A Network-aware Scheduler in Data-parallel Clusters for
High Performance

Zhuozhao Li, Haiying Shen and Ankur Sarker

Department of Computer Science
University of Virginia

May, 2018

Introduction

e Data-parallel clusters
Introduction » Used to process large datasets efficiently

Related
Work

* Deployed in many large organizations

NAS
* E.g., Facebook, Google and Yahoo!

Evaluation
e Shared by users from different groups

Conclusion

Introduction

Related
Work

NAS

Evaluation

Conclusion

Motivations

* Network-intensive stages in data-parallel jobs

[1] M. Chowdhury, Y. Zhong, and I. Stoica. “Efficient coflow scheduling with varys”. In: Proc. of SIGCOMM. 2014.

MapReduce

Conclusion

A MapReduce job Map Shuffle

5 Output/ .
Introduction data ,
| Input | — a

Related br;gcl:k Map task Reduce task
Work : :
| Input |— §

NAS block Map task Reduce task
Evaluation Input S S

L Map task | Reduce task
block :

Y N

—

Map stage Reduce stage

Motivations

* Network-intensive stage
* E.g., 60% and 20% of the jobs on the Yahoo and Facebook clusters,

Introduction respectively, are reported to be shuffle-heavy
* Jobs with large shuffle data size, generating a large amount of network
Related traffic
Work e e e e A
Problem: A large number of shuffle-heavy jobs may cause bottleneck on the
NAS cross-rack network

- e Oversubscribed network from rack-to-core in datacenter
valuation

* Oversubscription ratio ranging from 3:1 to 20:1

Conclusion

* Nearly 50% of cross-rack bandwidth used by background transfer

[1] M. Chowdhury, Y. Zhong, and I. Stoica. “Efficient coflow scheduling with varys”. In: Proc. of SIGCOMM. 2014.

Introduction

Related
Work

NAS

Evaluation

Conclusion

Outline

e Related Work

* Network-Aware Scheduler Design (NAS)

e Evaluation

* Conclusion

Related Work — Fair and Delay

=1\ (T N (T 1)

Introduction . I Map input data
L] [] L]) Map task
Related . . .
— Reduce task
[] [] []

NAS H] ()

Evaluation

. 2N NG /

Conclusion Rack 1 Rack 2 Rack 3

Place the map task close to the input data — data locality
Problem: Place the reduce task randomly

Introduction

Related
Work

NAS

Evaluation

Conclusion

Related Work — ShuffleWatcher (ATC’14)

<
“s

_

Rack 1

~

L] []
o a8
[]
]
_
Rack 2

_

/

Rack 3

[] Map input data

. Map task

Reduce task

Pre-compute the map and reduce placement and attempt to place map and
reduce on the same racks to minimize the cross-rack traffic

(r N (T)

] Map input data

Introduction

. Map task
Related . . ap tas
Work .. — Reduce task
NAS
Evaluation \) \ J \)
Conclusion Rack 1 Rack 2 Rack 3
Problem:

Reduce the cross-rack shuffle traffic at the cost of reading remote map input data.

Related Work — ShuffleWatcher (ATC’14)

=) (T N (T)

Introduction a] Map input data
] | =] B Map task
Related . .
Work
Reduce task
o = [] []

NAS . .

Evaluation

. 2N NG /

conclusion Rack 1 Rack 2 Rack 3

Problem:
Resource contention on the racks — intra-job and inter-job

Introduction

Related
Work

NAS

Evaluation

Conclusion

Outline

* Network-Aware Scheduler Design (NAS)

Introduction

Related
Work

NAS

Evaluation

Conclusion

Challenges

* Network-aware scheduler
* How to reduce cross-rack congestion

* How to reduce cross-rack traffic

* |dea
 Network not saturated at all time

* Designing schedulers to place tasks
* Balance the network load
* Consider shuffle data locality in addition to input data locality

Introduction

Related
Work

NAS

Evaluation

Conclusion

Network-Aware Scheduler (NAS)

e Map task scheduling (MTS)

e Balance the network load

* Congestion-avoidance reduce task scheduling (CA-RTS)
* Consider shuffle data locality

* Congestion-reduction reduce task scheduling (CR-RTS)
* Balance the network load

Map task scheduling (MTS)

* Goal: balancing the network load

UWIEELRIEUR .« Set a TrafficThreshold for each node
e Cannot process more shuffle data than this threshold at one time

Related
Work * Constrain the generated shuffle data size at a time
NAS * Map task scheduling
* Map input data locality and fairness
Fualuzion » Whether the generated shuffle data size on a node exceeds the

TrafficThreshold after placing a task

Conclusion

Introduction

Related
Work

NAS

Evaluation

Conclusion

Map task scheduling (MTS)

* Setting the TrafficThreshold

* Could be changed based on workloads

e Distribute the shuffle data into each wave

e Task wave
* Number of tasks >> number of containers
* Tasks scheduled to all available containers, forming the first wave
* Second wave, third wave ...

e TrafficThreshold = s

N *

e TS — total shuffle data size of jobs in the cluster
* N —the total number of nodes in the cluster

* W —the number of waves: the total number of map tasks/the total
number of containers

14

Introduction

Related
Work

NAS

Evaluation

Conclusion

Map task scheduling (MTS)

e User 1:
* Jobl: 6 map tasks and 6 reduce tasks
* Job3: 6 map tasks and 6 reduce tasks

e User 2:

* Job2: 6 map tasks and 6 reduce tasks
* Job4: 6 map tasks and 6 reduce tasks

e Each map -> each reduce

e Jobl and Job2: 8
 Job3 and Job4: 1

15

Congestion-avoidance Reduce Task Scheduling (CA-RTS)

Introduction

Related
Work

NAS

Evaluation

Conclusion

Check network status -- CongestionThreshold (e.g., 80% of cross-
rack bandwidth)

Used when the CongestionThreshold is NOT reached
Goal: reduce cross-rack traffic

A rack has more shuffle data of a job =2 assigh more reduce
tasks of the job on this rack to reduce cross-rack traffic

Rack1l] Rack?2

10 reduce | 70% e

tasks

Congestion-reduction Reduce Task Scheduling (CR-RTS)

* Used when the CongestionThreshold is reached

Introduction

* Goal: reduce cross-rack network congestion

Related
Work

* Launch a reduce task from a shuffle-light job

VS Small shuffle data size

_ * Minimal impact on the cross-rack traffic
Evaluation

Conclusion

Introduction

Related
Work

NAS

Evaluation

Conclusion

Outline

e Evaluation

Introduction

Related
Work

NAS

Evaluation

Conclusion

Evaluation

* Real cluster experiment
* Throughput

e Average job completion time

* Cross-rack congestion

Introduction

Related
Work

NAS

Evaluation

Conclusion

Evaluation

* Real cluster experiment
* 40-node cluster organized into 8 racks, 5 nodes each rack
* 8 racks interconnected by a core switch
* Oversubscription 5:1 from the rack to core

* Workload
* 200 jobs from the Facebook synthesized execution framework [1]

* Baselines
 Fair Scheduler (current scheduler in Hadoop)
e Delay Scheduler (current scheduler in Hadoop)
e ShuffleWatcher (ATC'14)

[1] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. “The Case for Evaluating MapReduce Performance Using Workload Suites.” In: Proc. of MASCOTS. 2011.

Introduction

Related
Work

NAS

Evaluation

Conclusion

Throughput

5
o
<
b 1.5
o
S
No) 1 -
I
©
§ 0.5
o
P
O _|

Delay ShuffleWatcher

NAS improves the throughput over Fair, Delay and
ShuffleWatcher by 63%, 48%, 31%, respectively

Introduction

Related
Work

NAS

Evaluation

Conclusion

Average Job Completion Time

(BN
|

completion time
o
(9a)

Normalized average job

Delay ShuffleWatcher

NAS reduces the average job completion time over Fair, Delay
and ShuffleWatcher by 44%, 37%, 33%, respectively

Introduction

Related
Work

NAS

Evaluation

Conclusion

Cross-rack congestion

1.2

congestions

Total number of
occurrences of cross-rack

NAS reduces the cross-rack congestion over Fair, Delay and
ShuffleWatcher by 45%, 40%, 34%.

23

Introduction

Related
Work

NAS

Evaluation

Conclusion

Conclusion

We can improve the performance of current state-of-the-art
schedulers (e.g., Fair and Delay schedulers in Hadoop) by

* balancing the network traffic and enforcing the data locality for shuffle
data,

e aggregating the data transfers to efficiently exploit optical circuit switch
in hybrid electrical/optical datacenter network while still guaranteeing
parallelism,

e and adaptively scheduling a job to either scale-up machines or scale-out
machines that benefit the job the most in hybrid scale-up/out cluster.

Introduction

Related
Work

NAS

Evaluation

Conclusion

Questions?

Zhuozhao Li

Ph.D. Candidate
Department of Computer Science
University of Virginia
ZL5UQ@VIRGINIA.edu

Backup

26

Shuffle Data Size Predictor

* MapOutput = (map output/input ratio) * Maplnput

* Unpredicted and predicted job

 Update in real time

27

Map task scheduling (MTS)

 Setting the TrafficThreshold

* Could be changed based on workloads

 Distribute the shuffle data into each wave
e Task wave
* Number of tasks >> number of containers
* Tasks scheduled to all available containers, forming the first wave
e Second wave, third wave ...
TrafficThreshold = o

N *

TS — total shuffle data size of jobs in the cluster
N — the total number of nodes in the cluster

W — the number of waves: the total number of map tasks/the total number of
containers

28

Map task scheduling (MTS)

Algorithm 2 Psendocode for MTS.

Require: Initialize skip count of the i user D™ =0

1

Ll

[l |
i

|

o0

10:
11:
12:
13:
14:

17:
18:
19:
M
21:

22;

maximum number of skips D™
. Calculate the available map output data size on the worker node.
- for user 1 in the user list do
if the user has data-local and shuffle-qualified map task then
launch this map task on this node, set D" =0
else
if " == D™ then
if we can hind shutfe-qualified map tasks of this user then
launch a map task in the following order:
(1) map task from small-input unpredicted job
(2) map task from small-input predicted job
(3) map task from large-input unpredicted job
(4) map task from large-input predicted job
else
launch a map task in the following order:

(1) data-local map task
(2) map task with the smallest map output data size
end if
else
D4+
end if
end if
end for

29

Congestion-avoidance Reduce Task

Sched

uling (CA-RTS)

Algorithm 3 Pseudocode for CA-RTS.

1

[[N T

=]

o melect a user from the nser list based on fairness,
. Launch reduce task from a job that satisfies map completion threshold in the
following order (a job with delayed or MapProgressRate = 100% has higher
priority in the same category):

(1) Shuffle-heavy jobs whose Reduce Num is not reached,

(2) Shuffle-medinm jobs whose Reduce Num is not reached

(3) Shuffle-light jobs whose Reduce Nwm not reached

(4) Shuffle-light jobs whose Reduce Nwm is reached

(5) Shuffle-medium jobs whose Reduce Num is reached

(6) Shuffle-heavy jobs whose Reduce Num is reached

30

Congestion-reduction Reduce Task Scheduling

(CR-RTS)

Algorithm 4 Psendocode for CR-RTS.

Require: Initialize skip count of the i** user DI = 0
maximum number of skips D7

1: for user ¢ in the user list do
2 if D7 <)" then
3: if this user has shuffle-light jobs then
4 Select a reduce task from shufle-light jobs, set DT =0
5% else
fi: D7 ++ and skip this user
T: end if
5: else
f: Select a reduce task from any jobs
10: end if
11: end for

31

Optimization of Map Completion Threshold

* Map completion threshold (slowstart threshold)
e Start scheduling reduce tasks

 Start shuffle transfer immediately after the reduce task is
scheduled a container

Map phase Map phase

I:I Reduce phase Shuffle Reduce phase

i

Shuffle phase
Shuffle-light job Shuffle-heavy job

T

Optimization of Map Completion Threshold

* Drawback: occupy the container without processing but

just waiting for shuffle data

* Adaptive map completion threshold for different jobs

Map phase

Previous method: l:l

NAS:

Reduce phase

)

Reduce phase

Shuffle phase

Y
Execution time

Shuffle-light job

33

Classification of Jobs in NAS

Shuffle-light <1MB
Shuffle-medium 1-100MB
Shuffle-heavy > 100MB

34

Evaluation AN

==
* Real cluster experiment
* 40-node cluster organized into 8 racks, 5 nodes each rack, 1Gbps each node

» All ToRs connected by a core switch. 1Gbps from core to ToR, oversubscription 5:1
e 16 containers on each node

e Workload

e 200 jobs from the Facebook synthesized execution framework [1]
* Arrival in exponential distribution with a mean of 14 seconds

e Baselines
* Fair Scheduler
* Delay Scheduler
e ShuffleWatcher

[1] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. “The Case for Evaluating MapReduce Performance Using Workload Suites.” In: Proc. of MASCOTS. 2011. 35

Cross-rack traffic in real cluster

=
U

[N
|

o
u

Normalized corss-rack traffic

o
\

Fair Delay ShuffleWatcher NAS

NAS reduces the cross-rack traffic over Fair, Delay and
ShuffleWatcher by 39%, 32%, 11%.

36

Cross-rack congestion in real cluster

1.2

4

o
“ 1 0.91
O on 0.84
592 0.8
o ° 9
E o » 0.6 -
S5 o O
Cm%ﬂ
T & O 0.4 |
o o ©
|_

5 0.2 -

Q

(@]

o 0

Fair Delay ShuffleWatcher NAS

NAS reduces the cross-rack congestion over Fair, Delay and
ShuffleWatcher by 45%, 40%, 34%.

