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Abstract 
 

The blind flooding algorithm under a time-to-live (TTL) 
constraint used in unstructured peer-to-peer (P2P) 
networks, such as Gnutella, may cause a large amount of 
network traffic. Moreover, the algorithm cannot guarantee 
acquiring all required data objects, especially for rare ones. 
To mitigate these problems, this paper proposes 
PercolationNET, a multi-tree sub-overlay, which is built on 
top of an existing P2P overlay (named original overlay). 
PercolationNET organizes peers in a tree-based structure 
which facilitates reliable and efficient message 
dissemination for search. The search process is divided into 
two stages. A query message is first propagated on the 
original overlay, and then broadcast along the sub-overlay 
PercolationNET. PercolationNET combines the advantages 
of fast coverage speed in flooding-based scheme and low 
traffic cost in tree-based scheme. The experimental results 
of PercolationNET compared with FloodNet confirm the 
superiority of PercolationNET in achieving faster coverage 
speed and lower message cost. 
 
1. Introduction 
 

P2P networks have become a dominant part of the 
Internet traffic due to the tremendous success of P2P file-
sharing systems such as Gnutella [1] and KaZaA [2]. P2P 
overlay networks can be classified into two categories: 
structured and unstructured. Structured overlays [3, 4] tag 
the peers with peer identifiers. The placement of shared data 
and topology characteristics of the networks are tightly 
controlled based on distributed hash table (DHT). In 
contrast to structured overlays, unstructured overlays do not 
follow any specific topology characteristics. Therefore, they 
don’t apply any clue as to where queried content is located. 
In spite of the absence of location clue, unstructured P2P 
networks have several desirable properties not easily 
achieved by structured counterparts — they are highly 
resilient to node failures and incur low overhead for peer 
arrivals and departures. In addition, they are simple to 

implement and nearly incur no overhead in topology 
maintenance [5]. The predominating search mechanism in 
unstructured networks is message flooding with a fixed TTL 
restriction. This simple method does not provide guarantee 
that an object existing in the network can be found. 
Moreover, flooding does not scale well in terms of message 
overhead.  

Realizing the importance of flooding in unstructured P2P 
networks and its problems, our work focuses on overlay 
construction for search with data retrieval guarantees as 
well as low traffic cost. We build PercolationNET, a multi-
tree sub-overlay, upon the original overlay. 
Correspondingly, the search process is divided into two 
stages. In the first stage, a query message is flooded with an 
appropriate TTL value in the original overlay network so 
that the message can spread to all trees of the sub-overlay 
with smaller redundant messages. Then in the second stage, 
the query message is broadcasted along the sub-overlay, 
which has low connectivity but can ensure that any object 
existing in the network can be found. The experimental 
results show that PercolationNET offers high probabilistic 
guarantees of the accessibility of data objects, while 
incurring minimal overhead. 

The rest of the paper is organized as follows. Section 2 
describes a survey of related work. Section 3 details the 
design of PercolationNET in terms of overlay construction 
and maintenance. Section 4 evaluates the performance of 
the PercolationNET in comparison with FloodNet [18] 
through simulation experiments. Section 5 presents the 
conclusion and future work. 
 
2. Related work 
 

Many efforts have been devoted to avoid the large 
volume of unnecessary traffic incurred by the flooding-
based search in unstructured P2P networks. In general, they 
can be categorized into three types: modified flooding, 
caching index or content, and overlay optimization. 

Unlike pure flooding, which starts with a fixed TTL and 
sends query messages to all neighbors, modified flooding 



  

takes more dynamic factors into consideration to reduce 
traffic overhead. For example, in Directed BFS [6], each 
peer maintains statistic information based on a number of 
metrics such as degree information of neighbors, and selects 
a subset of its neighbors to send its query. In the expanding 
ring [7], flooding is initiated with increasing TTLs. A peer 
starts a flooding with a small TTL. If the search is 
successful, the node stops. Otherwise, the node increases the 
TTL and starts another flooding operation. The process 
repeats until the queried object is found. Adaptive Flooding 
[8] combines the above two schemes. It not only relays a 
query message to limited neighbors, but also adjusts TTL 
value. Although these schemes can save traffic overhead to 
some extent and reduce the latency of popular data objects, 
their performance could be uncertain for rare or distant ones 
when the search scope is deepening. In contrast, our 
approach can reduce the network traffic with high coverage 
speed. 

The second approach is caching index or content. In 
Local Indices [6] policy, each peer maintains an index of 
files available in the nodes within given radius r. When a 
peer receives a query, it can process the query on behalf of 
all nodes within the radius r. Caching file contents 
(replication) has also been studied [9]. The literature [10] 
researches on how many replications should be made and 
where to locate these replications. In Uniform Index 
Caching (UIC) [11], each peer stores IP addresses of the 
peers that have the contents whose queries passed the peer. 
If the same objects are queried again, the peer stops the 
flooding and replies with the location stored in its memory. 
In this paper, we mainly consider search scope rather than 
searching a concrete object. If we integrate the caching 
strategy into our approach, the performance in terms of 
message overhead and response time can further be 
improved. 

The third approach is overlay optimization [12, 13] that 
is closely related to what this paper presents. Mismatch 
between logic overlay and physic overlay is a well-known 
problem in P2P networks. Recent efforts including 
Location-aware Topology Matching (LTM) [14] and 
Scalable Bipartite Overlay (SBO) [15] have been made to 
address the mismatch problem without sacrificing the search 
scope. These two schemes mainly improve the response 
time. In [16], a sub-overlay FloodNet is constructed for the 
purpose of reducing the number of redundant messages. 
FloodNet consists of all peers in original overlay and the 
links between each peer and its parent who is its neighbor 
with the maximum secondary degree (i.e., the sum of the 
degrees of a peer’s neighbors). Though it can reduce the 
number of redundant messages effectively, it needs more 
hops to reach all peers. Additionally, the secondary degree 
of each peer is volatile due to the dynamic characteristic of 
P2P networks.  

Different from the aforementioned approaches, the 
proposed sub-overlay in this paper is constructed depending 
on the overall characteristic of the original overlay. Since 
the search can span the entire network along the sub-overlay 
with an appropriate TTL value, we can regard this sub-

overlay network with percolation characteristic. Hence, we 
call the sub-overlay as PercolationNET. In this paper, we 
use flooding as an example of searching in the first stage of 
our approach. However, other search schemes can be also 
used as long as they can spread message to all trees of 
PercolationNET with a limited TTL. 
 
3. PercolationNET design 
 

FloodNet [16] is built based on the number of each 
peer’s secondary neighbors (i.e., the neighbors of a peer’s 
neighbors). When flooding runs over FloodNet, it can 
eliminate a large number of redundant messages. However, 
the design of FloodNet has the following disadvantages in 
practice. Firstly, calculating the number of the secondary 
neighbors of each peer will consume much bandwidth 
resource. Furthermore, unstructured P2P networks are so 
dynamic that the number of the secondary neighbors of each 
peer is volatile. Last but not least, in FloodNet, the level of 
the sub-overlay is very deep, leading to long latency. 
Inspired by the pros and cons of the flooding-based search 
scheme and FloodNet, we propose PercolationNET — a 
sub-overlay for providing the guarantee that any object 
existing in the network can be found with low cost. In the 
following section, we will describe the overlay structure and 
maintenance of PercolationNET. 
 
3.1. Overlay structure 
 

There are three principles in designing PercolationNET: 
(1) In order to achieve optimal effect globally, the design of 
PercolationNET relies on the global information of the 
original overlay. (2) To guarantee the full attainability of 
data objects, the sub-overlay should include all peers in the 
original overlay. (3) Because of the high transiency of the 
unstructured p2p networks, PercolationNET must be 
efficiently maintained. Therefore, only local information is 
needed for overlay maintenance. 

Lv et al. [17] showed that a node with high degree in 
Gnutella network would most likely experience high query 
load. Thus, we make two logical assumptions for the sub-
overlay. Firstly, the peers with high degree are high capacity 
ones, called super-peers in this paper. Super-peers take over 
more responsibilities in the sub-overlay. Secondly, super-
peers do not leave the network frequently. Thus the sub-
overlay is comparatively stable.  

Based on the above principles and assumptions, we 
construct PercolationNET in three phases. In the first phase, 
the tree roots of the sub-overlay need to be found. Previous 
studies [12] have shown that P2P overlay topologies follow 
the power law properties, which means that a few peers 
have high degrees. In PercolationNET, we select high- 
degree peers as super-peers as the tree roots of sub-overlay. 
We can find these high-degree peers easily by relying on the 
degree distribution of peers in the original overlay. As 
shown in Algorithm 1, DThres is a threshold value. That is, 
a peer whose degree bigger than DThres is defined as a 
super-peer. The set S is used to store all super-peers. 



  

Algorithm 1. SELECT_SUPERPEERS 

1. N is the set of peers in the original overlay. 
2. S is the set of super-peers.  

Its initial value is null. 
3. DThres is the threshold value of degree for super-

peers. 
4. initialize DThres according to the degree 

distribution of peers in the original overlay 
5. For each peer q  N  
6.     If Degree(q) > DThres  
        then put peer q into the set S    
7. End For 

 
Algorithm 2. DETECT_LEVEL(p) 

1. N is the set of peer p’s neighbors. 
M is a null set.  

2. S is the set of super-peers. 
3. initialize DetectTTL; j = 1; flag = false  
4. While j < DetectTTL and flag = false 
5.     For each peer qN  
6.         If qS  then  Level(p) = j; flag = true; break;   
       //If q is a super-peer, the level of p is the circular 

parameter j and the cycle process terminates 
7.         else  put the neighbors of peer q into set M 

//If q is not a super-peer, the neighbors of q will 
be detected, so M is used to express the set of the 
neighbors of q 

8.     End For 
9.     set N = M; M =   ; j++ 
10. End While 

 
Algorithm 3. FIND_PARENT(p) 

1. N is the set of peer p’s neighbors. 
M is a null set.  

2. obtain the level information of all peers in set N 
3. For each peer qN  
4.     If Level(p)-Level(q) = = 1 then 
5.         put peer q into set M 
6. End For 
     // some of peer p’s neighbor peers whose level are 

just one lower than peer p are put into set M 
7. obtain the degree information of all peers in set M 
8. For each peer kM 

9.     compute the probability ( )
Pr

( )k

i M

Degree k

Degree i





 

10.End For 
11.select a neighbor j from M as its parent with 

probability Prj
 

In the second phase, each ordinary peer probes its level 
by Algorithm 2. In Algorithm 2, the parameter DetectTTL 
denotes the number of hops each peer detects. The setting of 
DetectTTL value needs to ensure that all ordinary peers can 
find at least one super-peer. We use the minimum hops 
between each ordinary peer and a certain super-peer as its 
level. The level of super-peers is zero. 

Super peer to peer connection Inter peer connection Inter super-peer connection

Peer

…

... ...

...

Super-peer

Peer

Super-peer

Original overlay

Sub-overlay

Super-peer

… …

Sub-overlay  

Tree  Tree 

 Tree 

…

... ...

...

…

... ...

...

 
Figure 1. Overlay structure 

 
In the third phase, each ordinary peer selects a neighbor 

as its parent according to Algorithm 3. A peer p’s candidate 
parent peers are its neighbor peers whose level are just one 
lower than peer p. Each ordinary peer selects one from its 
candidate parent peers as its parent with probability Pr 
which can be computed by the degree of peers, as shown in 
Algorithm 3. Thus, PercolationNET generates multiple 
unconnected components. In Figure 1, the form of each 
component in the sub-overlay is a tree, and the root of the 
tree is a super-peer in original overlay. In the sub-overlay, 
each tree is composed of one super-peer in the original 
overlay, ordinary peers (peers other than super-peers) 
directly or indirectly connecting with the super-peer, and the 
original existing links among them. 
 
3.2. Overlay maintenance 
 

3.2.1. Join. A typical unstructured P2P system provides 
several permanent well-known bootstrap hosts to maintain a 
list of on-line peers so that a new incoming peer can find an 
initial host to start its connection by contacting the bootstrap 
hosts. In an original overlay, a bootstrap host will provide 
the joining peer a list of active peers with their information. 
The joining peer tries to construct connections to these peers, 
and then detects its level by Algorithm 2. In 
PercolationNET, the new joining peer selects one of its 
neighbors in original overlay as its parent by Algorithm 3. 

3.2.2. Leave or fail. When leaving the network, a peer 
has to inform its children by sending a leave message. Each 
peer of the informed children detects its level by Algorithm 
2 again, and then selects another neighbor in the original 
overlay as its parent by Algorithm 3. The failure of a peer in 
PercolationNET is detected when one of its children misses 
a sequence of three messages. In the case where a peer 
detects its parent’s failure, it refreshes its level by Algorithm 
2, and then selects another neighbor in the original overlay 
as its parent by Algorithm 3. The departure or failure of 
individual peers does not have a disruptive impact on the 



  

overlay topology, for messages are routed by many parallel 
routes in our two-stage search scheme. Therefore, the two-
stage search scheme is robust against volatile peers. 

3.2.3. Adjust. Since the unstructured P2P networks are 
self-organized, an individual peer may come, go or fail 
frequently. As a result, a peer’s parent may be not the 
optimal one in PercolationNET. Therefore, each peer needs 
to update its parent information periodically. In reality, it is 
important to find an appropriate interval. However, in our 
approach, a short update interval will only consume a small 
bandwidth resource because the adjustment of level and 
parent for each peer only needs the degree information in 
the original overlay. At the same time, a large update 
interval will not cause significant performance degradation 
due to the two-stage search scheme. 
 
4. Performance evaluation 
 
4.1. Simulation setup 
 

We use the simulator PeerSim [18] for evaluating the 
performance of PercolationNET. In our simulation, we 
construct two overlays, original overlay and sub-overlay. 
Using BRITE [19], we generate the original overlay based 
on the BA (Barabasi-Albert) model with 10000 nodes and 
30000 links. Based on the original overlay, we construct the 
corresponding sub-overlay, where we define the threshold 
value DThre as 140. Therefore, there are 8 super-peers for 
this sub-overlay in our experiments.  

For each experiment in the following, every peer, in turn, 
starts a searching procedure and broadcasts a query message 
to the network by using flooding with Q(firstTTL, 
secondTTL). Each peer stores the information of its 
neighbors in the original overlay and the information of its 
parent and children in PercolationNET. In the first stage, the 
message is propagated in the original overlay with firstTTL. 
When a peer receives the message q(0, secondTTL), the 
peer will stop broadcasting the message in the original 
network. Then the message will be broadcasted using 
flooding along PercolationNET with secondTTL. When a 
peer receives the message q(0, 0), the peer will stop 
broadcasting the message in the sub-overlay. The seeds who 
are the new nodes reached in the last hop of firstTTL are the 
source nodes of the message in the second stage. We mainly 
focus on two performance metrics: message overhead and 
coverage rate within a certain hops. Additionally, we 
analyze the performance of PercolationNET compared with 
FloodNet, in terms of coverage rate and message efficiency. 
 
4.2. Seeds and super-peers 
 

We use the term “seeds” to describe the new nodes 
reached in the last hop of firstTTL. From the previous 
description, we can see that the number of seeds is an 
important parameter for message diffusion along 
PercolationNET. Figure 2 shows the number of seeds with 
different value of firstTTL in our topology. We can observe 
that seed amount first increases and then decreases with the  
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Figure 2. Seed amount in the first stage 
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Figure 3. Super-peer amount in the first stage 

 
increase of firstTTL. This is because flooding in power-law 
networks is efficient only in earlier stages (with low hops). 
In the latter stages, the number of the new nodes reached 
does not increase like the initial stages. This motivates us to 
use an appropriate firstTTL in the first stage, which can 
produce enough seeds for the second stage. Moreover, from 
the figure, we can see that the optimal value of firstTTL for 
producing enough seeds is no more than 4 in our topology. 

Figure 3 shows the average number of super-peers 
reached in the first stage. We can see that all super-peers are 
covered in the first stage when the value of firstTTL is 4. If 
the coverage scope of flooding in the first stage includes all 
super-peers, seeds will spread over all trees of sub-overlay 
unquestionably. Consequently, the search can spread to all 
peers with a low secondTTL in the second stage. However, 
though not all super-peers are included in the coverage 
scope of the first stage, the seeds can also spread over all 
trees as long as they are sufficiently decentralized. We will 
further test it by experiments in the following. 
 
4.3. Message overhead 
 

The goal of PercolationNET is to reduce the message 
overhead as much as possible while retaining the same 
coverage scope. Figure 4 lists the average message overhead 
per query with the increase of secondTTL in the second 
stage for different arrangements (firstTTL, *). According to 
analysis of seeds and super-peers in the above section, we  
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Figure 4. Message overhead in the second stage 

 
know that the optimal value of firstTTL is not more than 4. 
Hence in the following experiments, we use (1, *), (2, *), (3, 
*), (4, *). Furthermore, the whole coverage of the network 
is used as the baseline to set the stopping hops in the second 
stage (except for (1, *) and (2, *)). 

From the figure, we can make the following observations. 
First, as the firstTTL increases, the average message 
overhead increases exponentially. In contrast, once the 
flooding is switched from the original overlay in the first 
stage to PercolationNET in the second stage, the rising 
speed of message overhead is slow. Therefore, this means 
that PercolationNET is able to eliminate a large number of 
redundant messages by introducing several additional hops. 
Second, the bigger the value of firstTTL is, the larger the 
message overhead becomes. For example, the simulation 
shows that the final message overhead of (4, *) is twice as 
much as that of (3, *). Third, at the latter hops of all 
arrangements in this figure, the message overhead nearly 
stops rising. The reason is that PercolationNET is made of 
trees. When the message reaches the leaf nodes, it will not 
be broadcasted anymore. Lastly, at the first hop of (4, *), the 
increment of message overhead is comparatively large. This 
phenomenon can be explained with the reason that all of 
seeds produced in the first stage broadcast the query 
message to all of their neighbors along PercolationNET at 
the initial one hop in the second stage, thus generating many 
message overheads. In fact, the phenomenon can also be 
observed in (3, *). However, the seeds in (3, *) are much 
less than that of (4, *), as shown in Figure 2, so it is not 
obvious. 

 
4.4. Coverage rate 
 

Coverage rate measures the ratio of the number of visited 
peers to the whole number of peers in the network. Figure 5 
lists the coverage rate growth with the increase of 
secondTTL for different (firstTTL, *) arrangements. Based 
on the figure, we can carry out the following observations. 
First, the smaller value of firstTTL is, the bigger value of 
secondTTL is needed to obtain a similar coverage. This is 
because a mass of seeds produced in the first stage can 
saturate the network quickly. 
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Figure 6. Compare coverage rate with (3, *) 

 
Besides, among different arrangements (firstTTL, *), not 

every firstTTL value can reach the whole coverage. For 
example, (1, *) can only achieve 47 percent of the whole 
coverage. The reason is that PercolationNET is formed by 
multiple trees. If the number of seeds is not large enough, 
seeds can’t be dispersed into all trees during the first stage. 
Finally, combination of this figure and the above figure 4, 
we can see that the arrangements of (3, *) strike a good 
balance between message overhead and search coverage.  

To compare the performance of PercolationNET with 
FloodNet, we carry out the contrasting experiments using (3, 
*), as shown in Figure 6. Obviously, we can see that the 
performance of coverage rate in PercolationNET is superior 
to that of FloodNet all the time. This is because the level in 
FloodNet is much deeper than that of PercolationNET. 
Hence, it is slow for a message to spread to the whole 
network.  
 
4.5. Message efficiency  

 
Message efficiency is the ratio between the number of 

peers reached and the number of forwarded messages. The 
optimal efficiency is one if there are no redundant messages. 
Figure 7 shows the message efficiency using (3, *). In the 
figure, we can see that PercolationNET is superior to 
FloodNet in message efficiency. Another observation is that 
the efficiency becomes worse with the first hop in the  
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Figure 7. Compare message efficiency with (3, *) 

 
second stage, and then it becomes better and better. For 
example, the message efficiency is nearly 83 percent in (3, 
0), whereas it is less than 74 percent in (3, 1). This is 
consistent with what we have observed in section 4.3. 
 
5. Conclusion and Future Work 
 

In this paper, we build PercolationNET upon the existing 
P2P overlay. We apply the information of super-peers in the 
existing overlay to construct the multi-tree sub-overlay, 
while the super-peers are regarded as the tree roots in 
PercolationNet. Accordingly, the search process is divided 
into two stages. The experiments show that the proposed 
sub-overlay structure is more efficient than the existing 
FloodNet scheme, including coverage speed and message 
efficiency. Although we propose a promising sub-overlay 
comparing with FloodNet, and use flooding scheme to 
investigate its efficiency, there are still further problems to 
be explored. Firstly, we can take other search schemes into 
account since we only need to spread query message to all 
trees of PercolationNET in the first stage. In addition, we 
research how the parameters firstTTL and secondTTL 
would affect the performance of our approach, but not 
exploit how the size of P2P overlay affects its performance.  
We will address these issues in our future work. 
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