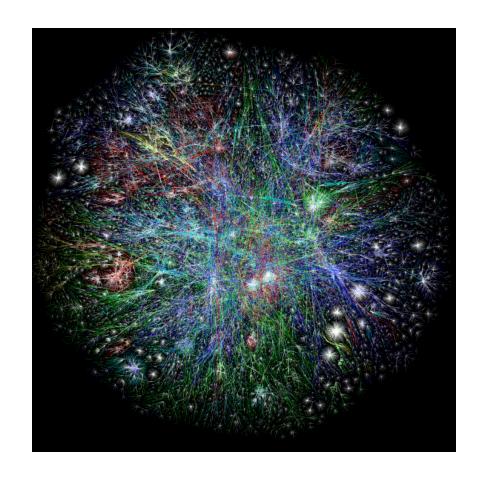
The Technology Behind

Slides organized by:

Sudhanva Gurumurthi

The World Wide Web

- In July 2008, Google announced that they found 1 trillion unique webpages!
- Billions of new web pages appear each day!
- About 1 billion Internet users (and growing)!!



The World Wide Web in 2003. Image source: http://www.opte.org/

Use a huge number of computers – Data Centers
An ordinary Google Search uses 700-1000 machines!

Search through a massive number of webpages - MapReduce

Find which webpages match your query - PageRank

Data Centers

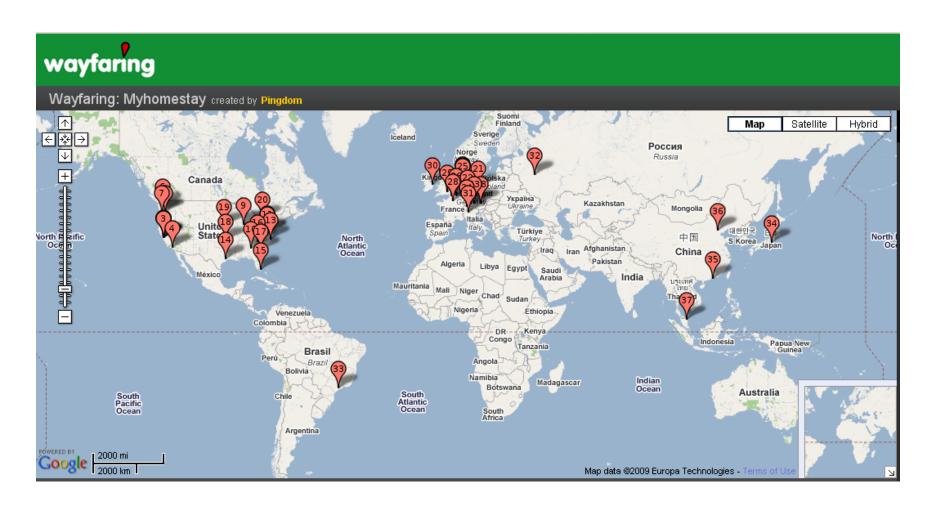
- Buildings that house computing equipment
- Contain 1000s of computers



Inside a Microsoft Data Center

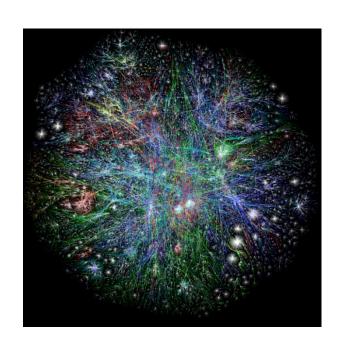
Google's Data Center in The Dalles, Oregon

Google's 36 Data Centers



Why do we need so many computers?

- Searching the Internet is like looking for a needle in a haystack!
 - There are a trillion webpages
 - There are millions of users
 - Imagine writing a for or whileloop to search the contents of each webpage!
- Use the 1000s of computers in parallel to speed up the search



Map/Reduce

- Adapted from the Lisp programming language
- Easy to distribute across many computers

Map/Reduce in Lisp

```
Unary operator

 (map f list [list<sub>2</sub> list<sub>3</sub> ...])

                                                Binary operator
• (map square '(1 2 3 4))
   o (1 4 9 16<del>)</del>
• (reduce + '(1 4 9 16))
    0
    O 30
```

Map/Reduce ala Google

- map(key, val) is run on each item in set
 - emits new-key / new-val pairs
- reduce(key, vals) is run for each unique key emitted by map()
 - emits final output

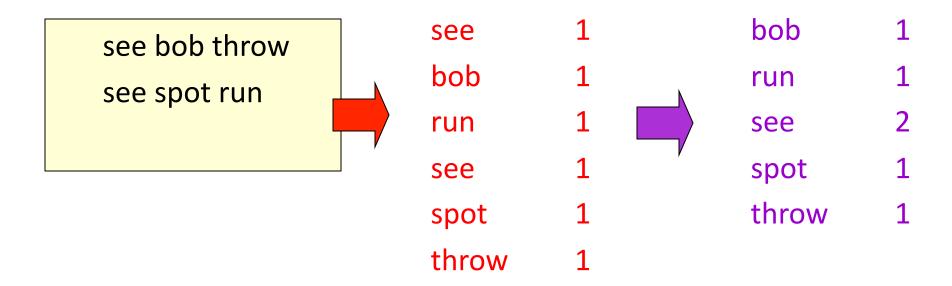
Example: Counting words in webpages

Input consists of (url, contents) pairs

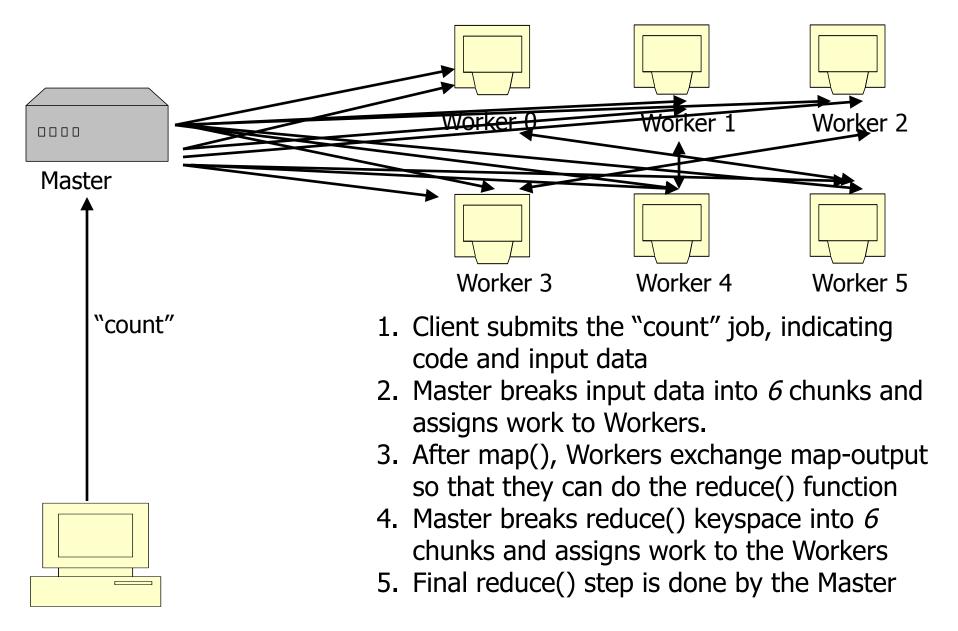
- map(key=url, val=contents):
 - For each word w in contents, emit (w, "1")
- reduce(key=word, values=uniq_counts):
 - Sum all "1"s in values list
 - Emit result "(word, sum)"

Count, Illustrated

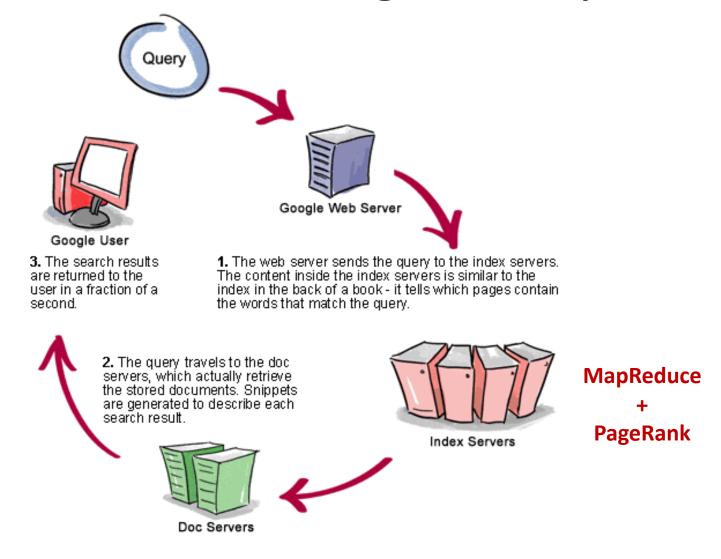
```
map(key=url, val=contents):
    For each word w in contents, emit (w, "1")
reduce(key=word, values=uniq_counts):
    Sum all "1"s in values list
    Emit result "(word, sum)"
```



Map/Reduce Job Processing



The Life of a Google Query

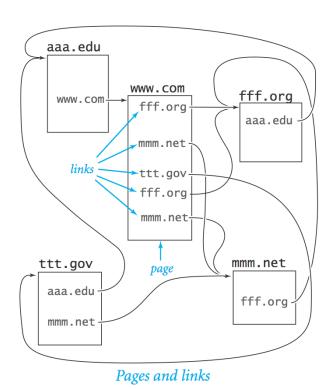


Finding the Right Websites for a Query

- Relevance Is the document similar to the query term?
- Importance Is the document useful to a variety of users?
- Search engine approaches
 - Paid advertisers
 - Manually created classification
 - Feature detection, based on title, text, anchors, ...
 - "Popularity"

Google's PageRank™ Algorithm

 Measure popularity of pages based on hyperlink structure of Web.



Google Founders – Larry Page and Sergei Brin

90-10 Rule

- Model. Web surfer chooses next page:
 - 90% of the time surfer clicks a link on current page.
 - 10% of the time surfer types a random page.
- Crude, but useful, web surfing model.
 - No one chooses links on a page with equal probability.
 - The 90-10 breakdown is just a guess.
 - It does not take the back button or bookmarks into account.

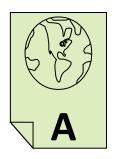
Basic Ideas Behind PageRank

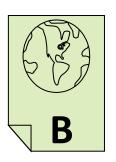
- PageRank is a probability distribution that denotes the likelihood that the "random surfer" will arrive at a particular webpage.
- Links coming from important pages convey more importance to a page.
 - If a web page has a link off the CNN home page, it may be just one link but it is a very important one.
- A page has high rank if the sum of the ranks of its inbound links is high.
 - Covers the cases where a page has many inbound links and also when a page has a few highly ranked inbound links.

The PageRank Algorithm

 Assume that there are only 4 pages – A, B, C, D and that the distribution is evenly divided among the pages

$$- PR(A) = PR(B) = PR(C) = PR(D) = 0.25$$

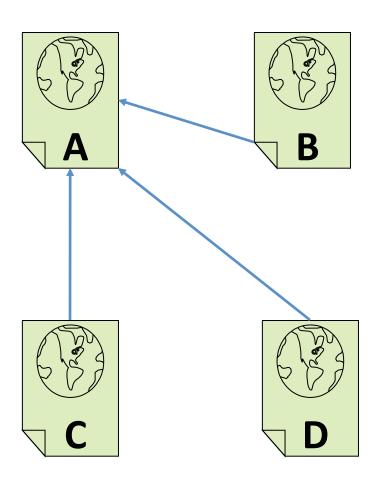






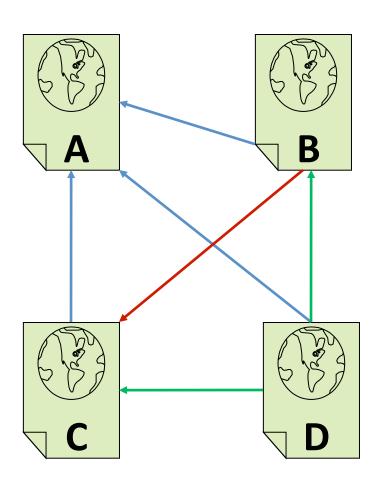
If B, C, D each only link to A

- B, C, and D each confer their 0.25 PageRank to A
- PR(A) = PR(B) + PR(C) + PR(D) = 0.75



Assume B links to C and D links to B and C

- Value of link-votes divided amongst the outbound links on a page
 - B gives vote worth 0.125
 to A and C
 - D gives vote worth0.083 to A, B, C
- PR(A) = (PR(B)/2) + (PR
 (C)/1) + (PR(D)/3)



PageRank

The PageRank for any page u:

$$PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)}$$

PR(u) is dependent on the PageRank values for each page \mathbf{v} out of the set $\mathbf{B}_{\mathbf{u}}$ (this set contains all pages linking to page \mathbf{u}), divided by the number L(v) of links from page \mathbf{v}

References

 The paper by Larry Page and Sergei Brin that describes their Google prototype:

http://infolab.stanford.edu/~backrub/google.html

 The paper by Jeffrey Dean and Sanjay Ghemawat that describes MapReduce:

http://labs.google.com/papers/mapreduce.html

 Wikipedia article on PageRank: <u>http://en.wikipedia.org/wiki/PageRank</u>