
CS 432 – Algorithms
Tom Horton (Fall 2003)

Course Objectives:
1. Comprehend fundamental ideas in algorithm analysis, including: time and space

complexity; identifying and counting basic operations; order classes and asymptotic
growth; lower bounds; optimal algorithms.

2. Apply these fundamental ideas to analyze and evaluate important problems and
algorithms in computing, including search, sorting, graph problems, and optimization
problems.

3. Apply appropriate mathematical techniques in evaluation and analysis, including
limits, logarithms, exponents, summations, recurrence relations, lower-bounds proofs and
other proofs.

4. Comprehend, apply and evaluate the use of algorithm design techniques such as divide
and conquer, the greedy approach, dynamic programming, and exhaustive or brute-force
solutions.

5. Comprehend the fundamentals ideas related to the problem classes NP and NP-
complete, including their definitions, their theoretical implications, Cook's theorem, etc.
Be exposed to the design of polynomial reductions used to prove membership in NP-
complete.

See final page of this document for how these map to degree program outcomes for the
BSCS degree.

Assessment of Student Learning:

Students did 6 homework sets, and took three exams. For the third exam, 35% of the point-values
were on material covered on the earlier exams.

Because students in this large class were allowed to work on homework problems in pairs, I have
assessed student performance only using scores on questions from all the exams. The scores for
each exam had been recorded on a per-question basis. I inspected the exams and mapped each
question to the course objectives. (One question seemed to apply to two objectives, and it was
counted towards both.)

The table below provides some measurements of student performance by course objective. The
first column shows the total number of exam points that were counted towards an objective.
Objective 2 had by far the largest number of points; this is probably not a surprise given the
nature of the course. The average of the sets of students’ performance on each objective is listed.
Because grade distributions are not usually a normal curve, the media and first- and third-
quartiles are also listed.

Finally, we have been asked to give a value for the number of students who meet what we believe
to be minimum performance for each objective. I found it difficult to decide how to decide what
constitutes minimum performance for each objective. So three separate threshold values for

“minimum performance” are given. The first reflects the different averages for each objective; it
is calculated as the average minus one standard deviation. The second threshold is fixed at 65%
of the total available points for that objective, and the third is fixed at 75% of the total. These
results will be discussed in the sections below that discuss student performance by objective.

Objective

1
Objective

2
Objective

3
Objective

4
Objective

5
points 57 207 44 38 39
Average 72.2% 84.9% 65.3% 75.5% 80.7%

Q3 80.3% 91.3% 74.4% 86.8% 92.3%
Median 73.7% 87.9% 65.9% 76.3% 84.6%
Q1 64.9% 80.4% 61.4% 68.4% 69.9%

Avg-stddev
threshold 59.2% 75.3% 53.6% 60.7% 65.0%
% qual 85.9% 90.6% 87.5% 87.5% 82.8%

% >65% 73.4% 96.9% 62.5% 85.9% 82.8%
% >75% 48.4% 90.6% 26.6% 57.8% 67.2%

To be continued….

Mapping of Course Objectives to BSCS Outcomes:
In the columns, “D” means “in Depth”; “F” means “Familiarity”; “X” means “Exposure”.

CS Degree Outcomes: Students who graduate with a BSCS
will…

Course
Obj. 1

Course
Obj. 2

Course
Obj. 3

Course
Obj. 4

Course
Obj. 5

(1: Math & DLD) Have demonstrated comprehension in relevant
areas of mathematics (including calculus, discrete math, and
probability), and in the area of logic design.

D D

(2: Fundamentals) Have demonstrated comprehension in
fundamental topics of computing, including the intellectual core
of computing, software design and development, algorithms,
computer organization and architecture, and software systems.

D D D F X

(3: Analysis & Evaluation) Have applied knowledge of areas of
computing to analyze and evaluate algorithms, designs,
implementations, systems, or other computing artifacts or work-
products. Application of this knowledge includes the ability to
design, conduct and evaluate the results of experiments and testing
activity.

 D D F

(4: Build Solutions) Have applied knowledge of areas of
computing to create solutions to challenging problems, including
specifying, designing, implementing and validating solutions for
new problems.

 F

(5: Research Awareness) Be aware of current research activity in
computing through activities including reading papers, hearing
research presentations, and successfully planning and completing
an individual research project in computing or its application.

(6: Broadening) Have demonstrated comprehension of subjects in
the humanities, social sciences, and the natural sciences in order to
broaden a student's education beyond engineering and computing.

(7: Social and Professional) Comprehend important social, ethical,
and professional considerations related to computing practice and
research, and be able to apply this knowledge when analyzing new
situations.

(8: Post-graduation) Be prepared to enter graduate programs in
computing or related fields, and be prepared to begin a
professional career in computing.

(9: Life-long Learning) Have demonstrated a self-directed ability
to acquire new knowledge in computing, including the ability to
learn about new ideas and advances, techniques, tools, and
languages, and to use them effectively; and to be motivated to
engage in life-long learning.

(10: Teamwork) Have demonstrated the ability to work effectively
in a development team.

(11: Communication) Have demonstrated the ability to
communicate effectively (orally and in writing) about technical
issues.

(12: Professional development practices) Comprehend important
issues related to the development of computer-based systems in a
professional context using a well-defined process to guide
development.

