Biotelemetrics and Computer Security

Alf Weaver (CS)
Ben Calhoun (ECE)
Travis Blalock (ECE)

Alf Weaver

- CS faculty since 1977
- Research in networks, communications protocols, e-commerce, CS education, telemedicine, computer security
- PI or co-PI on 125 sponsored research projects
- Supervisor for 65 MS, MCS, and PhD students

Previous Work in Medicine

- Quantitative medical decision aids
- Compression of digital ultrasound images
- NSF Research Experience for Undergrads during 2005-07 on "Computer Applications for Medicine"
- Using web services to protect healthcare information

SECURITY ARCHITECTURE

Advancing Cyber Security with .NET

Alfred C. Weaver, Brian Garback, James Van Dyke, Joseph Calandrino, Paul Bui, Ryan Kurtz, Zhengping Wu Department of Computer Science, University of Virginia

<Target> <AnySubject/>

</Target>
<Condition Function="and">

</Apply>
</Condition>
</Rule>

<Resource Attribute="resource-id">prescription
/Resource>
<Action Attribute="action-id">create
/Action>

<Apply Attributes" patient-id" Function="is-member-of"> <SubjectAttributeDesignator Attributes" attended-patient-ids"/> </Apply> <Apply Attributes "brust-level" Function="greater-than"> <AttributeValue-3s/AttributeValue>

Increasing Trust Level

Signature

Fingerprint

</TrustLevelSecToken>

One Project, Three Goals

- Mobile device security—device useful only in proximity to its user
- Biotelemetrics—view physiological data at a distance
- Data analysis—ECG characterization and (ultimately) assistance with disease diagnosis

Biotelemetrics and Computer Security

- Problem: mobile devices (PDA, laptop, cell phone) can represent a security leak if either user or device is compromised
- Goal is to secure devices by:
 - require initial strong personal authentication
 - continue operation only in the presence of an acceptable physiological signal
 - revert to a locked state (all user files encrypted) or safe state (all user files erased) if user or device is compromised

Soldiers

Physicians

Emergency Medical Services

- Low-power IC with sensor, microcontroller, and radio
- Designed using sub-threshold logic
- Form factor like a Band-Aid
- Collects physiological data, performs some local processing, and transmits over a wireless channel
- Initially: heart rate sensor, Bluetooth
- Intermediate: additional sensors such as respiration, pulse oximetry, temperature, motion, environmental
- Ultimately: energy-scavenging from body
- Innovations: sub-threshold logic to reduce power; local signal processing; view data at a distance; control patch remotely

PCB Prototype – Data Flow

Full ECG data flow working on PCB

Integrated first onto PCB, then into a custom chip

Patch Prototype

Sensor, microcontroller, radio

PCB Prototype

PDA policy setting

- PDA monitors heart rate to determine if the data should be *locked* (inaccessible until reauthentication) or *erased* (safe state)
- Potential triggers:
 - no heart beat detected
 - low heart rate for some period of time
 - PDA out of range
 - tampering with the patch
 - many more possible with more/different sensors

Setting Policies

Connect to Patch Simulator

Policy Control Engine

Monitoring the Signal

Low Heart Rate Event

Re-authentication

Re-authenticate 3

Patch Simulator

 Simulates the heart beat data in a repeatable way for development and debugging

PDA or Laptop Display

ECG Characterization

- Heart rate paced by the sino-atrial node
- Blood from body -> right atrium -> right ventricle -> lungs -> left atrium -> left ventricle -> body
- P wave represents atrial depolarization
- QRS complex represents ventricular depolarization
- T wave represents ventricular repolarization
- Rest period between beats

ECG Characterization

Can We Detect Heartbeats?

- From the raw data (voltages), use software to detect the QRS complex
- From the QRS complex, extract the R-R interval
- This is a challenge in the face of analog-todigital converters, sampling error, noise, sensor placement, differences among people, body motion, heart acceleration...

Movie

ECG Characterization

- Evaluated software against an annotated database of 48 half-hour recordings in the MIT-BIH Arrhythmia Database
- Sensitivity (percentage of QRS complexes correctly identified) > 99.5%
- Positive predictability (probability that a QRS detection is correct) > 99.7%

24

Research Issues

- Sub-threshold logic design
- Additional sensors (temperature, respiration, accelerometer)
- Tradeoffs between continuous vs. periodic communication
- Handling foreseeable events (battery change, out of range)

Research Issues

- Expanding the types of mobile devices (laptops, cell phone, special gear)
- Signal processing on the mobile device
- Exporting the signal (raw or processed) to the Internet for remote monitoring
- Does ECG signal contain enough information for personal authentication?

Research Issues

- Multiple sensors per person, multiple people being monitored simultaneously
- Energy scavenging
- Algorithms for QRS and R-R detection
- "Eye-in-the-sky" view of individuals and groups
- Signal exfiltration

Signal Exfiltration

Infant monitoring

Gait Analysis