Current Research in Computer Architecture at UVA

Kevin Skadron, University of Virginia, Dept. of Computer Science

A Few Topics from my Group

- GPUs for computational science
- Temperature-aware processor design

Illustrative Case Study from Systems Biology

- Leukocyte detection and tracking in video microscopy
 - Understand inflammatory processes and treatment
 - Manual measurement is tedious and error-prone
 - 100X speedup possible even with discrete GPU, but...
 - Required non-trivial, architecture-aware reorganization
 - IPDPS'09

Leukocyte Detection and Tracking

- Video processing challenges:
 - Need to track velocity of rolling leukocytes
 - Leukocytes can be dark or light, overlap
 - Multiple layers of vessels
 - Jitter due to breathing of subject

Zoomed:

Detection: CUDA Optimizations

Tracking: CUDA Optimizations

Frame Rate Approaching Real Time

UNIVERSITY OF VIRGINIA

Thermal Modeling

- Multiple layers
- Both silicon and package
- Primary and secondary paths
- Can add more layers for 3D chips

Cooling Dictated by Hotspots

 High cooling capacity "wasted" on most of the chip's area

IBM POWER5

Aging as f(T)

- Reliability criteria (e.g., DTM thresholds) are typically based on worst-case assumptions
- But actual behavior is often not worst case
- So aging occurs more slowly
- •This means the DTM design is over-engineered!

The Visual Vulnerability Spectrum

Jeremy Sheaffer
University of Virginia
Department of Computer Science

April 15, 2010 CS 2190

 Transient errors can cause undesirable artifacts, such as:

- Transient errors can cause undesirable artifacts, such as:
 - Single pixel errors

- Transient errors can cause undesirable artifacts, such as:
 - Single pixel errors
 - Single texel errors

- Transient errors can cause undesirable artifacts, such as:
 - Single pixel errors
 - Single texel errors
 - Which might be stretched

- Transient errors can cause undesirable artifacts, such as:
 - Single pixel errors
 - Single texel errors
 - Which might be stretched, interpolated

Motivation

- Transient errors can cause undesirable artifacts, such as:
 - Single pixel errors
 - Single texel errors
 - Which might be stretched, interpolated, or repeated

Transient errors can cause undesirable artifacts, such as:

- Single pixel errors
- Single texel errors
 - Which might be stretched, interpolated, or repeated
- Single vertex errors

Motivation

- Transient errors can cause undesirable artifacts, such as:
 - Single pixel errors
 - Single texel errors
 - Which might be stretched, interpolated, or repeated
 - Single vertex errors
 - Corrupt a frame
 - Crash the computer
 - Corrupt rendering state

- Traditional causes
 - Cosmic radiation—gamma particles

- Traditional causes
 - Cosmic radiation—gamma particles

- Traditional causes
 - Cosmic radiation—gamma particles

- Traditional causes
 - Cosmic radiation—gamma particles

- Traditional causes
 - Cosmic radiation—gamma particles

- Traditional causes
 - Cosmic radiation—gamma particles

CS 2190

- Cosmic radiation—gamma particles
 - Soft Error Rate (SER) is proportional to cosmic ray flux
 - Flux at sea level is about 1 particle / cm² second
 - Maximum flux of about 100 particles / cm² second occurs at airplane altitudes
 - Particles at higher altitudes tend to have higher energies due to less cascading
- Terrestrial radiation—alpha particles
 - Initially discovered at nuclear test sites in the '50s
- Called soft errors or single event upsets (SEUs)

April 15, 2010 CS 2190 23

Transient Fault Mitigation Techniques (CPU)

- ECC and parity
 - These protect memory but not combinational logic
 - Until recently, memory has been the primary concern and ECC and parity the primary solutions
- Scrubbing
 - Used in conjunction with ECC to reduce 2-bit errors
- Hardware fingerprinting or state dump with rollback
 - Poorly evaluated
- Larger or radiation-hardened gates
 - Increases the critical charge Q_{crit}
- Redundancy
 - Primarily employed to protect logic
 - Also sometimes used for memory

Reliability Through Redundancy

- Primary topic in recent transient fault reliability literature
- Many clever ideas proposed and (sort of) evaluated, including
 - Triple redundancy with voting
 - Boeing 777 uses triple redundancy in all fly-by-wire components and triple redundancy in all computers for 'triple triple' or 9x redundancy
 - Lockstepped processors
 - Redundant Multithreading
 - CRT—Chip-level Redundantly Threaded processors
 - SRT—Simultaneous and Redundantly Threaded processors
 - The concepts of a 'Sphere of Replication' and leading and trailing threads
 - LVQs—Load value queue
 - BOQs—Branch outcome queue
 - Compiler assisted techniques like the checking store buffer (CSB)

Architectural Vulnerability Factor

$$AVF = \frac{\sum_{b \in B} t_b}{|B| \times \Delta t}$$

April 15, 2010 CS 2190 26

Architectural Vulnerability Factor

$$AVF = \frac{\sum_{b \in B} t_b}{|B| \times \Delta t}$$

This is not applicable to graphics hardware

AVF is Not Good for Graphics

- Primarily because it assumes that all bits that influence the computation are equally important
 - Similarly, with AVF, any corruption of an ACE bit gives a 'wrong answer'

April 15, 2010 CS 2190 28

Visual Vulnerability Spectrum

- We note that many transient faults in graphics workloads do not matter and propose the Visual Vulnerability Spectrum to characterize them
- The VVS consists of three orthogonal axes
 - Extent-how many pixels will be affected by an error
 - Magnitude—how severe is the error within the affected region
 - Persistence—how long will the error effect the output
- For an error to be important, it must rank high on all three axes

April 15, 2010 CS 2190 29

Important Structures

- Matrix Stack
- Scissor, depth and alpha test enable bits and functions
- Viewport and clip plane function coefficients
- Depth range
- Lighting enable bits
- Culling enable bits
- Various polygon state, including fill mode, offset and stippling
- Various texture state, including enable, active texture, and current texture unit
- Current drawbuffer
- Uniform and control-related shader state

Unimportant State

- The framebuffer
- Shader data registers
- Antialiasing state

April 15, 2010 CS 2190 31

Mitigation Techniques for Graphics Applications

- Periodic Detection
 - Requires reliable backing store and driver support
 - Takes advantage of 'acceptable error'
 - Techniques
 - Refresh-based
 - Piggyback error detection on DRAM refresh
 - Demand
 - Piggyback detection on use
 - Example: CRC on vertex array, checked as read
 - Analogs for texture reads?

Conclusions

- Architectural vulnerability increasingly deserves the attention of the graphics community
 - But AVF is a poor metric for graphics computation
- The Visual Vulnerability Spectrum provides a more useful metric
 - Extent, persistence, magnitude
- Graphics hardware design suggests some novel simple error mitigation techniques
 - Partitioned protection, periodic detection

• Questions?

Traditional Causes

- Well understood and quantified
- Very important in super-computing installations
 - On order of 10 transient faults/day
- Memory is the primary victim, not logic
- Ziegler shows that only 1 in 40000 incident particles collides with silicon crystalline structure
 - Assuming a 1cm² processor
 - Approximately 1 collision/11 hours at sea level
 - 1/6 minutes in an airplane
 - Not all are high enough energy to cause errors
 - Clearly not very important for traditional graphics!

Near Future Causes

- External EM noise
- EM noise from crosstalk
- di/dt and voltage droop
- Parameter variations
- Most of these can be at least partially accounted for through architectural or circuit level techniques
 - e.g. capacitors to compensate for *di/dt*
- Overclocking exacerbates these problems

Near Future Causes

- Neither well understood nor well quantified
 - Borkar shows exponential growth of transient errors at a rate of 8%/generation
 - Very little other literature exists
 - Primarily because nobody yet understands how to analyze the problem

Architectural Vulnerability Factor

- DUE—Detectable
 Unrecoverable Error
- SDC—Silent Data Corruption
- ACE—required for Architecturally Correct Execution
- AVF—Architectural
 Vulnerability Factor
 - The likelihood that a transient error in a structure will lead to a computational error

VVS Examples

Single Texel

Single Pixel
Single Texel
Single Vertex

Single Texel

Single Vertex

Uniform Shader State

Single Texel

Single Vertex

Uniform Shader State

Clear Color

Single Texel

Single Vertex

Uniform Shader State

Clear Color

Antialiasing State

Single Texel

Single Vertex

Uniform Shader State

Clear Color

Antialiasing State

Application of the VVS

- We analyzed the OpenGL 2.0 state vector using the VVS
 - A "proxy" for real microarchitectures
 - Has shortcomings, but a reasonable, first-order approximation of GPU state
 - We identified some sets of structures of:
 - High importance
 - Intermediate importance
 - Little importance

Less Important State

- Various vertex array state, including size, type, stride, etc.
- Similar state for other types of arrays: texture, fog, color, etc.
- High levels of the hierarchical Z-pyramid
- Texture contents

Mitigation Techniques for Graphics Applications

- Full protection, via ECC or similar, on small, not easily recovered important state
 - Various enable bits, matrix stacks, shader control state, clip and viewport coefficients, etc.
- Parity on slightly less important state that can be easily recovered, e.g. shader store

Future Work

GPGPU

- Opportunities afforded by GPU design
- Redundancy
 - Macro SLI/Crossfire/video-out based
 - Micro redundantly combine shader units in space or time
- Secure backing store
 - Suggests checkpointing-type solutions

Acknowledgements

- This work is supported by
 - A Graduate Research Fellowship from ATI
 - NSF Grants CCF-0429765 and CCR-0306404
 - Army Research Office grant #W911NF-04-1-0288
 - And a research grant from Intel MRL
- Thanks to the reviewers for their helpful and insightful comments
- Thanks also to Shubu Mukherjee for some otherwise unavailable information

Design Space Exploration for Low-Cost Safety Critical Architectures

Brett H. Meyer
University of Virginia
April 15, 2010

Motivation

- Increasing integration of safety-critical systems
- For example, cars
 - X-by-wire
 - Engine-efficiency controls
 - Driver interfaces and navigation aids
- Traditional reliable systems
 - Distributed system of single-core chips
- With emerging multi-core systems, opportunity to
 - Reduce cost with integration
 - Achieve equivalent or better reliability

Background: Lock-step Execution

- Redundancy to address both soft-, hard-error
- Safety-critical tasks execute on coupled resources
 - Results are compared after each cycle
 - On results mismatch, retry or "limp" home
- Resources tend to be under-utilized => wasted area

Objectives

- Develop low-cost, reliable architectures
- Hardware, software alternatives to lockstep on dedicated resources
 - Increase hardware utilization
 - Reduce hardware cost
 - Maintain reliability

On-demand Redundancy

- Relaxing lock-step requirements
 - Relaxing resource dedication
 - Relaxing lock-step execution
- Two key benefits
 - Cost reduction
 - Reliability improvement
- For example, TMR for free!

Relaxing Resource Dedication

Non-critical task workload can be increased when dedication is relaxed

Mission-monitor Pairs

- Mission core executes critical tasks
- Tightly-coupled monitor core verifies correct execution
- Area reduction of 50% for monitor [Toshiba]
- Monitor is not available for NCT exec

Mission-Monitor vs. DMR

Mission-monitor

Dual modular redundancy

$$T_{DMR} = 5 (0.5 + 2(1 - c))$$

$$T_{MM} = 5 (1 + (1 - c))$$

$$\frac{T_{DMR}}{T_{MM}} = \frac{2.5 - 2c}{2 - c}$$

Future Work

- Validate analytical models
- Extend experimentation to additional templates
- Explore sensitivity to overhead
 - E.g., context switching
- Explore sensitivity to application model
 - E.g., number and organization of critical tasks and non-critical tasks

Questions?

Cost-neutral Analytical Comparison

Baseline vs. Relaxed
 Dedication

- Mission-monitor vs.
 DMR
 - Both with relaxed dedication

Experimental Setup

How many cycles to execute non-critical tasks?

- Processor model
 - 500/250 MHz ARM processors
- Application model
 - 10 ms scheduling interval, IPC of 1
 - Mix of critical and non-critical tasks
 - c fraction of interval required for critical tasks
 - Retry slot scheduled immediately after critical tasks
 - Optimistically schedule non-critical tasks
- Failure model
 - Transient failures are rare events

Baseline vs. Relaxed Dedication

$$T_{Base} = 5(N-2)$$

$$T_{RD} = 5((N-2) + 2(1-c))$$

$$\frac{T_{RD}}{T_{Base}} = \frac{5((N-2) + 2(1-c))}{5(N-2)} = \frac{N-2c}{N-2}$$

