Towards Green Transportation: Fast
Vehicle Velocity Optimization for Fuel
Efficiency

Chenxi Qiu*, Haiying Shen', Ankur Sarker', Vivekgautham Soundararaj*, Mac
Devines, Andy Rindos® and Egan Ford?$

“College of Information Science and Technology, Pennsylvania State University
TDepartment of Computer Science, University of Virginia
*Department of Electrical and Computer Engineering, Clemson University
SIBM Research




Introduction

Outline

System Design

Performance Evaluation

Conclusion

A

Bl
UNIVERSITY: VIRGINIA




A

UNIVERSITYsf VIRGINIA

INntroduction
The hierarchical structure of the vehicle network.

Two parts: Data center: calculate
the optimal velocity
1. Congestion-avoidance

information uploading

2. Traffic light considered
parallel optimal velocity
profile calculation

The hierarchical structure of the vehicle network.
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INntroduction

Green Transportation via velocity optimization

of the major sources of gas emissions

O e.g., more than 13 million vehicles were
sold in China in 2014

2. Vehicle optimization is one of the most
efficient methods to reduce the fuel
consumption

O outputs the vehicle velocity profile
O to prevent accelerations, which
generate a higher fuel consumption
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| ntroduction

Problems in previous methods

1. Expensive computation devices
O e.g,roadside unit

2. Only consider the local information
O the next stop sign or traffic signal
O ignore the global information

3. Optimal calculation is computation expensive
O e.g., the next stop sign or traffic signal

Solution: vehicular cloud

1. All vehicles first upload their information to the cloud through base
stations (BSs)

2. Based on the uploaded information stored in the cloud, the cloud
derives the optimal velocity profile using DP
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Related work

Vehicle networks

1. Ensure the packet delivery
O [Son, AINA 2013], [Shevade, CoNext 2011]

2. Avoid collision
O [Chen, Mobicom 2013]

Speed optimization

1. Approach a traffic light at green whenever possible
O [Asadi, Trans. CST 2011]

2. DP-based algorithm
O [Ozatay, DCSS 2012]

3. Algorithms based on traffic and topographic information
O [Park, FISTS 2011]
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INntroduction

Challenges of vehicular cloud

1. High queuing delay for information uploading at BSs caused by
a large number of vehicles

2. The neglect of the traffic light and high computation delay for
velocity profile calculation at the cloud

Our method: FastVvO

1. Congestion-avoidance information uploading
O to decrease the information uploading delay through decreasing
the amount of information to be uploaded to the BSs
2. TrafficLight-considered Spark-based optimal velocity profile
calculation
O to quickly calculate the optimal velocity profile for each vehicle and
also consider the traffic lights in DP
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System Design

Congestion-avoidance information uploading

The objective: to reduce the amount of information that needs to

upload to the cloud in order to reduce the information uploading delay.
1. Each vehicle in a group needs to report to the leader vehicle its vehicle ID
and location through either single-hop or multi-hop routing
2. The leader vehicle maintains a group ID list and the group length.
3. A set of vehicles form a vehicle group iff they satisfy the following two
criterions: all the vehicles are
O connected with the leader vehicle through single-hop or multi-hop
routing
O runningin the same lane
4. The leader vehicle periodically upload the leader coordinate, the velocity,
and the group length to the cloud
5. The cloud can estimate the velocity and coordinates of all other vehicles in
the group.
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System Design

TrafficLight-considered Sparked-based optimal velocity
profile calculation

Problem Statement: T—1

Objective: to minimize the fuel consumption: min ) ¢,
=0

Constraints:
1. Speed limit constraint: Viin(d;) < v < vinax(d,).

2. Acceleration limit constraint: g, < v,o — v, < amax, Vi =0.1,2,...

3. Boundary constraint (its velocity is 0 when it starts and arrives at the

destination). vo = ve and vy = 0.

4. Stop sign constraint: ,, — 0, if vi—; #0 and d; € Dyop

5. Red traffic light constraint:  y, =0, when d, = di,ig and 1 € ..
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System Design
The Spatial-Temporal DP Algorithm

Decompose the ST-DP process
to a set of independent parts;

Design the map and reduce
functions and the key for the
output of the mapper;

ST-DP can be conducted as processing different task components in parallel
(map function) and then combining the calculated results (reduce function),

which are taken as the input in the next iteration if the program has not
been finished.
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System Design
Fast ST-DP Using Spark
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The framework has two procedures: map() and reduce()

O Spark divides the input into chunks and then passes each chunk to a mapper.
The key-value output pairs from each mapper are collected by a master
controller and sorted by key.

O The keys are divided among all reducers, so all key-value pairs with the same
key wind up at the same reducer. The reducer combines the data to produce a
result, which will be taken as the input in the next iteration if the program has
not been finished.
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Experiment

Simulation settings

1. Both NS-2.33
2. Real vehicle mobility trace from San Francisco

1. 30-day trace recorded by 536 taxis in San Francisco in May, 2008

2. Each taxi driver has a tablet: timestamp, vehicle ID, GPS coordinate to a

central server every 7 seconds.

3. Randomly picked up a route with 5 miles length,

4. Randomly picked up a vehicle and its 29 following vehicles in this route
3. The simulation takes 10 minutes
4. The transmission range of the traffic lights is 80 meters using IEEE 802.11p
5. Data center: Palmetto

Compared methods

1. Predictive Cruise Control (PCC): each vehicle contacts each traffic light to get the
traffic light information and calculates its optimal velocity profile

2. DP: use cloud to calculate the optimal velocity profile using DP

3. FastVO(2D): FastVO without considering the traffic lights

12
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Experiment
Simulation results
40 40 h
- 58888585888t
5 80P s .
T o *FastVO c9
59 =X 8DP
22, FastVO(2D) &>, X FastVO
33 S FFastvO(2D)
o 210 ¢ © 10
< Z Y . ¢
T wewvoogcoooy
5 30 35
Initial velocity (miles/hour)
(a) Different driving distances (b) Different initial velocities
Observation: the computation delay of DP is much higher than that of
FastVO and FastVO(2D)
Reason: Parallel computing using Spark
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Experiment
Simulation results
3 10° 2 X 10°
= 2DP . |8DP !
_ X258 XFastVO 1 ~ 25 %FastVO :
S5 ) APCC A g5 J|BPCC A
T2 T o
S E15 ] S Es _
=@ K I_—"j?_ O
c | c |
° w i w
o3 35 4 45 5 0-33 5.5 4 45 5
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(a) Ideal environment (b) Non-ideal environment
Observation: Fuel consumption follows: DP > PCC >> FastVO
Reason: DP has high consumption since it doesn’t consider traffic light.
PCC has high consumption since it only considers local information.
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Experiment

Real implementation settings

We built an Android application
for mobile phones, equipped the
phones in three cars, and drove
these cars around a university
campus to test the performance
of different algorithms.

The route has a length of 2 miles,
three traffic lights (located at 0.18
mile, 0.42 mile, and 0.63 mile
from the source) and two stop
signs (located at 0.56 mile and
0.74 mile from the source).
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Experiment

Real implementation results
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(a) Computation delay (b) Fuel consumption

Observation:

1) The computation delay of DP is much higher than that of FastVO.
2) The fuel consumption follows: PCC > DP > FastVO

Consistent with the simulation results.
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Experiment

Real implementation results
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Conclusions

1. We proposed to group vehicles within a certain range and let the
leader vehicle in each group to upload the group information to the
cloud, which then derives the velocity of each vehicle in the group.

2. We proposed spatial-temporal DP that additionally considers the
traffic lights. We innovatively find that the DP process makes it well
suited to run on Spark and then present how to run STDP on Spark.

3. We demonstrate the superiority of our method using both trace-
driven simulation and real-world experiments.

Future work

Further take into account human and economic factors for velocity
calculation
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Thank you!

Questions el Comments?

Dr. Haiying Shen
hséms@Virginia.edu
Associate Professor

Pervasive Communication Laboratory

University of Virginia
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