
Cache Contention Aware Virtual
Machine Placement and Migration in
Cloud Datacenters

Authors: Liuhua Chen, Haiying Shen and Stephen Platt
Presenter: Haiying Shen

IEEE ICNP
November 8-11, 2016
Singapore

2

An effective VM allocation algorithm should allocate as many VMs as possible to a PM

i) meeting explicit resource requirements (CPU, memory)

ii) minimizing contentions on Last Level cache

Many previous VM allocation or migration methods provide a metric to choose destination
PM and migration VM to handle objective i) but neglect objective ii).

Objective

3

Objective

VM1

PM

VM2

Last Level Cache

Performance degradation

due to shared cache

• Reduce cache interference

in VM consolidation

VM2

VM1

4

• A brief review of cache hierarchy

• VM cache performance degradation prediction

• VM placement and migration algorithm

• Experimental results

• Conclusion with future directions

Overview

5

A brief review of cache hierarchy

A

B

C

D

[A,B,A,B,C,D,D,B] LRU stack

C1

C2

C3

C4

C1 increases 1

C3 increases 1

64KB L1

256KB L2

Core 1

8MB L3 Cache

64KB L1

256KB L2

Core 1

64KB L1

256KB L2

Core 1

64KB L1

256KB L2

Core 1

stack distance profile

6

Stack distance profile

T
h
e
 n

u
m

b
e

r
o
f

a
c
c
e
s
s
e
s

Cache Hits

Cache Misses

C1 CA C>A …

Stack distance counters

fi = {C1,C2,...,CA,C>A}, Cd counts the number of hits to

the line in the dth LRU stack position and C>A counts

the number of cache misses

7

Stack distance profile (cont.)

N
u

m
b

e
r

o
f
a

c
c
e

s
s
e

s

Cache Hits

Original

Cache Misses

C1 CA C>A …

Stack distance counters

Extra

Cache Misses

8

When VM i and VM j compete for a cache line (which is the dth position in the LRU stack),
the probability of VM i “winning” the competition is proportional to the number of accesses
to this cache line of VM i, but reversely proportional to the total number of accesses to this
cache line of the two VMs.

Cache Contention Prediction

Extend to multiple VMs

9

The new stack distance profile of VM i can be estimated by

Cache Contention Prediction (cont.)

10

Sensitivity is a measure of how much a VM will suffer when cache space is taken away from
it due to contention.

Intensity is a measure of how much a VM will hurt others by taking away their space in a
shared cache.

The degradation of co-scheduling vi and vj together is the sum of the performance degradation
of the two VMs

Performance Degradation Prediction

11

Objective: minimize the total pain of the co-location of the new VMs with the existing VMs

VM placement and migration algorithm

Define it as an

optimization problem

Transform it to an integer

linear programming

Use lpsolve 5.5 tool to

find optimal solution

12

The computational complexity of the above method is very high, especially for a relatively
large number of VMs. We propose a heuristic VM placement and migration algorithm.

• VM placement: allocates each VM to a PM that leads to the minimum total performance
degradation.

• VM migration: select a VM which generates the maximum pain with other co-located
VMs in the PM to migrate out.

VM placement and migration algorithm (cont.)

13

Simulation:
• CloudSim (extended to model LLC

contention)
• Use trace to determine profiles
• 1000+ PMs
• 4000 VMs

Experimental results
 Real testbed:

• High-performance computing (HPC)
cluster

• Each VM run NPB suite workload
 -- NAS Parallel Benchmark (NPB) suite

• 20 PMs
• 120 VMs

Comparison algorithms:
cache unaware (Random), classification based (Animal), miss rate based (MissRate)

Our algorithm: CacheVM

14

Model validation

0

20

40

60

80

100

0 5 10 15

Prediction error (%)

C
D

F
 o

f
p
re

d
ic

ti
o
n

e
rr

o
r

(%
)

This result confirms that the proposed model achieves a high
accuracy in predicting cache behaviors.

(Cache misses predicted by the model - Cache misses collected by the
simulator)/Cache misses collected by the simulator)

15

Comparison with the Optimal Algorithm

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

20 30 40

T
o
ta

l
#
 o

f
m

is
s
e
s

The number of VMs

Random
Animal
MissRate
CacheVM
Optimal

1.0E+06

1.0E+08

1.0E+10

1.0E+12

20 30 40

T
o
ta

l
ti
m

e
 (

n
s
)

The number of VMs

Random Animal

Missrate CacheVM

Optimal

Optimal<CacheVM<Animal<Random
MissRate increases faster

MissRate<CacheVM<Random<Animal<<Optimal

20 PMs 20 PMs

16

Simulated performance with real trace

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2000 3000 4000

T
o
ta

l
#
 o

f
m

is
s
e
s

The number of VMs

Random

Animal

MissRate

CacheVM

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

Scale 1 Scale 2 Scale 3

T
o
ta

l
#
 o

f
m

is
s
e
s

Different scales

Random

Animal

MissRate

CacheVM

CacheVM<Animal≈Random<MissRate CacheVM<Animal<Random<MissRate
(1000 VMs, 750 PMs), (2000 VMs, 1500 PMs), (4000 VMs, 3000 PMs) 2000 PMs

17

Performance on real testbed

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

20 60 90 120

The number of VMs

Random
Animal
MissRate
CacheVM

T
o
ta

l
e

x
e
c
u
ti
o
n
 t

im
e
 (

s
)

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

20 60 90 120

The number of VMs

Random

Animal

MissRate

CacheVM

T
o
ta

l
th

ro
u

g
h

p
u

t
(M

o
p
/s

)

CacheVM<MissRate<Animal<Random Random<Animal<MissRate<CacheVM

Varied VMs from 20 to 120 and allocated them to 20 PMs

18

Performance on real testbed (cont.)

0.0

0.5

1.0

1.5

2.0

20 60 90 120

N
o
rm

a
liz

e
d
 t
im

e

The number of VMs

Random Animal
MissRate CacheVM

0.0

0.3

0.6

0.9

1.2

1.5

20 60 90 120

The number of VMs

Random Animal
MissRate CacheVM

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

CacheVM<Animal<MissRate<Random Random<Animal<MissRate<CacheVM

19

• Proposed a cache contention aware VM performance degradation prediction algorithm.

• Formulated a cache contention aware VM placement problem.

• Transformed this problem to an integer linear programming (ILP) model and solved it.

• Proposed a heuristic cache contention aware VM placement and migration algorithm

• Conducted trace-driven simulation and real-testbed experiments to evaluate CacheVM.

Future work: develop a decentralized version of the proposed algorithm.

Conclusion and future work

20

Thank you!
Questions & Comments?

Haiying Shen

hs6ms@virginia.edu

Pervasive Communication Laboratory

University of Virginia

