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Abstract— There is a dramatic increase in the variety of virtual
machines (VMs) and complexity of VM placement problems
in clouds. Previous VM placement approaches attempt to ac-
commodate more VMs efficiently on fewer PMs by balancing
the resource usages across multiple dimensions. However, these
approaches are not sufficiently accurate in measuring the quality
of the PMs in terms of fully utilizing PM resource and having
the potential to accommodate more VMs. Therefore, it is critical
to design a new method that can more accurately measure
the probability of a PM of fully utilizing its resources after
accommodating a given VM with the consideration of different
types of VMs. In addition, anti-collocation constraints must be
handled efficiently. We propose a PageRank based VM place-
ment algorithm with anti-collocation constraints (PageRankVM).
PageRankVM defines the best PM resource usage profile, which
means that the PM has full resource utilization for every resource
dimension, and then ranks PM profiles according to their
convergence of transferring (by accommodating VMs) to the best
profile. PageRankVM then places a given VM to the PM based
on the ranks of the resulted PM profiles after accommodating the
VM with the consideration of anti-collocation constraints. Com-
pared to previous approaches, PageRankVM effectively measures
the ability of different PM profiles to reach the best profiles
by accommodating a given VM, and hence differentiates the
effectiveness of different VM placement decisions. We conducted
extensive trace-driven simulation and GENI testbed experiments
and demonstrated that PageRankVM has superior performance
compared with other methods in terms of reducing the number
of PMs, the energy consumption, the number of VM migrations,
and the service level objective (SLO) violations.

I. INTRODUCTION

Cloud computing attracts many enterprises (e.g., Dropbox,
Facebook video storage) to migrate their business or services
to the clouds without the need to build their own datacenters.
Cloud providers multiplex computation, storage and network
resources [32], [33] among different customers, using vir-
tualization technologies to allocate Physical Machine (PM)
resources to customer Virtual Machines (VMs) based on their
resource (e.g., CPU, memory and bandwidth) requirements.
The VM placement that assigns a set of VMs requested
by customers to PMs is an important datacenter resource
management problems. The VM placement problem aims to
achieve a certain objective, while subject to several constraints
such as the PM resource capacity constraints in multiple
resources types (i.e., dimensions) and VM collocation or anti-

collocation constraints. Anti-collocation constraints mean that
the requested resources of a VM are required not to be placed
in the same physical hardware in order to improve parallelism
and performance.

The multi-dimension VM placement problem is analogous
to the multi-dimension bin packing problem, which assigns the
balls to the least number of bins given the sizes of the balls and
bins. Since the multi-dimension bin packing problem is known
as NP-Hard [30], there exist several heuristics [27], [30], [10].
Practical cloud systems [27] usually adopt less complicated
heuristics, such as round-robin [24], first-fit [27] and first-fit-
decrease [30], as evidenced by open-source middleware stacks
[15].

The first-fit method places a VM to first PM that has
sufficient resources to host this VM. The first-fit-decrease
method calculates the size of PM by weighted sum of the d-
dimensional vector, which represents the resource capacity in d
dimensions and greedily places VMs to PMs with decreasing
sizes. The work in [10] allocates a VM to the best-fit PM
that has the minimum remaining resources after allocating the
VM. However, these approaches are not sufficiently accurate
in measuring the quality of the PMs in terms of fully utilizing
PM resource and having the potential to accommodate more
VMs since they neglect that there are different types of VMs
and a VM’s demands on different resource dimensions may be
unbalanced. Therefore, it is critical to design a new method
that can more accurately measure the probability of a PM of
fully utilizing its resources after accommodating a given VM,
considering the different types of VMs.

In addition, system deployment requested by customers
may contain complex relationships among VMs such as anti-
collocation constraints. Anti-collocation is desirable due to
many reasons. Most VM types offered by public clouds such
as Amazon EC2 [14] have multiple virtual CPUs (vCPUs)
and virtual disks per VM. When a customer requests a VM
with multiple vCPUs, (s)he usually prefers that the vCPUs be
placed in different physical CPU cores in order to improve the
parallelism of the vCPUs. When a customer requests a VM
with multiple virtual disks, (s)he may prefer that the VM’s
virtual disks be spread out across the physical disks of the PM
so that the accesses to different virtual disks do not interfere
with each other, and also the fault tolerance and availability



can be improved.
However, the anti-collocation requirements have not been

adequately addressed in the previous VM placement solutions.
Biran et al. [7] and Xia et al. [36] used mixed integer
programming (MIP) formulations and algorithms (e.g., inte-
ger programming software Gurobi [20]) for the VM place-
ment problem with anti-collocation requirements. However,
the MIP formulation has an exceedingly large number of
variables and constraints. Standard MIP algorithms cannot
solve large problem instances within an acceptable period of
time. Furthermore, the algorithms [7], [36] only consider anti-
collocation requirement for one resource (e.g., disk), which
is not practical for problems that have multiple types of anti-
collocation requirements (e.g., vCPU anti-collocation and disk
anti-collocation), which otherwise would make solving the
MIP formulation far more complex. Therefore, it is desirable
to develop a VM placement algorithm with low computational
complexity and can effectively solve the VM placement prob-
lem with multiple anti-collocation requirements.

To address the aforementioned two problems, we propose a
PageRank [29] based heuristic algorithm to place VMs to PMs
based on how likely it is that the PM can later get to full PM
resource usage, called PageRankVM. We abstract the resource
usage of a PM across multiple dimensions as a resource
usage profile. To address the anti-collocation requirement, we
consider each unit of resource such as each core or each
disk as a resource dimension in a PM’s profile. The anti-
collocation resources of the same type (e.g., several vCPUs)
of a VM are also represented in different dimensions in a
VM’s resource request, but can be in different permutations.
PageRankVM defines the best PM profile, which means that
the PM has full resource utilization for all resource dimension-
s, and then ranks PM profiles according to their convergence
of transferring (by accommodating VMs) to the best profile.
Compared to previous approaches, PageRankVM effectively
and properly measures the ability of different PM profiles
to reach the best profiles by accommodating a given VM,
and hence differentiates the effectiveness of VM placement
decisions. PageRankVM then places a given VM to the PM
based on the ranking scores of the resulted PM profiles after
accommodating the VM.

The PageRank algorithm was originally designed by Google
to rank webpages in their search engine results. PageRank
works by treating each backlink to a webpage as if it were a
vote of support for that webpage, and by giving weight to the
vote based on the rank of the voting (i.e., linking) webpage.
The underlying assumption is that more important webpages
are likely to receive more links from other webpages [29]. We
build a PageRankVM graph that ranks each possible resource
usage profile of PMs on a scale from least accommodating
to most accommodating in terms of reaching the best PM
profile. For example, a PM resource usage profile can be
represented by the vector p = {p1, ..., pi, ..., pm}, where
each dimension pi represents the resource utilization in the
corresponding dimension. If the resource usage profile pA of
a PM can change to profile pB (i.e., resource usage status
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Fig. 1. PageRank graph showing the rank values of different PM profiles.

are changed) after accommodating a VM (among the existing
VM types), we consider profile pA to be a vote of support
for profile pB . The vote from pA is given a weight based on
the rank of pA itself. Figure 1 illustrates the PageRank graph
showing the rank values of different PM profiles. For a given
VM, its placement is performed by adding it to the PM that
gives the highest rank for the new profile that is produced.

The main contributions of the paper include:
• We show that previous variance based approaches, which

place VMs to the PMs that will result in the minimum
variances of resource utilization across different dimen-
sions, do not necessarily lead to high utilization of PM
resources and reduce the number of PMs needed.

• We propose a PageRank score based algorithm to identify
the preferred VM placement decisions (e.g., preferred
resource utilization status of the PMs). We then leverage
this proposed PageRank score based algorithm to solve
the multiple dimensional VM placement problem.

• We implemented PageRankVM and conducted extensive
experiments with trace-driven simulation and on the
GENI testbed to show the advantages of PageRankVM.

The rest of this paper is organized as follows. Section II
briefly presents the related work. Section III presents the mo-
tivation of our work. Section IV formulates the VM placement
problem with resource anti-collocation requirements. Section
V presents our PageRank based VM placement algorithm.
Section VI presents the evaluation of PageRankVM in trace-
driven simulation and real GENI testbed. Finally, Section VII
summarizes the paper with remarks on our future work.

II. RELATED WORK

Prior VM placement studies involve consolidating VMs,
with multiple dimensional resource requirements, into the least
number of servers. Most practical cloud systems [1], [28],
[15] use simple and efficient heuristics such as first-fit [27]
and first-fit-decrease [30], [34] to quickly find PMs for VMs.
These approaches greedily place a VM to the PM that has
sufficient resources for the VM. That is, they only check
whether the requested CPU and memory of the VMs are
satisfiable when assigning VMs to PMs, which however may
result in resource fragmentation. Some previous works solve
the VM placement problem based on the multi-dimensional
bin packing algorithms [30], [5], [25], [13], [2], [19].

In order to solve the VM placement problem with complex
multiple dimensions and anti-collocation constraints, many



works [7], [36] advocate the use of mixed integer programming
[17] formulations and algorithms. The work in [3] describes
how datacenters can offer services with complex resource
requirements to the cloud customers, such as entire IT as a ser-
vice with VM collocation and anti-collocation requirements.
Biran et al. [7] used the integer programming techniques to
solve the VM placement problem that not only satisfy the
predicted communication demand of the VMs but also the time
varying demands. Xia et al. [36] formulated the assignment
of VMs to PMs as an integer optimization problem that can
capture constraints related to the available resources, datacen-
ter efficiency and customers’ complex requirements, and used
a mixed integer programming (MIP) algorithm to solve the
VM placement problem with anti-collocation requirements.
However, as we mentioned in Section I, the MIP formulation
has an exceedingly large number of variables and constraints
and solving the MIP formulation with multiple types of anti-
collocation requirements is more complex.

In VM migration, many important factors such as reducing
power consumption and reducing resource wastage need to
be considered. Chen et al. [12] proposed a resource intensity
aware VM migration method to dynamically assign different
weights to different resources according to their usage intensity
in the PM, which reduces the time and cost to achieve load
balance in VM migration. Chen et al. [11] proposed a proactive
Markov Decision Process (MDP)-based VM migration algo-
rithm that allows a PM to proactively find an optimal action
on moving out a specific VM to transit to a lightly loaded
state that will maintain for a longer period of time.

However, there has been few efforts devoting to studying
how to consider the different types of VMs in VM placement
to more fully utilize PM resources and how to efficiently solve
the VM placement problem with multiple anti-collocation
requirements. This paper addresses these two problems.

III. MOTIVATION

A. PM Usage Profile

We abstract the resource usage status of a PM as a profile
(i.e., resource utilization across different resource dimensions).
In the following discussion, we present a PM profile in
the form of [p1, ..., pi, ..., pm], where i = 1, 2, ...,m repre-
sents different resource dimensions. For example, a profile
[p1, p2, p3, p4] can be used to represent a PM that has p1,
p2, p3 and p4 usages in CPU, memory, network and disk,
respectively. Also, we can use a profile to represent the
usage of a CPU with different usages across its cores. In
the following, we do not distinguish the actual types of
resources represented by the dimensions. We focus on the
mathematical characteristics of the dimensions. Similar idea
is also applied to define different VM types. We present VM
type in the form of [v1, ..., vi, ..., vm], where i = 1, 2, ...,m.
[v1, ..., vi, ..., vm] represent the VM resource demand across
multiple dimensions.

B. Limitations of Existing Approaches
When selecting a PM to accommodate a VM, existing

approaches are mainly based on two requirements.
(1) The resource utilization of the corresponding PM u
is maximized after hosting the VM.
(2) The variance of resource utilization across different
dimensions v is minimized after hosting the VM.

Here, the resource utilization of a PM with the profile
[p1, ..., pm] is defined as u =

∑m
i=1 pi, and the variance of

resource utilization across different dimensions is defined as
v = 1

m

∑m
i=1(pi− u

m )2. The rationale of the first requirement is
that the PM resource is fully used. The rationale of the second
requirement is that the PM has the potential to accommodate
more VMs.

However, we argue that given a VM, even if a PM profile
satisfies the aforementioned two requirements after it hosts a
VM, it does not necessarily mean that it can host more VMs
(i.e., a better host option) than a PM profile that does not
satisfy the two requirements after it hosts the VM.

We demonstrate this argument using an example. We as-
sume the capacity of each dimension is 4. Specifically, we
study the profiles [0, 0, 0, 0] v [4, 4, 4, 4]. We use [x, x] or
[x, x, x, x] to represent the resource demands of the VMs.
[x, x] means the resources can be allocated to any two di-
mensions and its permutations include [x, x, 0, 0], [0, 0, x, x],
[x, 0, 0, x] and so on. [1,1,1,1] represents the resource demands
of the VM across 4 dimensions. We assume there are two VM
types {[1, 1], [1, 1, 1, 1]}.

Suppose there are two PM options for a given VM, and
their profiles become [4, 3, 3, 3] and [3, 3, 2, 2] after hosting
this VM. [4, 3, 3, 3] has utilization 13 and variance 0.75, and
[3, 3, 2, 2] has utilization 10 and variance 1. Although profile
[4, 3, 3, 3] has higher utilization and lower variance than profile
[3, 3, 2, 2], profile [4, 3, 3, 3] cannot be considered as a better
profile (that can accommodate more VMs) after hosting the
VM when compared to profile [3, 3, 2, 2]. This is because
it is impossible for [4, 3, 3, 3] to develop to the best profile
[4, 4, 4, 4] by hosting more VMs, while there are multiple ways
for [3, 3, 2, 2] to develop to the best profile; accommodating
one [1, 1, 1, 1] VM and one [1, 1] (i.e., [0, 0, 1, 1]) VM, and
accommodating three [1, 1] VMs (i.e., [1, 1, 0, 0], [0, 0, 1, 1]
and [0, 0, 1, 1]).

Therefore, it is critical to design a new algorithm that
can more accurately measure the probability of a PM of
fully utilizing its resources after accommodating a given VM,
considering the various types of VMs.

IV. ANALYTIC MODEL

The initial VM allocation must consider multi-dimensional
resource demands of actual VMs, which may or may not be
balanced. Our primary goal is to consider the various types of
VMs in VM placement in order to fully utilize the resources
of each PM and hence minimize the number of PMs needed.

Consider that a datacenter has M PMs. Cloud users request
N VMs with resource requirements across multiple dimen-
sions and resource anti-collocation constraints. Usually, the



value of N and M can be fairly large in a cloud datacenter,
ranging from tens of thousands to hundreds of thousands.
VM requests can be different in resource requirements on the
number of vCPUs, memory, the number of local disks, and
respective volume sizes of the disks. PMs are heterogeneous
and provide certain resource capacities in the form of the
number of vCPUs, memory, the number of local disks and
their respective volume sizes.

Notations. Let the sets of VMs and PMs be denoted
by V and P , respectively. Without loss of generality, let
V = {V1, V2, ..., VN} and P = {P1, P2, ..., PM}, where Vi
and Pj denote VM i and PM j, respectively. To address the
anti-collocation requirement, we consider each unit of resource
such as each core or each disk as a resource dimension
in a PM’s profile. For example, originally we consider all
physical CPU cores in one PM as one dimension of resource.
Now, we consider each physical CPU core in a PM as one
dimension of resource. The anti-collocation resources of the
same type (e.g., several vCPUs) of a VM are also repre-
sented in different dimensions in a VM’s resource request,
but can be in different permutations. For each VM i, let
ci={α1

i , α
2
i , ..., α

|ci|
i } be a set of the vCPUs requested by the

VM, |ci| is the number of requested vCPUs. For each of
the CPU cores, αk

i represents the requested amount of CPU
capacity in gigahertz (GHz). Usually for a VM request, we
have α1

i = α2
i = ... = α

|ci|
i . Notice that this resource demand

is permutable. For example, {α1
i , α

2
i , 0, 0} and {0, 0, α1

i , α
2
i }

are essentially the same resource demand. This is because the
VM only requires resources from two cores, but does not care
which cores each vCPU is assigned to run. Let βi be the
memory requirement in gibibyte (GiB). For each VM i, let
di = {γ1i , γ2i , ..., γ

|di|
i } be the set of virtual disks requested,

where |di| is the number of requested virtual disks. For each
of the virtual disks, γki represents the requested disk volume
size in gigabyte (GB). Thus, the resource request of VM i
can be represented by ri = {ci, βi,di}. Similarly, for each
PM j, let Cj = {A1

j , A
2
j , ..., A

|Cj |
j } be the set of physical

CPU cores it can support, where |Cj | is the number of CPU
cores. For each CPU core, Ak

i represents the compute capacity
in gigahertz (GHz). Let Bj be the amount of memory it can
support in GiB. For each PM j, let Dj = {G1

j , G
2
j , ..., G

|Dj |
j }

be the set of available physical disks, where |Dj | is the number
of disks. For each of the physical disks, Gk

j represents the
available disk volume size in GB. The capacity of PM j
can be represented by Rj = {Cj , Bj ,Dj}. Though we used
three resources as an example here, our method can be easily
extended to any number of resources by simply adding more
resource dimensions.

For each Vi ∈ V and each Pj ∈ P , let xij be the binary
assignment variable, which is set to 1 if VM Vi is assigned to
PM Pj and 0 otherwise. The binary variables yikjl are used
for CPU assignment. yikjl is set to 1 if VM Vi is assigned to
PM Pj and Vi’s requested vCPU k is assigned to the physical
CPU core l of PM j; it is set to 0 otherwise. Similarly, the
binary variables zikjl are used for disk assignment. zikjl is set

to 1 if VM Vi is assigned to PM Pj and Vi’s requested virtual
disk k is assigned to the physical disk l of PM j; it is set to
0 otherwise.

Constraints. The following constraints are required:

Σj∈Pxij = 1, i ∈ V (1)

yikjl ≤ xij , i ∈ V, j ∈ P, k ∈ ci, l ∈ Cj (2)

Σj∈PΣl∈Cj
yikjl = 1, i ∈ V, k ∈ ci (3)

Σk∈ci
yikjl ≤ 1, i ∈ V, j ∈ P, l ∈ Cj (4)

Σi∈VΣk∈ciα
k
i yikjl ≤ Al

j (5)

Σi∈Vβixij ≤ Bj , j ∈ P (6)

zikjl ≤ xij , i ∈ V, j ∈ P, k ∈ di, l ∈ Dj (7)

Σj∈PΣl∈Dj
zikjl = 1, i ∈ V, k ∈ di (8)

Σk∈dizikjl ≤ 1, i ∈ V, j ∈ P, l ∈ Dj (9)

Σi∈VΣk∈di
γki yikjl ≤ Gl

j (10)

Equ.(1) ensures that every VM is assigned to exactly
one PM. Equ.(2)-(5) are the constraints on CPU assignment.
Equ.(2) ensures that the requested vCPUs for VM i may
be assigned to the physical cores of PM j only if VM i is
assigned to PM j. Equ.(3) ensures that every requested vCPU
must be assigned to exactly one physical core. Equ.(4) ensures
that VM i cannot place more than one of its vCPUs to the
same physical core; Equ.(3) and Equ.(4) together enforce the
CPU anti-collocation constraints. Equ.(5) is the CPU capacity
constraint. Equ.(6) is the resource capacity constraints posed
by the total memory size of each PM j. Equ.(7)-(10) are
the constraints on disk assignment, which are analogous to
Equ.(2)-(5). Equ.(7) ensures that the requested virtual disks
for VM i may be assigned to the physical disks of PM j
only if VM i is assigned to PM j. Equ.(8) ensures that every
requested virtual disk must be assigned to exactly one physical
disk. Equ.(9) ensures that VM i cannot have more than one of
its virtual disks assigned to the same physical disk; Equ.(8) and
Equ.(9) together enforce the disk anti-collocation constraints.
Equ.(10) is the disk capacity constraint.

Objective. We assume that a fixed operation cost is incurred
for a PM as long as the PM is used by some VMs (i.e., some
VMs are assigned to the PM) [6]. Specifically, when a PM
j is turned on to serve some VMs, there is a fixed cost sj
associated with running the PM; when the PM is off, there
is zero cost. The operation cost may include the energy cost
when a machine is running and typical maintenance cost. The
optimization objective is to minimize the total operation cost
(i.e., minimize the number of PMs used).

Let oj be a 0-1 variable indicating whether PM j is used
by some VMs. In normal situations, an assignment should be
feasible so that no VMs are rejected; otherwise, the cloud



provider usually increases its datacenter capacity. When no
VMs are rejected, the total payment by the customers is fixed.
In that case, the optimization objective is to minimize the total
operation cost:

min
x,y,o

Σj∈Psjoj (11)

In order to solve the above formulated VM allocation
problem, a general solution is to apply the branch and bound
algorithm [22]. However, solving the MIP problems is fairly
complex [37], [31]. The complexity of this algorithm is
determined by the number of variables and the number of
constraints, which can be counted easily. In practice, a cloud
datacenter contains tens of thousands of VMs and PMs [].
Compared to solving an MIP problem with a small number
of variables, there is a dramatic increase in the complexity
of VM placement problems. In particular, when a problem is
sufficiently complex, the branch and bound algorithm becomes
inefficient and impractical, especially in cloud where there is
high demand on low latency of VM placement. As a result,
a heuristic algorithm is needed to quickly solve the VM
placement problem with anti-collocation constraints.

V. PAGERANK BASED VM PLACEMENT

We develop a heuristic algorithm to solve the VM placement
problem by ranking the PMs based on the probability that the
PMs can fully utilize their resources across multiple resource
dimensions by hosting VMs, and assigning a VM to the PM
that has the highest rank by hosting such a VM. The rankings
indicate how the PMs can fully utilized their resources in every
resource dimensions.

A. Profile Ranking

For a given VM, to find a PM to host the VM among
multiple PMs, we first calculate the profile of each PM after
it hosts the VM. Based on the profiles, we will find the best
PM to host the VM that will help fully utilize this PM’s
resources across different dimensions. In order to effectively
and properly distinguish a preferred PM profile from the
non-preferred ones, we propose to implement the PageRank
algorithm [29] to rank the PM profiles. The best PM profile is
the profile with the maximum value across all resource dimen-
sions. For example, a profile [4, 4, 4, 4] is regarded as the best
profile of a PM with capacity [4, 4, 4, 4]. The PageRank based
approach ranks the PM profiles according to their probabilities
of transferring to the best profile. Considering the above
examples, the PageRank based approach accurately reflects
the quality of the profiles, which measures the tendency of
fully utilizing PM resources. In the following, we will discuss
how we design such a rank metric.

We consider one type of VMs as the VMs that have the
same resource demand for each resource dimension. Given
the best profile and the set of VM types, we define the quality
of a profile as the capability of this profile to develop to the
best profile by accommodating VMs from the VM set. For
example, given a set of VM types {[1, 1], [1, 1, 1, 1]} and a
PM with capacity [4, 4, 4, 4] as shown in Figure 2, we compare

the qualities of two profiles [4, 4, 2, 2] and [3, 3, 3, 3]. Figure
2 only shows a part of the permutations of VM resource
demands as an example. In this case, profile [3, 3, 3, 3] has
higher quality than profile [4, 4, 2, 2], because it is easier for
[3, 3, 3, 3] to develop to the best profile than [4, 4, 2, 2]. There
are two ways for [3, 3, 3, 3] to develop to the best profile:
accommodating one [1, 1, 1, 1] VM, and accommodating two
[1, 1] (i.e., [1, 1, 0, 0] and [0, 0, 1, 1]) VMs. Accordingly, there
is only one way for [4, 4, 2, 2] to develop to the best pro-
file: accommodating two [1, 1] (i.e., [0, 0, 1, 1]) VMs. Profile
[3, 3, 3, 3] has higher quality than profile [4, 4, 2, 2] and also
satisfies the second requirement.

[4,4,4,4] [4,4,2,2] [3,3,3,3]

[1,1]
[1,1,1,1]

ProfileExampleBest ProfileExampleBad ProfileExampleGood

ProfileExampleVM

[1,1,0,0]

[1,1,1,1]
[0,0,1,1]

(a) Best profile

[4,4,4,4] [4,4,2,2] [3,3,3,3]

[1,1]
[1,1,1,1]

ProfileExampleBest ProfileExampleBad ProfileExampleGood

ProfileExampleVM

[1,1,0,0]

[1,1,1,1]
[0,0,1,1]

(b) VM types

[4,4,4,4] [4,4,2,2] [3,3,3,3]

[1,1]
[1,1,1,1]

ProfileExampleBest ProfileExampleBad ProfileExampleGood

ProfileExampleVM

[1,1,0,0]

[1,1,1,1]
[0,0,1,1]

(c) Profile 1

[4,4,4,4] [4,4,2,2] [3,3,3,3]

[1,1]
[1,1,1,1]

ProfileExampleBest ProfileExampleBad ProfileExampleGood

ProfileExampleVM

[1,1,0,0]

[1,1,1,1]
[0,0,1,1]

(d) Profile 2

Fig. 2. Example of preferred profiles.

It is necessary to point out that the ranking of the profiles
is respected to the set of VM types. In other words, a change
of the VM set can result in a different ranking. Look at the
above example again, if the set of VM types is changed to
{[1], [1, 1]}, profiles [4, 4, 2, 2] and [3, 3, 3, 3] have the same
quality as they both have three ways to develop to the best
profile: accommodating two [1, 1] VMs; accommodating four
[1] VMs; accommodating one [1, 1] VM and two [1] VMs.

B. PageRank Algorithm

The PageRank algorithm was designed by Google to rank
webpages in their search engine results. PageRank works by
counting the number and weights of links pointing to a page to
determine a rough estimate of how important the webpage is.
The underlying assumption is that more important webpages
are likely to receive more links from other webpages [29].
Specifically, it works by treating each backlink to a webpage
as if it were a vote of support for that page, and by giving high
weight to a vote if it comes from a webpage that itself has
a high rank. In order to know the rank of the voting page to
begin with, the PageRank algorithm must run iteratively until
votes in all directions have had a chance to propagate.

We abstract the demanded resource of a VM across multiple
dimensions as the demand resource profile of a VM, and
abstract the used resource of a PM across multiple dimensions
as the used resource profile of a PM. Instead of ranking
webpages, our objective now is to rank each possible profile
of a PM. A ranking of a VM placement decision is corre-
sponding to the ranking of the PM usage resource profile after
accommodating the VM. Specifically, we rank the PM usage
profiles in terms of the probability of reaching the best profile,
and make VM placement decisions based on the rank.

Suppose there are two PM usage profiles Pa and Pb. We
consider Pa to be a vote of support for profile Pb if Pb can be
transferred from Pa via hosting a VM from any types of the
VMs. We define the procedure of forming a new PM usage



profile as adding the requested VM resource demands to the
PM usage profile. The vote for Pb is given a weight based on
the rank of Pa itself. In order to know the rank of Pa to begin
with, the algorithm must be run iteratively until votes in all
directions have had a chance to propagate. In the general case,
the PageRank value for any profile Pi can be expressed as:

PR(Pi) =
1− d
N

+ d
∑

Pj∈M(Pi)

PR(Pj)

L(Pj)
, (12)

where P1, P2, ..., PN are the profiles under consideration,
M(Pi) is the set of profiles that link to Pi, L(Pj) is the number
of outbound links of profile Pj , d is a damping factor, and N
is the total number of profiles. We set the damping factor to
0.85 as generally assumed [8]. Once the rank of each profile
has been computed, the VM placement problem is solved by
placing the VM in the PM that gives the highest rank after
allocating the VM to the PM.

Algorithm 1 shows the pseudocode for calculating the
PageRank scores for each PM resource usage profile. The
algorithm takes the PM multi-dimension resource capacity,
the set of VM types Sv , and a damping factor d as input.
The algorithm first generates the profile graph G based on
the PM capacity and VM types (Line 1). The profile graph
is a graph with its nodes representing PM usage profiles,
and its edges representing placing VMs of certain types to
the profiles and producing new profiles. After the graph is
generated, the algorithm defines two variables associated with
each node (profile), PR(Pi) and Aux(Pi), where PR(Pi)
is the PageRank score of node Pi, Aux(Pi) is an auxiliary
variable that helps to calculate the PageRank scores of the
profiles pointed to Pi (e.g., the second term in Equ. (12)). The
algorithm initiates PR(Pi) to 1

N , and Aux(Pi) to 0 (Lines 2-
4). Aux(Pi) is calculated based on the equation in Line 10.
The algorithm then iteratively calculates the PageRank score
for every node in the graph until the PageRank scores converge
(Lines 6-18). For example, the PageRank scores are regarded
as convergent when the difference between the PageRank score
of every node and the PageRank score of this node calculated
in the previous iteration is smaller than a threshold ε. Within
each iteration, the algorithm checks each node in the graph.
For each node Pi ∈ G (Line 7), it finds out the nodes pointed
by Pi (e.g., S(Pi)) (Line 8) and then updates the value of the
auxiliary variable of every node pointed to by Pi based on
their old auxiliary variable, the PageRank score of node Pi,
and the number of nodes pointed to by Pi (e.g., |S(Pi)|) (Lines
9-11). The algorithm then iterates over each node, calculates
the PageRank score of each node, and sets the auxiliary
variable to 0 (Lines 13-16). The last step in each iteration is
to normalize the PageRank scores (Line 17). Finally, for each
profile, we compute its final PageRank value by multiplying
the Best Possible Resource Utilization (BPRU) of this profile
(Line 19). The BPRU of a profile is defined as the maximum
resource utilization (which is within [0, 1]) that the profile can
further reach by accommodating several other VMs, i.e., the
maximum resource utilization among those of the endpoints of

paths containing the profile. If a profile cannot accommodate
any other VMs, then the BPRU of this profile is the resource
utilization of itself. The purpose of this discounting step is to
discount the rank of profiles that will not reach the best profiles
finally, i.e., the endpoints of the paths containing such a profile
are not the best profile. We refer to a profile’s endpoints as the
endpoints of the paths containing the profile. A lower BPRU
value (i.e., a longer distance between the maximum resource
utilization of a profile’s endpoints and the best profile) leads
to more discounting and vice versa.

As a result, the final rank of a profile represents the
probability that this profile can reach the best profile or high
resource utilization. Therefore, to choose a PM to host a given
VM among multiple PMs, we calculate each PM’s profile
after hosing the VM and then choose the PM that has the
highest rank, i.e., the PM that has the highest probability
of reaching the best profile. For this purpose, we produce a
Profile-PageRank score table from the graph, in which each
profile is associated with a rank score.

The graph and Profile-PageRank score table are relatively
stable during a certain period of time (e.g., one month). Only
after many new VM types appear, the graph and table need
to be updated. For example, Amazon predefines the types of
VMs, so the graph and table do not need to update unless
Amazon adds many more types of VMs.

ALGORITHM 1: Pseudocode for PageRank algorithm.
Input: PM with multiple dimension resource capacity;

set of VM types Sv , damping factor d;
Output: PageRank scores for every profile;

1 Generate profile graph G;
2 for each Pi ∈ G do
3 PR(Pi) =

1
N

;
4 Aux(Pi) = 0;
5 end
6 while Pagerank not converging do
7 for each Pi ∈ G do
8 S(Pi)←the set of profiles pointed by Pi, which is derived by

accommodating an additional VM from the set of VMs Sv ;
9 for each profile P ′i ∈ S(Pi) do

10 Aux(P ′i ) = Aux(P ′i ) +
PR(Pi)
|S(Pi)|

;
11 end
12 end
13 for each Pi ∈ G do
14 PR(Pi) =

1−d
N

+ d×Aux(Pi);
15 Aux(Pi) = 0;
16 end
17 Normalize: PR(Pi) =

Pi∑
j Pj

;

18 end
19 PR(Pi) = PR(Pi) ∗BPRU(Pi);

C. VM Allocation Algorithm

The goal of our initial VM allocation algorithm is to
place all VMs in as few PMs as possible, ensuring that the
aggregated demand of VMs placed in a PM does not exceed
its capacity across each resource dimension. As the problem
is analogous to the multi-dimension bin packing problem
which is NP-hard, we propose a dimension-aware heuristic
algorithm to solve this problem, which takes advantage of



cross dimensional complimentary requirements for different
resources based on the designed PageRank score.

Algorithm 2 shows the pseudocode for our initial VM
allocation algorithm that allocates each VM in VM list
to the PMs in the system. This algorithm refers to the
Profile-PageRank score table obtained from Algorithm 1 for
finding a suitable PM for each VM in VM list (Line 1).
The mechanism keeps two lists for all PMs in the system:
used PM list includes all used PMs and unused PM list
includes all unused PMs. In order to minimize the number of
PMs used, to find a PM to host a given VM, the mechanism
first attempts to use a PM from used PM list, and then from
unused PM list.

ALGORITHM 2: Pseudocode for initial VM allocation.
Input: max Score = 0;

1 for each VM in VM list do
2 for each PM in used PM list do
3 if PM does not have sufficient resource then
4 Continue;
5 else
6 Derive the set of possible PM profiles after

accommodating every permutation of the VM’s profile;
7 Select the profile with the maximum PageRank score as

the best profile of the VM on this PM;
8 if PageRank score > max Score then
9 max Score ← PageRank score;

10 allocate PM ← assign the VM on this PM using
the best accommodation;

11 end
12
13 end
14 if allocate PM 6= null then
15 return allocate PM ;
16 else
17 for each PM in unused PM list do
18 if PM has sufficient resource then
19 allocate PM ← this PM;
20 Move the PM to used PM list; Exit;
21 else
22 Exit; // no solution
23
24 end
25
26 end

First, the algorithm iterates the used PM list to find the
best PM (Lines 2-13). For each PM in used PM list, the
algorithm checks whether the PM has sufficient resources to
host the VM. If the PM does not have sufficient resources, the
algorithm continues to check the next PM in used PM list
(Lines 3-4). If the PM has sufficient resources, the algorithm
derives the PM resource usage profile after accommodating
the VM. We need to consider the permutations of the
VM’s request. Specifically, the algorithm derives the set of
possible usage profiles on the PM after adding every possible
permutation of the VM’s request, and then looks up the
PageRank scores of all the possible usage profiles from the
Profile-PageRank score table. We then select the profile with
the maximum PageRank score as the best accommodation
of the VM on this PM, and record the score of this profile
(Lines 6-7). Finally, the algorithm finds the scores of all PM
options. The algorithm then finds the maximum score and the

corresponding PM. The PM that will result in the maximum
score is chosen for the VM (Lines 9-10). If a suitable PM
is found in the used PM list (Line 14), then the algorithm
return the PM (Line 15); otherwise, the algorithm continues
to search the unused PM list to find a suitable PM (Lines
17-24). For each PM in unused PM list, the algorithm
also checks whether the PM has sufficient resources to
host the VM (Line 18). If the PM does not have sufficient
resources, the algorithm continues to check the next PM
in unused PM list. On the other hand, if the PM has
sufficient resources, the algorithm selects this PM for the VM,
moves this PM to used PM list, and returns (Lines 19-20).
If a suitable PM cannot be found in unused PM list, the
algorithm returns with no solution (Line 22).

In summary, PageRankVM simply refers to the Profile-
PageRank score table to determine the VM placement. The
computation complexity is low compared to the previous
methods that need to resolve a linear programming problem.
Calculating the new profile of each PM in used PM list
after hosting the given VM may generate a certain overhead.
To solve this problem, we can adopt the 2-choice method, in
which two PMs are randomly selected and then the best one is
selected. Based on the previous works on the 2-choice method,
the 2-choice method will lead to exponential improvement
over one choice, but a poll size larger than two gains much
less substantial extra improvement [26], [4]. However, this is
not the focus of this paper.

VI. PERFORMANCE EVALUATION

To evaluate the performance of PageRankVM, we have
implemented the algorithm, and conducted a simulation study
on CloudSim [9] and a GENI testbed experiment [16].

A. Experiment Setup

Simulation. We conducted experiments on CloudSim, a
modern simulation framework for cloud computing environ-
ments. In the experiments, we allocate an increasing number of
VMs, from 1000 to 3000 with an interval of 1000, to the PMs.
We repeatedly carried out each experiment for 100 times and
reported the results. At the beginning, the VMs are allocated
to the PMs based on the corresponding algorithms. When a
PM is overloaded, its VMs need to be migrated to other PMs.
When the simulation is started, the simulator calculates the
resource utilization status of all the PMs in the datacenter every
300 seconds, and records the number of VM migrations and
the number of overloaded PMs (the occurrence of overloaded
PMs) during that period. We simulate a period of 24 hours.

We follow the VM and PM setup in Amazon EC2 [14] as
close as we can. We take a subset of the allowed VM types
(classes) of Amazon’s EC2. Their resource requirements are
shown in Table I. We use a subset of the PM types in Amazon
EC2, which are listed in the Table II. Cloud providers general-
ly do not disclose the detailed capabilities of all their PMs. The
amount of resources that each type of PMs is equipped with
(shown in Table II) is largely our guess based on the infor-
mation revealed on Amazon’s web site. Given the diversity of



TABLE I
DESCRIPTION OF VM TYPES

VM Types Virtual cores Memory (GiB) Virtual Disk
# Speed (GHz) # Size (GB)

m3.medium 1 0.6 3.75 1 4
m3.large 2 0.6 7.5 1 32
m3.xlarge 4 0.6 15 2 40
m3.2xlarge 8 0.6 30 2 80
c3.large 2 0.7 3.75 2 16
c3.xlarge 4 0.7 7.5 2 40

physical hardware that vendors offer, the amount of resources
listed in Table II can also be understood as a plausible sample.

GENI testbed. In this real GENI testbed experiment, since
we are not allowed to virtualize requested machines, we used
the VM instances to emulate the PMs and ran jobs on the
instances to emulate the VMs. In other words, we emulate
the VM placement process as assigning jobs to run on each
instance. When a PM (instance) is overloaded, we need to
select some VMs (jobs) running on the PM, kill the VMs (jobs)
and continue them on the destination PMs. We configured a
testbed on GENI with 10 VM instances, each of which has
4 CPU cores. The instances are connected to a switch via
1Gbps links. We use another instance to act as a centralized
controller (also connected to the switch via a 1Gbps link),
which is responsible for running the VM placement algorithms
to assign the jobs on different instances. Later on in this paper,
we will refer to the VM instances as PMs and the jobs as VMs.

When the experiment starts, the centralized controller cal-
culates the resource utilization status of all the PMs in the
datacenter every 10 seconds, and records the number of VM
migrations and the number of overloaded PMs (the occurrence
of overloaded PMs) during that period. We ran the GENI
testbed experiment in a period of 4 hours.

We considered the CPU resource allocation only. To consid-
er the anti-collocation constraints, the 4 physical CPU cores of
the PM are regarded as a 4-dimensional vector. The VM types
we used are [1,1], [1,1,1,1], which represent that the VMs
demand 2 vCPUs from two CPU cores, and 4 vCPUs from
four CPU cores, respectively. We assume that each physical
CPU core can host 4 vCPUs in this experiment.

Workload. For the simulation, we used the workload trace
[9] available in CloudSim to generate each VM’s resource
consumption. The trace contains the CPU utilization of each
node in PlanetLab every 5 minutes for 24 hours. We randomly
chose traces of the VMs in our experiments. We also carried
out experiment using public available Google cluster usage
trace [18], the trace represents 29 day’s resource usage infor-
mation from May 2011, on a cluster of about 11k machines.
For the GENI testbed experiment, we only used the Google
cluster usage trace [18]. The resource utilization trace from
PlanetLab VMs and Google Cluster VMs are used to drive
the VM resource utilizations in the simulation and the GENI
testbed experiment.

Comparison Algorithms. In the experiment, we imple-
mented PageRankVM. When a PM is overloaded in PageR-
ankVM, for each VM on the PM, we check the PageRank
value of the resulting profile of this PM after removing the

TABLE II
DESCRIPTION OF PM TYPES

PM Types Physical Cores Memory (GiB) Physical Disk
# Speed (GHz) # Size (GB)

M3 8 2.6 64 4 250
C3 8 2.8 7.5 4 250

TABLE III
POWER CONSUMPTION VS. CPU UTILIZATIONS.

CPU util. 0% 20% 40% 60% 80% 100%

E5-2670 (W) 337.3 349.2 363.6 378 396 417.6
E5-2680 (W) 394.4 408.3 425.2 442.0 463.1 488.3

VM. Then we select the VM that can result in the highest
PageRank value to remove. The destination PM is then select-
ed based on Algorithm 2.

We compare PageRankVM with three algorithms, First Fit
(FF) [27], First Fit Decreasing Sum (FFDSum) [30] and Com-
pVM [10]. PageRankVM places VMs to PMs based on the
PageRank scores of the resulting PM resource usage profile.
FF places VMs to first PM that has sufficient resource to host
this VM. FFDSum calculates the size of PM by weighted sum
of the d-dimensional vector, which represents the resource
capacity in d dimensions, and greedily places VMs to PMs
with decreasing sizes. CompVM coordinates the requirements
of resources and consolidates complementary VMs in the same
PM. When a PM is overloaded in the above three methods,
we use the default VM migration algorithm in CloudSim [9]
to select VMs to migrate out. The destination PM for FF,
FFDSum, and CompVM is then selected based on their own
VM allocation algorithms, respectively. All algorithms use
the strategy of PageRankVM to satisfy the anti-collocation
constraints.

Energy Model. Energy consumption by PMs in datacenters
is mostly determined by the CPU, memory, disk storage,
power supplies and cooling systems [21], and the work in
[6] gives the total energy consumption amount based on the
CPU utilization. The configuration and power consumption
characteristics of our used servers, M3 (High Frequency
Intel Xeon E5-2670 v2 (Ivy Bridge) Processors [14]) and
C3 (High Frequency Intel Xeon E5-2680 v2 (Ivy Bridge)
Processors [14]), are scaled based on the CPU capacities and
power characteristics of HP ProLiant ML110 G4 in [11],
[23]. The power consumption characteristics of M3 and C3
are shown in Table III. Although these power consumption
characteristics may not be exact accurate for the real processor
models, it still sheds some light on the power consumption
of the servers. Using this table, we calculate and compare the
energy consumption of different algorithms. Since we leverage
an estimation method to build the energy model and the model
for the simulation and GENI testbed experiment is the same,
we only evaluated the energy consumption in the simulation.

Comparison Metrics. We compared the VM placement
algorithms in terms of the following metrics:
• The number of PMs used. It measures the resource

efficiency of VM allocation algorithms to host all the
VMs.

• The energy consumption. It measures the cumulated en-
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Fig. 3. The number of PMs used in the simulation.

ergy consumption of all PMs at the end of simulation.
• The number of VM migrations. It measures the number

of VMs that are migrated in response to PM utilization
overload during the experiment.

• The SLO violations. It is represented by the percentage of
time, during which active hosts have experienced the CPU
utilization of 100% [11], [35]. CPU utilization of 100%
indicates that the cumulated CPU resource demands from
all the VMs in a PM is the same as, or more likely has
exceeded the CPU capacity of the PM.

B. The Number of PMs Used

Figures 3(a) and 3(b) show the median, the 1st and 99th

percentiles of the total number of PMs used to provide service
of the corresponding algorithms when the number of VMs
was varied from 1000 to 3000 using the PlanetLab trace
and the Google Cluster trace in the simulation, respectively.
The result follows PageRankVM < CompVM < FFDSum <
FF. FF and FFDSum consider if there is sufficient resource
in the PMs to host the VMs, while neglecting the resource
utilization balance across different resource dimensions. This
may result in some PMs that fully utilize one resource but
under-utilize other resources. Especially, as we are considering
the VM placement problem with anti-collocation requirement,
previous single dimension resources such as CPU are now
regarded multiple dimensions. This exaggerates the bad per-
formance of the dimension unaware algorithms (e.g., FFDSum
and FF). In contrast, CompVM outperforms FFDSum and
FF, because it consolidates complementary VMs in different
resource dimensions, thus fully utilizing each resource in each
PM. PageRankVM needs fewer PMs than CompVM, because
CompVM is a variation-aware approach, which is not as good
as the PageRank based approach in terms of identifying a
placement decision that has a higher potential to accommodate
more VMs. The error bars show that the deviation of the results
also follows the same order, which demonstrates the stability
of PageRankVM.

Figure 4(a) shows the total number of PMs needed versus
different number of VMs in the GENI testbed experiment
using the Google Cluster trace. We see that PageRankVM used
fewer PMs than FF, FFDSum and CompVM when there are
200 and 300 VMs. However, the performance difference is not
as large as the difference in the simulation. This is because the
advantages of PageRankVM over other algorithms are more
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Fig. 5. The energy consumption in the simulation.

significant when the scale is relatively large and there are more
resource dimensions. In this GENI testbed experiment, the
number of PMs and the number of dimensions of resource
vector are relatively small. Both simulation and GENI testbed
results confirm the advantage of PageRankVM in reducing the
number of PMs used.

C. Energy Consumption

We then compare energy consumption of the datacenter dur-
ing 24-hour simulations of the corresponding VM placement
algorithms. The energy consumption is calculated according
to the CPU utilization as shown in Table III. Figure 5(a) and
Figure 5(b) show the median, the 1st and 99th percentiles of
the energy consumption of the corresponding algorithms when
the number of VMs was varied in the simulation. We see that
the result follows PageRankVM<CompVM<FFDSum<FF.
FF consumes highest energy, FFDSum consumes lower energy
than FF, and CompVM consumes less energy than FFDSum.
This is because FF has a high number of active PMs, while
FFDSum has fewer than FF, and CompVM has fewer than
FFDSum. PageRankVM outperforms the other algorithms in
terms of energy consumption for two reasons. First, PageR-
ankVM leads to a less number of active PMs than the other
algorithms. Second, PageRankVM results in higher resource
utilization on the active PMs. The range of the error bars
also follows the same order, indicating the stability of PageR-
ankVM in using fewer number of PMs to provide the same
service than the other algorithms. These experimental results
indicate that PageRankVM is more energy-efficient compared
to other algorithms.

D. The Number of VM Migrations

VM migration is triggered when a PM becomes overloaded.
In the experiment, an overloaded PM is flagged if the PM
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Fig. 6. The number of migrations in the simulation.
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Fig. 7. The SLO violations in the simulation.

resource utilization exceeds a threshold (i.e., 90%). Figure 6(a)
and Figure 6(b) show the median, the 1st and 99th percentiles
of the number of VM migrations of the corresponding
algorithms when the number of VMs was varied in the
simulation. We see that the result follows PageRankVM <
CompVM < FFDSum < FF. FFDSum and FF have high
number of VM migrations because they fail to balance the PM
resource utilizations across different dimensions. CompVM
outperforms FFDSum and FF because it tries to balance
the PM resource utilizations across multiple dimensions.
PageRankVM generates fewer migrations than the other
algorithms because it is able to avoid many VM migrations
that are resulted from the overload of a single dimension.
Also, PageRankVM can avoid overloading the destination
PMs in the future by appropriately selecting PMs based on the
PageRank scores of the resulting PM utilization profiles after
accommodating the VM. The result of FFDSum and FF also
indicate that they cannot reduce the number of VM migrations
even though they use a higher number of PMs. The range of
the error bars also follows the same order, due to the stability
of PageRankVM in using fewer PMs as explained before.

Figure 4(b) shows the number of VM migrations versus
different number of VMs in the GENI testbed experiment.
Similarly, we see that PageRankVM leads to fewer VM
migrations than FF, FFDSum and CompVM, due to the same
reasons mentioned above.

E. SLO Violations

Figure 7(a) and Figure 7(b) show the median, the 1st and
99th percentiles of the SLO violations of the corresponding
algorithms when the number of VMs was varied in the
simulation. We see that the result follows PageRankVM <
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Fig. 8. The SLO violations in the GENI testbed experiment.

CompVM < FFDSum<FF. FF has the highest SLO violations,
and CompVM is better than FFDSum and FF due to the reason
that CompVM tries to balance the PM resource utilizations
across multiple dimensions as explained before. PageRankVM
has a lower percentage of SLO violations due to two reasons.
First, PageRankVM considers different types of VMs, properly
assigns multiple dimensional VM resource demands to PMs
and hence avoids producing many overload PMs. Second,
PageRankVM has a lower number of VM migrations as shown
in Figure 6 which generates lower CPU consumption. The
range of the error bars follows the same order, which confirms
the stability of PageRankVM in constraining the number of
SLA violations.

Figure 8 shows the SLO violations versus different number
of VMs in the GENI testbed experiment. We see that PageR-
ankVM results in fewer SLO violations than FF, FFDSum and
CompVM, due to the same reasons explained above.

VII. CONCLUSIONS

In this paper, we studied the VM placement problem.
Previous algorithms try to place VMs to PMs that can more
fully utilize the resources and generate less variance in the
resource usage across different dimensions. We show that
these approaches do not necessarily improve the resource
utilization in long term or reduce the number of PMs needed.
We propose PageRankVM, a PageRank based VM placement
algorithm with anti-collocation constraints. We abstract the
multi-dimensional resource usages of a PM as a resource usage
profile. PageRankVM ranks each possible resource usage
profile of PMs after they host a given VM, in terms of the
probability of fully utilize the resources across dimensions
finally. PageRankVM also considers each physical hardware
as one dimension and uses different permutations of a VM’s
resource request to satisfy the anti-collocation constraints in a
lightweight manner. Compressive trace-driven simulation and
GENI testbed experiments show the superior performance of
PageRankVM in comparison with other heuristic algorithms.
In the future, we will explore incorporating network infrastruc-
ture in designing PageRankVM in order to achieve bandwidth
efficiency for the VM placement problem.
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