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ABSTRACT

Packet routing is important for Vehicular Delay Tolerant Net-
works (VDTNs). Opportunistic routing algorithms based on
historical records are insufficiently accurate in forwarder se-
lection due to movement randomness of vehicles. Trajectory-
based routing algorithms tackle vehicle movement random-
ness but cannot be directly used in VDTNs due to the de-
pendence on APs. In this paper, we develop a distributed

trajectory-based routing algorithm (called MobiT) for VDTNs.

This non-trivial task faces three challenges. First, vehicle
trajectories must be sufficiently collected. Second, the trajec-
tories cannot be updated frequently due to limited resources
of the repository nodes. Third, achieving high routing per-
formance even with partially collected trajectories. Our real
trace study lays the foundation of the design of MobiT. Tak-
ing advantage of different roles of vehicles, MobiT uses service
vehicles that move in wide areas to collect vehicle trajectories,
and rely on the service vehicles and roadside units (called
schedulers) for routing scheduling. By using regular tempo-
ral congestion state of road segments, MobiT schedules the
packet to arrive at a roadside unit prior to the destination
vehicle to improve routing performance. Further, MobiT
leverages vehicles’ long-term mobility patterns to assist rout-
ing. Extensive trace-driven and real experiments show the
effectiveness and efficiency of MobiT.
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1 INTRODUCTION

In recent few years, many research efforts have been de-
voted to Vehicular Delay Tolerant Networks (VDTNs) [1, 8].
VDTNs can alleviate bandwidth burden on networks and
serve areas with sparse infrastructures. In such vehicular
networks with sparse connection, packet delivery between
vehicles is important for many purposes. For example, a
vehicle needs to report a traffic accident to a police vehicle
far from the crash site, or a vehicle using a mobile social
network wants to share a newsfeed with its friend vehicle
miles away. However, due to the high mobility of vehicles
and disconnected nature of VDTN, efficient packet delivery
is non-trivial.

Previous opportunistic routing algorithms [7, 8, 21, 22]
define different utilities (e.g., meeting probabilities) and for-
ward the packet to vehicles or Roadside Units (RSUs) that
have larger utilities with the destination vehicle. However,
these algorithms use vehicles’ historical meeting records to
schedule packet forwarding, which has been proven insuffi-
ciently accurate [27] due to movement randomness of some
vehicles.

Determining packet forwarder based on vehicles’ trajecto-
ries is effective in handling movement randomness [10-12, 24].
In the trajectory-based routing algorithms, vehicles repeat-
edly report trajectories to Access Points (APs) sparsely lo-
cated along roads. A central server then uses these shared
trajectories to schedule forwarders to carry the packet to
the destination vehicle in its driving route. However, these
algorithms cannot be directly used in VDTNs due to the
dependence on APs.

In this paper, we design MobiT, which derives vehicle
Mobility from Trajectories for routing. First, MobiT uses
service vehicles to collect vehicle trajectories, and relies on
the service vehicles and roadside units (RSU) (both are called
schedulers) for determining routing path. Second, MobiT
only requires each participating vehicle to report its trajectory
to a scheduler when it starts moving (called initial trajec-
tory) rather than repeated reporting. To tackle outdated
trajectory, MobiT considers the temporal change of road
congestion state when using the initial trajectories for vehicle
movement prediction. Third, MobiT exploits both short-
term mobility (i.e., trajectory) and long-term mobility (i.e.,
road/area visiting pattern) as complementary approaches.
When determining routing path, MobiT schedules the packet
to arrive at an RSU prior to the destination vehicle, which
generates higher performance than scheduling direct meet-
ing as in the previous trajectory-based algorithms. When
a routing path cannot be found, MobiT finds a path to let
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the packet approach the destination vehicle. If the trajectory
of the destination vehicle is unavailable, MobiT uses the
vehicle’s long-term mobility to forward the packet.

MobiT can also overcome some problems in the previous
centralized trajectory-based methods. First, due to fluctu-
ating road traffic, it is very difficult to schedule an exact
meeting with the destination vehicle regardless of the power-
ful capacity of the central server. Second, vehicles sometimes
rely vehicular communication to maintain contact with the
APs. The trajectories in the central server may be outdated
due to vehicles’ intermittent connection to the APs and pos-
sible packet loss in communication. Third, the selection of
forwarders does not consider the change of road traffic at dif-
ferent times and road segments. To our best knowledge, this
work is the first that realizes efficient distributed trajectory-
based routing algorithm in VDTNs. The remainder of the
paper is organized as follows. Section 2 presents literature
overview. Section 3 presents the design of MobiT. Section 4
presents the performance evaluation. Section 5 concludes
this paper with future directions.

2 RELATED WORK

Opportunistic routing algorithms. These algorithms
extract utilities from vehicles’ historical records. The packet
is forwarded at the direction maximizing the utility. SADV [7]
lets packets wait at intersections until the path with mini-
mum delay is available. Ishihara et al. [8] schedules packet
delivery by the packet’s aggregated demand and the his-
torical condition of neighboring vehicles having the same
packet. EBT [21] utilizes users’ previous encounters to con-
struct a relation graph for packet forwarding. Tie et al. [22]
proposed the Robust Replication Routing (R3), which uni-
fies mesh, MANET, DTN routing paradigms by predicting
the distribution of link delays. Kong et al. [14] proposed a
frequency-divided instantaneous neighbors estimation system
for vehicular networks. In [19], Schwartz et al. focuses on
guidelines for the design of data dissemination in vehicular
networks. These works rely on historical information to pre-
dict future encounter, but cannot guarantee high efficiency.

Trajectory-based routing algorithms. Several recent
works utilizing vehicles’ trajectories in routing have been
proposed. Wu et al. [23] found and used the spatio-temporal
correlation of vehicle mobility in data delivery. TBD [11],
TSF [12] and STDFS [24] use APs to collect vehicle trajecto-
ries. Then, the rendezvous position between the destination
vehicle and the packet is determined based on accumulated
trajectories, and the packet is forwarded to the rendezvous
position. Due to the sparsity of APs, ad-hoc network is
needed to bridge APs and vehicles. However, these algo-
rithms have drawbacks of susceptibleness to road congestion
and possibly outdated trajectories due to inaccessibility to
APs, which affect the accuracy of the forwarder selection.

3 SYSTEM DESIGN

We consider a VDTN with n vehicles denoted by N;(i =
1,2,...,n) and make following assumptions.
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(1) Each vehicle is equipped with a Dedicated Short Range
Communication (DSRC) device [5]. When two vehi-
cles are within each other’s communication range, an
encounter happens.

(2) Each vehicle is equipped with a navigation system, which
generates trajectory consisting of future positions and
estimated arrival times, and road maps [15, 25].

(3) The area in the VDTN is partitioned into multiple sub-
districts with equal number of landmarks. Following [26],
we assign a center landmark for each sub-district.

(4) Each intersection is installed with an RSU which uses
DSRC for communication [6, 18]. Service vehicle can
exchange information with RSUs, while the others can
only drop a packet to an RSU.

There are existing works focusing on motivating users to

share mobility information [4] and ensuring users’ privacy [16].

We leave the work for MobiT as our future work.

3.1 Representation of Vehicle Mobility

3.1.1 Short-term Mobility and Congestion-considered Up-
date. At the beginning of a trip, each vehicle generates
its initial trajectory. An initial trajectory of vehicle N; is
(Ni; {p2,pt, ..., p@}; Ts), where {p?,pl,...,p?} represents
the sequence of ) positions on the trajectory. T is the
starting time of this trajectory. Each vehicle maintains its
own short-term mobility information. While service vehicle
collects short-term mobility information from every vehicle
it meets. If a service vehicle meets another service vehicle or
an RSU, they exchange their known mobility information.

Congestion state table: MobiT use road segment,
which is the interval between two neighbor intersections, as
the basic unit of roads. It has been shown that the travel
time on a road can be estimated based on the congestion
state of composing road segments [13]. It is also noticeable
that urban traffic pattern repeats in daily fashion [9]. Thus,
we use the congestion states of roads under different times
to assist determining vehicle arrival times. We firstly design
the table of delays, which records the travel times of a road’s
composing segments under congested and non-congested cases
based on historical statistics. Then, for each road, we design
a table of binary vectors to describe its proad congestion.

For each road segment, it has distinct travel times corre-
sponding to congested and non-congested situations [13]. For
example, College Ave has 6 segments as shown in Table 1.
If segment 1 is congested, it takes the vehicle 2min to drive
through. Otherwise, 50s is needed for driving through. Sup-
pose the segments 1, 2 and 4 are congested, and the other
segments are non-congested, the travel time needed to drive

through College Ave is 50s+ 5min+6min+20s+2min+10s=14min20s.

Table 1: Table of College Ave’s delays.

Segment 1D 0 1 2 3 4 5
Congested (1) | 2min | 5min | 6min | 1min | 2min | 30s
Otherwise (0) 50s 2min | lmin 20s 1min | 10s

Then, for each sequence of road segments, we can use a
binary vector to depict its congestion states. For example, if
the segments 1, 2 and 4 of College Ave are congested, current
congestion state of the road is [0,1,1,0,1,0]. To collect all
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possible congestion states of a road during different times,
the congestion state of the road is sampled by a time unit,
say per hour. Thus, for each hour, we have several sampling
results representing all the possible congestion states of the
road at this time. Finally, we classify these congestion states
along with their respective probabilities in ascending order
of time, and get the table of congestion states of the road
as shown in Table 2. In Table 2, College Ave has several
congestion states under each time interval. Each congestion
state has a probability, which measures its appearance fre-
quency among all possible congestion states. For example,
during the interval from 00:00 to 01:00, College Ave has the
probability of 0.6 to be in congestion state [0, 1, 1,0, 1,0] and
the probability of 0.4 to be in congestion state [1,0,0,0,1,0].
Therefore, the estimated travel time of College Ave during
this interval is 0.6 X 14 min20s+0.4 X 7min30s=11min36s.

Table 2: Table of College Ave’s congestion states.
Time interval
00:00~01:00
01:00~02:00

Congestion states
[0,1,1,0,1,0],0.6; [1,0,0,0,1,0],0.4

Since road traffic follows certain long-term pattern even
under accident and weather change, using historical data to
describe the congestion states is reasonable [13, 20]. The table
of congestion states and delays for all roads are computed
offline. All schedulers are preloaded with the two tables.

Estimation of travel time and deviation: To estimate
the travel time of a trajectory, a scheduler decomposes it
into roads. For each road, the scheduler refers to Table 2
for the road’s current congestion state. Then, the scheduler
refers to Table 1 for corresponding delays of the covered
segments. By summing the delays from the start of each
trajectory, the scheduler estimates the vehicle’s future travel
time. For example, suppose a vehicle will drive through
College Ave between 00:00 and 01:00. According to Tables 1
and 2, the travel time of College Ave has probability of
0.6 to be 14min20s and probability of 0.4 to be Tmin30s.
Therefore, the road’s estimated travel time is 4 = 0.6 X
14min20s+0.4 X 7min30s=11min36s, with standard deviation
o = /0.6 x (14min20s — 11min36s)2 + 0.4 X (11min36s — Tmin30s)2 =

3min20s.

3.1.2 Long-term Mobility. In this section, we introduce
long-term mobility, namely routine and vehicular friendship.

Routine: Vehicles’ long-term mobility has regularity [27],
which is reflected as certain roads that are frequently driven
by the vehicle at specific times. For example, people usually
take the same routine routes to commute between home and
work place. Moreover, vehicles tend to repeat their routine
routes on a daily basis. For example, people regularly drive
from home to work place at around 8:10 every morning.
Therefore, we depict the routines of a vehicle, say IN;, as
shown in Table 3.

Table 3: Table of a vehicle’s routines.

Prob Route Ts Te
0.6 | {pY,....,p} | 08:10 ~ 08:20 | 08:30 ~ 08:45
0.2 [ {pYy, ... P} | 13:00 ~ 13:20 | 18:30 ~ 13:45

In Table 3, each row represents a routine of N;. Route
represents the series of positions a routine covers. T is
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the start time range of the routine. 7. is the end time
range of the routine. Ty and T. are determined from N;’s
historical records. The probability indicates the likelihood
that the vehicle will follow the routine and is calculated as
Pgr,(N;) = m:/M, where m; is the number of occurrences
that N; followed routine R; as a trajectory; M is the total
number of trajectories that N; once drove during a time
period, say 30 days. The routine table stores the routines
with the sum of probabilities larger than and closest to 80%.
This threshold can be adjusted based on system constraints.

Friendship: People living in the same area are likely
to follow similar routines. For example, suppose Alice and
Bob live in the same suburban community, every morning
they drive the same highway to downtown. Given a packet
targeting at Alice, the mobility information of Bob may be
helpful. Based on such observation, MobiT measures the
relationship between vehicles in terms of their similarity on
routine.

Overlapping of routines: We define two vehicles are friends
if the ratios of their similar routines in their respective overall
routines are higher than a threshold, say ay. For example,
suppose vehicle IV; has routines: Ri, Ro and Rs, vehicle N;
has routines: R and Rs, and ay is 0.5. Since Ra, R3 are
the similar routines of N; and N;, and they take up 66.7%
and 100% of the total routines of N; and Nj;, respectively,
which are higher than 0.5, these two vehicles are friends.

Since the similar routines of two vehicles will not be com-
pletely identical, we use spatiotemporal overlap to measure
their similarity. Given two routines, say R; of N; and R
of N;. Ry covers positions: r1 = {p;1(0),...,pi1(m)}, start
time range 751 and end time range 7.1, while Ry covers po-
sitions: r2 = {p;2(0),... ,ij(m/)}7 start time range Ts2 and
end time range Tc2. We use T, and T, to denote the mean
of Ts and T., respectively. Then, R; and R2 are similar if:

|Tel - Te2| < T

|Ts1 7T52| < Tt (1)
Ir1 el

> 2

|T1Ur2\ Vs ( )

where 7; is the threshold bounding the temporal deviation
of start times and end times. -, is the threshold bounding
the spatial deviation of the positions. The thresholds are
determined based on the traffic flow of specific scenes. For
metropolitan cities, relatively high deviation should be toler-
ated. Therefore, we set ay = 0.5, 7, = 15min and v, = 0.6.
In MobiT, routine extraction and friendship determination
are conducted by service vehicles and RSUs since they have
the bulk of vehicles’ short-term mobility information. A
representative friend list is as shown in Table 4.

Table 4: Table of friends.

Vehicle 1D Friends
N1 Np(0.5), N2(0.3), N3(0.2), N4(0.1)
Na No(0.4), N1 (0.2)

3.2 Routing Process
MobiT aims to deliver the packet to the encounter position
prior to the destination vehicle, the packet then waits at a
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nearby RSU for the destination vehicle. In MobiT, service
vehicles and RSUs schedule the forwarding of packets since
they have collected vehicles’ mobility information. The sched-
uling of routing can be summarized to three cases. 1) When
the destination vehicle’s short-term mobility information
is available, the packet will be forwarded to the destina-
tion vehicle’s future position (or nearby position) along a
trajectory-based routing path that leads to the shortest de-
lay; 2) When the scheduler only has the destination vehicle’s
long-term mobility information, the packet will be forwarded
to the destination vehicle’s or its friend’s routine; 3) When
no mobility information of the destination vehicle is available,
the packet will be forwarded to service vehicles, aiming to
increase its probability of finding more useful information.

3.2.1 Short-term Mobility Based Routing. For trajectory-
based routing path determination, MobiT extends its pre-
decessor, STDFS [24]. In STDFS, based on travel time
predictions, the central server constructs an encounter graph
and finds the chain of trajectories connecting current posi-
tion of the source vehicle and the destination vehicle with
acceptable delay and delivery probability. MobiT further
considers road traffic of each road segment in different times
for calculating vehicle travel time. Moreover, MobiT aims
to deliver the packet to the encounter position prior to the
destination vehicle.

3.2.2 Long-term Mobility Based Routing. It is possible that
a scheduler cannot find the proper short-term mobility infor-
mation. In this case, the long-term mobility information (i.e.,
the routine table (Table 3) and friend table (Table 4)) will be
used to guide the packet to the activity area of the destination
vehicle. Specifically, from the routine table, according to cur-
rent time, the scheduler firstly determines which routine the
destination vehicle is likely to use. The routine is represented
by the positions covered by the routine ({p;1(0),...,p;1(m)})
with mean end time T.. Then the scheduler also uses en-
counter graph to find chains of trajectories that connect
current position of the source vehicle with the destination
vehicle’s routine.

The process of selecting routing chain is the same as that
with short-term mobility. Since the routines can only be
auxiliary, we filter out the invalid chains. The remaining
time of the destination vehicle’s routine from current time 7T,
is (TE — TC) from Table 3. Then, to ensure the packet can be
forwarded to the destination vehicle before it arrives at the
ending point of the routine, the scheduler filters the chains
with D; < T, — Te, where D; is the estimated delivery delay.
Finally, the chain with the shortest travel time is selected.

If the destination vehicle’s routine is also unavailable, the
scheduler refers to the table of friends. For example, given
destination vehicle N, Table 4 shows its friends are Ny,
N3, N3 and Ny. Among the friends with available mobility
information, the scheduler chooses the friend vehicle that has
the highest ratio of similarity with Ni. Then the friend’s
mobility information will be used as previously described.
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3.2.3 Routing without Mobility Information. It is likely the
scheduler doesn’t have any useful mobility information. If
the scheduler is a service vehicle, it will keep the packet. If
the scheduler is a RSU, it will first keep the packet and then
transfer it to the service vehicle passing by.

Because each scheduler stores partial mobility information
of vehicles in the system, a routing path generated by a
scheduler may not be the best routing path. Therefore,
whenever a node carrying a packet encounters a scheduler, it
requests the scheduler to update the routing path if a chain
with shorter delivery delay is found. In the routing process,
if the packet misses the next forwarder, it requests nearby
scheduler to launch a new round of routing.

4 PERFORMANCE EVALUATION

We used the Rome [2] and the San Francisco [17] traces,
which last for 30 days, for evaluation. The Rome trace has has
315 taxis and 4638 landmarks, and the San Francisco trace
has 536 taxis and 2508 landmarks. We develop a trace-based
simulation environment which is driven by each vehicle’s
movement event [3, 4].

The collection of congestion table and delay table was
finished offline. For Rome and San Francisco, the threshold
speeds to determine congestion are 20MPH and 30MPH, re-
spectively [2, 17]. The congestion state of each road segment
was sampled per hour. For both traces, we set the initial
period to 7 days, during which service vehicles collected and
disseminated mobility information. Meanwhile, service vehi-
cles and RSUs extracted vehicles’ routines as in Section 3.1.2,
and determined friendship between vehicles by Equation (1)
and (2) with ay = 0.5, 7+ = 15min and vs = 0.6. Request
rate is the number of packets generated every 24 hours in
both traces and was set to 40 by default. Packet TTL, which
is the valid time of a packet, was set to 24 hours. The TTL
for short-term mobility information depends on trip duration.

We compared MobiT with two representative algorithms:
the Shared-Trajectory-based Data Forwarding method (STDFS
in short) [24], and the Robust Replication Routing (denoted
by R3) [22]. STDFS depends on vehicles’ trajectories re-
ported through APs to schedule future meeting position
between forwarder and destination vehicle. In R3, vehicles
record their historical contact with others. The packet carrier
utilizes the historical delays of the vehicles to the destination
vehicle to guide packet routing. In simulations, we equipped
2782 and 1504 landmarks with RSUs/APs in Rome and San
Francisco, respectively, which is as specified in STDFS [24].
We measured following metrics:

e Success rate: The percentage of packets that successfully

reach their destination vehicles.

e Average delay: The average time (in seconds) used by

packets to reach their destination vehicles.

o Average number of information queries: The average

number of information queries transmitted among nodes.

o Average vehicle memory usage: The average number of

memory units used by each vehicle. Since the basic data
of MobiT (i.e., a congestion state vector, delays) usually
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Figure 1: Performance with different TTLs using the Rome trace.
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Figure 2: Performance with different TTLs using the San Francisco trace.

include several integers (4 bytes) or doubles (8 bytes),
we set each memory unit takes 50 bytes. Each piece of
mobility information (i.e., trajectory, routine) includes
sequences of integers, doubles and strings, so it takes
around 4 ~ 8 memory units. Each entry of table (i.e.,
congestion state, delay, friend) takes 1 memory unit.

4.1 Experimental Results

In the experiment, we varied the packet TTL from 18 hours
to 33 hours with 3 hours as the step size.

4.1.1 Success Rate. Figure 1(a) and Figure 2(a) show
the success rates of the algorithms under different packet
TTLs in both traces. In these figures, the success rates follow:
MobiT>STDFS>R3. We can see that MobiT always has
the highest packet delivery success rate than the other two
algorithms under various situations.

The success rates of all algorithms remain nearly constant
under different request rates, but increase with the ascending
of packet TTL. R3 always has the lowest success rate. This
is because vehicles have independent and random movement,
vehicles’ historical meeting records with the destination ve-
hicle does not guarantee another meeting with it in future.
Thus the selection of forwarder may be mistaken.

In contrast, STDFS has much higher success rate. It is
because the packet is always forwarded to a future position
of the destination vehicle with certain accuracy. If vehicles’
movement is not influenced by road congestion, or its tra-
jectory in central server is continuously updated without
disconnection, the forwarder is highly likely to meet the
destination vehicle.

MobiT always achieves the highest success rate. This is
because MobiT considers road congestion state in estimating
vehicles’ arrival times on trajectory, which makes the esti-
mation more tolerant to traffic change. Also, MobiT is not
afraid that trajectory may be outdated because it uses road
delay table corresponding to road congestion to dynamically

estimate the arrival times of vehicles when scheduling routing.
Moreover, MobiT aims to let packet arrive at the meeting
position prior to the destination vehicle through considering
various kinds of mobility information, which also increases
the success rate.
4.1.2 Average Delay. Figure 1(b) and Figure 2(b) show
the metric under different packet TTLs in both traces. In
Rome, the average delays follow: MobiT<STDFS<R3. While

in San Francisco, the average delays follow: MobiT<R3<STDFS.

We can see that MobiT achieves the best performance.

R3 does not know the position of the destination vehicle,
so it is likely to select the vehicle that will not meet the des-
tination vehicle as forwarder. Therefore, it has the highest
delay. Although STDFS knows the future position of the
destination vehicle from its trajectory, it can only forward
packet when a complete chain of trajectories connecting the
source vehicle and the destination vehicle is available. Also
the destination vehicle’s disconnection to APs will make its
trajectory outdated, thereby hindering the efficient delivery
of the packet. So STDFS ranks the second. MobiT uti-
lizes various kinds of vehicles” mobility information to help
the packet keep approaching the actual activity area of its
destination vehicle, so it has the shortest delay.

4.1.3 Average Number of Information Queries. Figure 1(c)
and Figure 2(c) show the metric of the algorithms under
different packet TTLs in both traces. The average number of
information query follow: R3<MobiT <STDFS. We can see
that MobiT achieves less information query overhead than
STDFS but more information query overhead than RS.

This is because STDFS requires vehicles to repeatedly re-
port their trajectories to the APs, so it has the highest number
of information query. In contrast, MobiT only needs vehicles
to report their initial trajectory to schedulers. Therefore, it
ranks the second. In RS&, information query only happens
in the encounter of nodes with suitable delay predictions.
Therefore, it ranks the lowest.
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4.1.4 Average Memory Usage. Figure 1(d) and Figure 2(d)
show the metric of the algorithms under different packet TTLs
in both traces. For MobiT, we additionally measured the
metric for service vehicle and RSU, which is represented with
“Service”. The metric follows: R3>Service>MobiT>STDFS
in Rome, and Service> R8> MobiT >STDFS in San Francisco.
We can see that the memory usage of general vehicle is
comparable to the one of STDFS.

Since R3 has duplicated packets, and each vehicle needs to
maintain the distribution of path’s historical delays, vehicles
in R3 have the highest memory usage. In MobiT, general ve-
hicles only need to maintain short-term mobility information
and occasional packets. Therefore, MobiT uses much lower
memory than R3. On the other hand, service vehicles and
RSUs need to maintain much mobility information and await-
ing packets. Therefore, their memory usage is comparable
to that of R3. In STDF'S, vehicles only need to record their
trajectory. In contrast to MobiT, in which a vehicle may need
to help forwarding packet even if they are not determined to
approach the destination vehicle, STDF'S only requires vehi-
cles that can form a complete chain of trajectories between
the source vehicle and the destination vehicle. Therefore,
STDFS uses the least memory.

5 CONCLUSION

Message delivery is an important function in VDTNs for
Intelligent Transportation Systems. Previous opportunistic
routing algorithms for VDTNs cannot achieve high success
rate and low delay due to insufficiently accurate estimation
of vehicles’ future encounter. Previous trajectory-based rout-
ing algorithms can overcome this drawback but require APs
hence cannot be directly used for decentralized VDTNs. We
propose MobiT, a distributed trajectory-based routing algo-
rithm for VDTNs. MobiT aims to let the packet arrive at a
RSU prior to the destination vehicle. By taking advantage
of travelling features of different vehicles, MobiT uses public
service vehicles and RSUs to collect vehicle mobility informa-
tion in a distributed manner and schedule trajectory-based
routing paths to destination vehicles. To avoid frequent com-
munication for trajectory updates, trajectories only need
to be reported once and then are updated based on stored
road segment congestion state at different times. Extensive
trace-driven and real-world experiments show MobiT’s higher
efficiency and effectiveness compared with previous routing
algorithms. In the future, we plan to further exploit vehicles’
relationship in routing.
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