
A - 1

1/20/05 A-1© 2001 T. Horton

CS 494
Adv. SW Design and Development

A Tasting….

• Course 1: Design patterns: Intro, example

• Course 2: Inheritance, Interfaces, OO Design

1/20/05 A-2

Reading Assignment

• Read for understanding (code if it helps)
– Basic Java program structure

• Classes and files; importing packages
• main() method

– Types in Java
• Primitive vs. class; class hierarchy; class Object
• Boxing
• References
• Defining classes

– In Just Java 2: Chapters 1-5

1/20/05 A-3

Tastings: Course 1

• Idioms, Patterns, Frameworks

1/20/05 A-4

Idioms, Patterns, Frameworks

• Idiom: a small language-specific pattern or technique
– A more primitive building block

• Design pattern: a description of a problem that
reoccurs and an outline of an approach to solving that
problem
– Generally domain, language independent
– Also, analysis patterns

• Framework:
– A partially completed design that can be extended to solve a

problem in a domain
• Horizontal vs. vertical

– Example: Microsoft’s MFC for Windows apps using C++

1/20/05 A-5

Examples of C++ Idioms
• Use of an Init() function in constructors

– If there are many constructors, make each one call a private
function Init()

• Init() guarantees all possible attributes are initialized
• Initialization code in one place despite multiple

constructors
• Don’t do real work in a constructor

– Define an Open() member function
• Constructors just do initialization
• Open() called immediately after construction

– Constructors can’t return errors
• They can throw exceptions

1/20/05 A-6

Design Patterns: Essential Elements

• Pattern name
– A vocabulary of patterns is beneficial

• Problem
– When to apply the pattern, what context.
– How to represent, organize components
– Conditions to be met before using

• Solution
– Design elements: relationships, responsibilities, collaborations
– A template for a solution that you implement

• Consequences
– Results and trade-offs that result from using the pattern
– Needed to evaluate design alternatives

A - 2

1/20/05 A-7

Patterns Are (and Aren’t)

• Name and description of a proven solution to a
problem

• Documentation of a design decision
• They’re not:

– Reusable code, class libraries, etc. (At a higher
level)

– Do not require complex implementations
– Always the best solution to a given situation
– Simply “a good thing to do”

1/20/05 A-8

Example 1: Singleton Pattern

• Global variables are bad!
– Why?

• We are tempted to use global variables?
– Why?

1/20/05 A-9

Example 1: Singleton Pattern

• Context: Only one instance of a class is created.
Everything in the system that needs this class interacts
with that one object.

• Controlling access: Make this instance accessible to all
clients

• Solution:
– The class has a static variable called theInstance (etc)
– The constructor is made private (or protected)
– Clients call a public operation getInstance() that returns the

one instance
• This may construct the instance the very first time or be

given an initializer

1/20/05 A-10

Singleton: Java implementation

public class MySingleton {
private static theInstance =

new MySingleton();
private MySingleton() { // constructor

…
}

public static MySingleton getInstance() {
return theInstance;

}
}

1/20/05 A-11

Static Factory Methods

• Singleton pattern uses a static factory method
– Factory: something that creates an instance

• Advantages over a public constructor
– They have names. Example:

BigInteger(int, int, random) vs.
BigInteger.probablePrime()

– Might need more than one constructor with same/similar
signatures

– Can return objects of a subtype (if needed)
• Wrapper class example:

Double d1 = Double .valueOf(“3.14”);
Double d2 = new Double (“3.14”);

• More info: Bloch’s Effective Java

1/20/05 A-12

A - 3

1/20/05 A-13

Tastings: Course 2

• Interfaces and Collections in Java

1/20/05 A-14

Java Interfaces
• Note that the word “interface”

– Is a specific term for a language construct
– Is not the general word for “communication

boundary”
– Is also a term used in UML (but not in C++)

1/20/05 A-15

Why Use Inheritance?

• Why inherit? Create a class that…
1. Makes sense in problem domain
2. Locates common implementation in superclass
3. Defines a shared API (methods) so we can…
4. Use polymorphism

• Define a reference or parameter in terms of the
superclass

• If just last two, then use Java interface
– No shared implementation
– You commit that part of what defines a class is that it meets a

particular API
– We can write methods etc. that operate on objects of any

class that meets or supports that interface

1/20/05 A-16

Two Types of Inheritance

• How can inheritance support reuse?
• Implementation Inheritance

– A subclass reuses some implementation from an
ancestor

– In Java, keyword extends
• Interface Inheritance

– A “subclass” shares the interface with an “ancestor”
– In Java, keyword implements
– I.e. this class will support this set of methods

1/20/05 A-17

Interfaces and Abstract Classes

• Abstract classes:
– Cannot create any instances

• Prefer Java interfaces over abstract classes!
– Existing classes can add an interface
– Better support for mix-in classes

• E.g. Comparable interface -- supports compare()
– Do not need a hierarchical framework
– Composition preferred over inheritance

• E.g. wrapper classes
• But, abstract classes have some implementation

– Skeletal implementation classes, e.g. AbstractCollection
• Disadvantage: once released, a public interface

shouldn’t be updated

1/20/05 A-18

Interfaces in Other Languages

• A modeling method in UML

• Interfaces in C++
– All methods are pure virtual
– No data members
– Use multiple inheritance

A - 4

1/20/05 A-19

Collections in Java

• ADT: more than one implementation meets
same interface, models same data

• In Java, separate interface from
implementation

• We’ll illustrate with “fake” Java example:
– Queue interface
– Two implementations

1/20/05 A-20

Defining an Interface

• Java code:

interface Queue {
void add (Object obj);
Object remove();
int size();

}
• Nothing about implementation here!

– methods and no fields

1/20/05 A-21

Using Objects by Interface

• Say we had two implementations:

Queue q1 = new CircularArrayQueue(100);
or

Queue q1 = new LinkedListQueue();

q1.add(new Widget());
Queue q3 = new …
Queue q2 = mergeQueue(q2, q3);

1/20/05 A-22

Implementing an Interface

• Example:
class CircularArrayQueue implements Queue
{ CircularArrayQueue(int capacity) {…}

public void add(Object o) {…}
public Object remove() {…}
public int size() {…}
private Object[] elements;
private int head;
private int tail;

}

1/20/05 A-23

Implementing an Interface (2)

• Implementation for LinkedListQueue similar
• Question: How to handle errors?

– Array version is bounded. add() when full?
– Throw an exception, perhaps
– Not an issue for linked list version, though

1/20/05 A-24

Real Collection Interfaces in Java

• All collections meet Collection interface:
boolean add(Object obj);
Iterator iterator();
int size();
boolean isEmpty();
boolean contains(Object obj);
boolean containsAll (Collection other);
…

• See Java API documentation for all methods

A - 5

1/20/05 A-25

Iterator Interface

• Three fundamental methods:

Object next();
boolean hasNext();
void remove();

• We use an iterator object returned by
Collection.iterator() to visit or process items in
the collection
– Don’t really know or care how its implemented

1/20/05 A-26

Example Iterator Code

• Traverse a collection of Widgets and get each
object

Iterator iter = c.iterator();
while (iter.hasNext()) {

Object obj = iter.next();
// or: Widget w = (Widget) iter.next();
// do something with obj or w

}
• Note the cast!

1/20/05 A-27

New in Java 1.5 – generics and foreach

• Java 1.5 has generics, and…
• A foreach statement simplifies the previous

idiom

Collection<Double> c = new HashSet<Double>;

for (Double d : c)
System.out.println(“c has “ + d);

1/20/05 A-28

Methods Defined by Other IF Methods

• Some collection methods can be defined
“abstractly”

public boolean addAll (Collection from) {
Iterator iterFrom = from.iterator();
boolean modified = false;
while (iterFrom.hasNext())

if (add(iterFrom.next())) modified = true;
return modified;

}

1/20/05 A-29

Collections and Abstract Classes
• To define a new Collection, one must implement all

methods -- a pain!
• Better: define a skeletal implementation class

– Leaves primitives undefined: add(), iterator()
– Defines other methods in terms of those

• Concrete collection class inherits from skeletal class
– Defines “primitives”
– Overrides any methods it chooses too

• Java library: AbstractCollection
– Implements Collection IF
– You inherit from it to roll your own Collection

1/20/05 A-30

Java’s Concrete Collection Classes

• Vector is like array but grows dynamically
– Insertion or deletion in the middle expensive

• LinkedList class
– Doubly-linked
– Ordered collection

• add() inserts at end of list
• How do we add in middle?

A - 6

1/20/05 A-31

ListIterator Interface

• ListIterator (sub)interface extends Iterator

// add element before iterator position
void add(Object o); // on ListIterator object
Object previous();
boolean hasPrevious();
void set(Object o);
int nextIndex(); and int previousIndex();

• Also a factory that takes an initial position. E.g.
ListIterator backIter = c.listIterator(c.size());

• Concurrent modification by two iterators?
– ListIterator checks for this

1/20/05 A-32

ArrayList Collection

• Like a Vector but implements the List IF
– Stores an array internally
– Access to element by index is constant, O(1)
– Element insertion/removal is W(n) = O(n)
– Expansion automatic (but with time costs)

• Supports get(index) and set(index)
– So does LinkedList but inefficient
– Note: in Vector, elementAt() and setElementAt()

• Supports synchronization
– Vector does not.

1/20/05 A-33

List Interface

• All methods from Collection interface, plus…

• int indexOf(Object elem) -- not found? -1
• int lastIndexOf(Object elem)
• Object remove(int index)
• Object set(int index, Object elem)
• Object clone() -- makes a shallow copy
• List subList(int fromIndex, int toIndex)

1/20/05 A-34

Other ArrayList Methods

• Constructors:
– default; given initial capacity; given Collection

• Capacity management:
– void ensureCapacity();
void trimToSize();

• Collection to array:
– Object[] toArray();

1/20/05 A-35

Map Interface and Map Classes

• Map interface defines generic map collection
methods

• Two implementations
– HashMap: classic hash-table, not sorted
– TreeMap: sorted, uses red-black trees

• Defines three collection views, which allow a
map's contents to be viewed as one of:
– set of keys; collection of values; or set of key-value

mappings.
• Map’s order: how the iterators return their

elements
1/20/05 A-36

HashMap methods
• Constructors:

– initial capacity, optionally a load factor
• Object put(Object key, Object value)
• Object get(Object key)
• boolean containsKey(Object key)
• boolean containsValue(Object value)
• Object remove(Object key)

• Notes: key pass separately from Object
• Also: key must have good hashCode() defined

