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Abstract—Underlying link-layer protocols of wireless net-
works use the conventional “store and forward” design
paradigm cannot provide highly sustainable reliability and
stability in wireless communication, which introduce significant
barriers and setbacks in scalability and deployments of wireless
networks. In this paper, we propose a Code Embedded Dis-
tributed Adaptive and Reliable (CEDAR) link-layer framework
that targets low latency and high throughput. CEDAR is the
first comprehensive theoretical framework for analyzing and
designing distributed and adaptive error recovery for wireless
networks. It employs a theoretically-sound framework for
embedding channel codes in each packet and performs the error
correcting process in selected intermediate nodes in packet’s
route. To identify the intermediate nodes for the en/decoding for
minimizing average packet latency, we mathematically analyze
the average packet delay, using Finite State Markovian Channel
model and priority queuing model, and then formalize the
problem as a non-linear integer programming problem. Also,
we propose a scalable and distributed scheme to solve this
problem. The results from real-world testbed “NESTbed” and
simulation with Matlab prove that CEDAR is superior to the
schemes using hop-by-hop decoding and destination-decoding
not only in packet delay but also in throughput. In addition, the
simulation results show that CEDAR can achieve the optimal
performance in most cases.

I. INTRODUCTION

Despite the unprecedented success and proliferation of
wireless communication, there are major shortcomings in
the underlying link-layer protocols in providing sustainable
reliability and stability among wireless users. Popular wire-
less link-layer protocols, such as the retransmission ARQ
or Forward Error Correction (FEC) based ARQ (HARQ)
approaches (employed by the IEEE 802.xx and LTE standard
suite) are designed to achieve some level of reliability by dis-
carding a corrupted packet at the receiver and performing one
or more retransmissions until the packet is decoded/received
error-free or a maximum number of retransmission attempts
is reached. This methodology suffers from degradation of
throughput and overall system instability since decoding
failures at the receiver due to a small number of bit errors
lead to packet drops and discarding a large number of
correctly delivered data bits.

Many leading research efforts [1]–[11] have highlighted
the inefficiencies of these link-layer protocols and proposed
a variety of remedy solutions. The majority of these efforts
either consider variations of the ARQ, HARQ or a hybrid
approach of both schemes [1], [5], [11], [12]. They largely
follow the traditional “store-and-forward” link-layer design
paradigm: each data packet must be fully received and
corrected by every relay node before it is forwarded. This

design paradigm increases stability but still cannot provide
high stability due to its hop-by-hop operation.

It is our belief that achieving the ultimate objective of
the development of ubiquitous and heterogeneous wireless
networks demands fundamental and radical changes to the
conventional link-layer protocol design. Thus, we study
and develop alternative optimal and low-complexity error
recovery strategies in link-layer design to achieve high
reliability and stability by partially and optimally selecting
relay nodes. The objectives of the strategies are to ensure,
(1) Low end-to-end latency and rapid delivery of packets;
(2) High throughput with minimum data loss. To meet these
objectives, we develop solutions that address the following
key issues: (1) Minimizing propagation and transmission
(prop&tran) delay: at which intermediate nodes (if any)
a link-layer packet should be detected to minimize packet
delay? (2) Minimizing queuing delay: as multiple relay nodes
in a route perform error recovery on the same packet stream
and one node may perform error recovery for multiple packet
streams, how to select relay nodes that provides global
reliability and stability in a wireless network with many
source-destination packet streams?

As a solution, we develop mathematical models for the
prop&tran delay and queuing delay for a packet based on
the path length between two consecutive decoding nodes in a
route (route segment length). Through rigorous mathematical
analysis on the models, we derive two propositions that
(1) can identify the intermediate nodes for decoding which
minimize prop&tran delay of a packet, and (2) prove that bal-
anced en/decoding load distribution among decoding nodes
in the network minimizes the queuing delay. Based on the
propositions, we formulate the problem of minimizing delay
as a non-linear integer programming problem. However, due
to the NP-hard nature of the problem and impracticability
of collecting all required information to find the global
optimal solution, we propose a sub-optimal Code Embed-
ded Distributed Adaptive and Reliable (CEDAR) link-layer
framework for wireless networks. CEDAR is a distributed
and cooperative error recovery design, which provides an
adaptive environment for various error recovery strategies
with respect to reliability and stability. We summarize our
contributions as follows: (1) We build a model for the
probability of decoding failure of a packet traveling through
a given number of hops based on the Finite State Markovian
Channel (FSMC) model; (2) We build rigid mathematical
models for the prop&tran delay, and queuing delay for
a packet; (3) We formalize the problem of choosing the
intermediate en/decoing nodes for minimum delay as a non-



Fig. 1. Protocols for packet recovery.

linear integer programming problem which is an NP-hard
problem; (4) We propose a distributed sub-optimal strategy
for CEDAR that achieves high reliability and stability.

The reminder of the paper is organized as follows. Section
II states the problem that needs to be solved to minimize the
packet delay. Section III introduces mathematical model that
formalizes the problem as a non-linear integer programming
problem and derives two propositions to minimize the delay.
Guided by the propositions, Section IV details the design of
CEDAR for solving the problem in Section II, and Section V
presents performance evaluation of CEDAR in comparison
with previous schemes. Section VI presents a review of the
related works. The final section concludes with a summary
of contributions and a discussion on future research work.

II. PROBLEM STATEMENT

Consider a wireless network comprised of N nodes rep-
resented as V = {v1, v2, ..., vN}. Each traffic flow from
a source node to a destination node transverses over a
predetermined set of links (a route specified by the network
layer). Let R = {r1, r2, ..., rB} denote the transmission
routes. Each route rk (1 ≤ k ≤ B) carries a data stream
following Poisson distribution with arrival rate λk. A vector
of nodes rk = {vk0 , vk1 , ..., vknk

} (vk0 , vk1 , ..., vknk
∈ V)

represents the nodes in rk, where nk = |rk| .
As shown in Fig. 1, to reach the destination, each packet

flow needs to travel through all nodes in the predeter-
mined route, and some of these nodes are responsible for
en/decoding the packets. In the ARQ and HARQ protocols
[1], [5], [11], each hop drops distorted packets and requests
for complete or partial retransmission of the original packets.
Though these methods guarantee the reliability between any
pair of nodes, they cause high delays and low throughput
due to numerous retransmissions at every hop. CEDAR intro-
duces a new flexible environment for link-layer error recov-
ery: the error correction process is performed in a distributed
manner where selected (and not all) intermediate nodes
participate in performing error recovery. The key problem in
CEDAR is how to identify candidates among the intermedi-
ate nodes for the en/decoding process to optimally decrease
latency and increase throughput over the entire network.

First, we build a model to calculate the prop&tran delay
(Di

p&t (n′i)), and a model to calculate the queuing delay
(Dq (n′i)) based on the lengths of the routing paths (n′i)
of the packets crossing an intermediate node vi. We use
these models to minimize the expected delays and ultimately
identify the positions of intermediate nodes for en/decoding
in each route in CEDAR. Throughout the paper, we use the
key terms provided in the following definitions:

Definition 1 (Key node): A key node of route rk is a node
responsible for en/decoding the packets traveling along rk.
Matrix X = (xi,k)N×B denotes whether vi is a key node in

rk:
xi,k =

{
1, vi is the key node in rk;
0, vi is not the key node in rk.

(1)

Definition 2 (Route segment): A route segment of rk is
a section of the end-to-end path between one key node to
either the endpoints or another key node.

In each route segment, the packet sender (the first key
node) encodes the packets and the packet receiver (the
second key node) decodes the packets. In other words, the
second key node is responsible for decoding for its route
segment. Use n′i,k to denote the number of hops in a route
segment with decoding node vi in rk. Let n′i denote the
group of the lengths of route segments responsible by vi,
i.e., n′i = {n′i,1, n′i,2, ..., n′i,B}. n′i,k = 0 if vi has no
responsibility of decoding the packet in rk. Let λ′i,k denote
the arrival rate of the data stream that vi is responsible for
en/decoding in rk. Then λ′i,k = λk×xi,k. We use D (n′i) to
denote the total average delay when one packet crosses vi
and use 0-1 variable fi,k to denote whether vi is in rk. If
yes, fi,k = 1; otherwise fi,k = 0.

Objective. The objective of CEDAR is to minimize the
total delay of the packets in the entire system, which can be
represented as:

min

N∑
i=1

(
D (n′i)

B∑
k=1

λ′i,k

)
s.t. xi,k ≤ fi,k (2)

The packet delay in vi (which is composed of prop&tran and
queueing delays) is a function of n′i. This will be deduced in
the mathematical analysis in Section III. We use Dp&t (n′i) to
denote the average prop&tran delay of all the packet streams
being decoded in vi, and use Dq (n′i) to denote the average
queuing delay of the packet stream in vi. Then, the total
average delay when one packet crosses vi is:

D (n′i) = Dq (n′i) +Dp&t (n′i) (3)

Thus, we need to minimize Dq (n′i) and Dp&t (n′i) in order
to achieve the objective of CEDAR in Formula (2). To this
end, in Sections III-A and III-B, we model the Bit Error Rate
(BER) fluctuations of wireless channels and probability of
successful decoding. Sections III-C and III-D use this model
to formulate the prop&tran delay Dp&t (n′i) and the queuing
delay Dq (n′i). Finally, Section III-E derives two propositions
to minimize Dq (n′i) and Dp&t (n′i), respectively. Guided by
the propositions, we design CEDAR in Section IV.

III. MATHEMATICAL MODELING

In this section, we first present a Markovian wireless
channel model to capture the variations in wireless error
conditions due to non-stationary wireless noise and calculate
BER of a packet when it goes through several channels.
Using this model, we analyze the relationship between the
number of hops a packet crosses and the probability of its
successful decoding. This relationship leads us to calculate
the prop&tran delay and queuing delay, respectively. By
minimizing the two delays, we can find the locations of
intermediate nodes in a route for decoding. Finally, we
formulate the problem of minimizing the sum of the delays
as a non-linear integer programming problem. The analytical
results and the formed problem lay the foundation for the

2



design of an optimized strategy for choosing intermediate
nodes for the CEDAR packet recovery.
A. Markovian Channel Model

Finite State Markovian Channel model (FSMC) [13] is
a channel model that uses finite state Markov chain to
describe the process, under which errors are introduced into
a transmitted packet over a wireless route. The model has
a finite set of error states S= (s1, s2, ..., sK) (|S| = K),
each corresponding to a Binary Symmetric Channel (BSC).
The channel model can be considered as a combination of
K number of various BSCs with unique BERs (ε) (i.e.,
εl 6= εj for l 6= j, l, j = 1, 2, ...,K). Assuming packets
are transmitted during discrete time slots τi (i = 1, 2, 3...)
which can be referred as transmission intervals. During the
ith transmission interval, a packet is transmitted from a
BSC to another BSC with cross-over BER εi. Each εi of
a particular τi is valued from S. The Markovian model
assumes a homogenous and stationary Markov chain with
transition probability matrix T = (tij)K×K and initial
probability π = (π1, ..., π2). T = (tij)K×K can be trained
on real channel traces by using the statistics of previous
transmission intervals. This captures the effects of multi-
path fading and interferences on the channel BER in every
transmission interval using a single aggregated model [13].
The system average BER can be calculated as:

ε =

K−1∑
k=0

πkεk (4)

Based on this prior work, we calculate the average BER
for consecutive wireless links within a route segment in a
cascaded system, and derive Lemma 3.1.

Lemma 3.1: The BER in a cascade system where a
node travels along links with states sa1sa2 ...san (1 ≤
a1, a2, ..., an ≤ K) can be given by:

εn ≈
∑

{sa1 ...san}∈Sn

(
πa1

n−1∏
j=1

tajaj+1

n∑
i=1

εi

)
(5)

where Sn represents all the possible set of series which is
composed of n elements and each element is contained in S
(notice each series can have duplicated elements).

Proof: Let
Ei =

[
1− εi εi
εi 1− εi

]
(6)

be the transition probability matrix when the packet’s chan-
nel is in si. We then derive

Ei = B−1

[
1 0
0 1− 2εi

]
B (7)

where
B =

[
1 1
1 −1

]
(8)

Then, we consider the situation that one bit goes through the
cascade of n nodes and the bit’s channel state is changed in
the sequence of sa1 , sa2 , ...sai , ..., san (1 ≤ ai ≤ K, 1 ≤ i ≤
n). In this case, the transition probability matrix through n
nodes, denoted as Ea1a2...an , is given by
Ea1a2...an = Ea1Ea2 ...Ean = B−1

[
1 0
0
∏n
i=1 (1− 2εai)

]
B

=

[
1+

∏n
i=1(1−2εai

)

2

1−
∏n

i=1(1−2εai
)

2
1−

∏n
i=1(1−2εai

)

2

1+
∏n

i=1(1−2εai
)

2

]

Thus, the BER of the cascade of n nodes (a1, a2, a3, ..., an)
equals:

εa1a2...an =
1−

∏n
i=1 (1− 2εai)

2
(9)

The probability that such a aforementioned situation occurs
equals:

Pr [X = {sa1sa2 ...san}] = πa1

n−1∏
j=1

tajaj+1 (10)

where X is a random variable represents the series. Then,
the expectation of error bit through the cascade of n hops is
given by:

εn =
∑

{sa1
...san}∈Sn

Pr [X = {sa1sa2 ...san}]× εa1a2...an (11)

=
∑

{sa1
...san}∈Sn

πa1

n−1∏
j=1

tajaj+1

1−
∏n
i=1 (1− 2εai)

2
(12)

When ε1, ε2, ..., εn � 1

εn ≈
∑

{sa1
...san}∈Sn

(
πa1

n−1∏
j=1

tajaj+1

n∑
i=1

εai

)
(13)

B. Probability of Successful Decoding
CEDAR is developed based on the error recovery mech-

anism in the ACE Communication Model [14]. Thus, we
first introduce ACE before we present the mathematical
models. Specifically, during τi, a transmitter encodes data
symbols zi with parity codes xi (referred as type-I parity
code) to create a codeword Ci (zi, xi). It transmits a packet
Mi = (Ci(zi, xi), yi), where yi denotes the additional parity
(hereafter type-II parity) symbols for recovering previously
received corrupted packets at the receiver. We also use xi, yi
and zi to denote the number of their symbols. The receiver
utilizes xi to decode Ci. If the decoding operation fails, the
receiver stores Ci in its buffer and issues a request along with
ACKi for more parity symbols. The transmitter then sends
additional parity yj(j > i) along with Mj . We use mi =
xi+ yi to denote the total number of parity symbols of Mi.

First, consider a simple cascade model (v0 → v1 → v2 →
...→ vn) in which a packet stream goes through a series of
nodes v0, v1, v2, ..., vn and is encoded and decoded at v0 and
vn, respectively. We can approximate Equ. (5) by Equ. (14)
to calculate the BER for a routing through n nodes under
the Markovian channel model:

εn ≈ nε (14)
As ACE, we take Reed-Solomon codes [15] as an example,
which is a kind of non-binary cyclic error-correcting codes,
for channel coding. In the Reed-Solomon codes, each symbol
is composed of b bits, indicating that the probability of error
for each symbol equals:

εn,b = 1− (1− εn)b (15)
The number of error symbols introduced in one packet Mi

with a length of zi + mi symbols through n hops can be
represented by a random variable Ei following a binomial
distribution Ei ≈ Bi

(
zi +mi, ε

n,b
)
. If the error estimate

is ε̂n,b for one symbol of b bits, the receiver is capable of
correcting up to αmi errors out of |Ci| symbols in packet
Mi, where α is a function measuring the expected error-
correcting capability of a particular decoder based on ε̂n,b.
For instance, the error-correcting capability of the Reed-
Solomon codes is half as many as redundant symbols (i.e.,
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(a) The surface of Fα (n,mi) (b) Simulation results
Fig. 2. Comparison of results.

α = 0.5) [15]. The probability of successfully recovering
data bits by a parity code with mi length symbols equals:

P isucc = Pr [Ei ≤ αmi] (16)

=

bαmic∑
k=0

(
zi +mi

k

)(
1− ε̂n,b

)zi+mi−k (
ε̂n,b
)k

(17)

From Equ. (16), we observe that P isucc is a discrete function
of two variables:

P isucc = Fα (n,mi) . (18)

Fα (n,mi) is monotonically decreasing function of n (num-
ber of hops in a route), and is monotonically increasing
function of mi (number of symbols in parity code). This is
observed in Fig. 2. Fig. 2 (a) shows the surface of Fα (n,mi)
when α = 0.5, zi = 20 and ε̂ = 1.5×10−3, when n is varied
from 5 to 50, and mi is varied from 12 to 30. Fig. 2 (b)
shows the simulation results of the successful decoding rate
under the FSMC model between a source and a destination
node with n hops between them (n is ranged from 5 to 50).
The consistency between the analysis results and simulation
results verifies Equ. (16) and Equ. (18).

Based on Equ. (18), the number of times (i.e., trials)
a packet is required to be decoded until it is recovered
has a nonhomogeneous geometric distribution (denoted by
G) [16] given that the length (i.e., number of symbols) of
predetermined parity code equals mt at the tth trial.

Lemma 3.2: We use f tG (n) to denote the probability of
successful decoding on the tth decoding trial for one packet
going through n hops. Then,

f tG (n) = Fα (n,mt)×
t−1∏
i=1

(1− Fα (n,mi)) (19)

C. Propagation and Transmission Delay
In this section, we consider the prop&tran delay of a

packet Mi. We use Di,t
p&t (n) to denote the prop&tran delay

of Mi when the parity code of Mi has been transmitted for t
times through n nodes. Let Dp (n) represent the propagation
delay for one packet going through n nodes and DACK (n)
denote the transmission delay of the ACK packet. Further,
let Dik

t (n) denote the transmission delay of the packet Mik .
The length of this packet is Likpac= zik +mik , where Mik

is the kth packet that carries Mi’s parity symbols for the
kth time after k-1 times of recovery failures (i.e., type-II
parities). Then, as Fig. 3 shows, Di,t

p&t (n) can be calculated
as

Di,t
p&t (n) =

t−1∑
k=0

(
2Dp (n) +DACK (n) +D

ik
t (n)

)
+Dprop (n) +Dit

t (n)

(20)

We use R to denote the bandwidth provided to the route
Mi travels. Assume electric signal travels at velocity c in

Fig. 3. Transmission and propagation delay.

Fig. 4. Route segment.

the media and the distance of each hop (d) is an invariable.
Then, DACK (n), Dik

t (n) and Dp (n) can be calculated as:

DACK(n) =
LACK

R
× n, Dik

t (n) =
L
ik
pac

R
× n (21)

Dprop (n) =
d

c
× n (22)

Based on Equ. (20), (21), and (22), we can derive that:

Di,t
p&t (n) = n

[
t−1∑
k=0

(
2d

c
+
LACK + L

ik
pac

R

)
+
d

c
+
Ltpac
R

]
(23)

Based on Equ. (19) in Lemma 3.2 and Equ. (23), we retrieve
Lemma 3.3 for the expectation of Di

p&t (n).
Lemma 3.3: The expected propagation and transmission

delay of a packet Mi D
i
p&t (n) can be calculated by:

Di
p&t (n) =

∞∑
t=1

f tG (n)Di,t
p&t (n) (24)

As shown in Fig. 4, given a route from a source node to
a destination node, we can divide the route into e segments,
each segment having length of n1, n2, ...., ne. In each route
segment, a packet is encoded at the first node and decoded
at the last node. The goal of our scheme is to determine the
n1, n2, ...., ne in order to minimize the prop&tran delay of
a packet from the source to the destination, i.e., to achieve

min
∑e
j=1D

i
p&t (nj)

s.t.
∑e
j=1 nj = n

D. Queuing Delay
In a priority queuing model, packets entering a buffer are

classified into several different priority categories and added
into different queues accordingly. The packets with lower
priority can enter the server only when all queues for higher
priority queues are empty. In the wireless network, for any
single node vi that is responsible for decoding U routes,
there will be U poisson streams (λ1, λ2, ..., λU ) arriving at
this node. vi needs to decide the order of arriving packets
to decode. Thus, by regarding vi as the server in the model,
we can use the priority queuing model (M/M/1/∞/∞/PR)
[17] for analyzing the queuing delay. Note when a packet
fails to decode, it will be decoded (i.e., join in a queue)
again when it received another type-II parity code along with
another packet. In order to balance the queuing delay of each
node, we propose a strategy for determining the priority of
decoding packets. That is, the more times a packet has failed
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Fig. 5. Priority queue.

to be corrected, the higher priority it will be given when it is
re-decoded. When a packet suffers P number of failures, it
is dropped. We do not consider the stream of retransmission
for packets after P failures because the probability of failing
more than P times is extremely small.

Fig. 5 gives a sketch of the priority queuing model in our
scheme. In the figure, λp1, λ

p
2, ..., λ

p
U denote the arriving rate

of the streams whose packets are re-decoded at the (p−1)th

time. Recall that if a packet fails to decode, it is stored in
the buffer waiting for the next parity symbol for recovery.
The re-decoded streams, which are “generated” by failed
decoded packets, follow Poisson distribution [18] and their
arrival rates satisfy the following condition:

λpk
(
n′k
)
= λ1

k

p−1∏
t=1

(
1− Fα

(
n′k,mt

))
(25)

where n′k (1 ≤ k ≤ U ) denotes the number of hops in the
route segment where kth traffic stream has traveled through
since its last en/decoding in the route. Assuming that λ1i
and mt have been pre-determined, the value of λpk (n

′
k) is

determined by n′k. We assign priority p to the packet stream
of λp (p = 1, 2, ..., P ). The packets in a queue with the
highest priority P enter the server (decoding and encoding
part) first. If the queue of priority P is empty, then the
packets of priority P − 1 enter the server; and so on.

Assume there are U data streams in the pth (1 ≤ p ≤ P )
priority queue, because each packet stream follows Poisson
distribution, all of these streams can be combined into one
stream λp =

∑U
j=1 λ

p
j . We use ρl to represent the utilization

of a server when the first packet in the buffer with priority
l enters the server and use Yl to represent service time for
a packet in a queue with priority l [17]. Recall n′ is the set
of all n′k (1 ≤ k ≤ U). Then, ρl (n′) can be calculated as

ρl
(
n′
)
= Yl ×

U∑
j=1

λlj
(
n′j
)

(26)

Wl represents the average delay of packets with priority l
packets and W0 represents the average delay for one tagged
waiting packet due to a packet already in service. W0 can
be calculated as:

W0

(
n′
)
=

P∑
l=1

Y 2
l

2Yl
× ρl

(
n′
)

(27)

As a result, the waiting time for each of packets is:

Wp

(
n′
)
=
W0 (n

′) +
∑P
l=p+1 ρl (n

′)Wl (n
′)

1−
∑P
l=p ρl (n

′)
(28)

From Kleinrock’s conservation theorem in priority queuing
model [19], the expected queuing delay for one packet in
any node can be calculated as:

Wque (n′) =

P∑
p=1

ρp
(
n′
)
Wp

(
n′
)
=
ρ (n′)W0 (n

′)

1− ρ (n′) (29)

where
ρ
(
n′
)
=

P∑
p=1

ρp
(
n′
)

(30)

Now, we consider the queueing delay for one packet,
which might enter the queueing system several times due to
re-en/decoding. During time interval T (T is large enough),
the total number of packets Ntotal that enter the queueing
system equals:

Ntotal

(
n′
)
=

P∑
l=1

U∑
j=1

λlj
(
n′j
)
× T (31)

The total waiting time can be given by:
Wtotal

(
n′
)
= Ntotal

(
n′
)
×Wque (n′) (32)

Lemma 3.4: The expectation of the total queuing time
for one packet when it goes through a node with n′i =
{n′i,1, n′i,2, n′i,3, ..., n′i,U} can be calculated as

Dq (n′) =
Wtotal (n′)∑U
k=1 λ

1
k (n

′
k)

=

∑P
p=1

∑U
k=1 λ

p
k (n

′
k)×Wque (n′)∑U

k=1 λ
1
k

(33)

E. Minimizing the Delays
As shown in Section II, we need to minimize Dq (n′i) and

Dp&t (n′i) in order to achieve the objective of CEDAR in
Formula (2). According to Equ. (24), the prop&tran delay
of the packet stream for rk in vi is calculated as:

Dp&t

(
n′i,k

)
=

∞∑
t=1

f tG
(
n′i,k

)
Dt

p&t

(
n′i,k

)
(34)

Consequently, the average prop&tran delay of all the packet
stream decoded in vi is calculated as:

Dp&t (n′i) =

∑U
k=1

[
λ′i,k

∑∞
t=1 f

t
GD

t
p&t

(
n′i,k

)]∑U
k=1 λ

′
i,k

(35)

where n′i = {n′i,1, n′i,2, ..., n′i,U}. The average queuing delay
of the packet stream in vi can be derived from Equ. (33):

Dq (n′i) =
∑P
i=1

∑U
j=1 λ

l
j

(
n′j
)
×Wque (n′i)∑U

j=1 λ
1
j

(
n′j
) (36)

By minimizing the above Dq (n′i) and Dp&t (n′i), we retrieve
two propositions presented below.

1) Minimizing Queuing Delay
Definition 3 (En/Decoding load): The en/decoding load of

vi, denoted by qi, is defined as the sum of the arrival rates for
all the packet streams that vi is responsible for en/decoding.
That is,

qi =
U∑
k=1

λ′i,k (37)

The en/decoding load is used as a metric to determine the
key nodes for each route. When determining the key nodes
for a new route, the system should avoid choosing nodes
with relatively high en/decoding load.

Proposition 3.1: Suppose there are N nodes {v1, v2, ...,
vN} and B routes r1, r2, ..., rB with total arrival rate

∑B
k λ
′
k

= λ′total, each packet is required to be decoded once in its
route, and each node can decode the packet in any route, and
also n′1 = n′2 = ... = n′N . To minimize the total queueing
delay for all the packets, the en/decoding load for each node
should be the same. That is:

λ′i =
λ′total
N

(i = 1, 2, 3, ..., N) (38)
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Proof: According to Equ. (26), Equ. (27), Equ. (29)
and (30), the queuing delay of packets decoded at vki can
be derived as:

Di
q (n′) =

ρ (n′)

1− ρ (n′)

∑P
l=1

∑B
k=1 λ

′l
k

(
n′i,k

)∑B
k=l λ

′1
k

W0 =
AJλ′2i
1− Jλ′i

(39)
where A and J are invariants figured by Equ. (30), Equ. (26)
and Equ. (25). Then, the following equation can be derived:

N∑
i=1

AJλ′2i
1− Jλ′i

= −ACλ′total +
AN

J
+
A

J

N∑
i=1

1

(1− Jλ′i)
(40)

Let Hi = 1 − Jλ′i and then
∑N
i=1Hi = N − Jλ′total.

According to Cauchy−Schwarz inequality [18], we find that:
N∑
i=1

N − Jλ′total
Hi

=

N∑
i=1

1

Hi

N∑
i=1

Hi (41)

=

N∑
i=1

1(√
Hi
)2 N∑

i=1

(√
Hi
)2
≥

(
N∑
i=1

√
1

Hi

√
Hi

)2

= N2 (42)

from which, we can derive:
N∑
i=1

1

(1− Jλ′i)
=

N∑
i=1

1

Hi
≥ N2

N − Jλ′total
(43)

and then derive:
N∑
i=1

AJλ′2i
1− Jλ′i

≥ −Aλ′total +
AN

J
+

AN2

J (N − λ′total)
(44)

which reaches its minimum value when 1−Jλ′1 = 1−Jλ′2 =
... = 1−Jλ′N , or the values of λ′i (i = 1, 2, .., N) are equal
to each other.

According to Proposition 3.1, given several packet streams
and number of nodes required to decode these packets, we
need to balance the en/decoding load for all of these nodes.

2) Minimizing Prop&Tran Delay
Consider a route with n hops that is not affected by the

interference from any other routes. Our objective is to divide
it into several route segments with the size n1, n2, ..., ne
respectively in order to minimize the total delay of packet
stream transmission. We consider one of these route segment
that has nk hops, and use Dave

p&t to denote the average
prop&tran delay for each hop in this route segment. That
is:

Dave
p&t (ni) =

Dp&t (ni)

ni
(i = 1, 2, 3, ..., e) (45)

where Dave
p&t (ni) is a function of ni. We use Dave

p&t,min to
represent the minimized value of Dave

p&t (ni), and we need to
search nopt that satisfies Dave

p&t (nopt) = Dave
p&t,min,

Proposition 3.2: To divide one route into several route
segments, the optimal length for each route segment should
be nopt in order to minimize the prop&tran delay for the
packet delivery.

Proof: The sum of prop&tran delay for the e route
segments equals:

e∑
i=1

Dp&t (ni) =

e∑
i=1

Dp&t (ni)

ni
× ni

≥ Dave
p&t,min ×

e∑
i=1

ni = Dave
p&t,min × n (46)

When n1 = n2 = ... = ne = nopt,
∑e
i=1Dp&t (ni) reaches

its minimum value.

IV. SCALABLE AND DISTRIBUTED SCHEME

The objective function of CEDAR in Formula (2) is a non-
linear integer programming problem. Solving this problem
leads to minimizing the total delay for all the packets in the
network. This, however, requires each node collect a global
knowledge of the network including the routes and the arrival
rate for each traffic stream, which is nearly impractical in
wireless applications such as wireless ad hoc networks. Even
though the global knowledge is available, the problem is NP-
hard as it is a nonlinear integer programming problem [20].
Thus, we need to design a scalable and distributed scheme
for identifying the key nodes for each route. Fortunately, the
two propositions in Section III-E provide foundation for the
design of a distributed scheme to select key nodes.

Simply put, Proposition 3.1 indicates that the scheme
should try to balance the en/decoding load of each node to
minimize the queuing delay; and Proposition 3.2 indicates
the optimal route segment length (i.e., the positions of key
nodes) to minimize the prop&tran delay. If both requirements
can be satisfied simultaneously, the scheme will satisfy the
objective function. However, these two requirements may
conflict with each other. We identify different network traffic
load situations that each proposition should be primarily con-
sidered, and also propose a method to coordinately consider
these two propositions when choosing key nodes.

Algorithm 1: Identify key nodes in route r executed by each
node in r in a light-traffic network.

begin
Set SEN FIN, REC FIN and DEC to 0 ;
while SEN FIN = 0 or REC FIN = 0 do

Listen to other nodes;
if it has received ACK REC from the next node in r then

SEN FIN ← 1;

if it receives (OPT HOP, FLAG) from the previous node in
r then

REC FIN ← 1;
Send ACK REC to the previous node;
if FLAG = 0 then

DEC ← 1 // It is a key node;
FLAG ← OPT HOP;

else
FLAG ← FLAG - 1;

Case I (light traffic): When a wireless network has light
traffic, because the influence from queuing delay is much
less significant, we mainly consider the prop&tran delay.
As Proposition 3.2 indicates, we first search the value of
nopt and then set OPT HOP = nopt, and set FLAG
= OPT HOP. In a routing algorithm [21], every node keeps
a routing table, and a source node sends out a message
to find the route to a destination for transmitting a packet
stream. After a source-destination route has been discovered,
each node in the route determines whether it is a key
node in a distributed manner by executing the key node
identification algorithm. Algorithm 1 presents the pseudo
code of this algorithm executed by every node (except source
node and destination node), say v, in a route r in the case
of light network traffic. Here, SEN FIN presents whether
v has received ACK from the next node in r; REC FIN
presents whether v has received (OPT HOP, FLAG) from the
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previous node in r; DEC presents whether v is responsible
for en/decoding;

Case II (heavy traffic): When a wireless network has
heavy traffic, we aim to balance the en/decoding load for
each node through the route to reduce queuing delay while
reducing the prop&tran delay. When a new route is built, the
CEDAR scheme first executes Algorithm 1. Simultaneously
each node along the route piggybacks its en/decoding load
to the packet, and the last node sends the information
back. Then the source node knows the series of nodes
identified as “potential key nodes” and their en/decoding
loads, and calculates the average en/decoding load through
the route, denoted as AVE LOAD. It then checks whether the
en/decoding load of each identified key node is larger than
a pre-defined threshold (AVE LOAD + BOUND), where
BOUND is a predetermined value. An overloaded potential
key node probes its nearby nodes sequentially until finding a
node with load within the threshold or meeting an identified
potential key node. The pseudocode of this algorithm is
presented in Algorithm 2.

Algorithm 2: Select key nodes with consideration of load
balance in a heavy-traffic or normal-traffic network.

begin
Use Algorithm 1 to get the “potential key nodes” in route r;
Let node i be one node selected as the “potential key node”;
j = 0;
while j ≤ bOPT HOP/2c do

if LOADi+j ≤ LOADi−j then
if LOADi+j ≤ (BOUND+AVE LOAD) then

return i+ j;

else
if LOADi−j ≤ (BOUND+AVE LOAD) then

return i− j;

j = j + 1;

return 0;

V. PERFORMANCE EVALUATION

This section presents the results of experiments on
NESTbed [22] and simulation with MATLAB. We compared
CEDAR with the global optimal solution (OPTIMAL), the
traditional link-layer protocols, where packet is decoded
hop by hop [6], [14] (HBH), and with another solution
where packet is only decoded at the destination (DEST). In
order to evaluate the effect of the load balancing algorithm
(Algorithm 2) in CEDAR, we also test the performance of
CEDAR without this algorithm denoted by CEDAR*.
A. Experiments on Real-World NESTbed

NESTbed is an open testbed for developing wireless
sensor systems [22]. It is a collection of 80 TELOSB sensors
(Fig. 8 (a)) that are arranged in a grid (Fig. 8 (b)). The
sensors have CC2420 Chip and communicate using the
IEEE 802.15.4 standard. We verify our mathematical models
and evaluate the performance of CEDAR on NESTbed. We
created a multi-hop network of TELOSB sensors running
Tiny-OS 2.1.0 written in NESC. We use Reed-Solomon
codes to detect and fix errors in a packet, if the number
of error bits exceeds the capability of Reed-Solomon codes
for correction, the receiver ask for retransmission.

(a) TELOSB sensors (b) NESTbed
Fig. 6. Experiment.
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Fig. 7. Comparison of results.

1) Mathematical model verification: We measured BER
after the packet traveled for different numbers of hops in
two scenarios, common and noises. Fig. 7 (a) shows BER
versus the number of hops. We see that BER increases
as the number of hops increases in both scenarios. This
is because as the number of hops increases, more flipped
bits are generated and errors tend to be cumulative and
propagated along a routing path in the multi-hop network.
Also, common produces much lower BER than noises as
more noises increase BER.

We then measured the probability of successful decoding
when the error correction node is away from the source node
by different number of hops and when the parity symbols
have different lengths. We used the Reed-Solomon codes as
the error correcting codes that have error-correcting capabil-
ity of α = 0.5 [10] and prime polynomial of x3+x+1 [15].
Fig. 7 (b) shows the probability of successful decoding in a
multi-hop network with varying parity symbol lengths and
the number of hops between the error correction node and the
source node. The figure illustrates that if the error correction
node is further away from the source, the probability of
a packet drop increases. Also, when the length of parity
symbols increases, the probability of successful decoding
increases, which is consistent with Formula (16) (Fig. (a)).

2) Scheme performance evaluation: In the experiments
on NESTbed, we chose 8 sources and 8 destinations and
the source-destination path length was 75 hops. Each source
node generated 500 packets at a time interval varying from
80ms to 160ms. We measured the delay of transmissions and
the throughput, which is defined as the total size of all the
packets divided by the total time used for transmitting all
the packets. The packet error rate is defined as the average
percent of unsuccessfully transmitted packets in each hop.
To test the performance of the three schemes in different
environments, we manually changed the packet error rate
from 1/15 to 1/33. Fig. 8 (a) shows the packet delay of
CEDAR, DEST and HBH. We find that the average packet
delay of CEDAR is much lower than that of DEST and
HBH. DEST has the highest delay because it assigns the
decoding work to each packet’s destination rather than the
intermediate nodes, which generates much higher probability
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Fig. 9. Prop&tran delay and queuing delay.

of packet re-decoding due to higher probability of packet
errors, thus increasing the delay. The delay of HBH is higher
than that of CEDAR because HBH requires packets to be
en/decoded in each hop, which generates high en/decoding
load on intermediate nodes, leading to high queuing delay.
Fig. 8 (b) shows the throughput of three schemes. From the
figure, we can find that the throughput follows CEDAR >
HBH > DEST. This is because lower packet transmission
delay usually leads to higher throughput in the network.

B. Simulation on Matlab
We conducted simulation on Matlab to evaluate the perfor-

mance of CEDAR. We built a 9×9 grid network with each
node located in one grid and randomly selected 16 pairs of
source node and destination node. Each packet contains 20
data symbols, 5 type-I parity symbols and 5 type-II parity
symbols. Each symbol has 5 bits. Also, we randomly chose
nodes connecting each pair of source node and destination
node as the route.

Fig. 9 (a), (b), (c) and (d) compare prop&tran delay and
queuing delay computed by HBH, DEST, CEDAR* and
CEDAR respectively. From the figure we can find that: (1)
the queuing delay increases as the generating rate of each
data stream increases but the prop&tran delay remains nearly
constant; (2) the queuing delay increases more significantly
in HBH than in DEST and CEDAR (i.e., it follows CEDAR
< DEST < HBH); (3) for prop&tran delay it follows
HBH < CEDAR < DEST, (4) CEDAR generates the same
prop&tran delay but lower queuing delay than CEDAR*,
and (5) the total packet delay follows CEDAR < CEDAR*
< DEST < HBH. For (1), this is because queuing delay
is determined by the generating rate of the source node
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Fig. 10. Packet delay and throughput.
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Fig. 11. Packet delay and throughput (with OPTIMAL).

but the prop&tran delay is independent of it. For (2), (4)
and (5), HBH has higher queuing delay since it generates
more en/decoding load on intermediate nodes. In contrast
to HBH, DEST only assigns the decoding work to each
packet’s destination, which increases both prop&tran delay
and queuing delay due to higher probability of packet re-
decoding (as Equ. (18) shows). Instead of accumulating
decoding work on the destinations, CEDAR* and CEDAR
chooses a number of intermediate nodes to be responsible
for the en/decoding work to reduce the probability of re-
decoding. CEDAR performs better than CEDAR* because
CEDAR distributes the en/decoding load of the intermediate
nodes more evenly, which reduces the queuing delay as
indicated in Proposition 3.1

Fig. 11 (a) compares the average packet delay of HBH,
DEST, CEDAR* and CEDAR with various service rates.
The results is consistent with the results in Fig. 9. Also, we
find that CEDAR produces higher throughput than CEDAR*,
DEST and HBH in Fig. 11 (b). This is because lower packet
transmission delay usually leads to higher throughput in
the network. Fig. 10 (a) and (b) compares OPTIMAL with
CEDAR, CEDAR*, DEST and HBH in terms of packet delay
and throughput. Considering NP-hard feature of the problem,
we only set a small scale network (6 source nodes and 6
destination nodes). The results demonstrate that CEDAR can
achieve almost the “best” performance in terms of packet
delay even in the distributed manner.

VI. RELATED WORK

The link-layer protocol of the current TCP/IP stack has
adopted variations of error recovery mechanisms to provide
reliability for point-to-point communication especially for
wireless systems. Different wireless communication stan-
dards currently utilize variations of error control protocols
that generally can be categorized into ARQ [12] and HARQ-
based [5], [11] protocols. For instance IEEE802.11 WiFi
uses ARQ where a receiving node discards corrupted packets
(even when there is only a single bit error) and requests for
a retransmission. The 4G/LTE deploys HARQ with Turbo
Codes where the sender node encodes the packet payload
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using Turbo channel codes [23] prior to the transmission.
Accordingly, the receiver node requests for a retransmission
when the decoding of the received packet fails. In conjunc-
tion with the current wireless link-layer standards, there is
significant work and research conducted to imporve the per-
formance of either ARQ- or HARQ-based protocols. Several
kinds of HARQ protocols (see [5], [11] and the reference
therein) improve the throughput of the ARQ schemes by
packet combining, e.g. by keeping the erroneous received
packets and utilizing them for detection and packet recovery.
Examples of recent efforts for combating the inefficiency
of ARQ-based wireless protocols include Partial Packet Re-
covery (PPR) [9], Cross-Layer Design with Side-information
(CLDS), and Automatic Code Embedding (ACE) framework
[14]. Some of these approaches, such as PPR and SOFT,
exploit physical layer information regarding the quality of
individual bits to increase the probability of recovering
corrupted packets. Other schemes, such as CLDS and ACE,
utilize information available in the current 802.11 link-layer
protocols in conjunction with error correcting codes to re-
cover corrupted packets. Ilyas et al. [24] proposed the “Poor
Man’s SIMO System” (PMSS) to reduce packet losses in net-
works of commodity IEEE 802.15.4 sensor motes using co-
operative communication and diversity combination. Based
on mathematical analysis, Jelenkovi et al. [4] proposed a new
dynamic packet fragmentation algorithm that can adaptively
match channel failure characteristics. These aforementioned
works have significantly improved the ARQ- and HARQ-
based link-layer performance and provide a comprehensive
error control approach for wireless communication. However
virtually all of these efforts follow the conventional TCP/IP
link-layer “store-and-forward” design paradigm where each
relay node verifies the correctness of each packet before
forwarding it to the next node. This inherently introduces
substantial overhead on bandwidth utilization and throughput
and the overall end-to-end delay.

VII. CONCLUSION

In this paper, our objective is to find an optimal so-
lution to choose immediate nodes in transmission routes
for en/decoding packets in wireless networks in order to
minimize the packet delay and increase the throughput.
We mathematically analyze the packet delay and model
the problem as an integer programming problem, which
helps to discover a globally optimal solution. Taking into
account the scalability of the network and limitation of
the information that each node can collect, we propose a
distributed scheme that can achieve performance comparable
to the globally optimal solution. The simulation results in
MATLAB demonstrates that our scheme performs better than
previous packet recovery schemes. In our future work, we
aim to use random graph to analyze wireless networks (e.g.,
mobile ad-hoc network) where the network topology varies
frequently for accurate formulation of the stochastic of the
network.
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