
Cache Contention Aware Virtual 
Machine Placement and Migration in 
Cloud Datacenters 

Authors: Liuhua Chen, Haiying Shen and Stephen Platt 
Presenter: Haiying Shen 

IEEE ICNP 
November 8-11, 2016 
Singapore 
 



2 

An effective VM allocation algorithm should allocate as many VMs as possible to a PM 

i) meeting explicit resource requirements (CPU, memory) 

ii) minimizing contentions on Last Level cache 

Many previous VM allocation or migration methods provide a metric to choose destination 
PM and migration VM to handle objective i) but neglect objective ii). 

Objective 
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• A brief review of cache hierarchy 

• VM cache performance degradation prediction 

• VM placement and migration algorithm 

• Experimental results 

• Conclusion with future directions 

Overview 
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A brief review of cache hierarchy 
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Stack distance profile 
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fi = {C1,C2,...,CA,C>A}, Cd counts the number of hits to 

the line in the dth LRU stack position and C>A counts 

the number of cache misses 
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Stack distance profile (cont.) 
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When VM i and VM j compete for a cache line (which is the dth position in the LRU stack), 
the probability of VM i “winning” the competition is proportional to the number of accesses 
to this cache line of VM i, but reversely proportional to the total number of accesses to this 
cache line of the two VMs. 

Cache Contention Prediction 

Extend to multiple VMs 
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The new stack distance profile of VM i can be estimated by 

Cache Contention Prediction (cont.) 
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Sensitivity is a measure of how much a VM will suffer when cache space is taken away from 
it due to contention. 
 
Intensity is a measure of how much a VM will hurt others by taking away their space in a 
shared cache. 
 
The degradation of co-scheduling vi and vj together is the sum of the performance degradation 
of the two VMs 

Performance Degradation Prediction 
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Objective: minimize the total pain of the co-location of the new VMs with the existing VMs 

VM placement and migration algorithm 

Define it as an 

optimization problem 

Transform it to an integer 

linear programming 

Use lpsolve 5.5 tool to 

find optimal solution 
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The computational complexity of the above method is very high, especially for a relatively 
large number of VMs. We propose a heuristic VM placement and migration algorithm. 

• VM placement: allocates each VM to a PM that leads to the minimum total performance 
degradation. 

• VM migration: select a VM which generates the maximum pain with other co-located 
VMs in the PM to migrate out. 

 

VM placement and migration algorithm (cont.) 
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Simulation: 
• CloudSim (extended to model LLC 

contention) 
• Use trace to determine profiles 
• 1000+ PMs 
• 4000 VMs 

Experimental results 
 Real testbed: 

• High-performance computing (HPC) 
cluster 

• Each VM run NPB suite workload 
     -- NAS Parallel Benchmark (NPB) suite 

• 20 PMs 
• 120 VMs 

Comparison algorithms:  
cache unaware (Random), classification based (Animal), miss rate based (MissRate)   

Our algorithm: CacheVM 
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Model validation 
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This result confirms that the proposed model achieves a high 
accuracy in predicting cache behaviors. 

(Cache misses predicted by the model - Cache misses collected by the 
simulator)/Cache misses collected by the simulator) 
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Comparison with the Optimal Algorithm 
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Simulated performance with real trace 
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Performance on real testbed 
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Varied VMs from 20 to 120 and allocated them to 20 PMs 
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Performance on real testbed (cont.) 
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• Proposed a cache contention aware VM performance degradation prediction algorithm. 

• Formulated a cache contention aware VM placement problem. 

• Transformed this problem to an integer linear programming (ILP) model and solved it. 

• Proposed a heuristic cache contention aware VM placement and migration algorithm 

• Conducted trace-driven simulation and real-testbed experiments to evaluate CacheVM. 

Future work: develop a decentralized version of the proposed algorithm. 

Conclusion and future work 
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Thank you! 
Questions & Comments? 

Haiying Shen 

hs6ms@virginia.edu 

Pervasive Communication Laboratory 

University of Virginia 


