

High Coverage Search in Multi-Tree Based P2P Overlay Network

Cuihua Zuo1, Ruixuan Li1+, Haiying Shen2, Zhengding Lu1
1College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan

430074, P.R.China
2Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR

72701, USA
E-mail: zuocuihua@smail.hust.edu.cn, rxli@hust.edu.cn, hshen@uark.edu, zdlu@hust.edu.cn

+ Corresponding author. E-mail: rxli@hust.edu.cn

Abstract

The blind flooding algorithm under a time-to-live (TTL)
constraint used in unstructured peer-to-peer (P2P)
networks, such as Gnutella, may cause a large amount of
network traffic. Moreover, the algorithm cannot guarantee
acquiring all required data objects, especially for rare ones.
To mitigate these problems, this paper proposes
PercolationNET, a multi-tree sub-overlay, which is built on
top of an existing P2P overlay (named original overlay).
PercolationNET organizes peers in a tree-based structure
which facilitates reliable and efficient message
dissemination for search. The search process is divided into
two stages. A query message is first propagated on the
original overlay, and then broadcast along the sub-overlay
PercolationNET. PercolationNET combines the advantages
of fast coverage speed in flooding-based scheme and low
traffic cost in tree-based scheme. The experimental results
of PercolationNET compared with FloodNet confirm the
superiority of PercolationNET in achieving faster coverage
speed and lower message cost.

1. Introduction

P2P networks have become a dominant part of the
Internet traffic due to the tremendous success of P2P file-
sharing systems such as Gnutella [1] and KaZaA [2]. P2P
overlay networks can be classified into two categories:
structured and unstructured. Structured overlays [3, 4] tag
the peers with peer identifiers. The placement of shared data
and topology characteristics of the networks are tightly
controlled based on distributed hash table (DHT). In
contrast to structured overlays, unstructured overlays do not
follow any specific topology characteristics. Therefore, they
don’t apply any clue as to where queried content is located.
In spite of the absence of location clue, unstructured P2P
networks have several desirable properties not easily
achieved by structured counterparts — they are highly
resilient to node failures and incur low overhead for peer
arrivals and departures. In addition, they are simple to

implement and nearly incur no overhead in topology
maintenance [5]. The predominating search mechanism in
unstructured networks is message flooding with a fixed TTL
restriction. This simple method does not provide guarantee
that an object existing in the network can be found.
Moreover, flooding does not scale well in terms of message
overhead.

Realizing the importance of flooding in unstructured P2P
networks and its problems, our work focuses on overlay
construction for search with data retrieval guarantees as
well as low traffic cost. We build PercolationNET, a multi-
tree sub-overlay, upon the original overlay.
Correspondingly, the search process is divided into two
stages. In the first stage, a query message is flooded with an
appropriate TTL value in the original overlay network so
that the message can spread to all trees of the sub-overlay
with smaller redundant messages. Then in the second stage,
the query message is broadcasted along the sub-overlay,
which has low connectivity but can ensure that any object
existing in the network can be found. The experimental
results show that PercolationNET offers high probabilistic
guarantees of the accessibility of data objects, while
incurring minimal overhead.

The rest of the paper is organized as follows. Section 2
describes a survey of related work. Section 3 details the
design of PercolationNET in terms of overlay construction
and maintenance. Section 4 evaluates the performance of
the PercolationNET in comparison with FloodNet [18]
through simulation experiments. Section 5 presents the
conclusion and future work.

2. Related work

Many efforts have been devoted to avoid the large
volume of unnecessary traffic incurred by the flooding-
based search in unstructured P2P networks. In general, they
can be categorized into three types: modified flooding,
caching index or content, and overlay optimization.

Unlike pure flooding, which starts with a fixed TTL and
sends query messages to all neighbors, modified flooding

takes more dynamic factors into consideration to reduce
traffic overhead. For example, in Directed BFS [6], each
peer maintains statistic information based on a number of
metrics such as degree information of neighbors, and selects
a subset of its neighbors to send its query. In the expanding
ring [7], flooding is initiated with increasing TTLs. A peer
starts a flooding with a small TTL. If the search is
successful, the node stops. Otherwise, the node increases the
TTL and starts another flooding operation. The process
repeats until the queried object is found. Adaptive Flooding
[8] combines the above two schemes. It not only relays a
query message to limited neighbors, but also adjusts TTL
value. Although these schemes can save traffic overhead to
some extent and reduce the latency of popular data objects,
their performance could be uncertain for rare or distant ones
when the search scope is deepening. In contrast, our
approach can reduce the network traffic with high coverage
speed.

The second approach is caching index or content. In
Local Indices [6] policy, each peer maintains an index of
files available in the nodes within given radius r. When a
peer receives a query, it can process the query on behalf of
all nodes within the radius r. Caching file contents
(replication) has also been studied [9]. The literature [10]
researches on how many replications should be made and
where to locate these replications. In Uniform Index
Caching (UIC) [11], each peer stores IP addresses of the
peers that have the contents whose queries passed the peer.
If the same objects are queried again, the peer stops the
flooding and replies with the location stored in its memory.
In this paper, we mainly consider search scope rather than
searching a concrete object. If we integrate the caching
strategy into our approach, the performance in terms of
message overhead and response time can further be
improved.

The third approach is overlay optimization [12, 13] that
is closely related to what this paper presents. Mismatch
between logic overlay and physic overlay is a well-known
problem in P2P networks. Recent efforts including
Location-aware Topology Matching (LTM) [14] and
Scalable Bipartite Overlay (SBO) [15] have been made to
address the mismatch problem without sacrificing the search
scope. These two schemes mainly improve the response
time. In [16], a sub-overlay FloodNet is constructed for the
purpose of reducing the number of redundant messages.
FloodNet consists of all peers in original overlay and the
links between each peer and its parent who is its neighbor
with the maximum secondary degree (i.e., the sum of the
degrees of a peer’s neighbors). Though it can reduce the
number of redundant messages effectively, it needs more
hops to reach all peers. Additionally, the secondary degree
of each peer is volatile due to the dynamic characteristic of
P2P networks.

Different from the aforementioned approaches, the
proposed sub-overlay in this paper is constructed depending
on the overall characteristic of the original overlay. Since
the search can span the entire network along the sub-overlay
with an appropriate TTL value, we can regard this sub-

overlay network with percolation characteristic. Hence, we
call the sub-overlay as PercolationNET. In this paper, we
use flooding as an example of searching in the first stage of
our approach. However, other search schemes can be also
used as long as they can spread message to all trees of
PercolationNET with a limited TTL.

3. PercolationNET design

FloodNet [16] is built based on the number of each
peer’s secondary neighbors (i.e., the neighbors of a peer’s
neighbors). When flooding runs over FloodNet, it can
eliminate a large number of redundant messages. However,
the design of FloodNet has the following disadvantages in
practice. Firstly, calculating the number of the secondary
neighbors of each peer will consume much bandwidth
resource. Furthermore, unstructured P2P networks are so
dynamic that the number of the secondary neighbors of each
peer is volatile. Last but not least, in FloodNet, the level of
the sub-overlay is very deep, leading to long latency.
Inspired by the pros and cons of the flooding-based search
scheme and FloodNet, we propose PercolationNET — a
sub-overlay for providing the guarantee that any object
existing in the network can be found with low cost. In the
following section, we will describe the overlay structure and
maintenance of PercolationNET.

3.1. Overlay structure

There are three principles in designing PercolationNET:
(1) In order to achieve optimal effect globally, the design of
PercolationNET relies on the global information of the
original overlay. (2) To guarantee the full attainability of
data objects, the sub-overlay should include all peers in the
original overlay. (3) Because of the high transiency of the
unstructured p2p networks, PercolationNET must be
efficiently maintained. Therefore, only local information is
needed for overlay maintenance.

Lv et al. [17] showed that a node with high degree in
Gnutella network would most likely experience high query
load. Thus, we make two logical assumptions for the sub-
overlay. Firstly, the peers with high degree are high capacity
ones, called super-peers in this paper. Super-peers take over
more responsibilities in the sub-overlay. Secondly, super-
peers do not leave the network frequently. Thus the sub-
overlay is comparatively stable.

Based on the above principles and assumptions, we
construct PercolationNET in three phases. In the first phase,
the tree roots of the sub-overlay need to be found. Previous
studies [12] have shown that P2P overlay topologies follow
the power law properties, which means that a few peers
have high degrees. In PercolationNET, we select high-
degree peers as super-peers as the tree roots of sub-overlay.
We can find these high-degree peers easily by relying on the
degree distribution of peers in the original overlay. As
shown in Algorithm 1, DThres is a threshold value. That is,
a peer whose degree bigger than DThres is defined as a
super-peer. The set S is used to store all super-peers.

Algorithm 1. SELECT_SUPERPEERS

1. N is the set of peers in the original overlay.
2. S is the set of super-peers.

Its initial value is null.
3. DThres is the threshold value of degree for super-

peers.
4. initialize DThres according to the degree

distribution of peers in the original overlay
5. For each peer q N
6. If Degree(q) > DThres
 then put peer q into the set S
7. End For

Algorithm 2. DETECT_LEVEL(p)

1. N is the set of peer p’s neighbors.
M is a null set.

2. S is the set of super-peers.
3. initialize DetectTTL; j = 1; flag = false
4. While j < DetectTTL and flag = false
5. For each peer qN
6. If qS then Level(p) = j; flag = true; break;
 //If q is a super-peer, the level of p is the circular

parameter j and the cycle process terminates
7. else put the neighbors of peer q into set M

//If q is not a super-peer, the neighbors of q will
be detected, so M is used to express the set of the
neighbors of q

8. End For
9. set N = M; M = ; j++
10. End While

Algorithm 3. FIND_PARENT(p)

1. N is the set of peer p’s neighbors.
M is a null set.

2. obtain the level information of all peers in set N
3. For each peer qN
4. If Level(p)-Level(q) = = 1 then
5. put peer q into set M
6. End For
 // some of peer p’s neighbor peers whose level are

just one lower than peer p are put into set M
7. obtain the degree information of all peers in set M
8. For each peer kM

9. compute the probability ()
Pr

()k

i M

Degree k

Degree i

10.End For
11.select a neighbor j from M as its parent with

probability Prj

In the second phase, each ordinary peer probes its level
by Algorithm 2. In Algorithm 2, the parameter DetectTTL
denotes the number of hops each peer detects. The setting of
DetectTTL value needs to ensure that all ordinary peers can
find at least one super-peer. We use the minimum hops
between each ordinary peer and a certain super-peer as its
level. The level of super-peers is zero.

Super peer to peer connection Inter peer connection Inter super-peer connection

Peer

…

... ...

...

Super-peer

Peer

Super-peer

Original overlay

Sub-overlay

Super-peer

… …

Sub-overlay

Tree Tree

 Tree

…

... ...

...

…

... ...

...

Figure 1. Overlay structure

In the third phase, each ordinary peer selects a neighbor

as its parent according to Algorithm 3. A peer p’s candidate
parent peers are its neighbor peers whose level are just one
lower than peer p. Each ordinary peer selects one from its
candidate parent peers as its parent with probability Pr
which can be computed by the degree of peers, as shown in
Algorithm 3. Thus, PercolationNET generates multiple
unconnected components. In Figure 1, the form of each
component in the sub-overlay is a tree, and the root of the
tree is a super-peer in original overlay. In the sub-overlay,
each tree is composed of one super-peer in the original
overlay, ordinary peers (peers other than super-peers)
directly or indirectly connecting with the super-peer, and the
original existing links among them.

3.2. Overlay maintenance

3.2.1. Join. A typical unstructured P2P system provides
several permanent well-known bootstrap hosts to maintain a
list of on-line peers so that a new incoming peer can find an
initial host to start its connection by contacting the bootstrap
hosts. In an original overlay, a bootstrap host will provide
the joining peer a list of active peers with their information.
The joining peer tries to construct connections to these peers,
and then detects its level by Algorithm 2. In
PercolationNET, the new joining peer selects one of its
neighbors in original overlay as its parent by Algorithm 3.

3.2.2. Leave or fail. When leaving the network, a peer
has to inform its children by sending a leave message. Each
peer of the informed children detects its level by Algorithm
2 again, and then selects another neighbor in the original
overlay as its parent by Algorithm 3. The failure of a peer in
PercolationNET is detected when one of its children misses
a sequence of three messages. In the case where a peer
detects its parent’s failure, it refreshes its level by Algorithm
2, and then selects another neighbor in the original overlay
as its parent by Algorithm 3. The departure or failure of
individual peers does not have a disruptive impact on the

overlay topology, for messages are routed by many parallel
routes in our two-stage search scheme. Therefore, the two-
stage search scheme is robust against volatile peers.

3.2.3. Adjust. Since the unstructured P2P networks are
self-organized, an individual peer may come, go or fail
frequently. As a result, a peer’s parent may be not the
optimal one in PercolationNET. Therefore, each peer needs
to update its parent information periodically. In reality, it is
important to find an appropriate interval. However, in our
approach, a short update interval will only consume a small
bandwidth resource because the adjustment of level and
parent for each peer only needs the degree information in
the original overlay. At the same time, a large update
interval will not cause significant performance degradation
due to the two-stage search scheme.

4. Performance evaluation

4.1. Simulation setup

We use the simulator PeerSim [18] for evaluating the
performance of PercolationNET. In our simulation, we
construct two overlays, original overlay and sub-overlay.
Using BRITE [19], we generate the original overlay based
on the BA (Barabasi-Albert) model with 10000 nodes and
30000 links. Based on the original overlay, we construct the
corresponding sub-overlay, where we define the threshold
value DThre as 140. Therefore, there are 8 super-peers for
this sub-overlay in our experiments.

For each experiment in the following, every peer, in turn,
starts a searching procedure and broadcasts a query message
to the network by using flooding with Q(firstTTL,
secondTTL). Each peer stores the information of its
neighbors in the original overlay and the information of its
parent and children in PercolationNET. In the first stage, the
message is propagated in the original overlay with firstTTL.
When a peer receives the message q(0, secondTTL), the
peer will stop broadcasting the message in the original
network. Then the message will be broadcasted using
flooding along PercolationNET with secondTTL. When a
peer receives the message q(0, 0), the peer will stop
broadcasting the message in the sub-overlay. The seeds who
are the new nodes reached in the last hop of firstTTL are the
source nodes of the message in the second stage. We mainly
focus on two performance metrics: message overhead and
coverage rate within a certain hops. Additionally, we
analyze the performance of PercolationNET compared with
FloodNet, in terms of coverage rate and message efficiency.

4.2. Seeds and super-peers

We use the term “seeds” to describe the new nodes
reached in the last hop of firstTTL. From the previous
description, we can see that the number of seeds is an
important parameter for message diffusion along
PercolationNET. Figure 2 shows the number of seeds with
different value of firstTTL in our topology. We can observe
that seed amount first increases and then decreases with the

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

firstTTL

se
ed

 a
m

ou
nt

Figure 2. Seed amount in the first stage

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

firstTTL

su
pe

r-
pe

er
 a

m
ou

nt

Figure 3. Super-peer amount in the first stage

increase of firstTTL. This is because flooding in power-law
networks is efficient only in earlier stages (with low hops).
In the latter stages, the number of the new nodes reached
does not increase like the initial stages. This motivates us to
use an appropriate firstTTL in the first stage, which can
produce enough seeds for the second stage. Moreover, from
the figure, we can see that the optimal value of firstTTL for
producing enough seeds is no more than 4 in our topology.

Figure 3 shows the average number of super-peers
reached in the first stage. We can see that all super-peers are
covered in the first stage when the value of firstTTL is 4. If
the coverage scope of flooding in the first stage includes all
super-peers, seeds will spread over all trees of sub-overlay
unquestionably. Consequently, the search can spread to all
peers with a low secondTTL in the second stage. However,
though not all super-peers are included in the coverage
scope of the first stage, the seeds can also spread over all
trees as long as they are sufficiently decentralized. We will
further test it by experiments in the following.

4.3. Message overhead

The goal of PercolationNET is to reduce the message
overhead as much as possible while retaining the same
coverage scope. Figure 4 lists the average message overhead
per query with the increase of secondTTL in the second
stage for different arrangements (firstTTL, *). According to
analysis of seeds and super-peers in the above section, we

0

4000

8000

12000

16000

20000

24000

0 1 2 3 4 5 6 7

secondTTL

m
es

sa
ge

 o
ve

rl
oa

d
(1,*) (2,*)

(3,*) (4,*)

Figure 4. Message overhead in the second stage

know that the optimal value of firstTTL is not more than 4.
Hence in the following experiments, we use (1, *), (2, *), (3,
*), (4, *). Furthermore, the whole coverage of the network
is used as the baseline to set the stopping hops in the second
stage (except for (1, *) and (2, *)).

From the figure, we can make the following observations.
First, as the firstTTL increases, the average message
overhead increases exponentially. In contrast, once the
flooding is switched from the original overlay in the first
stage to PercolationNET in the second stage, the rising
speed of message overhead is slow. Therefore, this means
that PercolationNET is able to eliminate a large number of
redundant messages by introducing several additional hops.
Second, the bigger the value of firstTTL is, the larger the
message overhead becomes. For example, the simulation
shows that the final message overhead of (4, *) is twice as
much as that of (3, *). Third, at the latter hops of all
arrangements in this figure, the message overhead nearly
stops rising. The reason is that PercolationNET is made of
trees. When the message reaches the leaf nodes, it will not
be broadcasted anymore. Lastly, at the first hop of (4, *), the
increment of message overhead is comparatively large. This
phenomenon can be explained with the reason that all of
seeds produced in the first stage broadcast the query
message to all of their neighbors along PercolationNET at
the initial one hop in the second stage, thus generating many
message overheads. In fact, the phenomenon can also be
observed in (3, *). However, the seeds in (3, *) are much
less than that of (4, *), as shown in Figure 2, so it is not
obvious.

4.4. Coverage rate

Coverage rate measures the ratio of the number of visited
peers to the whole number of peers in the network. Figure 5
lists the coverage rate growth with the increase of
secondTTL for different (firstTTL, *) arrangements. Based
on the figure, we can carry out the following observations.
First, the smaller value of firstTTL is, the bigger value of
secondTTL is needed to obtain a similar coverage. This is
because a mass of seeds produced in the first stage can
saturate the network quickly.

0

20

40

60

80

100

0 1 2 3 4 5 6 7

secondTTL

co
ve

ra
ge

 r
at

e
(%

)

(1,*) (2,*) (3,*) (4,*)

Figure 5. Coverage rate

30

40

50

60

70

80

90

100

1 2 3 4

secondTTL

co
ve

ra
ge

 r
at

e
(%

)
PercolationNET

FloodNet

Figure 6. Compare coverage rate with (3, *)

Besides, among different arrangements (firstTTL, *), not

every firstTTL value can reach the whole coverage. For
example, (1, *) can only achieve 47 percent of the whole
coverage. The reason is that PercolationNET is formed by
multiple trees. If the number of seeds is not large enough,
seeds can’t be dispersed into all trees during the first stage.
Finally, combination of this figure and the above figure 4,
we can see that the arrangements of (3, *) strike a good
balance between message overhead and search coverage.

To compare the performance of PercolationNET with
FloodNet, we carry out the contrasting experiments using (3,
*), as shown in Figure 6. Obviously, we can see that the
performance of coverage rate in PercolationNET is superior
to that of FloodNet all the time. This is because the level in
FloodNet is much deeper than that of PercolationNET.
Hence, it is slow for a message to spread to the whole
network.

4.5. Message efficiency

Message efficiency is the ratio between the number of

peers reached and the number of forwarded messages. The
optimal efficiency is one if there are no redundant messages.
Figure 7 shows the message efficiency using (3, *). In the
figure, we can see that PercolationNET is superior to
FloodNet in message efficiency. Another observation is that
the efficiency becomes worse with the first hop in the

65

70

75

80

85

0 1 2 3 4

secondTTL

m
es

sa
ge

 e
ff

ic
ie

nc
y

(%
)

PercolationNET

FloodNet

Figure 7. Compare message efficiency with (3, *)

second stage, and then it becomes better and better. For
example, the message efficiency is nearly 83 percent in (3,
0), whereas it is less than 74 percent in (3, 1). This is
consistent with what we have observed in section 4.3.

5. Conclusion and Future Work

In this paper, we build PercolationNET upon the existing
P2P overlay. We apply the information of super-peers in the
existing overlay to construct the multi-tree sub-overlay,
while the super-peers are regarded as the tree roots in
PercolationNet. Accordingly, the search process is divided
into two stages. The experiments show that the proposed
sub-overlay structure is more efficient than the existing
FloodNet scheme, including coverage speed and message
efficiency. Although we propose a promising sub-overlay
comparing with FloodNet, and use flooding scheme to
investigate its efficiency, there are still further problems to
be explored. Firstly, we can take other search schemes into
account since we only need to spread query message to all
trees of PercolationNET in the first stage. In addition, we
research how the parameters firstTTL and secondTTL
would affect the performance of our approach, but not
exploit how the size of P2P overlay affects its performance.
We will address these issues in our future work.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China with grants 60873225, 60773191,
70771043, the National High Technology Research and
Development Program of China (863 Program) with grant
2007AA01Z403, and U.S. National Science Foundation
grants CNS-0834592 and CNS-0832109.

References

[1] Gnutella, http://www.Gnutella.com/
[2] KaZaA, http://www.kazaa.com, 2007

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications”, Proc. ACM SIGCOMM, San Diego,
California, USA, 2001, pp. 149-160.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A Scalable Content-Addressable Network”, Proc.
ACM SIGCOMM, San Diego, California, USA, 2001,
pp.161-172.

[5] H. Jiang and S. Jin, “Exploiting Dynamic Querying like
Flooding Techniques in Unstructured Peer-to-Peer Networks”,
Proc. 13th IEEE International Conference on Network
Protocols (ICNP’05), 2005, pp. 122-131.

[6] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-
Peer Networks”, Proc. 22nd IEEE Intl’ Conf. Distributed
Computing Systems (ICDCS’02), July 2002, pp. 5-14.

[7] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks”, Proc.
16th ACM Int’l Conf. Supercomputing (ICS’02), 2002.

[8] J. Luo, S. Zhou, C. Wu, Y. Deng, and X. Yang, “Adaptive
Flooding Routing Algorithm in Unstructured P2P”, Proc. 4th
IEEE Intl’ Conf. Communications, Circuits and Systems,
2006, pp. 1557-1561.

[9] E. Cohen, and S. Shenker, “Replication Strategies in
Unstructured Peer-to-Peer Networks”, Proc. ACM
SIGCOMM, Pittsburgh, Pennsylvania, USA, 2002, pp. 177-
190.

[10] T. Yamada, K. Aihara, A. Takasu, and J. Adachi, “Adaptive
Replication Method Base on Peer Behavior Pattern in
Unstructured Peer-to-Peer Systems”, Proc. 21th IEEE Intl’
Conf. Data Engineering (ICDE’05), 2005.

[11] C. Wang, L. Xiao, Y. Liu and P. Zheng, “Distributed Caching
and Adaptive Search in Multilayer P2P Networks”, Proc.
24nd IEEE Intl’ Conf. Distributed Computing Systems
(ICDCS’04), 2004, pp. 219-226.

[12] H. Guclu, and M. Yuksel, “Scale-Free Overlay Topologies
with Hard Cutoffs for Unstructured Peer-to-Peer Networks”,
Proc. 27th International Conference on Distributed
Computing Systems (ICDCS'07), 2007, pp.32.

[13] M. Srivatsa, B. Gedik, L. Liu, “Large Scaling Unstructured
Peer-to-Peer Networks with Heterogeneity-Aware Topology
and Routing”, IEEE Transactions on Parallel and Distributed
Systems, 2006, 17(11): 1277-1293.

[14] Y. Liu, L. Xiao, X. Liu, L.M. Ni, etc, “Location Awareness in
Unstructured Peer-to-Peer Systems,” IEEE Transactions on
Parallel and Distributed Systems, 2005, 16(2): 163-174.

[15] Y. Liu, L. Xiao, and L.M. Ni, “Building a Scalable Bipartite
P2P Overlay Network,” IEEE Transactions on Parallel and
Distributed Systems, 2007, 18(9): 1296-1306.

[16] S. Jiang, L. Guo, X. Zhang, et al, “LightFlood: Minimizing
Redundant Messages and Maximizing the Scope of Peer-to-
Peer Search”, IEEE Transactions on Parallel and Distributed
Systems, 2008, 19(5): 601-614.

[17] Q. Lv, S. Ratnasamy, and S. Shenker, “Can heterogeneity
make gnutella scalable”, Proc. of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS), LNCS 2429,
Cambridge, MA, USA, 2002, pp. 94-103.

[18] PeerSim, http://peersim.sourceforge.net/
[19] A. Medina, A. Lakhina, I. Matta, et al, ”BRITE: Universal

Topology Generation from a User’s Perspective”, Technical
Report BUCS-TR-2001-003, Boston University, April 2001.

