
1

UNIVERSITY OF VIRGINIA

Current Research in Computer 
Architecture at UVA

Kevin Skadron, 
University of Virginia, 

Dept. of Computer Science



2

UNIVERSITY OF VIRGINIA

A Few Topics from my Group

GPUs for computational science
Temperature-aware processor design



3

UNIVERSITY OF VIRGINIA

Illustrative Case Study
from Systems Biology

Leukocyte detection and tracking in video microscopy
– Understand inflammatory processes and treatment
– Manual measurement is tedious and error-prone
– 100X speedup possible even with discrete GPU, but...
– Required non-trivial, architecture-aware reorganization
– IPDPS’09



4

UNIVERSITY OF VIRGINIA

Leukocyte Detection and Tracking

Video processing challenges:
– Need to track velocity of rolling leukocytes
– Leukocytes can be dark or light, overlap
– Multiple layers of vessels
– Jitter due to breathing of subject

Zoomed:



5

UNIVERSITY OF VIRGINIA

Detection: CUDA Optimizations

2.0x
4.7x 6.2x

11.6x
15.5x

42.8x

58.5x

3.3x

13.5x

0x

10x

20x

30x

40x

50x

60x

70x

C 2 Threads 3 Threads 4 Threads Naïve
CUDA

Constant
Memory

Texture
Memory

Array
Ordering

One-Pass
Variance

C + OpenMP CUDA

Sp
ee

du
p

NVIDIA GTX 280

Architectural Adv. of GPU



6

UNIVERSITY OF VIRGINIA

Tracking: CUDA Optimizations

2.0x 4.0x 5.9x 7.7x 0.8x

25.4x
40.7x

60.7x

211.3x

54.1x

6.3x
0x

50x

100x

150x

200x

250x

C 2 Threads 3 Threads 4 Threads Naïve
CUDA

Larger
Kernel

Reduced
Allocation

Partial
Reduction

Full
Reduction
(2 Kernels)

Full
Reduction
(1 Kernel)

Persistent
Thread
Block

C + OpenMP CUDA

Sp
ee

du
p

NVIDIA GTX 280

Architectural Adv. of GPU



7

UNIVERSITY OF VIRGINIA

Frame Rate Approaching Real Time

0.11 0.22 0.83

21.6

0

5

10

15

20

25

MATLAB C C + OpenMP CUDA

Fr
am

es
 p

er
 S

ec
on

d 
(F

PS
)

NVIDIA GTX 280

Real-time desktop processing 
almost within reach



8

UNIVERSITY OF VIRGINIA

Multiple layers
Both silicon and package
Primary and secondary paths
Can add more layers for 3D chips

Thermal Modeling



9

UNIVERSITY OF VIRGINIA

Cooling Dictated by Hotspots
High cooling capacity “wasted” on most of 
the chip’s area

IBM POWER5



10

UNIVERSITY OF VIRGINIA

Aging as f(T)
Reliability criteria (e.g., DTM thresholds) are typically 

based on worst-case assumptions
But actual behavior is often not worst case
So aging occurs more slowly 
This means the DTM design is over-engineered!
We can exploit 

this, e.g. for DTM 
or frequency
(IEEE Micro 2005)

Bank

Spend



April 15, 2010 CS 2190 1

The Visual Vulnerability Spectrum

Jeremy Sheaffer
University of Virginia

Department of Computer Science



April 15, 2010 CS 2190 2

Motivation

Transient errors can cause undesirable 
artifacts, such as:



April 15, 2010 CS 2190 3

Motivation

Transient errors can cause undesirable 
artifacts, such as:
– Single pixel errors



April 15, 2010 CS 2190 4

Motivation

Transient errors can cause undesirable 
artifacts, such as:
– Single pixel errors
– Single texel errors



April 15, 2010 CS 2190 5

Motivation

Transient errors can cause undesirable 
artifacts, such as:
– Single pixel errors
– Single texel errors

Which might be stretched



April 15, 2010 CS 2190 6

Motivation

Transient errors can cause undesirable 
artifacts, such as:
– Single pixel errors
– Single texel errors

Which might be stretched, interpolated



April 15, 2010 CS 2190 7

Motivation

Transient errors can cause undesirable 
artifacts, such as:
– Single pixel errors
– Single texel errors

Which might be stretched, interpolated, or 
repeated

CS 2190



April 15, 2010 CS 2190 8

Motivation

CS 2190

Transient errors can cause undesirable 
artifacts, such as:
– Single pixel errors
– Single texel errors

Which might be stretched, interpolated, or 
repeated

– Single vertex errors



April 15, 2010 CS 2190 9



April 15, 2010 CS 2190 10



April 15, 2010 CS 2190 16

Motivation

Transient errors can cause undesirable 
artifacts, such as:
– Single pixel errors
– Single texel errors

Which might be stretched, interpolated, or 
repeated

– Single vertex errors
– Corrupt a frame
– Crash the computer
– Corrupt rendering state



April 15, 2010 CS 2190 17

Causes of Transient 
Faults
Traditional causes
– Cosmic radiation—gamma particles



April 15, 2010 CS 2190 18

Causes of Transient 
Faults
Traditional causes
– Cosmic radiation—gamma particles



April 15, 2010 CS 2190 19

Causes of Transient 
Faults
Traditional causes
– Cosmic radiation—gamma particles



April 15, 2010 CS 2190 20

Causes of Transient 
Faults
Traditional causes
– Cosmic radiation—gamma particles



April 15, 2010 CS 2190 21

Causes of Transient 
Faults
Traditional causes
– Cosmic radiation—gamma particles



April 15, 2010 CS 2190 22

Causes of Transient 
Faults
Traditional causes
– Cosmic radiation—gamma particles



April 15, 2010 CS 2190 23

Causes of Transient 
Faults
Cosmic radiation—gamma particles
– Soft Error Rate (SER) is proportional to cosmic ray flux

Flux at sea level is about 1 particle / cm2 second
Maximum flux of about 100 particles / cm2 second 
occurs at airplane altitudes
Particles at higher altitudes tend to have higher 
energies due to less cascading

Terrestrial radiation—alpha particles
– Initially discovered at nuclear test sites in the ’50s

Called soft errors or single event upsets (SEUs)



April 15, 2010 CS 2190 24

Transient Fault Mitigation 
Techniques (CPU)
ECC and parity
– These protect memory but not combinational logic

Until recently, memory has been the primary concern and ECC 
and parity the primary solutions

Scrubbing
– Used in conjunction with ECC to reduce 2-bit errors

Hardware fingerprinting or state dump with rollback
– Poorly evaluated

Larger or radiation-hardened gates
– Increases the critical charge Qcrit

Redundancy
– Primarily employed to protect logic
– Also sometimes used for memory



April 15, 2010 CS 2190 25

Reliability Through 
Redundancy
Primary topic in recent transient fault reliability 
literature
Many clever ideas proposed and (sort of) evaluated, 
including
– Triple redundancy with voting

Boeing 777 uses triple redundancy in all fly-by-wire 
components and triple redundancy in all computers for ‘triple 
triple’ or 9× redundancy

– Lockstepped processors
– Redundant Multithreading

CRT—Chip-level Redundantly Threaded processors
SRT—Simultaneous and Redundantly Threaded processors

The concepts of a ‘Sphere of Replication’ and leading and trailing 
threads
LVQs—Load value queue
BOQs—Branch outcome queue
Compiler assisted techniques like the checking store buffer (CSB)



April 15, 2010 CS 2190 26

Architectural Vulnerability 
Factor

tB
t

AVF Bb
b

Δ×
= ∑ ∈



April 15, 2010 CS 2190 27

Architectural Vulnerability 
Factor

This is not applicable to graphics hardware

tB
t

AVF Bb
b

Δ×
= ∑ ∈



April 15, 2010 CS 2190 28

AVF is Not Good for 
Graphics
Primarily because it assumes that all bits 
that influence the computation are 
equally important
– Similarly, with AVF, any corruption of an ACE 

bit gives a ‘wrong answer’



April 15, 2010 CS 2190 29

Visual Vulnerability 
Spectrum
We note that many transient faults in graphics 
workloads do not matter and propose the Visual 
Vulnerability Spectrum to characterize them

The VVS consists of three orthogonal axes
– Extent—how many pixels will be affected by an error
– Magnitude—how severe is the error within the 

affected region
– Persistence—how long will the error effect the output

For an error to be important, it must rank high 
on all three axes



April 15, 2010 CS 2190 30

Important Structures

Matrix Stack
Scissor, depth and alpha test enable bits and functions
Viewport and clip plane function coefficients
Depth range
Lighting enable bits
Culling enable bits
Various polygon state, including fill mode, offset and 
stippling
Various texture state, including enable, active texture, 
and current texture unit
Current drawbuffer
Uniform and control-related shader state



April 15, 2010 CS 2190 31

Unimportant State

The framebuffer
Shader data registers
Antialiasing state



April 15, 2010 CS 2190 32

Mitigation Techniques for 
Graphics Applications

Periodic Detection
– Requires reliable backing store and driver 

support
– Takes advantage of ‘acceptable error’
– Techniques

Refresh-based
Piggyback error detection on DRAM refresh

Demand
Piggyback detection on use
Example: CRC on vertex array, checked as read
Analogs for texture reads? 



April 15, 2010 CS 2190 33

Conclusions

Architectural vulnerability increasingly deserves 
the attention of the graphics community
– But AVF is a poor metric for graphics computation

The Visual Vulnerability Spectrum provides a 
more useful metric
– Extent, persistence, magnitude

Graphics hardware design suggests some novel 
simple error mitigation techniques
– Partitioned protection, periodic detection 



April 15, 2010 CS 2190 34

Thank you!

Questions?



April 15, 2010 CS 2190 35

Traditional Causes

Well understood and quantified
Very important in super-computing installations 
– On order of 10 transient faults/day

Memory is the primary victim, not logic
Ziegler shows that only 1 in 40000 incident 
particles collides with silicon crystalline 
structure
– Assuming a 1cm2 processor

Approximately 1 collision/11 hours at sea level
1/6 minutes in an airplane
Not all are high enough energy to cause errors
Clearly not very important for traditional graphics!



April 15, 2010 CS 2190 36

Near Future Causes

External EM noise
EM noise from crosstalk
di/dt and voltage droop
Parameter variations

Most of these can be at least partially 
accounted for through architectural or circuit 
level techniques
– e.g. capacitors to compensate for di/dt

Overclocking exacerbates these problems



April 15, 2010 CS 2190 37

Near Future Causes

Neither well understood nor well 
quantified
– Borkar shows exponential growth of transient 

errors at a rate of 8%/generation
– Very little other literature exists 

Primarily because nobody yet understands how to 
analyze the problem



April 15, 2010 CS 2190 38

Architectural Vulnerability 
Factor

DUE—Detectable 
Unrecoverable Error
SDC—Silent Data 
Corruption
ACE—required for 
Architecturally Correct 
Execution
AVF—Architectural 
Vulnerability Factor
– The likelihood that a 

transient error in a 
structure will lead to a 
computational error



April 15, 2010 CS 2190 39

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite



April 15, 2010 CS 2190 40

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite

Single Pixel



April 15, 2010 CS 2190 41

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite

Single Pixel

Single Texel



April 15, 2010 CS 2190 42

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite

Single Pixel

Single Texel

Single Vertex



April 15, 2010 CS 2190 43

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite

Single Pixel

Single Texel

Single Vertex

Uniform Shader State



April 15, 2010 CS 2190 44

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite

Single Pixel

Single Texel

Single Vertex

Uniform Shader State

Clear Color



April 15, 2010 CS 2190 45

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite

Single Pixel

Single Texel

Single Vertex

Uniform Shader State

Clear Color

Antialiasing State



April 15, 2010 CS 2190 46

Unnoticeable

Exte
nt

VVS Examples

Insufferable

Mag
nit

ud
e

Pers
ist

en
ce

Whole
Screen

Unnoticeable Transient

Indefinite

Single Pixel

Single Texel

Single Vertex

Uniform Shader State

Clear Color

Antialiasing State



April 15, 2010 CS 2190 47

Application of the VVS

We analyzed the OpenGL 2.0 state 
vector using the VVS
– A “proxy” for real microarchitectures
– Has shortcomings, but a reasonable, 

first-order approximation of GPU state
– We identified some sets of structures of:

High importance
Intermediate importance
Little importance



April 15, 2010 CS 2190 48

Less Important State

Various vertex array state, including 
size, type, stride, etc.
Similar state for other types of arrays: 
texture, fog, color, etc.
High levels of the hierarchical Z-pyramid
Texture contents



April 15, 2010 CS 2190 49

Mitigation Techniques for 
Graphics Applications

Full protection, via ECC or similar, on 
small, not easily recovered important 
state
– Various enable bits, matrix stacks, shader 

control state, clip and viewport coefficients, 
etc.

Parity on slightly less important state 
that can be easily recovered, e.g. shader 
store



April 15, 2010 CS 2190 50

Future Work

GPGPU
– Opportunities afforded by GPU design
– Redundancy

Macro – SLI/Crossfire/video-out based
Micro – redundantly combine shader units in space 
or time

– Secure backing store
Suggests checkpointing-type solutions



April 15, 2010 CS 2190 51

Acknowledgements

This work is supported by
– A Graduate Research Fellowship from ATI
– NSF Grants CCF-0429765 and CCR-0306404
– Army Research Office grant #W911NF-04-1-0288
– And a research grant from Intel MRL

Thanks to the reviewers for their helpful and 
insightful comments
Thanks also to Shubu Mukherjee for some 
otherwise unavailable information



Design Space Exploration for Low‐
Cost Safety Critical Architectures

Brett H. Meyer

University of Virginia

April 15, 2010



Motivation

• Increasing integration of safety‐critical systems

• For example, cars
– X‐by‐wire

– Engine‐efficiency controls

– Driver interfaces and navigation aids

• Traditional reliable systems
– Distributed system of single‐core chips

• With emerging multi‐core systems, opportunity to
– Reduce cost with integration

– Achieve equivalent or better reliability

2© 2010 Brett H. Meyer



Background: Lock‐step Execution

• Redundancy to address both soft‐, hard‐error

• Safety‐critical tasks execute on coupled resources
– Results are compared after each cycle

– On results mismatch, retry or “limp” home

• Resources tend to be under‐utilized => wasted area

3© 2010 Brett H. Meyer



Objectives

• Develop low‐cost, reliable architectures

• Hardware, software alternatives to lockstep on 
dedicated resources
– Increase hardware utilization

– Reduce hardware cost

– Maintain reliability

4© 2010 Brett H. Meyer



On‐demand Redundancy

• Relaxing lock‐step requirements
– Relaxing resource dedication

– Relaxing lock‐step execution

• Two key benefits
– Cost reduction

– Reliability improvement

• For example, TMR for free!

5© 2010 Brett H. Meyer



Relaxing Resource Dedication

6

Non‐critical task workload can be increased when dedication is relaxed

© 2010 Brett H. Meyer



Mission‐monitor Pairs

• Mission core executes 
critical tasks

• Tightly‐coupled 
monitor core verifies 
correct execution

• Area reduction of 50% 
for monitor [Toshiba]

• Monitor is not 
available for NCT exec

© 2010 Brett H. Meyer 7



Mission‐Monitor vs. DMR

©2010 Brett H. Meyer 8

Mission‐monitor

Dual modular redundancy



Future Work

• Validate analytical models

• Extend experimentation to additional templates

• Explore sensitivity to overhead
– E.g., context switching

• Explore sensitivity to application model
– E.g., number and organization of critical tasks and 
non‐critical tasks

© 2010 Brett H. Meyer 9



Questions?

©2010 Brett H. Meyer 10



Cost‐neutral Analytical Comparison

• Baseline vs. Relaxed 
Dedication

• Mission‐monitor vs. 
DMR
– Both with relaxed 
dedication

© 2010 Brett H. Meyer 11



Experimental Setup
How many cycles to execute non‐critical tasks?

• Processor model
– 500/250 MHz ARM processors

• Application model
– 10 ms scheduling interval, IPC of 1
– Mix of critical and non‐critical tasks
– c – fraction of interval required for critical tasks
– Retry slot scheduled immediately after critical tasks
– Optimistically schedule non‐critical tasks

• Failure model
– Transient failures are rare events

© 2010 Brett H. Meyer 12



Baseline vs. Relaxed Dedication

©2010 Brett H. Meyer 13


	Current Research in Computer Architecture at UVA
	A Few Topics from my Group
	Illustrative Case Study�from Systems Biology
	Leukocyte Detection and Tracking
	Detection: CUDA Optimizations
	Tracking: CUDA Optimizations
	Frame Rate Approaching Real Time
	Cooling Dictated by Hotspots
	Aging as f(T)
	jeremy_cs2190.pdf
	The Visual Vulnerability Spectrum
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Causes of Transient Faults
	Causes of Transient Faults
	Causes of Transient Faults
	Causes of Transient Faults
	Causes of Transient Faults
	Causes of Transient Faults
	Causes of Transient Faults
	Transient Fault Mitigation Techniques (CPU)
	Reliability Through Redundancy
	Architectural Vulnerability Factor
	Architectural Vulnerability Factor
	AVF is Not Good for Graphics
	Visual Vulnerability Spectrum
	Important Structures
	Unimportant State
	Mitigation Techniques for Graphics Applications
	Conclusions
	Thank you!
	Traditional Causes
	Near Future Causes
	Near Future Causes
	Architectural Vulnerability Factor
	VVS Examples
	VVS Examples
	VVS Examples
	VVS Examples
	VVS Examples
	VVS Examples
	VVS Examples
	VVS Examples
	Application of the VVS
	Less Important State
	Mitigation Techniques for Graphics Applications
	Future Work
	Acknowledgements

	bhm-cs2190.pdf
	Design Space Exploration for Low-Cost Safety Critical Architectures
	Motivation
	Background: Lock-step Execution
	Objectives
	On-demand Redundancy
	Relaxing Resource Dedication
	Mission-monitor Pairs
	Mission-Monitor vs. DMR
	Future Work
	Questions?
	Cost-neutral Analytical Comparison
	Experimental Setup
	Baseline vs. Relaxed Dedication




