
Memory/Disk Operation Aware Lightweight VM
Live Migration Across Data-centers with Low

Performance Impact
Bin Shi

School of Computer Science and Engineering,
Beihang University

Beijing, 100191, China
shibin@act.buaa.edu.cn

Haiying Shen
Department of Computer Science

University of Virginia
Charlottesville, VA, USA

hs6ms@virginia.edu

Abstract—Live virtual machine migration technique allows
migrating an entire OS with running applications from one
physical host to another, while keeping all services available
without interruption. It provides a flexible and powerful way
to balance system load, save power and tolerant faults in
data centers. Meanwhile, with the stringent requirements of
latency, scalability, and availability, an increasing number of
applications are deployed across distributed cloud data-centers.
However, existing live migration approaches still suffer from
long downtime and serious performance degradation in cross
data-center scenes due to the mass of dirty retransmission,
which limits the ability of cross data-center scheduling. In this
paper, we propose a system named Memory/disk operation aware
Lightweight VM Live Migration across data-centers with low
performance impact (MLLM). It significantly improves the cross
data-center migration performance by reducing the amount of
dirty data in the migration process. In MLLM, we predict disk
read workingset (i.e., more frequently read contents) and memory
write workingset (i.e., more frequently write contents) based on
the access sequence trace. And then we adjust the migration
models and data transfer sequence based on the workingset
information. We also present two optimizing methods to filter
unused blocks and to de-duplicate data content by a hot data
cache, thereby greatly decreasing the amount of data to be trans-
ferred. We implement MLLM on the QEMU/KVM platform and
conduct several real-world experiments. The experimental results
show that our method averagely reduces 67.0% of total migration
time and 41.6% service downtime over existing methods.

I. INTRODUCTION

In recent years, cloud computing has experienced vigorous
growth due to its capacity to utilize the IT infrastructure
efficiently while providing the high quality of service (QoS)
to users. Virtual machine (VM) live migration [1], which is a
key technique of cloud computing, enables the administrator
to move a running VM from one physical host to another
without imposing appreciable service downtime. This provides
a graceful and powerful means to 1) enable dynamic load
balancing when a physical host is overloaded by migrating
VMs out of this host; 2) implement hardware maintenance, e.g.
upgrade the hypervisor after migrating all the running VMs
out; 3) enable load-concentration by migrating other VMs in
when a physical host becomes underutilized; and 4) continue
the service when a physical host is at the end of its lifecycle
by migrating its VMs to other running physical hosts [2]–[4].

Live migration needs to transfer CPU state, memory, net-
working and storage content of the running VM, guaranteeing

that the final destination copies of VM states are identical to
the source ones. At present, the most widely employed live
migration method is pre-copy [1], in which the target VM
starts running after the entire VM is copied to the target host.
Since the source VM keeps running while it is migrating, some
states could be updated (i.e., get dirty), rendering inconsistency
between the source states and destination states. Therefore, all
the dirty states should be recorded and retransferred iteratively
until the remaining dirty data is small enough. Then, the VM
stops running and the remaining dirty pages are copied to the
destination (i.e., stop-and-copy phase). Pre-copy has less guest
performance penalty because all the data is completely copied
before the target VM starts. However, it is considered to be
an unreliable operation, and only 87% of those migrations are
successful [5], [6]. A common failure is that the migration
process takes too much time transferring the frequently-dirty
data repeatedly using limited bandwidth, and consequently the
migration cannot be completed within the required time. To
handle this problem, traditional methods simply cancel the
migration when a failure occurs or enter the stop-and-copy
phase ahead of schedule. Alternatively, other methods [1], [7]
employ remedies that slow down the VM states dirty rate
by using process-stunning and write-throttling. However, all
the solutions above are considered as degraded live-migration
since they sacrifice QoS [6].

Pre-copy also introduces much extra traffic due to the large
amount of dirty retransmission. This problem becomes more
significant in cross data-center migration scenario. Compared
with migration within a single data-center, cross data-centers
migration 1) requires disk migration since it is less likely
to use a global network-attached storage in cross data-center
environments, and 2) has limited bandwidth since the net-
work bandwidth assigned for migration is limited considering
that the outlet bandwidth which contains massive data is quite
expensive in data-centers. Actually, an increasing number of
VM applications are deployed at a very large scale across
multiple cloud data-centers as the requirements of both data
volume and calculation ability have grown rapidly. For this
reason, it is urgent to solve the problem and improve the
performance of migration.

Some efforts have been made to solve the problem of the
large amount of dirty retransmission. Post-copy [8] starts the
destination VM first and it fetches data from the source VM

when it needs the data. However, since the VM needs to
wait until it receives the data, such on-demand data fetching
generates high latency for the VM running. To mitigate this
problem, hybrid-copy [9], [10] was proposed that combines
pre-copy and post-copy. It copies the states from the source
host to the destination host along with a bitmap indicating
dirty data, and then the destination VM starts running. When
it requires data that is dirty, it fetches the data from the source
VM, which avoids considerable retransmission of the dirty
data that is not needed. However, the on-demand data fetching
still leads to certain latency for the VM running.

The works in [11]–[13] try to reduce the amount of dirty
retransmission by transferring more frequently updated con-
tents (write workingsets) later, so that the probability for them
to get dirty will decrease. Those works treat memory and
disk content separately ([11] only focuses on disk migration
while [12], [13] only focus on memory migration). However,
they need to be jointly considered since disk accesses are
usually associated with memory accesses in modern operating
systems. In addition, the works in [12], [13] introduce much
overhead to guest VM by tracing memory access online with-
out hardware assistance. [12] also faces the problem that it uses
a fixed size for a workingset pre-defined by users. However,
the workingset size is determined by applications rather than
users, so the fixed size will probably be underestimated or
overestimated, thus limiting the performance improvement.
[13] uses hidden Markov model (HMM) to predict the dirty
probabilities for each memory page but consumes large re-
sources to train an HMM online.

In this paper, we propose a system for Memory/disk opera-
tion aware Lightweight VM Live Migration across data-centers
with low performance impact (MLLM). MLLM is novel in the
following aspects:
• It considers the different adverse performance impacts from
different memory operations (i.e., disk write, disk read, memo-
ry write, and memory read) of a VM in different VM migration
models (i.e., pre-copy and post-copy) and adaptively chooses
the models for different memory operations in order to reduce
the adverse performance impact as much as possible. It jointly
considers memory and disk for disk write operations, so that
disk content can be directly fetched from the local memory
rather than from the remote source VM.
• To reduce the overhead of finding frequently updated contents
online, we first track the disk and memory access sequence
by leveraging the new hardware feature called Extend Page
Table Access/Dirty Bit [14] (EPT A/D bit). With this feature,
MLLM eliminates the large time consumption introduced by
frequently trapping into the hypervisor, thus reducing the guest
VM overhead.
• MLLM can more accurately estimate the workingsets. Specif-
ically, we predict disk read workingset based on access locality
characteristics, while predict memory write workingset by a
modified CLOCK algorithm [15].

A workingset is a collection of data which is more fre-
quently accessed during a period of time. Based on the access
sequence, we identify different workingsets: memory write

workingset and disk read workingset. We identify these work-
ingsets because the required inputs for identifying them are
easier to get. We can know memory read workingset and disk
write workingset by calculating the complementary set. We
then adopt specific migration models for each of workingset.
Moreover, we also present two optimizing methods to filter
unused blocks and to de-duplicate data content by a hot data
cache, thereby greatly decreasing the amount of data to be
transferred.

We developed MLLM on the QEMU/KVM [16] platform
and conducted real wide-area migration experiment with dif-
ferent workloads from 1) Beihang Xueyuan Road data-center
to Beihang Shahe data-center; 2) Beihang Xueyuan Road
data-center (in Beijing) to Shanghai Jiaotong University (in
Shanghai). The results of the experiment show that MLLM
offers negligible downtime and shorter total migration time,
while incurring fewer guest penalties in comparison with
existing solutions.

The remainder of the paper is organized as follows. We
show our motivation in Section II. In Section III, we propose
the basic design of our system. Section IV presents the
enabling techniques and several optimizations of the system.
Then we evaluate the effectiveness and performance in Sec-
tion V. Section VI introduces the related work on the live
migration. Finally, in Section VII, we conclude the work of
MLLM.

II. MOTIVATION

The memory operations of a VM’s workload can be classi-
fied to disk write, disk read, memory write, and memory read.
We summarize the performance impacts when conducting
different operations in the pre-copy and post-copy models in
Table I. Accessing memory is supposed to be very fast (on the
order 100 nanoseconds) and it is always in a synchronous way,
which means it will block other operations until success. While
the disk accesses are usually in an asynchronous way and their
time consumption is on the order of 10 milliseconds, which
is the same as on-demand-fetching latency. Therefore, on-
demand-fetching latency is unacceptable for memory access
while it is bearable for disk access. For this reason, mem-
ory write and memory read operations will introduce heavy
performance impact for post-copy.

TABLE I: Performance impact on different operations.

Models post-copy pre-copy
Disk Write Little Yes

Performance Disk Read Medium No
Impact Memory Write Heavy Yes

Memory Read Heavy No

On the contrary, disk read operation will only impose
medium impact. We notice that disk write operations are
special: Disk write operations on old blocks may just modify
part of the data rather than totally replace it. So they may
need to read old data from disk first (eligible to trigger
on-demand-fetchings), edit them in the memory, and then
write; While disk write operations on fresh blocks will just

replace the fresh blocks. For this reason, they will copy whole
blocks of data from memory buffer cache to disk. Based
on our experiment, 68% of the disk write operations are
associated with fresh blocks. Therefore, disk write on post-
copy will avoid many on-demand-fetchings thus they only
introduce a little performance impact. For pre-copy, disk and
memory read operations will not cause dirty retransmission,
so they don’t impose performance impact. In contrast, both
disk and memory write operations cause dirty retransmission
and impose performance impact.

The above analysis results give us guidance on improving
the VM migration methods. That is, we can distinguish the dif-
ferent memory operations of a VM’s workload, and adaptively
use different VM migration models in order to reduce adverse
impact on the VM performance. For disk-write operations, we
can use post-copy, while for other memory operations, we can
use pre-copy.

III. BASIC IDEA OF THE SYSTEM DESIGN

1) Using Different Migration Models for Different Work-
ingsets: As analyzed in Section II, different kinds of memory
operations have different adverse performance impacts in the
two different VM migration models. Therefore, we aim to pre-
dict operations and use the better migration model accordingly.
More specifically, we predict the locality of each memory/disk
operation and finally divide all the VM data into four sets:
memory write workingset, rest of memory (memory read
workingset and cold memory pages), disk read workingset,
and rest of disk (disk write workingset and cold disk blocks).
After that, we use post-copy for the disk write and disk cold
workingset while use pre-copy for other three workingsets.
By this means, both the VM performance impact and total
network traffic (and hence migration time) will be reduced.

2) Workingset-aware Pre-copy Schedule: Recall that the
disk read workingset and all the memory will be migrated
by pre-copy model. We also change the migration sequence in
the pre-copy phase for performance improvement. Rather than
transferring them in a default sequence, we prefer to transfer
the memory write workingset at last. And we also copy the
disk reading workingset prior to pre-copying all the memory
pages, because that memory pages usually have more chances
to get dirty than disk blocks. In this way, the total amount of
dirty data and total migration time will decrease.

Based on the basic idea discussed above, we show Figure 1
to illustrate the overall work-flow of MLLM. In the first four
steps, the VM runs on the source physical host, we refer to
these fours steps as the pre-copy phase. And after the short
suspension in Step 5, the VM runs on the destination host. So
we call step 6 as the post-copy phase in the rest of our paper.
• Step 1: Workload profiling. Once the migration request
is issued, the online workload profiling steps begin to trace
memory/disk access sequence data and predict workingsets
based on the data. This is a preparing stage to improve
migration efficiency. More frequently updated contents will be
migrated later to avoid dirty retransmission. We start to trace
disk access sequence data and predict disk read workingset

On source host
(Running) Step 1:

Workload
profiling.
Strat to
trace VM
workload
feature in
VMM and
predict
working
sets.

Step 2: Copy disk read workingset.
 copy only once.
 record dirty blocks.

Step 3: Copy memory read workingset
and cold memory pages.
 record dirty pages.

Step 5: Stop and migrate.
 Copy CPU state and remaining memory.
 Set tunnel and DNS to redirect traffic.

Suspending
(Out of service)

Step 6: Pulling VM state.

On demand fetching
 With neighbor blocks.

Background copying
 Copy in order.

On destination host
(Running)

Step 4: Copy memory write workingset.
 record dirty pages.
 stop if meet stop-and-copy condition.

Pre-copy

Post-copy

iteratively
copy dirty

page

Fig. 1: The migration workflow.

immediately because these data contents will be transferred
first (Step 2). When Step 2 is nearly completed, we start to
trace memory write access sequence data and predict memory
write workingset. By this way, we can get memory workingset
information before copying memory (Step 3). It is also worth
noting that the workingsets may change since VM is running,
so we keep profiling and updating the predicting results until
stop and migrate step (Step 5) begins.
• Step 2: Copy disk read workingset. This step, also the
real beginning of the migration, begins after Step 1 when we
get enough data to predict the disk read workingset. In this
step, we migrate the disk read workingset. Since the disk read
workingset may overlap with disk write workingset, they may
get dirty as well. Therefore, we record dirty blocks in a bitmap
but do not retransfer the blocks in this step, and then we will
transfer them in post-copy phase (Step 6).
• Step 3: Copy memory read workingset and cold memory
pages. In this step, we copy the memory read workingset and
cold memory pages. We also record the pages which get dirty
during the migration.
• Step 4: Copy memory write workingset. After copying the
memory read workingset and memory cold pages, we copy
the memory write workingset and record dirty pages in this
step. When the copy is finished, we return to Step 3 to copy
the dirty memory pages and then go to Step 4 to copy the
write workingset dirty memory pages. This process repeats
iteratively until any of the following conditions are satisfied,
and then we jump to Step 5: i) The remaining data needs to
be transferred in the pre-copy model is less than a threshold,
e.g., it can be transferred within 30ms [16]; ii) The reserved
migration time has been used up; iii) The number of pages
sent in the current round is greater than the last two rounds,
which means that the dirty rate is bigger than the transfer rate
so that the condition 1 will not be satisfied.
• Step 5: Stop and migrate. We suspend the VM and transfer
the CPU state and remaining memory pages in transience.

Meanwhile, we set a virtual private network (VPN) tunnel
and a domain name server (DNS) to redirect traffic and new
connections to the destination host. To ensure the data consis-
tency between the source and destination, we also transfer the
bitmap of untransferred and dirty disk blocks to the destination
host.
• Step 6: Pulling VM state. In this step, we resume the VM
on the destination side. Since some data is dirty and some data
is still not transferred, the remaining state of VM is required
to be copied, which includes the dirty blocks in disk read
workingset and the rest of the disk. The subsequent procedure
is processed by two concurrent threads explained below.
Background copying: Post-copy [8] method copies the
remaining states stealthily in the background. As analyzed in
§II, disk write operations may not need on-demand-fetching
and disk read operations incur most of on-demand-fetching.
Therefore, in our design, to avoid the large amount of on-
demand-fetching, we propose to first copy the dirty blocks in
disk read workingset, then the rest of the disk blocks.
On-Demand-Fetching: It is possible that some data has
not been transferred in the background copying when is needed
in the destination side. In this case, on-demand-fetching is
conducted. To let the destination side know that some blocks
have not been transferred, before resuming the VM on the
destination host, we set the remaining blocks unreadable in the
hypervisor. If they are being read, we call for the up-to-date
content from the source host and fill the corresponding blocks.
The whole migration process succeeds when Step 6 is
finished. At that point, the destination host notifies the source
host to destroy the source VM.

IV. ENABLING TECHNIQUES

For the above designs, we must address two challenges:
• To predict these two workingsets, we need profiling (i.e.
tracking history access sequence of both memory and disk).
However, existing memory access trace method is time-
consuming. So a challenge is to trace memory access sequence
without incurring much overhead (presented in §IV-A).
• The second challenge of our solution is to accurately estimate
the workingsets. We predict disk read workingset by access
locality characteristics (presented in §IV-B), while predict
memory write workingset by a modified CLOCK algorithm
[15] (presented in §IV-C).

A. Efficient Access Sequence Tracing

As indicated, to predict the workingsets, MLLM needs to
trace both memory write and disk read access sequence.

1) Disk: The hypervisor emulates all disk I/O, disk reads
and writes initiated by guests are explicitly visible to the
hypervisor. So no further action is required, and we can use
an existing method that directly logs read and write access
sequence in the emulator.

2) Memory: The traditional way [1], [6] to trace memory
write is setting write protection for all the memory pages,
so all of the write operations upon these pages will trigger
VM-exit, which switches CPU context from the VM to the

hypervisor, and then we can log the memory writes in the
hypervisor. However, it introduces high performance loss due
to a large number of VM-exits. To provide efficient access
tracing, MLLM leverages the new Intel hardware virtualization
extension features, EPT A/D Flag and Page-Modification
Logging [14]. Specifically, MLLM enables accessed and dirty
flags for EPT using bit 6 of the extended-page-table pointer
(EPTP), and enables page-modification logging by setting bit
17 of the VM-execution control field. Then, whenever there is
a write to a guest-physical address, the processor sets the dirty
flag to the corresponding EPT entry. Meanwhile, the processor
will also record the guest-physical address of this access to a
4-KByte region of memory (the address can be configured
at VM-execution control field). When up to 512 addresses
have been recorded, a VM-exit will be triggered by log full
event. In the VM-exit handler, we will get the memory write
sequence record from the 4-KByte memory region, and then
we clear all the dirty flags as well as the 4-KByte memory
region. In this way, 512 write accesses triggers only one VM-
exit, which significantly improves performance compared with
the traditional method.

B. Disk Read Workingset Estimation

The disk read workingset should be predicted based on
both the temporal and spatial locality. The existing method
[11] estimates disk read workingset only at the block-level;
that is, the blocks near the accessed block are included in
the workingset. However, these blocks may not belong to the
same file of the accessed block. Therefore, failing to take file
system construction into consideration may adversely affect
the accuracy of identifying the workingset. In MLLM, we
consider that: i) If a block is read, then it is likely to be read
again in the recent future; ii) If a block of a file is read recently,
then the subsequent blocks in this file would possibly be read
as well; iii) If a small file is read recently, then other small files
in the same file directory would probably be read as well. For
example, in scenarios such as project compilation, when one
.c file is accessed, the other .c files in the same directory will
be very likely to be accessed too. Therefore, when a disk read
operation occurs, we add the all the blocks associated with
target blocks in these three categories into the workingset.
Once the workingset is full, we leverage the reuse distance
algorithm [17] to evict blocks. The reuse distance here equals
the number of other distinct blocks accessed between its last
access and its current access. If the block has been accessed
only once, then the reuse distance is infinite. In MLLM, a
block with a large reuse distance is evicted first even if it is
added to the workingset recently.

In order to make sure that the blocks in a workingset are
updated, we use a queue to maintain the disk read workingset,
as is shown in Figure 2. The first half part of the queue is
considered as eviction zone (blocks here are eligible to be
deleted from the workingset); while the other half of the queue
is the safe zone. The reason why we set a safe zone and
eviction zone is to ensure that a new coming block has enough
time to gain its real reuse distance. For a block K accessed

K

K

Safe ZoneEviction Zone

Reuse Distance

Fig. 2: The reuse distance algorithm.

or associated with a block that is accessed, if K is already in
the queue, we move K to the end of the queue and update the
reuse distance of this block, which is the previous position of
K in the queue to the end of the queue. Otherwise, we need
to add K to the tail of the queue and select a block to delete
from the queue if the queue is full. Specifically, we select the
blocks with the largest reuse distance in the eviction zone.
Note that some of the blocks that have not been accessed for
a long time may escape from being selected if their previous
reuse distances are small. Therefore, the algorithm updates the
reuse distance by adding 1 of all blocks that are in front of
the selected block when it is deleted. This is because the reuse
distance of the blocks after this selected block is incremented
by 1 after the block is deleted.

The maxsize of the workingset can be configured by users.
If the VM needs to run on the destination host as early as
possible, the maxsize should be set relatively small. Otherwise,
we should increase the size. In our implementation, we set the
maxsize as one tenth of the total disk size. And all the files
smaller than 1MB are considered as small files. For many
applications with low disk usage, the disk read workingset
will generally not reach the maxsize. If so, more disk blocks
which do not in the read workingset will be copied in post-
copy phase, and it will not affect much of the migration
performance.

C. Memory Write Workingset Estimation

Different applications in the VM usually have different
memory usage patterns. Therefore, for memory write work-
ingset prediction, we should not arbitrarily set a workingset
maxsize as explained in §I, because if the setting is larger or
smaller than the real situation, it will affect the improvement
performance. Therefore, the reuse distance algorithm (with
fixed workingset size) is not suitable in this case. Instead, we
slightly modify the CLOCK algorithm [15] (which is simple
but effective) for the purpose of predicting workingsets. It can
also automatically adapt to the actual workingset size. This is
the first work that uses the CLOCK algorithm for this purpose
though previous works use it for predicting cache visits.

As shown in Figure 3, in the CLOCK algorithm, all the
physical memory pages are regarded as a circular buffer;
we constantly loop over and scan the pages, like the hand
of a clock. Any page that has been written during the scan
loop is marked as being part of the current workingset. More
specifically, based on the access frequency, we label each page
by hot page, warm page, and cold page. Hot pages and warm
pages are included in the workingset while cold pages are not.
The hand moves through the pages and checks each page’s

W

CC

H

W

W

H
C

H
H

C

W

H C
W W

C C

C H
Clock
Hand

C

CC

H

W

H

H
C

W
H

C

W

H C
W C

W C

C H

Clock
Hand
√

√

√

√

0
1

2

3

4

5

6

7

8
9

1011
12

13

14

15

16

17

18
19 0 1

2

3

4

5

6

7

8
9

B) Hand move from page 0 to page 8A) Beginning state
1011

12

13

14

15

16

17

18
19

Fig. 3: An example of how the CLOCK algorithm works.
label. If a page is marked as cold, the page is eligible to be
copied in this iteration. Otherwise, the algorithm updates the
page’s status (i.e. changes it to a warm page if it was hot, and
changes it to a cold page if it was warm). After that, the hand
moves to the next page. Parallel to the scan loop, the algorithm
also updates the page’s status based on memory write accesses.
When a cold page is accessed, it will be promoted to a warm
page, and when a warm page is accessed, it will be promoted
to a hot page. To make cold/hot statuses accurately reflect their
current access behavior, the speed at which the scanner should
run depends on the time it takes to migrate the memory. In
particular, we move the scan hand at the same speed as the
migration pointer (pointing to the page to be migrated).

Figure 3 shows an example of our CLOCK algorithm. The
left circle is the initial state of the memory migration. We
derived the cold/hot statuses of the pages using initial profiling
before the memory migration began. The right circle shows the
movement of the clock hand from page 0 to page 8. As we can
see, pages 0 and 2, which were warm pages before, became
cold pages after the clock hand scanned them; pages 1, 4, 5,
and 7 were originally cold pages so they were transferred to
the destination; and page 8, which was a hot page, became a
warm page. During the time the clock hand moved from page
0 to page 8, pages 3, 6, 13, and 16 were written. For this
reason, page 16 became a warm page, page 13 became a hot
page, and the statuses of pages 3 and 6 kept the same after
being scanned.

D. Filtering Unused Blocks in Disk

There are two common states for disk space, used state and
available state (not used state). During migration, only the used
disk blocks are necessary to be copied. But existing strategies
[7], [11], [18] tend to migrate all the blocks regardless of
their states, which introduces longer transmission latency and
higher network traffic.

In our system, we propose a VM introspection (VMI)
based approach to recognize the unused blocks. Our approach
leverages VMI to scan the file system meta-data which records
which blocks are currently available. With this information,
during Step 6: Pulling VM State, we can ignore the blocks that
are not used when transferring disk blocks, thereby avoiding a
large amount of unnecessary transfers. Specifically, to get this
information, we need to scan all the meta-data in the virtual
disk’s file system, including both in-memory meta-data and

in-disk meta-data. We present the phases of our approach in
detail below.
• Phase 1: Read from Disk. Firstly, before Step 5: Stop
and migrate, we read the available block following the file
system structure. More specifically, we first read out the disk’s
superblock (the file system structure) that has the information
of the position of each block group (another file system
structure). From the description of a block group, we search
for the bitmap which records whether each block in the group
is used or available. Once acquiring the bitmap blocks for all
block groups, we can build a complete bitmap for the entire
disk. We conduct this phase before Step 5: Stop and migrate
(which cannot be long) since scanning a large number of disk
blocks would take a relatively long time.
• Phase 2: Read from Memory. The meta-data that has been
updated in the memory but has not yet written back to disk
might break data consistency. To mitigate this problem, in Step
5: Stop and migrate, we utilize the VMI technique to check
whether there are available meta-data cached in memory. Then,
we update the result based on the in-memory meta-data.

E. Redundant Data Elimination
More than 79% primary VM disk data overlap among the

same OS distributions just with different upper applications
[19]. Leveraging this phenomenon, we adopt the optimization
method in [20] to reduce the amount of transferred data.
It builds a sufficient cache on each side of the migration,
recording the hot blocks/pages that appear frequently. The two
caches are synchronized. The source checks the fingerprint
of a block/page first. If it is identical to the blocks/pages in
the destination’s cache, the source only transfers the index
instead of the block/page content, which can reduce network
traffic usage. From another perspective, this strategy trades
extra storage space for both the reduction of network flow
and the speedup of transmission, since the outlet bandwidth
is much more valuable than data center storage resources.

V. PERFORMANCE EVALUATION

The performance of MLLM is evaluated mainly on four
aspects: 1) The hit rate of predicted workingset; 2) The
migration performance (e.g. downtime, total migration time);
3) Network condition adaptability; and 4) The impact on guest
applications. We leverage our self-implemented XvMotion
[7] and the combination of two different workload-aware
migration methods Zheng+HMM (i.e., migrate disk using
zheng’s optimization [11] while migrate memory using Sun’s
optimization [13]) as the baseline. Xvmotion is the state-of-
the-art approach for cross data-center migration, and it uses
IOMirroring method to copy the dirty disk blocks and is
adopted in VMware’s real scenarios. [11] is a representative
approach that uses workload patterns to optimize the disk
migration, while [13] optimizes memory migration sequence
by calculating memory dirty probability based on HMM.

A. Experiment Setup
The majority of the VM migrations in our experiments are

from Beihang Xueyuan Road Cloud Data-center to Beihang

0 20 40 60 80 100

Idle

Compilation

OLTP

SPEC-jbb

PostMark

Hit rate (%)

W
o

rk
lo

a
d

ty
p

e

Our method

Block-level method

Fig. 4: Hit rates of disk read workingset prediction algorithm.

Shahe Cloud Data-center. The bandwidth reserved for mi-
gration between two data-centers is 50MBps. The hardware
platform of Beihang Xueyuan Road Cloud Data-center are
Inspur NF5280M4 Blade servers, which are configured with
Intel Core Intel Xeon E5-2620-v3, 6 cores, 12 threads pro-
cessors, 16GB DDR memory, a 300GB disk with 7200 RPM,
and Intel I219-LM Gigabit NIC card. We use Dell PowerEdge
R630 in Beihang Shahe Cloud Data-center. The physical hosts
here are all configured with Xeon E5-2609-v3, 6 cores, 6
threads processors, 8GB DDR memory, 1800GB 7200RPM
disk, and Gigabit NIC card. To evaluate the network condition
adaptability, in Section V-D, we conducted VM migration
experiments from Beihang Xueyuan Road Cloud Data-center
to Shanghai Jiaotong University. The host physical machine
Shanghai is with a 16GB memory of RAM and Intel Core i7-
6700 processors. All the operating system on physical servers
are Ubuntu 14.04 with 3.13.0 64bit kernel. The VMs are
configured with 2 vcpus, 2GB RAM, and 40GB Disk unless
specified otherwise. We evaluate MLLM under five real-world
workloads:
• Idle: The idle workload means that the VM does nothing
except the tasks of OS itself after boot-up.
• Kernel Compilation: This is a development workload in-
volving memory and disk I/O operations. We compile the
Linux 3.13.0 kernel with default compilation configuration.
• SysBench-OLTP: The OLTP benchmark [21] is used to
measure the database server performance (throughput), and
we simulate an OLTP workload with random access.
• SPEC-jbb: The Java Business Benchmark of SPEC is to
evaluate Java server performance [22] with various tasks.
• Postmark: This benchmark is designed to simulate the
behavior of file servers [23]. We perform it by simulating
30% write operations and 70% read operations.

B. Workingset Prediction Accuracy

This subsection evaluates the accuracy of our workingset
prediction algorithms that are discussed at Section IV. When
a VM accesses a disk block or a memory page that is in
the workingset, this operation is regarded as a hit; otherwise,
a miss. Figure 4 shows the comparison of our disk read
workingset prediction algorithm and the block-level algorithm
which is adopted in [11]. The Idle and SPEC-jbb has very
few read operations, so that there is no measurable disk
read workingset. In the other workloads, our disk workingset
prediction algorithm reaches 81% to 91% hit rate, while the
block-level algorithm has 59% to 72% hit rate.

0 500 1000

MLLM + OPTs

MLLM

XvMotion

Zheng + HMM

a) Idle workload

Time elapse (s)

disk pre-copy

memory pre-copy

suspend time

disk post-copy

0 500 1000 1500 2000

MLLM + OPTs

MLLM

XvMotion

Zheng + HMM

b) OLTP workload

Time elapse (s)

disk pre-copy

memory pre-copy

suspend time

disk post-copy

0 500 1000 1500 2000

MLLM + OPTs

MLLM

XvMotion

Zheng + HMM

c) Kernel compilation workload

Time elapse (s)

disk pre-copy

memory pre-copy

suspend time

disk post-copy

0 500 1000 1500

MLLM + OPTs

MLLM

XvMotion

Zheng + HMM

d) SPEC-jbb workload

Time elapse (s)

disk pre-copy

memory pre-copy

suspend time

disk post-copy

0 1000 2000 3000 4000 5000

MLLM+ OPTs

MLLM

XvMotion

Zheng + HMM

e) Postmark workload

Time elapse (s)

disk pre-copy

memory pre-copy

suspend time

disk post-copy

Fig. 5: The experiment result on total migration time.

Table II illustrates the memory write workingset size and the
hit rate in the first round pre-copy iteration. As illustrated, the
hit rates vary from 71.3% to 100%. SPEC-jbb has the largest
write workingset among different workloads (i.e. 167342
pages or 654MB). Also, we can see that the workingset size is
quite different in each workload, so the method that configures
a fixed workingset size beforehand will not be able to adapt
to dynamic workloads.

TABLE II: Measured results in the first round iteration.

Workload Workingset size (pages) Hit Rate
Idle 193 100%

Kernel compilation 49712 87.2%
OLTP 64487 81.6%

SPEC-jbb 167342 92.7%
Postmark 17932 71.3%

C. Migration Performance

In this subsection, we measure the migration performance of
our system. We carry out the evaluation for the following two
modes: 1) MLLM: This is our live migration method that only
considers the workingset without any further optimization; 2)
MLLM+OPT: This is our live migration method with unused
blocks filtering and redundant data elimination.

We first evaluate MLLM’s performance on the migration
time (from transferring the first byte to the last byte of
VM data). The experimental results are shown in Figure
5. The migration time varies significantly among different
workloads, which is mainly due to the varying dirty pattern
of blocks and pages. Disk pre-copy time (Step 2 in Figure
1), memory pre-copy time (Step 3 and 4 in Figure 1), service
downtime (Step 5 in Figure 1), and disk post-copy time (Step
6 in Figure 1) are all identified in the figures. After the
service downtime, the VM will be running in the destination
server. For this reason, we can see MLLM can quickly let
VM run at the destination server. We can also see that on
average, MLLM saves 71.4% and 62.5% total migration time
than XvMotion and Zheng+HMM. In addition, we find that
XvMotion is sensitive to the workload types. On the contrary,
the total migration time of MLLM keeps steady in different

workloads. For example, in Postmark workload (Figure 5.e),
XvMotion and Zheng+HMM suffer from a long memory
migration time because they must retransfer disk dirty blocks
and memory dirty pages. While MLLM transfers the disk dirty
workingset by post-copy, so it spends much less time. It is also
worth noting that in the SPEC-jbb workload (Figure 5.d), the
memory dirty rate is higher than the bandwidth, so all the
migration approaches enter the stop-and-migrate phase before
the remaining state gets small enough (so the service down is
larger, and we can see more details in Figure 6). In addition,
using the optimization of unused blocks filtering and hot data
cache remarkably decreases the total migration time since they
reduce the amount of VM state to be transferred.

We demonstrate the experimental result of migration down-
time in Figure 6. As we see, for write-intensive workloads
(i.e. OLTP, kernel compilation, and SPEC-jbb), XvMotion
performs poor on downtime, requiring around 1 second, while
Zheng+HMM relatively performs better because it optimizes
the data transferring sequence. MLLM outperforms those two
methods since it does not need to send the disk dirty blocks
in pre-copy. On average, MLLM spends 34.5% and 47.4%
less downtime than Zheng+HMM methods and XvMotion
correspondingly (calculated by (x − MLLM)/x). Its worth
noting that since the unused blocks filtering optimization
implements VMI during Step 5: Stop and migrate stage, it
takes a bit longer suspending time than the plain MLLM
without the filtering technique.

Figure 7 shows the amount of network traffic created during
the migration process. Since the network bandwidth in the
experiment environment is reserved and relatively stable, the
network traffic is proportional to the VM’s migration time. So,
the network traffic experiment results are similar as those in
Figure 5. It indicates that the MLLM (without optimization)
saves 33.8% and 49.6% network traffic than Zheng+HMM
methods and XvMotion. Moreover, when additional optimiza-
tion is used, 24.3% more traffic is saved on average.

D. Network Condition Adaptability
In this subsection, we evaluate MLLM’s ability to adapt

to poor network conditions. We migrated one VM from

0

20
0

40
0

60
0

80
0

10
00

Idle

OLTP

Compilatoin

SPEC-jbb

Postmark

30
00

40
00

50
00

60
00

70
00

80
00

Suspend time (ms)

MLLM + OPT

MLLM

XvMotion

Zheng + HMM

Fig. 6: Experiment results
on migration downtime.

0 50000 100000 150000 200000

Idle

OLTP

Compilatoin

SPEC-jbb

Postmark

Traffic consumption (MB)

MLLM + OPT

MLLM

XvMotion

Zheng + HMM

Fig. 7: Experiment results on
traffic amount.

Beihang University (Beijing) to Shanghai Jiaotong University
(Shanghai) There is no special-purpose network line between
so the bandwidth is limited. The bandwidth can only be up
to 5MBps, which is an extremely poor condition for VM
live migration. We migrate the VM with different workloads
and regard it a successful live migration if the migration can
be finished within 2 hours and the downtime is less than 1
second. Table III shows that MLLM succeeds to migrate in
the Idle and Postmark workloads while others only succeed
in Idle workload. Therefore, MLLM can adapt to the more
harsh environment than other VM migration methods.

TABLE III: Ability to adapt to poor network condition.
Approaches MLLM + OPT XvMotion Zheng + HMM

Idle
√ √ √

OLTP X X X
Kernel compilation X X X

SPEC-jbb X X X
Postmark

√
X X

E. Impact on Guest Applications

We also evaluate MLLM’s performance by measuring the
impact on guest VM applications during the migration process.
We ran several benchmarks and get the performance metrics in
different scenes: 1) when there is no migration (baseline), 2) in
MLLM’s pre-copy phase (both memory and disk access trace
are on), 3) in MLLM’s post-copy phase, 4) in XvMotion’s
memory pre-copy phase, 5) in Zheng+HMM’s memory pre-
copy phase, and 6) in original post-copy method.

The results are demonstrated in Table IV. The average
impact at row 5 is calculated by averaging the impact of
each benchmark (calculated by Avg[(baseline.benchmark(i)-
X.benchmark(i))/ baseline.benchmark(i)]). First, we can see
that Zheng+HMM introduce most overhead (22.35%) to guest
VM. This is because it needs to train the workingset prediction
algorithm in real-time and it imposes a large number of time-
consuming VM-exits events. MLLM’s workingset prediction
algorithm is simple and it can trace the memory write oper-
ations without introducing lots of VM-exits. For this reason,
MLLM, which introduces only 3.77% overhead, outperforms
TABLE IV: Comparison of performance impact on guest VM.

Workload OLTP SPEC-jbb Postmark Avg impact
No migration 4487tps 8764bops 312tps 0
MLLM-Pre 4312tps 8339bops 304tps 3.77%
MLLM-Post 4227tps 8745bops 288tps 4.57%

XvMotion-Pre 4288tps 8104bops 293tps 6.02%
Zheng+HMM-Pre 3356tps 6361bops 267tps 22.35%

Post-copy 1126tps 461bops 117tps 77.38%

others in the pre-copy phase. Moreover, we can see that in
the post-copy phase, MLLM only imposes 4.57% overhead,
which is much smaller than the original post-copy (77.38%
overhead). The reason is that MLLM introduces only a few
on-demand-fetchings since the reading workingset is migrated
in the pre-copy phase. For some workloads with few disk
read operations such as SEPC-jbb, MLLM imposes almost
no overhead in the post-copy phase.

VI. RELATED WORK

VM live migration approach was first proposed by Clark
et al. [1]. They proposed pre-copy to transfer the VM states,
and boot the VM when all the VM states are copied to the
target host. In contrast to pre-copy, Hines et al. [8] proposed
post-copy, which first boots the VM on the target host and
then copies the pages on demand from the source host, thus
the memory pages will be transferred only once. Liu et al.
[24]adopted the idea of ReVirt [25], which achieves live mi-
gration by recording the execution of VM and replaying them
at the destination host. The hybrid-copy [9], [10] approaches
combine the pre-copy and post-copy methods, which change
to post-copy after a certain round of iterative pre-copy, so that
it transfers memory pages only for limited times.

These earlier academic research works mainly focus on
migrating a VM between two closely related hosts within
a cluster. To accommodate the increasing requirement of
large scale, some attempts have been proposed to enable
cross data-center migration. Bradford et al. [18] use the pre-
copy method [1] to migrate all the VM states including disk
storage. Meanwhile, it combines dynamic DNS with tunneling
techniques to guarantee that the existing network connections
can continue transparently while the new ones are redirected
to the new location. DBRP [26] and Takahashi et al. [27]
combine the storage replication technology with traditional
migration technology. They ensure that the disk replica is
up-to-date in the destination host by using file synchronizing
techniques. However, these solutions are fragile and always
suffer from configuration complexity since the synchronizing
is done outside the virtualization stack. VMware developed
IOMirroring [7], [28], which mirrors all the new disk write
operations from the source to the destination and synchronize
other states in the background at the same time. It also
introduces IO-throttling in order to reduce the dirty rate and
accelerate the migrating process. Whereas, it consumes lots
of network traffics and only performs well when a very large
amount of migration bandwidth is reserved.

Many works also focus on reducing the cost (migration time
and migration downtime) of migration. Ibrahim et al. [29]
optimized the pre-copy by terminating migration when im-
provements of the downtime are unlikely to occur. VMScatter
[30] and Jin et al. [31] compress VM states by eliminating the
same content to reduce the amount of transmitted data and
network bandwidth consumption. Clark et al. [1] introduced
the concept of a writable workingset and pointed out that the
migration sequence may impact on the migration performance.
Based on this, Zheng [11] takes VM’s storage I/O workload

into consideration to achieve higher efficiency by sending the
frequently dirty blocks later. Zaw et al. [12] and Sun et al. [13]
use Least Recent Used algorithms (LRU) and HMM to predict
memory write workingset. However, their methods of getting
historical trace data and predicting workingset introduce much
overhead to guest VM. In contrast, our method can solve
the aforementioned problems. Nathan et al. [32] reveal that
existing models to predict migration time are fundamentally
flawed and presents a new model that takes workingset size
into account. Zhang et al. [33] analyze how much bandwidth
is required to guarantee the migration time and the downtime.
MigVisor [6] can accurately predict the completion time of
VM migration using workingset model, which enhances the
system management efficacy.

VII. CONCLUSION

In this paper, we present MLLM, a workingset-aware live
migration method for cross data-center resource management,
which improves the cross data-center migration by reducing
the guest impact, migration downtime, total migration time,
and saving the network traffic. In MLLM, we leverage the Intel
hardware feature EPT A/D bit to efficiently acquire the VM
disk and memory access sequence during migration. Based
on these sequence data, we proposed two methods to predict
disk read workingset and memory write workingset with high
accuracy. And then we adjust the data transfer sequence based
on the workingset information. We also present two optimizing
methods to filter unused blocks and to de-duplicate data
content by the hot data cache, thereby greatly decreasing the
amount of data to be transferred and improving the migration
performance. Our real experimental results show that MLLM
reduces 62.5%-71.4% migration time, saves 62.4%-71.5%
traffic amount, and reduces 34.5%-47.4% service downtime
over existing methods. In the future, we aim to improve the
workingset prediction accuracy by using machine learning.

ACKNOWLEDGEMENT

We thank Ms. Christian Howard for improving the writing.
This work was supported by the Chinese National Key Re-
search and Development Program (2016YFB1000103), Bei-
hang Ph.D. student oversea visiting fund. This research was
also supported in part by U.S. NSF grants NSF-1827674, CCF-
1822965, OAC-1724845, ACI-1719397 and CNS-1733596,
and Microsoft Research Faculty Fellowship 8300751.

REFERENCES

[1] Christopher Clark, Keir Fraser, Steven Hand, et al. Live migration of
virtual machines. In Proceedings of NSDI 2005, pages 273–286.

[2] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, et al. VM
live migration at scale. In Proceedings of VEE 2018, pages 45–56.

[3] Nilton Bila, Eric J Wright, Eyal De Lara, Kaustubh Joshi, et al. Energy-
oriented partial desktop virtual machine migration. ACM Transactions
on Computer Systems (TOCS), 33(1):2, 2015.

[4] Vivek Shrivastava, Petros Zerfos, Kang-Won Lee, Hani Jamjoom, Yew-
Huey Liu, and Suman Banerjee. Application-aware virtual machine
migration in data centers. In Proceedings of INFOCOM 2011. IEEE.

[5] Tomáš Kukrál, Miloš Kozák, Tomáš Hégr, and Leoš Boháč. VM
migration measurement and failure detection. In Proceedings of TSP
2015, pages 285–288.

[6] Jinshi Zhang, Eddie Dong, Jian Li, and Haibing Guan. Migvisor:
Accurate prediction of VM live migration behavior using a working-
set pattern model. In Proceedings of VEE 2017, pages 30–43.

[7] Ali José Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, et al. Xvmotion:
Unified virtual machine migration over long distance. In Proceedings
of ATC 2014, pages 97–108, June 2014.

[8] Michael R. Hines and Kartik Gopalan. Post-copy based live virtual ma-
chine migration using adaptive pre-paging and dynamic self-ballooning.
In Proceedings of VEE 2009, pages 51–60.

[9] Feiran Yin, Weidong Liu, and Jiaxing Song. Live virtual machine
migration with optimized three-stage memory copy. In Proceedings of
the 9th International Conference on Future Information Technology.

[10] S. Sahni and V. Varma. A hybrid approach to live migration of virtual
machines. In Proceedings of the 2012 IEEE International Conference
on Cloud Computing in Emerging Markets, CCEM 2012, pages 1–5.

[11] Jie Zheng, Tze Sing Eugene Ng, and Kunwadee Sripanidkulchai.
Workload-aware live storage migration for clouds. In Proceedings of
VEE 2017, pages 133–144.

[12] Ei Phyu Zaw and Ni Lar Thein. Improved live VM migration using lru
and splay tree algorithm. International Journal of Computer Science
and Telecommunications, 3(3):1–7, 2012.

[13] Sun Mingsong and Ren Wenwen. Improvement on dynamic migration
technology of virtual machine based on xen. In Proceedings of the 8th
IEEE International Forum on Strategic Technology, IFOST 2013.

[14] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3C: System Programming Guide, Part 3. 2016.

[15] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-pro: An effective
improvement of the clock replacement. In Proceedings of the 2005
USENIX Annual Technical Conference, pages 323–336, 2005.

[16] Qemu-kvm. /urlhttp://www.qemu-project.org.
[17] Chen Ding and Yutao Zhong. Predicting whole-program locality through

reuse distance analysis. In ACM Sigplan Notices, volume 38, pages 245–
257. ACM, 2003.

[18] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schiöberg. Live wide-area migration of virtual machines including local
persistent state. In Proceedings of VEE 2007, pages 169–179.

[19] Anthony Liguori and Eric Van Hensbergen. Experiences with content
addressable storage and virtual disks. In Proceedings of the 2008
Workshop on I/O Virtualization (WIOV 2018).

[20] Lei Yu, Haiying Shen, et al. Core: Cooperative end-to-end traffic
redundancy elimination for reducing cloud bandwidth cost. IEEE
Transactions on Parallel and Distributed Systems, 28(2):446–461, 2017.

[21] Sysbench. https://github.com/akopytov/sysbench.
[22] Specjbb. https://www.spec.org/jbb2005/.
[23] Postmark. http://www.filesystems.org/docs/auto-pilot/Postmark.html.
[24] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live

migration of virtual machine based on full system trace and replay. In
Proceedings of HPDC 2009, pages 101–110.

[25] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai,
and Peter M Chen. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of 5th Symposium on
Operating System Design and Implementation OSDI 2002.

[26] Chapter 13: Using Xen with DRBD. http://www.drbd.org/users-guide/
ch-xen.html.

[27] Kazushi Takahashi, Koichi Sasada, and Takahiro Hirofuchi. A fast
virtual machine storage migration technique using data deduplication.
In Proceedings of Cloud Computing, 2012, pages 57–64. Citeseer.

[28] Ali Mashtizadeh, Emré Celebi, Tal Garfinkel, Min Cai, et al. The design
and evolution of live storage migration in VMware ESX. In Proceedings
of the 2011 USENIX Annual Technical Conference, ATC 2011.

[29] Khaled Z. Ibrahim et al. Optimized pre-copy live migration for memory
intensive applications. In Proceedings of SC 2011, pages 40:1–40:11.

[30] Lei Cui, Jianxin Li, Bo Li, Jinpeng Huai, Chunming Hu, Tianyu Wo,
Hussain Al-Aqrabi, and Lu Liu. VMScatter: Migrate virtual machines
to many hosts. In Proceedings of VEE 2013, pages 63–72.

[31] Hai Jin, Li Deng, Song Wu, et al. Live virtual machine migration with
adaptive, memory compression. In Proceedings of the 2009 International
Conference on Cluster Computing, pages 1–10.

[32] Senthil Nathan, Umesh Bellur, and Purushottam Kulkarni. Towards a
comprehensive performance model of virtual machine live migration. In
Proceedings of the SoCC 2015, pages 288–301.

[33] Jiao Zhang, Fengyuan Ren, and Chuang Lin. Delay guaranteed live
migration of virtual machines. In Proceedings of INFOCOM 2014, pages
574–582. IEEE.

