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Abstract—As Electric Vehicles (EVs) become increasingly pop-
ular, their battery-related problems (e.g., short driving range
and heavy battery weight) must be resolved as soon as possible.
Velocity optimization of EVs to minimize energy consumption
in driving is an effective alternative to handle these problems.
However, previous velocity optimization methods assume that
vehicles will pass through traffic lights immediately at green
traffic signals. Actually, a vehicle may still experience a delay
to pass a green traffic light due to a vehicle waiting queue in
front of the traffic light. In this paper, for the first time, we
propose a velocity optimization system which enables EVs to
immediately pass green traffic lights without delay. We collected
real driving data on a 4.0 km long road section of US-25 highway
to conduct extensive trace-driven simulation studies. The experi-
mental results from Matlab and Simulation for Urban MObility
(SUMO) traffic simulator show that our velocity optimization
system reduces energy consumption by up to 17.5% compared
with real driving patterns without increasing trip time.

I. INTRODUCTION

In contrast to traditional vehicles, Electric Vehicles (EVs)
cause less environmental pollution since the sources of elec-
tricity can be renewable energy sources. As a result, EVs
have drawn great attention and are predicted to dominate
the global market in the near future. However, EVs have
battery-related issues such as shortage driving range, high
production cost and heavy weight of large batteries. Besides,
frequent charging/discharging reduces battery lifetime. Thus,
increasing EV energy efficiency is very important to mitigate
these battery-related issues and increase the usage of EVs,
especially for pure EVs which have battery cells as sole power
source. Among various strategies to increase energy efficiency,
velocity optimization is one of the most effective methods.

Since more sudden stops and accelerations generate higher
energy consumption, the objective of velocity optimization is
to reduce the number of sudden stops and accelerations [1]–
[5]. One group of previous works [1], [3] relies on roadside
units to calculate the vehicle’s optimal velocity profile from its
source to destination. In another group [4], [5], each vehicle
communicates with traffic signals so that vehicles can pass
traffic signals without any brakes to reduce the total numbers
of sudden stops and accelerations. Considering computation
complexity of velocity profile optimization, a computing
framework for transportation systems, called vehicular cloud,
has been proposed [6], [7]. In this framework, each vehicle
uploads it state (starting time and route) to the cloud through
wireless communication [8], and then the cloud calculates the
optimal velocity profile for the vehicle.

Though many efforts have been devoted to optimizing
vehicle velocity to reduce energy consumption, existing works
assume that vehicles will pass through traffic lights imme-
diately at green traffic signals without any delay [2], [4],
[5]. However, there may be some vehicles waiting in front
of a traffic light when the signal turns green. It usually
takes some time for these vehicles to accelerate and pass
through the traffic light. To the best of our knowledge, velocity
optimization with the consideration of delay passing green
traffic lights has not been explored so far in the literature. In
this paper, we propose a dynamic programming (DP)-based
velocity optimization system for EVs which considers waiting
vehicle queue dynamics in traffic light areas. Since waiting
vehicle queue is greatly affected by the traffic volume, which
is highly unpredictable and dependent on different times (e.g.,
time of a day, day of a week, week of a month, month of a
year, etc.) and different incidents (e.g., traffic accidents, public
concerts, festivals, etc.), the main challenge here is how to
accurately predict the number of vehicles waiting in front of
a traffic light so that EVs can pass through the traffic light
without delay.

To handle this challenge, we build a queue length (QL)
model and estimate the number of vehicles waiting in a
traffic light area based on vehicle arrival rate and leaving
rate (vehicles/hour) [9]. Unlike the previous QL models [9]
that assume the vehicle arrival rate and leaving rate are pre-
known, our QL model more accurately predicts the two rates.
To predict vehicle arrival rate, we use the deep learning-based
Stacked autoencoders (SAE) model [10], which can accurately
predict traffic volume. To predict vehicle leaving rate, we
design a vehicle movement (VM) model to describe velocity
dynamics during acceleration process when the traffic light
turns green. Then, based on the queue length (i.e., the number
of vehicles in front of the traffic light), our DP algorithm
finds a velocity profile that enable an EV to pass traffic lights
immediately without meeting waiting queues.

To verify our DP-based velocity optimization system, we
chose a 4.0 km long road section of US-25 highway for our
experimental study and collected velocity traces by driving on
this road section. The experimental results from Matlab and
Simulation for Urban MObility (SUMO) traffic simulator show
that our system helps vehicle pass through traffic lights without
any delay or stops and reduce energy consumption comparing
with other real and optimal velocity profiles. Also, our veloc-
ity optimization system greatly reduces energy consumption



compared with existing velocity optimization methods.
Our contributions are summarized below:

•We propose DP-based velocity optimization model which
considers queue dynamics in traffic light areas and aims to
avoid the acceleration/deceleration in traffic light areas to
minimize energy consumption. More specifically, queue length
in front of a traffic light is predicted using our established
QL model, which uses deep learning-based SAE model and
our established VM model to predict vehicle arrival rate and
leaving rate, respectively.
•We conduct extensive simulation studies to verify proposed
systems based on Matlab and SUMO traffic simulator. The
experimental results show that proposed velocity optimization
method helps EVs reduce total energy consumption by 8.4%
and 17.5% compared with velocity profiles in mild driving
and fast driving.

The rest of this paper is organized as follows. In Section
II, we present how to predict the queue length in traffic light
areas and integrate QL model into the DP-based algorithm to
optimize velocity profiles. We present experimental evaluation
in Section III. Section IV introduces related research work.
Finally, we conclude this paper in Section V with remarks on
our future work.

II. SYSTEM DESIGN

In this section, we firstly build an energy consumption
model for EVs which is then used in the optimization process.
Then, we present our velocity optimization system.

A. Energy Consumption Model of Electric Vehicle

There are several existing models [11] for fuel consumption
of vehicles. These models are not sufficiently accurate mainly
because they are built based on empirical studies and do not
consider the effect of road grade on energy consumption. To
overcome this problem, we propose a new energy consumption
model. It can figure out corresponding driving force changes
when a vehicle passes through a road with different road
grades in order to more accurately estimate energy consump-
tion.

When an EV drives on the road with road gradient θ, The
required force, Fdrive, to drive the EV with velocity v is as
follows [2], [12]:

Fdrive = m
dv

dt
+

1

2
ρAfCdv

2 +mgsinθ + µmgcosθ (1)

where m is gross weight, ρ is average air density, Af is frontal
area of the vehicle, Cd is drag coefficient, θ is road gradient,
µ is rolling resistance coefficient and g is gravity constant.
Then, the energy E for driving EV can be described by Equ.
(2) [13] :

E = UQη1η2 (2)

where U is the voltage of battery pack and Q is total charge
consumption, η1 and η2 represent battery energy transforming
efficiency and powertrain working efficiency, respectively. For
EVs, the energy consumption can be indicated with electrical
charge consumption (Ampere hour) for convenience in the

practice. Then, the energy consumption rate, ζ, is calculated
as follows:

ζ =
Fdrivev

Uη1η2
(3)

B. Traffic Dynamics in Traffic Signal Areas

Avoiding any type of accelerations or decelerations helps
to reduce energy consumption. If queue length (i.e., the
number of vehicles waiting in a traffic light area) can be
predicted in advance, optimal velocity profile of an EV can be
created to enable it to immediately pass the area without any
accelerations, decelerations or stops. In this paper, we predict
the number of vehicles in a traffic light area by building a QL
model [9]. In the following, we first present the deep learning-
based SAE model for vehicle arrival rate prediction. Then, we
propose a VM model to predict vehicle leaving rate. Finally,
we build a QL model based on the vehicle arrival and leaving
rates to more accurately estimate the vehicle queue length.

1) Arrival vehicle rate: We estimate vehicle arrival rate
at a traffic light area using the existing deep learning-based
SAE model, which can accurately predict traffic volume. The
traffic volume prediction is a temporal and spatial process
and can be described as follows: X(t) is used to represent
traffic volume of an observation station (i.e., location) at time
t. Given a sequence of traffic volume X(t) values, the aim
of the traffic flow model is to accurately predict the traffic
volume X(t + ∆) after a time interval ∆. Compared with
other methods in traffic volume prediction, the deep learning-
based SAE model provides hierarchical feature extraction and
has higher prediction accuracy [10]. Therefore, we choose
the deep learning-based SAE model to predict traffic volume.
When SAE model is applied to predict traffic volume at time
t + ∆, historical traffic volume Vin(t) and the specific time
t are chosen as inputs. The output of the model is estimated
traffic volume, Vin(t+ ∆), which is the vehicle arrival rate in
a traffic light area.

2) Vehicle leaving rate: Current methods [2], [4], [5] as-
sume that the vehicles waiting in a traffic light area will pass
the traffic light immediately when the green traffic light is
on. However, this assumption does not consider the vehicle
acceleration process when the traffic light turns green due to
the vehicle waiting queue in front of traffic light (Fig. 1). Here
we build a VM model to consider vehicle acceleration process.

In the VM model, we assume that the waiting vehicles
in a traffic signal area accelerate from 0 to minimum speed
limit vmin with maximum acceleration value amax from the
beginning of green traffic period. Then, the vehicles maintain
constant velocity vmin when passing through the traffic light
area. Note that a driver’s response delay to the traffic lights is
not be considered here as it is beyond our current focus. We
consider a traffic light cycle consisting of a time period for red
light (from 0 to tred) and a time period for green light (from
tred to tgreen). We use t to denote the current time, use vopt to
denote the optimal velocity in an EV’s optimal velocity profile.
We use t′ to denote the time when all vehicles in the queue
pass through the traffic light: t′ = 1

vmin−d̄Vin
(vmint1− v2

min

2amax
).



So, the queue length at t′ becomes zero. Based on the VM
model, vehicle velocity v(t) at one traffic light cycle can be
described as in Equ. (4). We use vmin to denote the allowed
minimum speed limit of the area of the traffic light.

v(t) =


0, 0 < t ≤ tred (i)

amax(t− tred), tred < t ≤ vmin

amax
+ tred (ii)

vmin,
vmin

amax
+ tred < t ≤ t′ (iii)

vopt, t′ < t ≤ tred + tgreen (iv)

(4)

where vmin

amax
+ tred is the time when the vehicle accelerates to

vmin, Condition (i) means it is in the red light time period,
so the EV’s velocity is 0. Condition (ii) means when the light
is green and the EV is accelerating. Condition (iii) means
when the light is green and there are still vehicles in the front
of the EV. Condition (iv) means when the light is green and
there are no vehicles in the front of the EV.

Then, we can calculate vehicle leaving rate for a traffic light
cycle. We assume that the average inter-vehicle distance d̄
inside the queue is constant [14]. Since some vehicles in the
queue do not always go straight and would choose to turn left
or right, we define γ as the ratio between the number of ve-
hicles going straight and the total number of vehicles. Vehicle
leaving rate Vout(t) can be calculated as shown in Equ. (5):

Vout(t) =
v(t)

d̄γ
(5)

Based on arrival and vehicle leaving rates, we develop a
new QL model to predict the queue length in front of traffic
light in the next section.

3) Queue length model: In QL model, when traffic light
turns red, the vehicle firstly arriving at the traffic light will
stop immediately and rear vehicles will decelerate and join in
the queue. When traffic light is green, vehicles in the queue
will accelerate to pass through the traffic light without delay.
The dynamics of queue length model is shown in Fig. 1.
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Fig. 1. A vehicle queue in front of a traffic light.

In our QL model, the queue length Lq during one traffic
light period is calculated based on vehicle arrival rate Vin,
vehicle leaving rate Vout, red traffic light time period tred and
green traffic light time period tgreen in Equ. (4) and (5). We
can describe QL model to analyze queue length dynamics in
one traffic light time period as follows:

Lq(t) =


d̄Vint, 0 < t ≤ tred (i)

d̄Vint− 1
2
amax(t− tred)2, tred < t ≤ t1(ii)

d̄Vint−
v2
min

2amax
− vmin(t− t1), t1 < t ≤ t′ (iii)

0, t′ < t ≤ t2 (iv)

(6)

where t1 = vmin

amax
+ tred, is the time when the vehicle

accelerates to vmin; and t2 = tred + tgreen represents one

traffic light time period. Based on above analysis, we can
predict the time when queue length becomes zero and apply
it in velocity optimization method.

In the next section, we discuss how to apply our QL model
into DP-based velocity optimization method.

C. DP-based Velocity Optimization

As previous DP-based velocity optimization methods [2],
we also use the DP algorithm to optimize velocity profile for
an EV’s route from its source to its destination. In the DP
algorithm, all sets of feasible discrete velocities for a given
route segment are formed at first. Then, energy consumptions
for all discrete velocity sets are calculated and compared.
Finally, the discrete velocity set with the minimum energy
consumption is selected as the optimal velocity set. To improve
the efficiency of the computation, we can use the method
introduced in [15], which is orthogonal to the work in this
paper.

In a current DP-based method, the road with B stop signs is
divided into equal-distance point si, where i = 0, 1, ..., f . s0

and sd represent starting and destination points, respectively.
A stop sign or a traffic light is located in a point. Several
constraints such as speed limit, acceleration range and stop
sign need to be considered to form discrete velocity sets. These
constraints can be described as Equ. (7).

v(si) = {v(si) : vmin(si) 6 v(si) 6 vmax(si)} (7a)

v(si) = {v(si) : amin(si) 6
dv(si)

d(t)
6 amax(si)} (7b)

v(si) = {0 :

i−1∑
k=0

dk,k+1 = Pb for b = 1, 2, ..., B} (7c)

v(si) = {0 : for i = 0 and f} (7d)

where dk,k+1 is the distance between point sk and point
sk+1; vmin(si) and vmax(si) are minimum and maximum
speed limits at point si; amin(si) and amax(si) are minimum
and maximum acceleration values at the point si; Pb is the
distance of the bth stop sign from the starting point.

Equ. (7a) means the velocity at location si must be within
the required minimum and maximum velocities at si. Equ.
(7b) means that the acceleration at location si must be within
the allowed minimum and maximum acceleration values at the
point si; Equ. (7c) and (7d) mean that the velocity at the stop
sign, the source and the destination must be 0.

We use a(si) to denote acceleration value between point
si and si+1 and then v(si+1) =

√
v(si)2 + 2a(si)dk,k+1.

The optimal velocity set, v′(si) = {v′(s0), v′(s1), v′(s2) , ...,
v′(sd)}, is achieved by minimizing unit energy consumption
from si to the destination sd, E(si), in Equ. (8):

E(si) = argmin
v(si)

{g1(v(si), a(si)) + J(si+1)(v(si+1))} (8)

where J(si+1)(v(si+1)) is defined as the transition cost (i.e.,
energy consumption) function from point si+1 to point sd
for the vehicle with initial speed v(si+1) and acceleration



a(si+1). The details of the cost function are introduced in
[2]. g1(v(si), a(si)) denotes the transition cost function from
point si to point si+1, and it can be calculated by Equ. (9):

g1 =

{
ζ(v(si), a(si)), (v(si), a(si)) ∈ C(si) (i)

+∞, otherwise (ii)
(9)

where ζ(v(si), a(si)) is energy consumption from point si to
point si+1 for EV with speed v(si) and acceleration a(si).
It can be calculated based on Equ. (3). C(si) are speed and
acceleration limits in point si. +∞ for Condition (ii) is set so
that the velocity and acceleration outside of the C(si) limit
will not be chosen in DP-based optimal solution computation.

Our velocity optimization method is novel in that it con-
siders queue lengths in front of traffic lights when optimizing
velocity profiles so that an EV can immediately pass through
traffic lights with no waiting vehicles (i.e., no accelerations or
decelerations). Assume t = 0 when an EV is at the source
location s0. We also assume a traffic light is located at point
si. For the EV driving with v(si) in point si and driving with
v(si+1) in point si+1, the average velocity from si to si+1

equals (v(si) + v(si+1))/2. Then, the time t(si) that an EV
arrives at si from s0 can be calculated using Equ. (10).

t(si) =

i∑
k=0

2dk,k+1

v(sk) + v(sk+1)
(10)

To ensure that an EV can pass through traffic light areas
during green traffic signals with no waiting vehicles, we
introduce a penalty function f2(v(si)) described as Equ. (11).

f2(v(si)) =

{
1, t(si) ∈ Tq
M, t(si) /∈ Tq

(11)

where Tq is the time period when queue length is zero, and
M is a large constant. Tq can be calculated based on Equ. (6)
by setting Lq(t) = 0. Using penalty function f2(v(t)), new
transition cost function g1(v(si), a(si)) is re-defined as shown
in Equ. (12):

g1(v(si), a(si)) =


ζ(v(si), a(si)), A
Mζ(v(si), a(si)), H
+∞, otherwise

(12)

A = { (v(si), a(si)) ∈ C(si) and t(si) ∈ Tq}, which means
that the discrete velocity set not only satisfies speed and
acceleration constraints but also satisfies time period Tq .
H = { (v(si), a(si)) ∈ C(si) and t(si) /∈ Tq}, which means
that discrete velocity set satisfies only speed and acceleration
constraints but does not satisfy the time period Tq . Based on
the new transition cost function, our proposed method can con-
sider both multiple traffic lights and traffic dynamics in front
of traffic lights simultaneously in velocity profile optimization.
As a result, the DP-based optimal solution gives the optimal
velocity profile for an EV to minimize its energy consumption.

III. PERFORMANCE EVALUATION

A. Experimental Settings

At first, we implemented energy consumption model, queue
length model and DP algorithm using Matlab to do the
experiments. We then conducted velocity experiments in
SUMO traffic simulator. We found that both results are
consistent to each other, so we only report the results from
SUMO. For the experimental studies, we chose a road section
on the US-25 highway located at Greenville, SC (Fig. 2).

555 John Ross Ct 
Pelzer, SC 29669

652 Sandy Springs Rd 
Piedmont, SC 29673

Fig. 2. Experimental road segment (US-25
at Greenville, SC).

In this road segment,
there are one stop sign
at 490 m from the be-
ginning and two traffic
lights located at 2180
m and 3460 m from the
beginning, separately.
The parameter settings
used in our experi-
ments are given below.

1) Energy consumption model: Based on Chevrolet Spark
EV (which has become widely popular), we built the vehicle
model to calculate its energy consumption for different pairs
of velocity sets. Considering riding comfort and safety, we
considered a fixed range of acceleration (from -1.5 m/s2 to
+2.5 m/s2) [2]. To satisfy power and mileage requirements,
the battery pack structure is designed as 22PX95S consisting
of 2090 cells and each cell is Sony VTC4-1850 Lithium-ion
battery type (rate capacity is 2.1 Ah). Thus, the total capacity
of the battery pack is 46.2Ah and the voltage is 399V. The
model parameter settings in Equ. (1) and (2) are as follows:
m - 1300 kg; Af - 1.97 m2; Cd - 0.33; µ - 0.018; η1 - 0.9
and η2 - 0.97.

2) Traffic dynamics: We collected three-month long
(03/01/2016 – 05/31/2016) traffic data of the road segment [16]
to train SAE model and one-week long traffic data in June for
performance verification. Then, we estimated the queue length
in the traffic light areas using our QL model and compared its
estimation value with real data to verify its prediction accuracy.

3) Velocity optimization: To verify the performance of
proposed velocity optimization method, at first we drove a
vehicle twice on the chosen road section and recorded two
driving velocity profiles (Fig. 7). One velocity profile is
called as mild driving profile where the driver is expected to
follow minimum velocity limit and accelerate gradually. The
other driving velocity profile is called as fast driving profile
where the driver drives fast without breaking traffic rules and
accelerates quickly. Basically, the mild and fast driving profiles
can represent smooth and harsh driving habits in real life.
Then, we used these velocity profiles to compare energy and
time consumptions. Here, we compared our velocity optimiza-
tion method with a previous DP-based velocity optimization
method [2], which do not consider queue lengthes in the traffic
light areas. In the SUMO traffic simulator, we built the same
road section map using OpenStreetMap and applied hourly
available traffic data to create similar traffic dynamics [16].



B. Experimental Results

1) Energy consumption model: Simulation results of energy
consumption model (Equ. (3)) under different velocities and
accelerations are shown in Fig. 3. We can see that energy
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Fig. 3. Energy consumption of a pure EV
(where θ = 0).

consumption of an EV
increases faster when
it accelerates. We can
also find that energy
consumption of pure
EV is negative when it
decelerates because of
braking energy regen-
eration.

2) Traffic dynamics: To evaluate the trained SAE model,
we used Mean Relative Error (MRE) and Root Mean Squared
Error (RMSE). The real traffic volume in one week (from
Monday, June 6st to Sunday, June 12st, 2016) is shown in
Fig. 4(a) and MRE and RMSE of traffic volume predictions
are presented in Fig. 4(b). All MRE values for seven days
are less than 10% and RMSE values are relatively small
compared with real traffic volume data, which confirms that
traffic volume prediction based on SAE has relatively high
estimation accuracy and can be used to predict vehicle arrival
rate.
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Fig. 4. Traffic volume prediction using SAE model.

Next, to evaluate proposed VM model and QL model, we
compared predicted vehicle leaving rate and queue length for
a complete traffic signal cycle with real-life collected data. At
12:00 pm of June 2th, 2016, we collected information of the
second traffic light area of chosen road segment as follows:
average inter-vehicle distance d̄ is 8.5 m; ratio γ is 76.36%;
vehicle arrival rate Vin is 1530 vehicles/hour; both red traffic
signal duration tred and green traffic signal duration tgreen are
30 seconds. Fig. 5(a) shows vehicle leaving rate comparisons
between proposed VM model and current methods in [9] that
model Vout = vmin/d̄. We can see that our VM model takes
longer to reach Vout = Vin since it considers acceleration in
a waiting queue. Fig. 5(b) shows the comparison between the
estimated queue lengths of different methods and the actual
(collected) queue length. The current QL model [9] assumes
the vehicle arrival rate is pre-known and that a vehicle can
reach the minimum speed limit immediately when the traffic
light turns green. We see that its predicted queue length is
less accurately than our QL model. It is because our QL model
considers the vehicle acceleration process when the traffic light
turns green while the current QL model does not.
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Fig. 5. Traffic dynamics prediction of a traffic signal cycle.

3) Velocity optimization: We applied the optimal velocity
profile of existing DP method in SUMO using TraCI interface
and then SUMO produces slightly different velocity profile
due to constraints such as collision avoidance and waiting in
the queue in front of a traffic light. The comparison between
the optimal velocity by existing DP method and the derived
velocity profile from SUMO is shown in Fig. 6(a). We can
see that derived velocity profile from SUMO experienced one
stop at the first traffic light area and one large deceleration at
the second traffic light area.
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Fig. 6. Evaluations of velocity optimization methods in SUMO.

The comparison between the optimal velocity profile of our
proposed DP method and derived velocity profile from SUMO
is shown in Fig. 6(b). Unlike Fig. 6(a), we can see that there
is no stops or large decelerations at traffic light areas in Fig.
6(b) and the velocity in the road section from 0 m to 490
m is optimized to be lower so that the EV can pass by the
first traffic light areas without meeting any waiting vehicles.
Thus, we can conclude that our velocity optimization method
outperforms existing velocity optimization methods since it
enables EVs to immediately pass through traffic lights without
meeting other waiting vehicles.

The total energy consumption comparisons for different
velocity profiles are shown in Fig. 7(b). Here, we can see that
velocity profile by proposed method generates less energy con-
sumption compared with other velocity profiles. Specifically,
the optimal velocity profile reduces total energy consumption
by 17.5% and 8.4% compared with compared with fast driving

0

50

100

150

0 900 1800 2700 3600 4500

S
p

e
e

d
 (

k
m

/h
)

Distance (m)

Mild driving
Fast driving
Speed limit

(a) Collected velocity profiles

0

400

800

1200

0 900 1800 2700 3600 4500

T
o

ta
l 
e

n
e

rg
y

 (
m

A
h

)

Distance (m)

Current method
Proposed method
Fast driving
Mild driving

(b) Total energy consumption
Fig. 7. Energy consumption comparisons of different velocity profiles.



profile and mild driving profile, respectively. Besides, our
proposed DP method requires 5.1% less energy than current
DP method.

Finally, we conducted total driving time comparisons to
check whether proposed method reduces energy consumption
but sacrifices total driving time. Fig. 8 shows the required time
of EV based on different profiles (with traffic light dynamics).
The region with zero slope represents a location where the
vehicle stopped. Our proposed method requires the same
amount of time as fast driving pattern, which is 283 seconds,
and requires less time than the current DP method. Therefore,
we can conclude that our proposed velocity optimization
method improves pure EV energy efficiency while reducing
total driving time.

0 50 100 150 200 250 300
Time (second)

0

1000

2000

3000

4000

5000

D
is

ta
nc

e 
(m

)

Fast driving
Mild driving

(a) Collected profiles

0 50 100 150 200 250 300
Time (second)

0

1000

2000

3000

4000

5000

D
is

ta
nc

e 
(m

)

Proposed method
Current method

(b) Optimized profiles
Fig. 8. Total driving time of different velocity profiles.

IV. RELATED WORK

Several existing velocity optimization methods have been
proposed to improve the fuel economy of vehicles. One group
of works [1], [2] considers several traffic constraints such
as stop signs, speed limit and driving pattern in velocity
optimization to minimize total fuel consumption. Engin et al.
[2] proposed a speed advisory system to determine the optimal
speed trajectory along the route. It collects associated speed
limit and stop sign information and chooses optimal velocity
profiles using the DP algorithm. Christian et al. [1] designed
an algorithm to determine optimal driving trajectories with
predictive information about upcoming traffic events so that
unnecessary acceleration/decelerations can be avoided. How-
ever, these works are more error-prone if there are multiple
traffic lights during the trip. Another group of works [5],
[17] considers multiple traffic lights and optimizes velocity
profiles by allowing the vehicle pass through multiple traffic
lights without any stops. However, these methods assume that
the vehicle can immediately pass through traffic light areas,
which is not practical if there are vehicles waiting in the traffic
light areas. Our velocity optimization method considers the
vehicles waiting in traffic signal areas to ensure that the vehicle
passes through traffic signal areas without unnecessary stops
or decelerations.

V. CONCLUSION

Major drawback of existing velocity optimization methods
is the neglect of traffic dynamics in traffic signal areas. To
overcome the drawback, in this paper, we propose a velocity
optimization system for pure EVs with the consideration of
the queue lengths in traffic signal areas. Basically, we build
a QL model to predict the queue lengths in front of traffic

lights and integrate this model in the DP algorithm so that
EVs will not experience acceleration or deceleration due to
meeting waiting queues in front of traffic lights. To improve
estimation accuracy of QL model, we use the SAE model to
predict vehicle arrival rate in real time and build a VM model
to predict vehicle leaving rate. Our trace-driven simulation
results from Matlab and SUMO show that our proposed veloc-
ity optimization method greatly reduces energy consumption
compared with previous velocity optimization method while
decreasing its trip time. In the future work, we will consider
the effect of road gradient on the proposed system to check
whether it will have great impact on optimization velocity
profile.
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