
scheduling BES can participate in the further brokering of
identity in the event that its resources are located within
yet another administrative domain.

Access to federated data
Data storage and management can take place in sev-

eral different locations. Users might not be able to directly
access the data using standard operating environments
such as Unix or Windows due to disjoint administrative
domains or unwillingness to provide accounts between
suborganizations. Further, copying data to a single data
warehouse might not be practical. Whatever the reason, a
mechanism is required to access data directly.

To realize this use case, we start by assuming the data
exists as unstructured flat files located in a rooted direc-
tory tree stored in a Windows or Unix file system. The first
step is to create a set of ByteIO EPRs that correspond to the
files and RNS EPRs that correspond to the directories in
the rooted tree. This set of ByteIO and RNS end points rep-
resents an RNS namespace in which the leaves are ByteIO
files. We call this step “exporting” a directory structure.
The exported directory structure then links to an existing
RNS namespace in a manner similar to a Unix link. Client
applications access data regardless of physical location by
issuing the appropriate ByteIO read and write calls.

Developers can add structured relational data by includ-
ing WS-DAI EPRs in the RNS namespace. Each WS-DAI
EPR can refer to a different table or set of tables. SQL que-
ries can be executed against each WS-DAI end point. The
result is another WS-DAI EPR that represents the result of
query execution. Thus, RNS can find an EPR for a particu-
lar dataset and issue a WS-DAI query; the resulting EPR
can reside in yet another RNS directory for subsequent
use. If the returned WS-DAI resource also implements the
OGSA ByteIO port type, clients could then read the result
set as a file.

The security aspects for this use case are analogous to
those of the high-throughput computing use case. EPRs

to data sources will advertise the security token require-
ments, cryptographic actions, claims, and references
to interdomain security token services for credential
brokering. Authorization policies in place at the ser-
vices’ end points determine which actions are allowed
to proceed.

So far we’ve made no assumptions about how the client
accesses the data—whether through a C library call, user-
defined Web services call, or some other mechanism.
While we could use a special grid API such as OGF’s Simple
API for Grid Applications, the problem is that many users
can’t change their applications to access the data grid
resources via a new API. Instead, developers must hide
the grid from users and applications so they can access
data without application modification.

One solution is to use one or more grid-aware mountable
file systems. The basic idea is simple: Create a grid-aware
Windows Installable File System, Network File System,
Common Internet File System, or Filesystem in User Space
file service and map the grid in the local file system. Reads
and writes progress through standard operating system
interfaces and pass through the operating system to the
grid-aware file system, which then interacts with the grid
using Web services.

The advantage of this approach is that user applications
and shell scripts can execute without any modifications.
A challenge is properly associating local operating system
identities with grid identities. In the simplest case, each
grid-aware file system plug-in instance corresponds to a
particular single user and has a properly delegated cre-
dential for that user.

Resource mobility
While existing Web services best practices support het-

erogeneity, concurrency, and behavioral transparency,
the use of name rebinding mechanisms as defined in WS-
Naming can provide a framework for realizing additional
important transparencies—in particular, migration, loca-
tion, replication, and failure transparency.

Four real-world use cases highlight the importance of
supporting these additional transparencies:

Migrating closer to active users. Suppose a client appli-
cation is intensely using a resource that is located far
away—for example, an application in California that

•

Developers must hide the grid from
users and applications so they can
access data without application
modification.

29MARCH 2009

reads and modifies a shared file (ByteIO) resource
currently residing in New York. In this configuration,
the application might be suffering unnecessarily from
poor performance due to high network latency. Ide-
ally, the file resource should migrate from New York
to California without any service interruption to other
users that need access to the shared file.
Migrating away from failing or overloaded systems.
Consider a service or resource executing on a host
that is heavily loaded in some way—perhaps the host
CPU is overloaded or the network into the host is
flooded. There might be problems with the physical
environment such as a power shortage or air condi-
tioning failure, or a host might be planning downtime
because of maintenance. The service should migrate
to another host without interrupting the service and
without disrupting ongoing interactions with this and
other services and resources.
Recovery from a failed resource. Consider a stateful
resource that has failed (for example, due to a hard-
ware or software failure) and needs to be restarted,
possibly on a different physical resource. The resource
instance should migrate to a different location or
machine while minimizing interruptions for access-
ing the resource.
Replica management and usage. A resource might
have multiple back-end end points that can each
perform its services with an option to dynamically
select which replica to use. For example, one replica

•

•

•

might be closer (in network terms) to the end user
than another or one replica might offer better quality
of service in some dimension such as performance.

When combined with WS-Naming-aware stubs, the WS-
Naming rebinding services can realize each of these use
cases. The EPR of resource A includes the EPR of a service
R, which can acquire a new EPR for A when A migrates
or fails.

Adoption
OGF and OGSA specification and profile authors rep-

resent a variety of organizations from around the world.
Projects and products that incorporate OGSA and OGF
specifications come from equally diverse representatives
from industry, government, and academia. Table 1 cap-
tures the state of adoption in late 2007. Each cell has one
of three values: Yes, Will, or No. Yes means the project
has implemented or is in the process of implementing
the specification. Will means the project is planning an
implementation but has not started. No means that the
project did not plan to implement the specification as of
late 2007.

Several interoperation events have taken place,
including at Supercomputing 2006 and 2007. These
events tend to show interoperation on a particular spec-
ification or profile or a set of related specifications and
profiles, for example, JSDL, OGSA BES, and HPC Basic
Profile.

Table 1. Specification adoption.

WS-Naming RNS
OGSA WS-

RF BP
OGSA

ByteIO
WS-DAI JSDL OGSA BES

HPC Basic
Profile

Crown No No No No No Yes No Yes

Fujitsu USMT Will No Yes Yes No Yes Yes Yes

Genesis II Yes Yes Yes Yes Yes Yes Yes Yes

Gfarm No Yes No Will No No No No

gLite3 No Yes No Yes No Yes Yes Yes

Globus Yes No Yes No Yes Yes Yes Yes

GridSAM No No No No No Yes Yes Yes

Microsoft
CCS

No No No No No Yes Yes Yes

NAREGI No No No No Yes Yes Yes No

OGSA DAI No No Will Yes Yes No No No

Platform No No No No No Yes Yes Yes

Unicore 6 No No Yes Yes Will Yes Yes Yes

computer	30

COMPUTING PR ACTICES

31MARCH 2009

A fter several years of development, consensus
building, and experimentation, the Open Grid
Services Architecture has reached the state where
there are sufficient specifications and profiles to

enable the construction of interoperable grids. The speci-
fications cover a range of use cases and requirements
from basic infrastructure services—such as naming and
binding—to execution management, data management,
and security. Developers can use the specifications to
construct secure, interoperable compute and data grids
that meet a variety of real-world high-throughput com-
puting and data-sharing use cases in the pharmaceutical,
financial services, electronic design automation manu-
facturing, and aerospace industries as well as several use
cases in the sciences and engineering.

In addition, several organizations are adopting the
specifications. These organizations, from the commercial,
academic, government, and open source communities,
have developed and continue to develop OGF and OGSA
specifications.

OGSA is by no means complete. While it addresses key
core services, it does not currently address many criti-
cal services such as auditing, transactions, service-level
agreements, resource discovery, and information services
workflows. It is not the intent of the OGSA WG to define all
of these but rather to adopt and profile existing specifica-
tions as appropriate and, when necessary, develop new
specifications and schemata. To learn more about OGSA,
visit www.ogf.org/OGSA_primer.php. To download and
experiment with an open source implementation of the
OGSA specifications, visit www.cs.virginia.edu/~vcgr.

Acknowledgments
The entire OGSA regular team: Fred Maciel, Jay Unger, Ellen

Stokes, Jem Tredwell, Steve Newhouse, Allen Luniewski, Ste-
phen McGough, Chris Kantarjiev, Tom McGuire, Ian Foster,
Ravi Subramanian, Donal Fellows, Michel Drescher, Mike
Behrens, Chris Jordan, Frank Siebenlist.

This material is based on work partially supported by
the National Science Foundation under grant no. 0426972.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

References
	 1.	 I. Foster and C. Kesselman, The Grid: Blueprint for

a New Computing Infrastructure, Morgan Kaufman,
1999.

	 2.	 I. Foster et al., “Grid Services for Distributed System
Integration,” Computer, June 2002, pp. 37-46.

	 3.	 A. Grimshaw and A. Natrajan, “Legion: Lessons
Learned Building a Grid Operating System,” Proc.
IEEE, 2005, pp. 589-603.

	 4.	 I. Foster et al., “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Sys-
tems Integration,” white paper, Globus Project, Jan.
2002.

	 5.	 M. Morgan and A. Grimshaw, “Genesis II—Standards
Based Grid Computing,” Proc. 7th IEEE Int’l Symp.
Cluster Computing and the Grid, IEEE Press, 2007, pp.
611-618.

Andrew Grimhaw is a professor in the Department of
Computer Science at the University of Virginia. He received
a PhD in computer science from the University of Illinois
at Urbana-Champaign. Grimshaw is a member of the OGF.
Contact him at grimshaw@virginia.edu.

Mark Morgan is a member of the research faculty for
the Department of Computer Science at the University of
Virginia. He received an MS in computer science from the
University of Virginia. Morgan is a member of the OGF.
Contact him at mmm2a@virginia.edu.

Duane Merrill is a graduate student in computer sci-
ence at the University of Virginia. He received a master’s
degree in computer science from the University of Virginia.
Merrill is a member of the OGF. Contact him at dgm4d@
virginia.edu.

Hiro Kishimoto is a senior research fellow at Fujitsu Lab-
oratories and visiting professor at the National Institute of
Informatics. He received a PhD in computer science from
Tohoku University. He is a member of the IEEE Computer
Society and Information Processing Society of Japan. Con-
tact him at hiro.kishimoto@jp.fujitsu.com.

Andreas Savva is a researcher at Fujitsu Laboratories.
He received a Dr. Eng. in computer science from the Tokyo
Institute of Technology. Savva is a member of the ACM and
IEEE. Contact him at andreas.savva@jp.fujitsu.com.

David Snelling is the assistant division manager at Fujitsu
Laboratories of Europe. He received a PhD in computer
architecture from the University of Manchester. Snelling
is a member of the IEEE Computer Society. Contact him at
david.snelling@uk.fujitsu.com.

Chris Smith is principal product architect at Platform
Computing. He received BSc in computer science from the
University of British Columbia. Smith is a member of the
ACM. Contact him at csmith@platform.com.

Dave Berry is the deputy director for research and e-infra-
structure development at the UK National e-Science Centre.
He received a PhD in computer science from the University
of Edinburgh. Berry is a member of the ACM and the British
Computer Society. Contact him at Dave.Berry@ed.ac.uk.

