
An Efficient Wireless Power Transfer System To Balance the State of Charge of
Electric Vehicles

Ankur Sarker�, Chenxi Qiu�, Haiying Shen�, Andrea Gil†, Joachim Taiber†,
Mashrur Chowdhury‡, Jim Martin§, Mac Devine] and AJ Rindos]

�Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634
†International Center for Automotive Research, Clemson University, Greenville, SC 29607

‡Department of Automotive Engineering, Clemson University, Clemson, SC 29634
†School of Computing, Clemson University, Clemson, SC 29634

]IBM, Research Triangle Park, Durham, NC 27709
{�asarker, �chenxiq, �shenh, †agil, †jtaiber, ‡mac, §jmarty}@clemson.edu

{]wdevine, ]rindos}@us.ibm.com

Abstract—As an alternate form in the road transportation
system, electric vehicle (EV) can help reduce the fossil-fuel
consumption. However, the usage of EVs is constrained by the
limited capacity of battery. Wireless Power Transfer (WPT)
can increase the driving range of EVs by charging EVs in-
motion when they drive through a wireless charging lane
embedded in a road. The amount of power that can be supplied
by a charging lane at a time is limited. A problem here is
when a large number of EVs pass a charging lane, how to
efficiently distribute the power among different penetrations
levels of EVs? However, there has been no previous research
devoted to tackling this challenge. To handle this challenge, we
propose a system to balance the State of Charge (called BSoC)
among the EVs. It consists of three components: i) fog-based
power distribution architecture, ii) power scheduling model,
and iii) efficient vehicle-to-fog communication protocol. The fog
computing center collects information from EVs and schedules
the power distribution. We use fog closer to vehicles rather
than cloud in order to reduce the communication latency. The
power scheduling model schedules the power allocated to each
EV. In order to avoid network congestion between EVs and the
fog, we let vehicles choose their own communication channel
to communicate with local controllers. Finally, we evaluate
our system using extensive simulation studies in Network
Simulator-3, MatLab, and Simulation for Urban MObility
tools, and the experimental results confirm the efficiency of
our system.

Keywords-Electric vehicle; Transportation system; Wireless
power transfer; In-motion power transfer

I. INTRODUCTION

Intelligent Transportation System (ITS) utilizes traffic
information, communication, and computing capabilities and
it provides an integrated system consisting of people, roads,
and vehicles to increase traffic efficiency and decrease traffic
congestion. As a component of the future generation ITS,
the design and implementation of Electric Vehicles (EVs)
have drawn much attention in recent years. Several works
have already been demonstrated the future impact of EVs
on a road transportation system [1–4] such as economical
energy consumption and environment protection. In an EV,

the onboard battery supplies the energy demands of the
vehicle. However, EVs have some battery-related issues such
as heavy weight, long charging time, large size, and short
driving range. To alleviate these problems, wireless charging
or Wireless Power Transfer (WPT) technique arise. It makes
the charging procedures more convenient by allowing charg-
ing procedure take place automatically without having any
physical contact between utility power supply and electric
battery. It transfers power from grid to an EV’s battery while
it is moving through a charging lane embedded in a road.
An EV spends very little time on top of the charging coils.
The shorter duration of time requires higher power levels
in charging infrastructure so that higher amount of power
can be transferred. However, the investment for charging
infrastructure goes up to meet the demand for higher power.
Therefore, the amount of power that can be supplied by a
charging lane at a time is always limited. A problem here is
when a large number of EVs pass a charging lane, how
to efficiently distribute the power among them when the
infrastructure is not able to fulfill all the demands? However,
there has been no previous research devoted to tackling this
challenge.

To handle this challenge, in this paper, we propose a
dynamic WPT system to balance the State of Charge (called
BSoC) among the EVs passing a charging section. None
of the previous works [5–8] try to distribute power from
grid to heterogeneous EVs considering their SOCs. BSoC
consists of three components: i) fog-based power distribution
architecture, ii) power scheduling model, and iii) efficient
vehicle-fog communication protocol. As shown in Fig. 1,
in BSoC, a fog is a computer cluster that functions as grid
side controller (GSC) that monitor power distribution among
EVs [9, 10]. The fog-based GSC collects information from
EVs and schedules the power distribution among the EVs.
We choose fog closer to vehicles rather than cloud [11]
in order to reduce the communication latency. The power
scheduling model schedules the power allocated to each EV



from charging sections based on the number of vehicles
and their SOCs present at a particular time. In order to
reduce network congestion between EVs and the fog-based
GSCs, we let vehicles choose their own communication
channel to communicate with the GSC. In this way, EVs
do not have to use the CSMA/CA technique and can avoid
the exposed terminal problem, in which an EV cannot send
messages due to signal interference with the transmissions
of its neighboring EVs.

• Fog-based power distribution architecture. To ensure
scalability, we develop a hierarchical system, which
consists of Global Charging Controller (GCC), GSCs
and EVs in three top-down levels. GCC is located
in a cloud and it receives vehicles’ information and
distributes power from power grid to GSC-controlled
charging sections accordingly. Each local GSC moni-
tors charging sections in a charging lane installed on
top of route segments. It collects information from
vehicles, processes vehicles’ information, and sched-
ules and distributes power from charging sections to
EVs. In our system, GSCs are fog-enabled modules
and they are located closer to EVs, which help reduce
communication latency between EVs and GSCs.

• Power scheduling model. The power scheduling model
is used by a GSC to schedule the power for each
EV passing each charging section in a charging lane.
The model aims to balance the SOC of EVs passing a
charging lane by taking consideration of vehicle’s ener-
gy model, and heterogeneous vehicles’ parameters. We
formulate the power scheduling problem as a convex
optimization problem where heterogeneous vehicles’
parameters are considered as constraints and use the
subgradient method to solve the formulated problem.

• Efficient vehicle-to-fog communication protocol. It is
important to achieve low-latency vehicle-to-fog com-
munication, so that EVs can receive power in time. To
reduce the communication delay, each EV uses Dedi-
cated Short Range Communication (DSRC) based wire-
less communication for vehicle-to-GSC (V2G) com-
munication in our system. IEEE 802.11p-based DSRC
uses one control and six service channels to reduce
network congestion. However, it uses Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA)
technique which exhibits poor performance in high
traffic density and also suffers by exposed terminal
problem as EVs need to wait for their neighbor EVs to
send messages [12]. It means the communication pro-
cedures between vehicles and controllers may exhibit
poor performance. However, our dynamic WPT system
is dependent on the availability and the prompt analysis
of the EVs’ information (e.g., number of vehicles,
SOCs, locations, etc) with low latency. To alleviate the
channel congestion during the communication proce-
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Figure 1: The system architecture.

dure between GSC and EVs, we let each vehicle to
decide its own communication channel based on its
distance from GSC. We divide the coverage area of
GSC into six regions. EVs pick their communication
channels based on the regions they are residing at a
particular time. After getting the messages from EVs
in a particular channel, GSC can also determine the
EVs in each region accordingly. Since a particular
band of channel is capable of handling 10–15 nodes
at one time, our system does not have to use the
CSMA/CA technique. As a result, network congestion
is reduced even with the presence of a large number of
EVs. Since each EV does not need to wait for other
EVs to complete transmitting messages, it can also
help to reduce transmission latency without causing the
exposed terminal problem).

We evaluate our system using Network Simulator-3 (NS-
3), MatLab, and Simulation on Urban MObility (SUMO)
tools to get realistic evaluation results in different aspects.
From the experiment, we find that our fog-based com-
putation architecture causes lower communication latency
than other cloud-based architecture. Our proposed power
scheduling model achieves more balanced SOC of EVs in
comparison with other power distribution schedules. Further,
our efficient vehicle-to-fog communication protocol causes
less network congestion and lower packet drop rate than
existing time division multiplexer (TDM) protocol.

The rest of paper is organized as follows. Section II
describes our proposed BSoC system. Then, Section III
presents the evaluation of the proposed BSoC WPT system
using extensive simulation study. Section IV presents an
overview of related work. Finally, Section V concludes the
paper with remarks on our future work.



II. DESIGN OF THE BSOC SYSTEM

In this section, we present the three components of our
proposed BSoC WPT system. Specifically, Section II-A
presents the fog-based power distribution architecture, Sec-
tion II-B presents the power scheduling model, and Section
II-C presents the efficient vehicle-to-fog communication
protocol to address the shortcoming of existing CSMA/CA
technique used in DSRC protocol.

A. Fog-based Power Distribution Architecture

A charging lane is the portion of the road that contains
one or more charging sections. A charging section is a
portion of a road that has charging coils embedded and
EVs can be charged by running on top of the charging
section. Each charging section has a specific starting point
and ending point. The maximum amount of energy that a
charging section can provide to an EV is determined by the
power rate of the charging coil and the time that the vehicle
spends on top of the charging section. Additionally, when
serving multiple vehicles, each charging section can deliver
no more than the maximum power rate. In consequence,
without any intelligence added, the charging section can
only serve a fixed amount of vehicles when there are a
large number of EVs passing the charging section and their
demands exceed the maximum power rate. For a given
vehicle speed, the amount of energy that a charging lane
can supply equals the sum of the energy that each charging
section provides for that particular velocity.

There is a local controller GSC associated with several
charging sections in a charging lane. The GSC monitors
the charging sections and it also distributes the power in
a particular charging section at every point of time. The
GSC is able to communicate with the nearby vehicles via
DSRC communication device and it is aware of the number
of vehicles that are on top of its respective charging section.
The GCC is connected with several GSCs and it determines
the power distribution from power grid to GSCs. EVs may
send the charging request to GCC and GCC may accept or
deny the request based on its current load.

Our fog-based power distribution architecture is a hier-
archical WPT system, where GCC is on the top, GSCs
constitute the middle level and the EVs constitute the bottom
level. GCC is located in a cloud and GSCs are located
in fogs and each fog is a cluster. We use fog rather than
cloud because fog is closer to EVs, which can reduce
the communication latency. EVs send their information to
GCC, which schedules the power distribution among GSCs.
Each GSC receives information from EVs and schedules the
power distribution among charging sections or EVs. In this
paper, we assume that there is only one EV on a charging
section at a time.

Each vehicle has a unique vehicle ID. When an EV
enters the coverage area of a particular GSC, the vehicle
sends its status information (e.g., SOC, velocity, position,

traveling route) to that GSC. When a vehicle needs to be
charged, it sends a charging request to the fog-based GSC.
Then, GSC processes the information and runs the power
scheduler periodically to determine the power distribution
from each charging section. Fog computing allows real-
time data processing and data delivery, especially for delay
sensitive services such as wireless power transfer scheduling
for EVs. The fog computes the schedule of the power
distribution among the charging sections, that is, the power
to each charging section at every point of time. The fog can
also compute the projected travel time, remaining SOC to
reach charging sections for each vehicle. Fog-based GSC
also ingests the data generated by charging sections such
as charging status related to their maintenance and control
operations. Periodically, fog-based GSC uploads the status
information to GCC so that GCC can learn the statuses of
charging sections. In the following, we present the power
scheduling model that each GSC uses to schedule the power
distribution among charging sections in a charging lane.

B. Power Scheduling Model

The power scheduling computation is performed by the
fog. A GSC periodically collects EVs’ information and
uses the power scheduling model to calculate the power
distribution among the charging sections (or to the EV on
each charging section). First, we consider a scenario where
there are m EVs traveling through a route with a GSC, and
the entering time to and the leaving time from a charging
lane of each vehicle i (1 ≤ i ≤ m) are denoted by tsi
and tei , respectively. Considering that EVs are continuously
entering the charging lane, the GSC identifies the vehicles
on the charging lane at the same time and balances these
vehicles’ SOC when they leave the charging lane. The route
is installed with n charging sections c1, ..., cn to charge the
vehicles based on their current stored energy to balance their
SOC. Here, the charging sections are uniformly distributed
and their intermediate distances are the same. The maximum
capacity of a GSC is A and the capacity of each charging
section j is aj . We represent the time that each vehicle i
arrives cj by ti,j . We use yi(t) to represent the SOC in
vehicle i at time t, and let y(t) = [y1(t)y2(t)...ym(t)]>.
Then, yi(tsi ) and yi(tei ) represent the SOC of vehicle i when
it enters and leaves the charging lane, respectively. Table I
and Table II present the notations and definitions.

In the following part, we will describe the power con-
sumption model, which is used to calculate the SOC of each
EV i. First, the energy consumption of EV i at each time
slot, denoted by Ptrac,i, is calculated by [13]

Ptrac,i = Miaivi +
1

2
ρair,iCd,iv

3
i (1)

where Mi, ai, vi, ρair,i, and Cd,i represent the mass, the
acceleration, the velocity, the air density, and the drag
coefficient of EV i, respectively. The EV’s battery power,



Table I: Symbols and Definitions.

Symbol Definition
m The number of EVs
tsi The start time of EV i
tei The end time of EV i
n The number of charging sections
cj The jth charging section
aj The maximum power that can be

provided by the charging section j
A The maximum power that can be

provided by the GSC
yi(t) The SOC of EV i at time t
zi The rated battery capacity of EV i

denoted by Pbatt,i, is given by [13]

Pbatt,i =
Padd,i

ηPT,i
− Ptrac,i, (2)

where Padd,i represents the power added to EV i’s battery
and ηPT,i represents the transmission efficiency of EV i.
Since the power from charging section cannot be 100%
transferred to EVs, ηPT,i is always higher than 1. Also, we
use Ii(t) [13] to represent the current of EV i at time t
delivered by the battery, which is given by

Ii(t) =
Voc,i −

√
V 2
oc,i − 4Rint,izi(t)

2Rint,i
, (3)

Here, Voc,i(t) represents an ideal voltage source connected
in series with the battery internal resistance Rint,i for vehicle
i and the battery power is Pbatt,i [13].

yi(t+ 1) = yi(t)−
1

xj(t)

∫ t+1

t

Ii(t)dt (4)

= yi(t)−
Ii(t)

Qbatt,i

= yi(t)−
Voc,i −

√
V 2
oc,i − 4Rint,izi(t)

2Rint,iQbatt,i
.

where we assume Ii(t) is constant during [t, t + 1] and
xj(t) denotes the power allocated to the charging section
j, which is the charging section that EV i is located in at
time t. Here, yi(t) is calculated by integrating the current
and comparing that value with the rated battery capacity
zi of the entire battery pack. The charge transferred to the
battery is obtained by as follows [13]:

yi(t+ 1) = yi(t)−
1

Qbatt

∫ t+1

t

Ii(t)dt (5)

where Ii(t) denotes the current, which is calculated by [13]

Ii(t) =
Voc,i −

√
V 2
oc,i − 4Rint,iPbatt,i

2Rint,i
(6)

From Equ. (5) and (6), we can further derive yi(t + 1) as
follows:

yi(t+ 1) =
yi(t)− Ii(t)

2Rint,i
(7)

Now, the problem is to distribute the power to each
charging section to guarantee all the vehicles have same
SOC when they leave the charging lane. If vehicle i reaches
a charging section, say j, then the yi stored in its battery
should be yi(t)−Ii(t)

2Rint,i
; otherwise, it is same. We can consider

xj(t) as the power distributed from charging section j to
one vehicle at time t. Finally, our objective is to balance the
SOC of all vehicles when they leave the charging lane:

min

m∑
i=1

(
yi(t

e
i )−

∑m
j=1 yj(t

e
i )

m

)2

. (8)

or we can write Equ. (8) as

min y>(tei )NN>y(tei ) (9)

where N ∈ Rn×n is defined by

N =


1 − 1

n . . . − 1
n

− 1
n 1 . . . − 1

n
...

...
. . .

...
− 1
n − 1

n . . . 1

 .

Besides achieving the objective function Equ. (9), we also
need to satisfy the following constraints:∑

j=1

xj(t) ≤ A, ∀j, t (10)

xj(t) ≤ aj , ∀j, t (11)
yi(t) ≤ 1, ∀t, i (12)

zi(t+ 1) =

{
zi(t)− Ptrac,i if t /∈ Ti
zi(t) +

xj(t)
ηPT,i

− Ptrac,i if t = ti,j
(13)

where the first constraint Equ. (10) means that the sum
of the allocated power of all the charging sections cannot
exceed the maximum power provided by GSC. The second
constraint Equ. (11) means that the power allocated to
each charging section j cannot exceed the maximum power
provided by the charging section j in each time point. The
third constrain Equ. (12) means that the SOC of each EV i
cannot exceed 1 and the fourth constraints Equ. (13) means
that, at time t, 1) if EV i is not located at any charging
section, then its power is reduced by Ptrac,i; otherwise, if
EV i is located at a charging section, then its energy is
added by xj(t) − Ptrac,i. In what follows, we will prove
that the scheduling problem defined by Equ. (9) - Equ. (13)
is a convex problem, i.e., the Hessian matrices of Equ. (9) –
(13) are nonnegative definite [14]. First, the Hessian matrix



Table II: EVs’ Parameters and Definitions.
Parameter Definition
Qbatt,i The battery capacity of EV i
Ii(t) The current of EV i at time t
Voc,i The voltage source of EV i
Rint,i The internal battery resistance of EV i
Pbatt,i EV i’s battery power
Pmax
batt,i The maximum power of battery of EV i

Padd,i The power added to EV i’s battery
ρair,i The air density of EV i
Cd,i The drag coefficient of EV i
Af,i The frontal area of EV i
Mi The mass of EV i
Cr,i The rolling resistance coefficient of EV i
ηPT,i The transmission efficiency of EV i
ηGB,i The gearbox efficiency of EV i
ηEM,i The electric motor efficiency of EV i
Lj The length of charging section j

of the objective function (Equ. (9)) is

Hf(y>(tei))
=



∂2f

∂y1(tei )
2

· · · ∂2f

∂y1(tei )∂yn(t
e
i )

...
. . .

...

∂2f

∂y1(tei )∂yn(t
e
i )
· · · ∂2f

∂yn(tei )
2


= NN>, (14)

which is nonnegative definite since for each x ∈ Rm,
x>NN>x ≥ 0 [14].

Then, we consider the constraint functions. The con-
straints Equ. (10) - Equ. (12) are all linear functions, which
indicates that their Hessian matrices are all zero matrix
and hence nonnegative definite. Now, we need to prove the
convexity of Equ. (13). To this end, we first need to write
Equ. (13) in quadratic form [14]. The detailed process to
derive its quadratic form is shown as follows.

Based on Equ. (6) and Equ. (7), we have:

−
√
V 2
oc,i − 4Rint,izi(t) (15)

= yi(t)2Rint,iQbatt,i − yi(t+ 1)2Rint,iQbatt,i − Voc,i.

from which we can derive that

zi(t) = w>i (t)Jwi(t) + b>wi(t), (16)

where

J =

[
−Rint,iQ

2
batt,i Rint,iQ

2
batt,i

Rint,iQ
2
batt,i −Rint,iQ

2
batt,i

]
,

b =

[
Qbatt,iVoc,i
−Qbatt,iVoc,i

]
, and wi(t) =

[
yi(t)

yi(t+ 1)

]
.

Then, according to Equ. (16), we can rewrite Equ. (13) as

Equ. (17) - (18):
If t /∈ Ti,

w>i (t+ 1)Jwi(t+ 1) + b>wi(t+ 1)

= w>i (t)Jwi(t) + b>wi(t)− Pc (17)

If t ∈ Ti and t = ti,j

w>i (t+ 1)Jwi(t+ 1) + b>wi(t+ 1)

= w>i (t)Jwi(t) + b>wi(t) + xj(t)− Pc (18)

As we have derived the quadratic form of Equ. (13)
shown in Equ. (17) – (18), in which the Hessian matrix
is J . Because J is nonnegative definite since for any vector
[x1, x2]

> (x1, x2 ∈ R), we have

[x1, x2]J [x1, x2]
>

= Rint,iQ
2
batt,ix

2
1 − 2Rint,iQ

2
batt,ix1x2

+ Rint,iQ
2
batt,ix

2
2

= Rint,iQ
2
batt,i (x1 − x2)

2 ≥ 0. (19)

Thus, the scheduling problem is convex. To solve the
problem defined by Equ. (9) – (13), in fog, our system uses
the subgradient method, which is an iterative method to solve
convex minimization problems [14].

Algorithm 1 Pseudocode of the subgradient method.
Input: Parameters of all the EVs
Output: w∗ . Power allocation of all charging sections.

1: Select a starting solution: w(1) = 0
2: Put k = 1
3: for ξ(k)(w(k)) < ε do
4: ξ(k)(w(k)) = ∇f(w(k))
5: if ξ(k)(w(k)) = 0 then
6: Break
7: else
8: Select a step size α(k) > 0
9: compute w(k+1) ← w(k) + α(k)ξ(k)(w(k))

10: end if
11: k = k + 1
12: end for
13: w∗ ← w(k)

14: return w∗

Algorithm 1 shows the pseudo code of the subgradient
method: Here w(k) is the kth iterate, ξ(k)(w(k)) is the
subgradient of f at w(k), and α(k) > 0 is the kth step size.
At the beginning, we initiate w(1) by 0 and set k by 1 (line
1–2). Then, in each iteration, we first derive the subgradient
of f(w(k)) (line 4). If ξ(k)(w(k)) = 0, which indicates that
w(k) is the global optimal solution, the algorithm is finished;
otherwise, we take a step in the direction of a negative
subgradient α(k)ξ(k)(w(k)). The above process is repeated
until ξ(k)(w(k)) < ε, i.e., the subgradient is close to 0.

C. Efficient Vehicle-Fog Communication Protocol
In our WPT system, we use the IEEE Wireless Access in

Vehicular Environment (WAVE) set of standards for the V2G
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Figure 2: Channel allocation.

communication where the communication range of DSRC
device is approximately 500–1000m. In the following, we
introduce the shortcoming of the CSMA/CA technique used
in the existing DSRC protocol and then we propose our
strategy to overcome the shortcoming.

WAVE includes the physical and link layer access meth-
ods (defined by IEEE 802.11p) and all a range of protocols
and services (defined by the IEEE 1609 protocols suite)
to support connected vehicle applications and IEEE 1609
protocol suite. DSRC manages access application access
to seven 10MHz channels operating at 5.9Gz. These seven
channels consist of one CCH (Control Channel), four SCHs
(Service Channels), and two other channels for high power
and accident avoidance. The 802.11p standard extends the
basic service set with the Enhanced Distributed Channel Ac-
cess (EDCA) mechanism for classifying different data flow
into different access categories. The hidden terminal problem
arises in DSRC-based wireless communication, when two
or more nodes hidden from each other try to access the
communication channel at the same time and then the
transmission signals interfere with each other and produce
channel congestion. To deal with hidden terminal problem,
IEEE 802.11p utilizes the CSMA/CA mechanism, the signal
overhead on the control channel due to the handshaking
procedures could penalize the critical messages. Besides,
the CSMA/CA mechanism may show poor performance with
heavy packet loss and average delay in coarse traffic scenario
[12]. The CSMA/CA also introduces the exposed terminal
problem where nearby nodes may wait for one particular
node to finish its transmission. Moreover, DSRC is pushed
to the limit if different application scenarios (e.g., collision-
warning function, longitude control, safety, cooperative as-
sistance, etc), which create contradictory constraints under
heavy network traffic conditions.

To provide a more robust wireless network, we make the
following extensions. In our system, we let EVs to choose
their own channel to communicate with GSC avoiding the
overhead caused by CSMA/CA and providing a solution to
the exposed terminal problem. An EV chooses its commu-
nication channel based on the distance between itself and

GSC. In current DSRC system, there are seven channels
available to use for EVs. Here, we use the frequency division
multiplexing (FDM) approach to allocate the channels to
EVs. We let EVs and GSC to use one CCH channel for
control applications, node discovery, and etc.

In case of node discovery, the GSC periodically sends
a beacon message including information such as current
position, charging sections status and charging sections
positions, and amount of power offering. When an EV
enters inside the communication region of GSC, it receives
the beacon message and selects a service channel based
on its distance from the GSC. For example, assuming six
service channels are available and that the communication
range of a GSC is 600m, EVs are grouped into 6 regions
based on location (as illustrated in Fig. 2). After receiving
a beacon message from the GSC in CCH channel, EVs will
respond with an acknowledgment message containing its ID,
SOC, destination, and charging request over the selected
service channel. Based on the acknowledgments received
from EVs, GSC can decide how many EVs are in each
region. If the total power demands of EVs are more than
the power capacity of the charging lanes, GSC process the
messages for the power distribution scheduling. When the
power allocation schedule for EVs is decided in the fog,
the GSC sends messages via the CCH channel to let all
EVs know that their charging requests have been processed.
After the notification message from GSC in CCH channel,
the EVs selected for being charged do not need to send any
request again to GSC.

III. PERFORMANCE EVALUATION

A. Experimental Settings

In this section, we evaluate the performance of our
proposed BSoC WPT system with other methods in three
aspects: fog-based power distribution architecture, power
scheduling model, and vehicle-to-fog communication pro-
tocol explained below.

Fog-based power distribution architecture. We choose
existing cloud-based GTES [15] where each EV periodically
sends their status information and energy requirements to
the cloud-based GSC and then, based on the received infor-
mation, the GSC runs the centralized game theoretic energy
schedule algorithm to distribute the energy to users. We used
NS-3 to simulate the scenario having various child nodes as
EVs with a fog-based or cloud-based parent node as GSC.
In the NS-3 experiment, We used 50 EVs as mobile nodes.
In order to simulate the fog-based transmission latency
and cloud-based transmission latency in our experiment, we
considered DSRC-based fog node as GSC and LTE-based
cloud node as GSC, respectively. We tested the latency of
transmitting 128 byte data packets between GSC and EVs,
We then recorded the transmission latencies and calculated
the average values.
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Figure 3: Comparison between fog-based BSoC and cloud-based GTES.

Table III: EVs’ Parameters [16–18].

Parameters Nissan
Leaf

Toyota
Prius

Chevy
Volt

Drag Coefficient Cd 1 1 1
Vehicle frontal area Af [m2] 0.725 0.576 0.622
Vehicle Mass M [kg] 1521 1380 1607
Rolling Ressistace Coefficient Cr 0.02 0.02 0.02
Transmission Efficiency ηtx 0.98 0.98 0.98
Gearbox Efficiency ηGB 0.98 0.98 0.98
Electric Motor Efficiency ηEM 0.99 0.99 0.99

Power scheduling model. We choose the “Equal Share”
and “First Come First Serve” (FCFS) methods for comparing
the power scheduling performance with our BSoC System.
In Equal Share, suppose there are m vehicles on top of the
charging section at a particular time, the amount of power
that each EV is scheduled to receive is A/m. In FCFS,
each EV’s battery is fully charged and EVs are scheduled
to receive power in the order that they arrive at the charging
section. Here, we used MatLab to get the solution of our
power scheduling optimization problem, and then we used
SUMO to apply the solution in the realistic traffic scenario.
For the simulation, we fixed 10–50 EVs and 10 charging
sections. Three types of EVs were considered (Nissan Leaf,
Toyota Prius, and Chevy Volt) in our experiment. Table III
shows the parameters of EVs. Besides, we set the length,
maximum capacity, and coil capacity of charging section to
200m, 600kw, and 100kw, respectively.
Vehicle-to-fog communication protocol. In vehicular network
perspective, we conducted experiment with and without our
channel allocation technique in current IEEE 802.11p pro-
tocol. In current protocol, it uses time division multiplexing
(TDM) to reduce network congestion. The access point
(AP) divides the timeline into contiguous synchronization
intervals, each of which consists of a fixed CCH interval
(TCCH) and a fixed SCH interval (TSCH). There is a guard
interval (g) at the beginning of each channel interval is

used to switch from one channel to another. The default
intervals of each channel is set to 50ms. In this scenario,
we evaluated the performance of our channel allocation
technique using NS-3 where we considered EVs and GSC
were equipped with DSRC communication devices which
had about 500m communication range. we used 10–50
moving nodes with single AP as GSC. This is reasonable
considering the communication range of DSRC (i.e., 500m-
1000m) and the inter-vehicle distance (i.e., 40m-80m).

B. Experimental Results

Fog-based power distribution architecture. Fig. 3(a)
and Fig. 3(b) show the experiment results from NS-3.
Here, we compared our BSoC’s fog computing performance
with GTES’s cloud computing performance. To do the
comparison between BSoC and GTES, we calculated the
average communication latency by varying the number of
EVs and message sending frequency. We refer to the average
communication latency as the average time it takes for a
transmitted packet to be received by the GSC from EVs.
Fig. 3(a) shows the average communication latency when the
number of EVs was varied from 10 to 50 and each EV sends
20 packets per minute. We see that when the number of
EVs increases, the average communication latency of cloud-
based GTES increased drastically. However, in our fog-based
BSoC, the increase rate with respect to the number of EVs
is not that high. In GTES, EVs send message directly to the
cloud-based GSC using LTE signal. On the other hand, EV
sends the message to fog-enabled local GSC using DSRC
signal in our BSoC system. The DSRC data transmission rate
is faster and it is less affected by the channel congestion than
LTE data transmission rate [19]. Thus, the average compu-
tation latency is not increased drastically in our fog-enabled
BSoC system. Fig. 3(b) shows the average communication
latency when we varied the packet transmission frequency
and there were 30 EVs. We make the same observation that
the average communication latency in BSoC is lower than
GTES due to the same reasons. From the discussion, we can
interpret the fog-based BSoC outperforms than cloud-based
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Figure 4: Comparison between Equal Share, FCFS, and BSoC power scheduling models.

GTES in terms of communication latency.
Power scheduling model. In this scenario, we calculated

the median, standard deviation, and the confidence interval
of SOC for three comparative power scheduling methods:
BSoc, Equal Share, and FCFS. Fig. 4(a) shows the median,
the 5th and the 95th percentiles of standard deviation of
SOC when different number of EVs are considered in the
power scheduling. We see that the median and the variance
of the standard deviation of SOC follow BSoC<Equal
Share<FCFS. The result means that our proposed power
scheduling method in BSoC can balance EVs’ SOC better
than other two methods. The power scheduling model in
BSoC considers balancing the SOC levels of EVs when
they leave a charging lane and all EVs have approximately
equal SOC. As a result, the deviation of SOC in BSoC
is always small. The Equal Share power scheduling model
only considers the equal distribution of energy and it does
not pay attention to SOC. Thus, its deviation is moderate
compared to other methods. The FCFS power scheduling
model distributes power based on EV’s arrival time and the
deviation of FCFS power scheduling model from the median
is large. Fig. 4(b) only shows the standard deviations of three
methods. We can find that the standard deviation of our pow-
er scheduling method is lower than the standard deviations
of other methods because of the reasoning mentioned above.

Vehicle-to-fog communication protocol. Fig. 5(a) and
Fig. 5(b) show the experiment results from NS-3. Here,
we calculated the average packet drop rate and the aver-
age packet delay with and without our channel allocation
technique in current IEEE 802.11p protocol. We measured
the average packet drop rate as the ratio of the number
of packets dropped to the number of packets sent by all
the EVs at each second. We find that the average packet
drop rate in existing channel allocation technique is higher
than our channel allocation technique when the number of
EVs increases. Since EVs use their own channel for data
transmission and the CSMA/CA approach is not used in our
channel allocation technique, it causes less packet drop rate.
Fig. 5(b) shows the results of average packet delay which

also includes the delay of failed packets, which is basically
the life span of failed packet. The average packet delay is
affected by channel congestion. Basically, if the underlying
communication channel is congested, it will increase the
number of failed packets as well as average packet delay.
In our efficient vehicle-to-fog communication protocol, the
EVs use their own channels and the channel congestion is
low. As a result, the average packet delay is low in our
protocol.

IV. RELATED WORK

Several works [7, 20–24] have discussed the design cri-
terias for WPT systems. The studies in [20, 21] present
different types of EVs with their different components and
the research challenges based on existing technologies with
their possible future impacts. Onar et al. [7] discussed
several factors in the power transfer procedures with the
consideration of highway surfacing materials and presented
an overview of WPT magnetic field measurements. Li et
al. [22] presented an analytic study of the technologies
in the WPT area applicable to EV wireless charging. The
work [24] presents the design of the electric components,
an electromotive force shielding, and an optimized core
structure with large air gaps for the WPT systems.

Another set of research work [23, 25–27] discuss the
design and implementation issues of WPT systems. The
study [25] presents the general design requirements and
analysis of roadbed inductive power transfer systems. There
are three different generic roadbed geometries based on:
a long wire loop, a sectioned wire loops, and a spaced
loops are used for the WPT systems. For a WPT system
consists of novel core structure with narrow rail width, small
pickup size and large air gap is presented in the study
[23] with implementation of current source driven inductive
power transfer system. Miller et al. [26] presented technical
challenges posed by the dynamic charging of EVs – power
pulsations. To mitigate the power pulsations inherent in
coupling power from a series of embedded coils, the authors
installed high-power capacitors at both the grid and in
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Figure 5: Comparison for channel allocation techniques.

vehicle to validate the benefit of power capacitors in energy
storage systems. It creates ripple current to facilitate longer
service life of the vehicle battery. Lee et al. [27] presented a
dynamic model for the WPT system by applying the Laplace
phasor transform to the first high-order IPTS. As a result, it
creates a simple second-order equivalent circuit. With the
help of this novel dynamic model, the maximum pickup
current during the transient state is successfully identified
where the current is relatively unchanged for various load
resistances. The paper [28] presents the reduction of elec-
tromagnetic fields for the highly efficient wireless power
transfer system. It also suggests a vertical magnetic flux type
pickup coil with the optimized design parameters. Besides,
passive metallic plate shield and active shield are proposed
to minimize the leakage electromagnetic field from the
wireless power transfer system in a (on-line) electric vehicle.
However, none of these methods consider load balancing
among different EVs which is a major challenge in WPT
systems. The paper [29] presents an ongoing approach for
transferring power from an antenna to another antenna in
WPT system and it utilizes near-field antennas at resonance.
The study by Ko and Jang [5] focuses two main factors
for a WPT system: the battery size and the positions of
power transmitters on the road. The authors presented the
solution of an optimization model using particle swamp
optimization technique to minimize the infrastructure cost
with referenced to the battery size, the total number of
power transmitters, and their allocation. Another study [6]
presents a novel bidirectional WPT system for EV and V2G
systems which includes loose magnetic coupling charging
and discharging procedures. However, these methods do not
consider the various number of EVs with their heterogeneous
parameters while balancing the SOCs. In our method, we try
to balance SOCs of EVs when the number EVs fluctuates
and EVs share heterogeneous parameters. Our method also
maintains high availability, high scalability, and low latency
power distribution from grid to EVs.

V. CONCLUSION

This paper addresses the problem of how to let EVs have
similar level of SOC to satisfy their energy requirements
fairly in a WPT system for EVs in-motion. We proposed
a WPT system namely BSoC for distributing power to in-
motion EVs. There are three components in our proposed
BSoC WPT system: i) fog-based power distribution archi-
tecture, ii) power scheduling model, and iii) efficient vehicle-
to-fog communication protocol. First, to ensure the low
latency, low computation overhead, and better localization,
we used fog computing inside GSC. Second, to balance
the SOCs of EVs, we presented and solved the power
scheduling problem. Third, to reduce the network congestion
load and to avoid hidden/exposed terminal problem, we
devised an efficient vehicle-to-fog communication protocol
where vehicles cooperate with GSC. We conducted extensive
experimental study on three components of our proposed
BSoC. Our experimental results confirmed that our proposed
BSoC WPT system generates less communication latency,
balanced SOC of EVs, and less packet drop rate. Currently,
our proposed BSoC WPT system only considers balancing
EVs’ SOC. In the future, we will consider to satisfy the
power needs for the entire routes from the sources to the
destinations of EVs as an extension of our proposed power
scheduling model.
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