
CS/EE333 – Computer Architecture
Chris Milner (Fall 2003)

Course Objectives:

1. Understand the classification of computers (accumulator machines, stack machines

and general purpose register machines), instruction types (arithmetic, data movement
and control), instruction formats (0,1,2, etc.-address machines) and addressing modes.

2. Understand formal notations for describing processors.
3. Evaluate the design and performance trade-offs between Complex Instruction Set

Computers (CISC) and Reduced Instruction Set Computers (RISC) .
4. Develop an understanding of processor design (the design process, data path

implementation, control unit implementation, 1- 2- and 3-bus processor designs and
machine exceptions, pipelining and instruction-level parallelism)

5. Develop an understanding of computer arithmetic and arithmetic units
6. Develop an understanding of the memory hierarchy, cache memory and virtual

memory.
7. Gain practical experience in programming with assembly language.
8. Understand program vulnerabilities arising from computer architecture decisions.

Mapping of Course Objectives to ABET Outcomes:

Course
Objectives a)

 a
n

ab
ili

ty
 to

 a
pp

ly
 k

no
w

le
dg

e
of

 m
at

he
m

at
ic

s,

sc
ie

nc
e,

 a
nd

 e
ng

in
ee

ri
ng

(b
) a

n
ab

ili
ty

 to
 d

es
ig

n
an

d
co

nd
uc

t e
xp

er
im

en
ts

,
as

 w
el

l a
s

to
 a

na
ly

ze
 a

nd
 in

te
rp

re
t d

at
a

(c
) a

n
ab

ili
ty

 to
 d

es
ig

n
a

sy
st

em
, c

om
po

ne
nt

, o
r

pr
oc

es
s

to
 m

ee
t d

es
ir

ed
 n

ee
ds

(d
) a

n
ab

ili
ty

 to
 fu

nc
tio

n
on

 m
ul

ti-
di

sc
ip

lin
ar

y
te

am
s

(e
) a

n
ab

ili
ty

 to
 id

en
tif

y,
 fo

rm
ul

at
e,

 a
nd

 s
ol

ve

en
gi

ne
er

in
g

pr
ob

le
m

s

(f
) a

n
un

de
rs

ta
nd

in
g

of
 p

ro
fe

ss
io

na
l a

nd
 e

th
ic

al

re
sp

on
si

bi
lit

y

(g
) a

n
ab

ili
ty

 to
 c

om
m

un
ic

at
e

ef
fe

ct
iv

el
y

(h
) t

he
 b

ro
ad

 e
du

ca
tio

n
ne

ce
ss

ar
y

to
 u

nd
er

st
an

d
th

e
im

pa
ct

 o
f e

ng
in

ee
ri

ng
 s

ol
ut

io
ns

 in
 a

 g
lo

ba
l

an
d

so
ci

et
al

 c
on

te
xt

(i
) a

 re
co

gn
iti

on
 o

f t
he

 n
ee

d
fo

r,
an

d
an

 a
bi

lit
y

to

en
ga

ge
 in

 li
fe

-l
on

g
le

ar
ni

ng

(j
) a

 k
no

w
le

dg
e

of
 c

on
te

m
po

ra
ry

 is
su

es

(k
) a

n
ab

ili
ty

 to
 u

se
 th

e
te

ch
ni

qu
es

, s
ki

lls
, a

nd

m
od

er
n

en
gi

ne
er

in
g

to
ol

s
ne

ce
ss

ar
y

fo
r

en
gi

ne
er

in
g

pr
ac

tic
e

1 X
2 X X
3 X X X X
4 X X X X
5 X X
6 X X
7 X X X X
8 X X X

Assessment Tools:

Student achievement of the course objectives is assessed by 6 bi-weekly homework
assignments,5 labs, one in-class exam and a 2-hour “lab-exam”.

A description of the assessments tools that were analyzed for this report is given below:
Objective 1: SSI Lab and SSI Homework – study, encode and implement decoders for
one- and two-address machines.

Objective 2: In Lab 1 students are learning about RTL notation.

Objective 3: In HW2 the students must explore the various performance tradeoffs
involved in CISC and RISC instruction sets and their implementations.

Objective 4: HW3, HW6 and the lab exam test the students’ understanding of datapath
and control unit design. The lab exam forces each student to demonstrate his or her
knowledge of these areas, without help from fellow students or reference to outside
resources. Each student gives a 5-minute presentation to the instructor or TA on the
merits of their particular design.

Objective 5: Lab 3, Lab 4 and HW 5 investigate binary representations of integers and
floating-point numbers and the instructions necessary to manipulate these representations.

Objective 6: Students develop an understanding for the memory hierarchy by examining
the impact long-latency memory operations have on critical path of the datapath and
control units.

Objective 7: In Lab 2 student are introduced to the assembler, linker and loader. In
Labs 3 and 4, the students must design and program a floating-point multiplier and
divider in MIPS assembly language. They are not allowed to use floating-point
instructions.

Objective 8: In HW 4, students gain understanding of program vulnerabilities by
studying the stack overflow exploit.

% of students meeting objective (Note: “Meeting objective” was defined as obtaining
over 75% of the possible points
Coursework Topic Obj.

1
Obj.
2

Obj.
3

Obj.
4

Obj.
5

Obj.
6

Obj.
7

Obj.
8

Lab1 SSI lab
(addressing
modes,
encoding)

89 89 89

Lab 2 Assembler,
compiler,
linker,
simulator

 95

Lab 3 Floating-point
multiply
simulator

 83 83

Lab 4 Floating-point
divide
simulator

 100 100

Lab 5 Datapath
implementation
for MIPS
subset

 100

HW1 Performance 94
HW2 SSI- operands,

addressing,
registers

96

HW3 SMOK –
datapath layout

 100

HW4 Procedure
calls, stack
overflow

 100

HW5 Arithmetic,
binary
representation,
immediate
instructions

 53

HW6 Datapath and
control

 100

Lab Exam Design and
implementation
of small
processor

 96 96 96

General Evaluation in terms of Course Objectives

How well are students learning?

The students learn by doing in this class. Labs are used to give students supervised
exposure to compilers, assemblers and a schematic design tool called SMOK. The
number of labs seemed sufficient for most students to get the hang of using the tools.
Students learned about assembly language examining output from a compiler and by
writing two (2) large assembly language programs (a floating-point multiplier and a
floating-point dividers). They learned about datapaths by using the SMOK tool to design
an executable processor.

What issues are limiting student learning?

Large class size (over 120 students) is not ideal for classroom interaction. CS and CpE
students have had some exposure to assembly language and data representation in CS216.
We assume the students have had no exposure and start from the beginning. Nonetheless,
the EE students do state a feeling of being disadvantaged in the course.

If changes are being made in the curriculum, how might these affect this course?

Changed the course a bit this semester. After discussions with Ron Williams about the
follow-up course EE/CS435, we removed most of the pipelining discussion. We also
added 1- and 2-address machines and their datapaths early in the semester.

If you have made significant changes, how have they been assessed? Have they
improved learning or are further modifications warranted?

Perhaps the biggest change was the inclusion of the “lab exam”. The “lab exam” is a 2-
hour exam given to each student in the class. The student must take a processor
specification (ISA and simple RTL semantics) and design a processor implementation for
this specification. Students were given the opportunity to make a higher grade by
implementing a dual-issue version of the machine.

This “lab exam” gave the students an opportunity to use their knowledge gained over the
course of the semester. It became clear which students had worked hard over the semester
and learned the principles and tools. It was also clear which students had not done the
work on their own as they could not finish (or in some cases, even start) the assignment
in the allotted time.

